KR20150143278A - gradient metal-ceramic composite and preparation method thereof - Google Patents

gradient metal-ceramic composite and preparation method thereof Download PDF

Info

Publication number
KR20150143278A
KR20150143278A KR1020150028251A KR20150028251A KR20150143278A KR 20150143278 A KR20150143278 A KR 20150143278A KR 1020150028251 A KR1020150028251 A KR 1020150028251A KR 20150028251 A KR20150028251 A KR 20150028251A KR 20150143278 A KR20150143278 A KR 20150143278A
Authority
KR
South Korea
Prior art keywords
ceramic particles
metal
composite material
gradient
ceramic composite
Prior art date
Application number
KR1020150028251A
Other languages
Korean (ko)
Inventor
치궈 장
청페이 황
추안 황
Original Assignee
에버디스플레이 옵트로닉스 (상하이) 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에버디스플레이 옵트로닉스 (상하이) 리미티드 filed Critical 에버디스플레이 옵트로닉스 (상하이) 리미티드
Publication of KR20150143278A publication Critical patent/KR20150143278A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention provides a gradient-functional metal ceramic composite material. The gradient-functional metal ceramic composite material includes a metal matrix, which is made of copper and aluminum, and copper-aluminum alloy, and ceramic particles of boron nitride, pyrolytic boron nitride, aluminum nitride or silicon carbide which are dispersed in the metal matrix. The ceramic particles form gradient distribution in a vertical direction of thickness in the metal matrix. The gradient continuously changes with a volume percentage of 10-60%. The present invention additionally provides a method for producing the gradient-functional metal ceramic composite material. The metal ceramic composite material of the present invention has appropriate thermo-conductivity and exhibits change of the gradient. Therefore, a deposition crucible, made of the metal ceramic composite material of the present invention can make an organic deposition material, placed in the crucible, be uniformly heated as the thermo-conductivity is distributed to correspond from a lower portion to an inlet and form an organic thin film with excellent quality after deposition.

Description

경사기능 금속 세라믹 복합재료 및 그 제조방법{gradient metal-ceramic composite and preparation method thereof}[0001] Description [0002] Gradient-functional metal-ceramic composite materials and their preparation methods [0002]

본 발명은 복합재료 및 그 제조방법에 관한 것으로서, 구체적으로는 경사기능 금속 세라믹 복합재료 및 그 제조방법에 관한 것이다.
TECHNICAL FIELD The present invention relates to a composite material and a manufacturing method thereof, and more particularly, to a gradient functional metal-ceramic composite material and a manufacturing method thereof.

진공증착법은 진공 환경에서 막형성 대기물질이 증착 도가니에서 열을 받아 증발 기화되거나 승화되도록 함으로써 기판 소재(substrate material)의 표면에 응결 및 침적되어 박막을 형성시키는 방법이다. 현재 진공증착법은 각종 박막소자에 광범위하게 적용되고 있으며, 특히 유기박막소자의 제조에 적용된다. 예를 들면, OLED소자와 같은 유기 소분자(small molecular) 소자의 제조 과정에서, 일반적으로 진공증착법으로 소자의 각 유기 기능층을 제조하는데, 제조 과정은 일반적으로 고진공(10-3Pa~10-7Pa) 환경에서 진행되는 바, 도가니에 위치한 유기재료를 가열하여 용화, 증발시킴으로써 도가니 상측의 기판위에 침적되도록 한다. The vacuum deposition method is a method of forming a thin film by condensing and depositing on the surface of a substrate material by allowing a film forming atmospheric substance to evaporate or sublimate by receiving heat from a deposition crucible in a vacuum environment. At present, vacuum deposition is widely applied to various thin film devices, and is particularly applied to the manufacture of organic thin film devices. For example, in the process of manufacturing an organic small molecule device such as an OLED device, each organic functional layer of the device is generally fabricated by a vacuum deposition method. The manufacturing process is generally a high vacuum (10 -3 Pa to 10 -7 Pa), the organic material located in the crucible is heated and melted and evaporated to be deposited on the substrate on the crucible.

증착 공정에서 도가니는 필수 도구로서 도가니의 재질은 증착재료의 막형성 품질과 생산 효율에 중요한 영향을 미친다. 통상적인 도가니의 재질로는 금속, 산화 알루미늄, 질화 붕소, 흑연, 석영 등이 사용되며, 상이한 용도에 따라 적합한 재료를 선택하여 사용할 수 있다. 유기재료의 증착에 있어서, 상기 각 재질의 도가니는 현재 모두 적용되고 있지만, 각자 장점과 단점을 가지고 있다. 여기서, 금속 도가니는 일반적으로 티타늄(Ti), 동(Cu) 및 알루미늄(Al) 등으로 제조되는데, 금속은 열전도성이 매우 우수하므로, 도가니 내의 유기재료가 받게 되는 열이 불균일하게 되어 증착재료가 파열되어 뚫고 나오고 넘치는 현상이 나타나게 된다. 산화 알루미늄 및 석영 재질의 도가니는 열전도성이 낮으므로, 유기재료가 도가니 입구로 몰리게 되는 입구막힘현상이 쉽게 나타난다. 질화 규소 및 흑연 재질의 도가니는 가격이 비싸고 세척하기 어렵다. 이로부터 알 수 있는 바와 같이, 기존의 도가니 재료에 의해 제조된 도가니는 열전도율이 지나치게 높거나 지나치게 낮으며 증착재료가 내부에 놓일 때 열원과의 거리에 따라 아래로부터 위에 이르기까지 불균일하게 열을 받는 문제가 존재한다. The crucible is an essential tool in the deposition process, and the material of the crucible has an important influence on the film formation quality and the production efficiency of the evaporation material. As a typical material of the crucible, metal, aluminum oxide, boron nitride, graphite, quartz, or the like is used, and a material suitable for different uses can be selected and used. In the deposition of organic materials, the crucibles of each of the above materials are all applied at present, but they have their own advantages and disadvantages. Here, the metal crucible is generally made of titanium (Ti), copper (Cu), aluminum (Al) or the like. Since the metal has excellent thermal conductivity, the heat received by the organic material in the crucible becomes uneven, It ruptures and comes out to overflow. Aluminum oxide and quartz crucibles are low in thermal conductivity, which makes it easy to clog the entrances where the organic material is poured into the crucible inlet. Crucibles made of silicon nitride and graphite are expensive and difficult to clean. As can be seen from this, the crucibles made from the existing crucible material have an excessively high or low thermal conductivity and are subject to uneven heat from the bottom to the top depending on the distance from the heat source when the deposition material is placed inside Lt; / RTI >

이에 따라, 제조된 도가니가 적합한 열전도율을 구비하고 그 내부에 놓이는 유기재료가 균일하게 열을 받을 수 있어 파열되어 뚫고 나오는 현상 및 입구 막힘 문제를 방지할 수 있는 개선된 유기박막 증착용 도가니 재료가 요구되고 있다.
Accordingly, the crucible manufactured has a suitable thermal conductivity and the organic material placed in the crucible can be uniformly heated, so that an improved organic thin film deposition crucible material capable of preventing the phenomenon of rupture and breakage of the inlet and clogging of the inlet is required .

상기와 같은 문제를 해결하기 위하여, 본 발명은 경사기능 금속 세라믹 복합재료를 제공한다. 상기 경사기능 금속 세라믹 복합재료는 열전도성이 양호한 금속재료를 매트릭스로 하고 열전도성이 낮은 세라믹 입자를 금속 매트릭스에 분산시킴으로써 금속 세라믹 복합재료를 형성하며, 또한 도가니의 각 부위와 열원 사이의 거리가 서로 다른 것에 기반하여 금속 매트릭스에서의 세라믹 입자의 함량이 경사 분포를 이루도록 함으로써 해당 경사기능 금속 세라믹 복합재료로 제조된 도가니가 적합한 열전도율을 구비하도록 하고 이에 놓이는 유기재료가 증착 시 균일하게 열을 받을 수 있도록 한다.In order to solve the above problems, the present invention provides a gradient functional metal-ceramic composite material. The gradient functional metal-ceramic composite material forms a metal-ceramic composite material by dispersing ceramic particles having a low thermal conductivity into a metal matrix by using a metal material having a good thermal conductivity as a matrix. Further, the distance between each part of the crucible and the heat source The content of the ceramic particles in the metal matrix is made to be inclined so that the crucible made of the inclined functional metal-ceramic composite material has an appropriate thermal conductivity and the organic material placed thereon is uniformly heated do.

따라서, 일 양상에 의하면 본 발명은 경사기능 금속 세라믹 복합재료를 제공하며, 상기 경사기능 금속 세라믹 복합재료는 Accordingly, in one aspect, the present invention provides a gradient functional metal-ceramic composite material, wherein the gradient functional metal-

동, 알루미늄 또는 동-알루미늄 합금의 금속 매트릭스(matrix); 및 A metal matrix of copper, aluminum or copper-aluminum alloy; And

상기 금속 매트릭스에 분산된 질화 붕소(boron nitride), 파이로리틱 질화 붕소(pyrolytic boron nitride), 질화 알루미늄(Aluminum Nitride) 또는 탄화 규소(silicon carbide)의 세라믹(ceramic) 입자;를 포함하고, And ceramic particles of boron nitride, pyrolytic boron nitride, aluminum nitride, or silicon carbide dispersed in the metal matrix,

상기 세라믹 입자는 상기 금속 매트릭스에서 종방향의 두께 방향에 따라 경사 분포를 이루며, 체적 백분비가 10%~60% 사이에서 연속적인 경사 변화를 이룬다.The ceramic particles have an inclined distribution along the thickness direction in the longitudinal direction in the metal matrix, and have a continuous slope change in volume percentage between 10% and 60%.

본 발명의 일 실시형태에 있어서, 상기 세라믹 입자의 평균 입경은 5μm~100μm이다.In one embodiment of the present invention, the ceramic particles have an average particle diameter of 5 mu m to 100 mu m.

본 발명의 다른 실시형태에 있어서, 상기 경사기능 금속 세라믹 복합재료의 열전도율은 종방향의 두께 방향에 따라 70W/mk~182W/mk 범위 내에서 연속적인 경사 변화를 이룬다.In another embodiment of the present invention, the thermal conductivity of the gradient functional metal-ceramic composite material has a continuous inclination change within a range of 70 W / mk to 182 W / mk depending on the thickness direction in the longitudinal direction.

다른 양상에 의하면 본 발명은 상기 경사기능 금속 세라믹 복합재료의 제조방법을 제공하며, 상기 경사기능 금속 세라믹 복합재료의 제조방법은 According to another aspect, the present invention provides a method of manufacturing the gradient functional metal-ceramic composite material, wherein the gradient functional metal-

세라믹 입자가 금속 분말체에 균일하게 분산되고 각 층의 상기 세라믹 입자의 체적 백분비가 연속적인 경사 변화를 이루도록 상기 금속 분말체, 세라믹 입자 및 점착제를 분층하여 혼합하는 단계; Mixing and dispersing the metal powder, the ceramic particles and the pressure-sensitive adhesive so that the ceramic particles are uniformly dispersed in the metal powder and the volume percentage of the ceramic particles in each layer has a continuous gradient;

상기 각 층을 적층하고 프레스 성형하여 상기 세라믹 입자가 종방향의 두께 방향에 따라 경사 분포를 이루는 성형체를 형성하는 단계; 및 Layered and press-molded to form a molded article in which the ceramic particles have an oblique distribution along the thickness direction of the longitudinal direction; And

상기 성형체에 대하여 탈지 처리를 거친 후 소결하여 상기 경사기능 금속 세라믹 복합재료를 제조하는 단계를 포함한다.And degreasing the sintered body and sintering the sintered body to produce the inclined functional metal-ceramic composite material.

본 발명의 방법의 일 실시형태에 있어서, 상기 금속 분말체는 동, 알루미늄 또는 동-알루미늄 합금이다.In one embodiment of the method of the present invention, the metal powder body is copper, aluminum or a copper-aluminum alloy.

본 발명의 방법의 다른 실시형태에 있어서, 상기 세라믹 입자는 질화 붕소, 파이로리틱 질화 붕소, 질화 알루미늄 또는 탄화 규소이다.In another embodiment of the method of the present invention, the ceramic particles are boron nitride, boron nitride, boron nitride, aluminum nitride or silicon carbide.

본 발명의 방법의 또 다른 실시형태에 있어서, 상기 각 층의 상기 세라믹 입자의 체적 백분비는 10%~60% 범위에서 연속적인 경사 변화를 이룬다.In still another embodiment of the method of the present invention, the volume percentage of the ceramic particles in each of the layers has a continuous slope change in the range of 10% to 60%.

본 발명의 방법의 또 다른 실시형태에 있어서, 상기 금속 매트릭스에 분산된 상기 세라믹 입자의 평균 입경은 5μm~100μm이다.In still another embodiment of the method of the present invention, the average particle size of the ceramic particles dispersed in the metal matrix is 5 占 퐉 to 100 占 퐉.

본 발명의 방법의 또 다른 실시형태에 있어서, 상기 성형체에 대하여 탈지 처리를 거친 후 소결하는 단계에서, 그 작업 환경은 진공도가 0.1Pa보다 높고, 작동 압력이 50MPa~200MPa이며, 소결 온도가 500℃~850℃이고, 소결 시간이 50분~120분이다.In another embodiment of the method of the present invention, in the step of sintering after degreasing treatment, the working environment is such that the vacuum degree is higher than 0.1 Pa, the operating pressure is 50 MPa to 200 MPa, the sintering temperature is 500 ° C To 850 캜, and the sintering time is from 50 minutes to 120 minutes.

본 발명의 경사기능 금속 세라믹 복합재료는 유기박막 증착용 도가니에 적용된다.The gradient functional metal-ceramic composite material of the present invention is applied to an organic thin film deposition crucible.

본 발명은 양호한 열전도성을 구비하는 금속재료를 매트릭스로 하고 열전도성이 낮은 세라믹 재료를 매트릭스에 도핑시켜 금속 세라믹 복합재료를 형성한다. 상기 금속 세라믹 복합재료는 적합한 열전도율을 구비하므로, 단순히 금속재료만을 사용하여 도가니를 제조할 시 열전도율이 지나치게 높음으로 인해 금속재료가 파열되어 뚫고 나오는 현상을 방지할 수 있고, 또한 단순히 세라믹 재료만을 사용하여 도가니를 제조할 시 열전도율이 지나치게 낮음으로 인해 초래되는 입구 막힘 현상을 방지할 수 있다. 더 나아가, 본 발명의 금속 세라믹 복합재료는 경사기능재료로서, 금속 매트릭스에서의 세라믹 입자의 체적 백분비가 종방향의 두께 방향에 따라 연속적인 경사 분포를 이룸으로써 해당 복합재료의 열전도율도 종방향의 두께 방향에 따라 연속적인 경사 분포를 이루도록 한다. 즉, 세라믹 입자의 체적 백분비가 높은 부분은 열전도율이 상대적으로 낮고, 세라믹 입자의 체적 백분비가 낮은 부분은 열전도율이 상대적으로 높다. 해당 복합재료로 제조된 도가니의 열전도율은 하부로부터 입구까지 대응되게 연속적인 경사 분포를 이룸으로써 열원과 가까운 하부 부분은 비교적 낮은 열전도율을 구비하도록 하고 열원과 멀리 떨어진 입구 부분은 비교적 높은 열전도율을 구비하도록 하여 해당 도가니에 놓인 유기증착재료가 균일하게 열을 받을 수 있도록 하며, 증착을 거쳐 막질이 우수한 유기박막을 형성할 수 있도록 한다.
The present invention forms a metal-ceramic composite material by using a metal material having good thermal conductivity as a matrix and a ceramic material having low thermal conductivity as a matrix. Since the metal-ceramic composite material has a suitable thermal conductivity, it is possible to prevent the metal material from rupturing due to the excessively high thermal conductivity when the crucible is manufactured using only a metal material, It is possible to prevent clogging of the inlet caused by excessively low thermal conductivity when the crucible is manufactured. Furthermore, since the metal-ceramic composite material of the present invention is a gradient functional material, the volume percentage of the ceramic particles in the metal matrix has a continuous slope distribution along the thickness direction in the longitudinal direction, so that the thermal conductivity of the composite material also becomes the thickness in the longitudinal direction So that a continuous slope distribution is formed according to the direction. That is, the thermal conductivity is relatively low at the portion where the volume percentage of the ceramic particles is high, and the thermal conductivity is relatively high at the portion where the volume percentage of the ceramic particles is low. The crucible made of the composite material has a continuous inclined distribution correspondingly from the bottom to the inlet so that the lower portion close to the heat source has a relatively low thermal conductivity and the inlet portion farther away from the heat source has a relatively high thermal conductivity The organic deposition material placed on the crucible can be uniformly heated, and an organic thin film having excellent film quality can be formed through deposition.

하기 구체적인 실시예에 따라 본 발명의 기술적 해결수단에 대하여 더 설명하도록 한다. 본 발명의 보호범위는 하기의 실시예에 한정되지 않고, 이러한 실시예는 단지 예시적인 것일 뿐 그 어떠한 방식으로도 본 발명에 대하여 한정하지 않는다. The technical solution of the present invention will be further described in accordance with the following specific embodiments. The scope of protection of the present invention is not limited to the following examples, but these examples are merely illustrative and the present invention is not limited in any way.

본 발명은 열전도성이 비교적 높은 금속재료를 매트릭스로 하고 열전도성이 비교적 낮은 세라믹 입자를 매트릭스에 분산시킨 경사기능 금속 세라믹 복합재료를 제공한다. 진공증착공정의 특성과 결부하여, 증착용 금속 도가니 재료는 일반적으로 동, 알루미늄, 티타늄 또는 동-알루미늄 합금을 사용하고, 여기서 열전도성이 양호한 동, 알루미늄 또는 동-알루미늄 합금을 사용하는 것이 바람직하다. 증착용 세라믹 도가니 재료는 일반적으로 내열성이 우수한 질화 붕소, 파이로리틱 질화 붕소, 질화 알루미늄 또는 탄화 규소를 사용하고, 질화 붕소 또는 파이로리틱 질화 붕소를 사용하는 것이 바람직하다. 본 발명의 일 실시형태에 의하면, 경사기능 금속 세라믹 복합재료는 알루미늄 및/또는 동 금속상(metal phase)과 질화 붕소 또는 파이로리틱 질화 붕소 세라믹상으로 구성되는 것이 바람직하다. 높은 열전도성을 구비하는 금속과 낮은 열전도성 및 높은 내열성을 구비하는 세라믹이 혼합되어, 두가지 재료의 물리적, 화학적 성능의 협력효과를 구현할 수 있으며, 도가니 재료로서 필요한 열성능을 얻는다. 즉, 적합한 열전도율과 높은 열안정성을 구비한다. The present invention provides a gradient functional metal-ceramic composite material in which ceramic particles having a relatively high thermal conductivity as a matrix and relatively low thermal conductivity are dispersed in a matrix. Along with the characteristics of the vacuum deposition process, the metal crucible for vapor deposition generally uses copper, aluminum, titanium or copper-aluminum alloy, and preferably copper, aluminum or copper-aluminum alloy having good thermal conductivity here . Boron nitride, boron nitride, boron nitride or pyrolytic boron nitride is preferably used as the vapor-deposition ceramic crucible material, in general, boron nitride, pyrolytic boron nitride, aluminum nitride or silicon carbide excellent in heat resistance. According to one embodiment of the present invention, the gradient functional metal-ceramic composite material is preferably composed of an aluminum and / or copper metal phase and a boron nitride or pyrolytic boron nitride ceramic phase. A metal having high thermal conductivity and a ceramic having low thermal conductivity and high heat resistance are mixed to realize a cooperative effect of physical and chemical performance of the two materials and thermal performance required as a crucible material is obtained. That is, it has an appropriate thermal conductivity and high thermal stability.

더 나아가, 본 발명에 의하면 세라믹 입자는 금속 매트릭스에서 경사 분포를 이룬다. 즉, 세라믹 입자가 금속 매트릭스에서 차지하는 체적 백분비는 종방향의 두께 방향에 따라 연속적인 경사 변화를 이룬다. 이에 의해 금속 매트릭스에서 세라믹 입자가 비교적 많이 분산된 부분의 열전도성이 상대적으로 낮도록 하고, 세라믹 입자가 비교적 적게 분산된 부분의 열전도성이 상대적으로 높도록 함으로써 해당 금속 세라믹 복합재료의 열전도율이 세라믹 입자의 분포와 대응되게 종방향의 두께 방향에 따라 대응되게 경사 변화를 이루도록 한다. 도가니 재료로써 요구되는 열전도율에 따라, 본 발명의 경사기능 금속 세라믹 복합재료에 있어서, 세라믹 입자가 금속 매트릭스에서 차지하는 체적 백분비는 10%~60% 범위 내에서 경사 변화를 이루는 것이 바람직하다. 본 발명의 경사기능 금속 세라믹 복합재료를 사용하여 제조된 증착용 도가니는, 열원과의 거리에 따라 그 열전도율이 도가니의 하부로부터 입구까지 경사 변화를 이룸으로써, 도가니에 놓인 증착재료, 특히는 유기재료가 균일하게 열을 받을 수 있도록 하고, 이에 의해 증착을 거쳐 막질이 우수한 유기박막을 얻을 수 있다. Further, according to the present invention, the ceramic particles have an oblique distribution in the metal matrix. That is, the volumetric percentage of the ceramic particles in the metal matrix forms a continuous inclination change along the thickness direction of the longitudinal direction. The thermal conductivity of the portion where the ceramic particles are dispersed relatively relatively in the metal matrix is relatively low and the thermal conductivity of the portion in which the ceramic particles are relatively less dispersed is relatively high so that the thermal conductivity of the metal- So that the inclination changes correspondingly to the thickness direction in the longitudinal direction. In the gradient functional metal-ceramic composite material according to the present invention, it is preferable that the volume percentage of the ceramic particles in the metal matrix is varied in the range of 10% to 60% in accordance with the thermal conductivity required as the crucible material. The vapor-deposition crucible manufactured by using the inclined-function metal-ceramic composite material of the present invention has an inclined change from the bottom to the inlet of the crucible according to the distance from the heat source to the evaporation material, So that the organic thin film having excellent film quality can be obtained through vapor deposition.

본 발명은 상기 경사기능 금속 세라믹 복합재료의 제조방법을 더 제공한다. 상기 경사기능 금속 세라믹 복합재료의 제조방법은 세라믹 입자가 금속 분말체에 균일하게 분산되도록 금속 분말체, 세라믹 입자 및 점착제를 분층하여 혼합하여 각 층의 세라믹 입자의 체적 백분비가 연속적인 경사 변화를 이루도록 하는 단계와, 상기 각 층을 겹겹이 쌓고 프레스 성형하여 세라믹 입자가 종방향의 두께 방향에 따라 경사 분포를 이루는 성형체를 형성하는 단계 및 상기 성형체에 대하여 탈지 처리를 거친 후 소결하여 경사기능 금속 세라믹 복합재료를 제조하는 단계를 포함한다. 본 발명의 제조방법에 의하면, 금속 분말체와 세라믹 분말체에 미량의 점착체를 도핑시켜 박층을 형성하고, 서로 다른 박층 중 세라믹 분말체의 체적 백분비가 서로 다르며 경사 변화를 이루도록 한다. 이러한 서로 다른 성분 함량의 박층을 함께 압착 적층한 후, 탈지 처리를 통하여 점착제를 제거하고, 최종적으로 소결 성형한다. 본 발명의 방법에 의하면, 각 박층을 매우 얇게 만들어 각 층 사이의 성분 변화, 즉 세라믹 입자의 체적 백분비의 변화가 상대적으로 작도록 함으로써 최종적으로 제조된 복합재료 중의 세라믹 입자가 금속 매트릭스에서 기본적으로 연속적인 경사 변화를 이루도록 한다. 성형을 위하여 첨가한 점착제 및 탈지 처리에 대하여 본 발명은 특별히 한정하지 않으며, 재료의 성형에 통상적으로 사용되는 점착제 및 처리공정을 사용할 수 있다. 소결 성형에 대하여 본 발명은 열간 정수압(HIP:hot isostatic pressing) 소결로 양호한 치밀도를 구비하는 증착 도가니용 복합재료를 획득하는 것이 바람직하다. The present invention further provides a method for producing the above inclined functional metal-ceramic composite material. The method of manufacturing a gradient functional metal-ceramic composite material is characterized in that the metal powder, the ceramic particles and the adhesive are dispersed and mixed so that the ceramic particles are uniformly dispersed in the metal powder body so that the volume percentage of the ceramic particles in each layer is continuously varied A step of forming a plurality of layers by layering and press molding the ceramic particles so that the ceramic particles have an oblique distribution along the thickness direction in the longitudinal direction; and a step of sintering the formed body after degreasing treatment to form a gradient functional metal- . ≪ / RTI > According to the manufacturing method of the present invention, a thin layer is formed by doping a metal powder and a ceramic powder with a small amount of a pressure-sensitive adhesive so that the volume percentage of the ceramic powder in the different thin layers is different from each other and the inclination is changed. These thin layers having different component contents are squeezed and laminated together, and then the pressure-sensitive adhesive is removed through a degreasing process and sintering is finally performed. According to the method of the present invention, the thickness of each thin layer is made so small that the change in the component between the layers, that is, the change in the volume percentage of the ceramic particles is relatively small, whereby the ceramic particles in the finally produced composite material are basically continuous So as to achieve a slope change. The present invention is not particularly limited to the pressure-sensitive adhesive added for molding and the degreasing treatment, and a pressure-sensitive adhesive and a treatment process which are usually used for forming a material can be used. The present invention relates to a sintered compact, and it is preferable to obtain a composite material for a deposition crucible having a good compactness by hot isostatic pressing (HIP) sintering.

특별히 한정하지 않는 한, 본 발명에서 사용되는 용어는 모두 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자들에 의해 일반적으로 이해되는 의미를 가진다. Unless defined otherwise, all terms used in the present invention have the meanings generally understood by those having ordinary skill in the art to which the present invention belongs.

하기의 실시예를 통하여 본 발명에 대하여 더 상세한 설명을 하도록 한다.
The present invention will be described in more detail with reference to the following examples.

실시예Example

하기의 실시예에서 사용되는 금속 매트릭스 분말의 입경은 5μm~150μm이고, 순도는 99% 이상이며, 세라믹 분말의 입경은 5μm~100μm이고, 순도는 99% 이상이며, 첨가되는 성형 점착제는 TMAH(Tetra Methyl Ammonium Hydroxid)이다. 복합 분말의 치밀화 소결 과정에서, 작업 환경의 진공도는 0.1Pa 이상이고, 외부로부터 인가되는 소결 압력은 50MPa~200MPa이며, 소결 온도는 500℃~850℃이고, 소결 시간은 50~120분이다. 제조된 경사기능 금속 세라믹 복합재료 샘플의 사이즈는 길이 50mm× 폭 15mm×두께 22mm이고, 열전도율 테스트에 사용된다(레이저 열전도계, 모델: NETZSCHLFA457, 제조업체: 독일 NETZSCH).
The metal matrix powder used in the following examples has a particle size of 5 to 150 μm, a purity of 99% or more, a ceramic powder of 5 to 100 μm, a purity of 99% or more, and TMAH Methyl Ammonium Hydroxid). In the densification sintering process of the composite powder, the vacuum degree of the working environment is 0.1 Pa or more, the sintering pressure applied from the outside is 50 MPa to 200 MPa, the sintering temperature is 500 to 850 ° C, and the sintering time is 50 to 120 minutes. The size of the graded-function metal-ceramic composite material sample is 50 mm in length × 15 mm in width × 22 mm in thickness and used for thermal conductivity test (laser thermal conductivity meter, model: NETZSCHLFA457, manufacturer: NETZSCH, Germany).

실시예1Example 1

우선 각각 10%, 15%, 20%…60%의 배합비의 체적 백분비에 따라 질화 붕소 세라믹 분말을 알루미늄분말에 첨가하고, 0.8%의 점착제를 첨가하여 질화 붕소 함량이 서로 다른 11층의 복합 분말체 박층을 형성한다. 각 박층의 두께는 2mm이고, 76MPa의 압력으로 상기 박층을 차례대로 적층시켜 일체화시킨다. 탈지 처리를 거쳐 점착제를 제거한 후, 580℃의 환경에서 1.5시간 동안 열간 정수압 소결을 진행한다. 측정 결과, 획득한 경사기능 금속 세라믹 복합재료의 열전도율은 70W/mk~130W/mk 범위 내에서 경사 변화를 이룬다.
First, 10%, 15%, 20% ... A boron nitride ceramic powder is added to the aluminum powder in accordance with a volume percentage ratio of 60%, and 0.8% of a pressure-sensitive adhesive is added to form an 11-layer composite powder thin layer having different boron nitride contents. The thickness of each thin layer is 2 mm, and the thin layers are laminated one after another at a pressure of 76 MPa. After removing the pressure-sensitive adhesive through degreasing treatment, hot-water hydrostatic sintering is carried out at 580 ° C for 1.5 hours. As a result of the measurement, the thermal conductivity of the obtained gradient functional metal-ceramic composite material is varied in the range of from 70 W / mK to 130 W / mK.

실시예2Example 2

우선 각각 10%, 15%, 20%…60%의 배합비의 체적 백분비에 따라 파이로리틱 질화 붕소 세라믹 분말을 알루미늄분말에 첨가하고, 1.5%의 점착제를 첨가하여 파이로리틱 질화 붕소 함량이 서로 다른 11층의 복합 분말체 박층을 형성한다. 각 박층의 두께는 2mm이고, 80MPa의 압력으로 상기 박층을 차례대로 적층시켜 일체화시킨다. 탈지 처리를 거쳐 점착제를 제거한 후, 630℃의 환경에서 2시간 동안 열간 정수압 소결을 진행한다. 측정 결과, 획득한 경사기능 금속 세라믹 복합재료의 열전도율은 85W/mk~149W/mk 범위 내에서 경사 변화를 이룬다.
First, 10%, 15%, 20% ... A boron nitride ceramic powder is added to the aluminum powder in accordance with a volume percentage ratio of 60%, and 1.5% of a pressure-sensitive adhesive is added to form an 11-layer composite powder thin layer having different contents of pyrolytic boron nitride. The thickness of each thin layer was 2 mm, and the thin layers were stacked one after another at a pressure of 80 MPa. After removing the pressure-sensitive adhesive through degreasing treatment, hot-water hydrostatic sintering is carried out at 630 ° C for 2 hours. As a result of the measurement, the thermal conductivity of the obtained inclined functional metal-ceramic composite material is varied in the range of 85 W / mK to 149 W / mK.

실시예3Example 3

우선 각각 10%, 15%, 20%…60%의 배합비의 체적 백분비에 따라 질화 붕소 세라믹 분말을 동분말에 첨가하고, 2.5%의 점착제를 첨가하여 질화 붕소 함량이 서로 다른 11층의 복합 분말체 박층을 형성한다. 각 박층의 두께는 2mm이고, 85MPa의 압력으로 상기 박층을 차례대로 적층시켜 일체화시킨다. 탈지 처리를 거쳐 점착제를 제거한 후, 650℃의 환경에서 2시간 동안 열간 정수압 소결을 진행한다. 측정 결과, 획득한 경사기능 금속 세라믹 복합재료의 열전도율은 96W/mk~165W/mk 범위 내에서 경사 변화를 이룬다.
First, 10%, 15%, 20% ... Boron nitride ceramic powder is added to the copper powder according to the volume percentage ratio of 60%, and 2.5% of a pressure-sensitive adhesive is added to form a composite powder thin layer having 11 layers having different boron nitride contents. The thickness of each thin layer is 2 mm, and the thin layers are laminated one after another at a pressure of 85 MPa. After removing the pressure-sensitive adhesive through degreasing treatment, hot-water hydrostatic sintering is carried out at 650 ° C for 2 hours. As a result of the measurement, the thermal conductivity of the obtained gradient functional metal-ceramic composite material changes in a slope within the range of 96 W / mK to 165 W / mK.

실시예4Example 4

우선 각각 10%, 15%, 20%…60%의 배합비의 체적 백분비에 따라 파이로리틱 질화 붕소 세라믹 분말을 동분말에 첨가하고, 3%의 점착제를 첨가하여 질화 붕소 함량이 서로 다른 11층의 복합 분말체 박층을 형성한다. 각 박층의 두께는 2mm이고, 90MPa의 압력으로 상기 박층을 차례대로 적층시켜 일체화시킨다. 탈지 처리를 거쳐 점착제를 제거한 후, 700℃의 환경에서 2시간 동안 열간 정수압 소결을 진행한다. 측정 결과, 획득한 경사기능 금속 세라믹 복합재료의 열전도율은 103W/mk~182W/mk 범위 내에서 경사 변화를 이룬다.First, 10%, 15%, 20% ... A boron nitride ceramic powder is added to the copper powder in accordance with a volume percentage ratio of 60%, and 3% of a pressure sensitive adhesive is added to form an 11-layer composite powder thin layer having different boron nitride contents. The thickness of each thin layer is 2 mm, and the thin layers are stacked one after another at a pressure of 90 MPa. After removing the pressure-sensitive adhesive through degreasing treatment, the hot-water hydrostatic sintering is carried out at 700 ° C for 2 hours. As a result of the measurement, the thermal conductivity of the obtained gradient functional metal-ceramic composite material is varied in the range of 103W / mk to 182W / mk.

상기 실시예로부터 알 수 있는 바와 같이, 본 발명에 의해 형성되는 금속 세라믹 복합재료는 적합한 열전도율을 구비하며 경사 변화를 이룸으로써 단순히 금속재료 또는 세라믹 재료만을 사용하여 증착용 도가니를 제조할 시 증착재료가 파열되어 뚫고 나오는 현상 또는 입구 막힘 현상을 방지할 수 있다. 본 발명의 경사기능 금속 세라믹 복합재료로 제조된 도가니는 그 열전도율이 하부로부터 입구까지 대응되게 경사 분포를 이룸으로써 열원과 가까운 하부 부분은 비교적 낮은 열전도율을 구비하도록 하고 열원과 멀리 떨어진 입구 부분은 비교적 높은 열전도율을 구비하도록 하여 해당 도가니에 놓인 유기증착재료가 균일하게 열을 받을 수 있고, 증착을 거쳐 막질이 우수한 유기박막을 형성할 수 있도록 한다.As can be seen from the above examples, the metal-ceramic composite material formed by the present invention has a suitable thermal conductivity and changes the inclination, so that when an evaporation crucible is manufactured using only a metal material or a ceramic material, It is possible to prevent a ruptured phenomenon or a clogging of the inlet. The crucibles made of the inclined-function metal-ceramic composite material of the present invention have an inclined distribution corresponding to the thermal conductivity from the bottom to the inlet so that the lower portion near the heat source has a relatively low thermal conductivity and the entrance portion farther away from the heat source is relatively high The organic vapor deposition material placed on the crucible can be uniformly heated, and an organic thin film having excellent film quality can be formed through vapor deposition.

본 발명에 따른 실시형태는 단지 예시적인 것일 뿐, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자들은 본 발명의 범위 내에서 각종 기타 대체, 변경 및 개선을 실시할 수 있는 점을 주의해야 한다. 따라서, 본 발명은 상기의 실시형태에 의해 한정되는 것이 아니라, 특허청구범위에 의해 한정된다. It should be noted that the embodiments according to the present invention are merely illustrative and that those skilled in the art can carry out various other alternatives, modifications and improvements within the scope of the present invention . Therefore, the present invention is not limited to the above-described embodiments, but is limited by the claims.

Claims (3)

동, 알루미늄 또는 동-알루미늄 합금의 금속 매트릭스(matrix); 및
상기 금속 매트릭스에 분산된 질화 붕소(boron nitride), 파이로리틱 질화 붕소(pyrolytic boron nitride), 질화 알루미늄(Aluminum Nitride) 또는 탄화 규소(silicon carbide)의 세라믹(ceramic) 입자를 포함하고,
상기 세라믹 입자는 상기 금속 매트릭스에서 종방향의 두께 방향에 따라 경사 분포를 이루며, 체적 백분비가 10%~60% 사이에서 연속적인 경사 변화를 이루며,
상기 세라믹 입자의 평균 입경은 5μm~100μm이고,
상기 경사기능 금속 세라믹 복합재료의 열전도율은 종방향의 두께 방향에 따라 70W/mk~182W/mk 범위 내에서 연속적인 경사 변화를 이루는 것을 특징으로 하는 경사기능 금속 세라믹 복합재료.
A metal matrix of copper, aluminum or copper-aluminum alloy; And
And ceramic particles of boron nitride, pyrolytic boron nitride, aluminum nitride, or silicon carbide dispersed in the metal matrix,
Wherein the ceramic particles have an inclined distribution along the thickness direction in the longitudinal direction of the metal matrix and have a continuous slope change in volume percentage between 10% and 60%
The average particle diameter of the ceramic particles is 5 탆 to 100 탆,
Wherein the thermal conductivity of the gradient functional metal-ceramic composite material varies continuously in a range of from 70 W / mk to 182 W / mK depending on the thickness direction of the longitudinal direction.
세라믹 입자가 금속 분말체에 균일하게 분산되고 각 층의 상기 세라믹 입자의 체적 백분비가 연속적인 경사 변화를 이루도록 상기 금속 분말체, 세라믹 입자 및 점착제를 분층하여 혼합하는 단계;
상기 각 층을 적층하고 프레스 성형하여 상기 세라믹 입자가 종방향의 두께 방향에 따라 경사 분포를 이루는 성형체를 형성하는 단계; 및
상기 성형체에 대하여 탈지 처리를 거친 후 소결하여 상기 경사기능 금속 세라믹 복합재료를 제조하는 단계를 포함하며,
상기 금속 분말체는 동, 알루미늄 또는 동-알루미늄 합금이고,
상기 세라믹 입자는 질화 붕소, 파이로리틱 질화 붕소, 질화 알루미늄 또는 탄화 규소이며,
상기 각 층의 상기 세라믹 입자의 체적 백분비는 10%~60% 범위에서 연속적인 경사 변화를 이루고,
상기 세라믹 입자의 평균 입경은 5μm~100μm인 것을 특징으로 하는 경사기능 금속 세라믹 복합재료의 제조방법.
Mixing and dispersing the metal powder, the ceramic particles and the pressure-sensitive adhesive so that the ceramic particles are uniformly dispersed in the metal powder and the volume percentage of the ceramic particles in each layer has a continuous gradient;
Layered and press-molded to form a molded article in which the ceramic particles have an oblique distribution along the thickness direction of the longitudinal direction; And
And sintering the formed body after degreasing treatment to produce the gradient functional metal-ceramic composite material,
Wherein the metal powder is copper, aluminum or a copper-aluminum alloy,
Wherein the ceramic particles are boron nitride, boron nitride, aluminum nitride or silicon carbide,
The volume percentage of the ceramic particles in each of the layers has a continuous inclination change in the range of 10% to 60%
Wherein the average particle diameter of the ceramic particles is 5 占 퐉 to 100 占 퐉.
제2항에 있어서,
상기 성형체에 대하여 탈지 처리를 거친 후 소결하는 단계에서, 그 작업 환경은 진공도가 0.1Pa보다 높고, 작동 압력이 50MPa~200MPa이며, 소결 온도가 500℃~850℃이고, 소결 시간이 50분~120분인 것을 특징으로 하는 경사기능 금속 세라믹 복합재료의 제조방법.
3. The method of claim 2,
The sintering temperature is in the range of 500 ° C. to 850 ° C., the sintering time is in the range of 50 to 120 ° C., and the sintering time is in the range of 50 to 120 ° C., Min. ≪ / RTI >
KR1020150028251A 2014-06-13 2015-02-27 gradient metal-ceramic composite and preparation method thereof KR20150143278A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410264329.9 2014-06-13
CN201410264329.9A CN104046823A (en) 2014-06-13 2014-06-13 Graded metal-ceramic composite and preparation method thereof

Publications (1)

Publication Number Publication Date
KR20150143278A true KR20150143278A (en) 2015-12-23

Family

ID=51500215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150028251A KR20150143278A (en) 2014-06-13 2015-02-27 gradient metal-ceramic composite and preparation method thereof

Country Status (3)

Country Link
JP (1) JP2016003392A (en)
KR (1) KR20150143278A (en)
CN (1) CN104046823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107812A1 (en) 2017-11-16 2019-06-06 오름테라퓨틱 주식회사 Antibody inhibiting activated ras in cell by internalizing into cytosol of cell, and use thereof
WO2021153850A1 (en) * 2020-01-31 2021-08-05 부경대학교 산학협력단 Method for manufacturing functionally graded composite material for pcb having high heat dissipating properties and electric insulating properties, and functionally graded composite material manufactured thereby
WO2021153851A1 (en) * 2020-01-31 2021-08-05 부경대학교 산학협력단 Method for manufacturing composite material for thermal shields, and composite material for thermal shields manufactured thereby
CN113333747A (en) * 2021-06-28 2021-09-03 江西理工大学 Tungsten copper functional gradient material with continuously-changed components and preparation method thereof
CN116136004A (en) * 2023-04-18 2023-05-19 合肥工业大学 Aluminum-based composite material with gradient multi-layer structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107100949B (en) * 2017-04-17 2019-01-29 湖南世鑫新材料有限公司 A kind of combined type composite material brake disc and preparation method and application
CN107353001B (en) * 2017-07-10 2020-07-14 昆明理工大学 Preparation method of metal-based ceramic material
CN107498057B (en) * 2017-07-24 2019-01-29 济南大学 A kind of aluminum laminate boron carbide composite material and preparation method thereof
CN108380892B (en) * 2018-04-03 2019-11-26 武汉理工大学 A kind of preparation method of ceramics/high-entropy alloy laminated material
CN108620594B (en) * 2018-04-26 2020-01-14 武汉理工大学 Ceramic/metal gradient structure high-temperature packaging material and preparation method thereof
CN108687351B (en) * 2018-05-04 2019-08-27 武汉理工大学 A kind of B4C-HEAs functionally gradient material (FGM) and preparation method thereof
CN109022869A (en) * 2018-08-23 2018-12-18 东北大学 A kind of high alloy parent metal ceramic composite and preparation method thereof
CN109280818B (en) * 2018-11-27 2020-10-13 昆明理工大学 Wear-resistant antifriction aluminum-based composite material
US11969796B2 (en) * 2020-01-03 2024-04-30 The Boeing Company Tuned multilayered material systems and methods for manufacturing
CN114375130B (en) * 2020-10-16 2023-09-12 华为技术有限公司 Middle frame and electronic equipment
CN112453410B (en) * 2020-10-19 2021-11-09 华北电力大学 Annular metal-ceramic gradient material and preparation method thereof
CN114888289B (en) * 2022-05-10 2023-09-12 哈尔滨工业大学 Gradient titanium-based composite material and preparation method thereof
CN116288944B (en) * 2023-03-21 2023-11-28 哈尔滨理工大学 Preparation method and application of high-heat-conductivity multi-layer gradient structure epoxy resin composite medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074574C (en) * 1998-09-18 2001-11-07 北京工业大学 Metal base composite electric packaging heat sink material and its preparing method
JP2001335859A (en) * 2000-05-24 2001-12-04 Sumitomo Electric Ind Ltd Aluminum-silicon carbide composite material and its production method
JP2003002778A (en) * 2001-06-26 2003-01-08 International Manufacturing & Engineering Services Co Ltd Molecular beam cell for depositing thin film
CN101892398B (en) * 2010-07-01 2012-07-04 西安理工大学 Method for preparing ceramic/aluminum alloy gradient composite material
CN102534297A (en) * 2010-12-16 2012-07-04 北京有色金属研究总院 Alloy material with thermal expansion coefficient in gradient change and preparation method thereof
CN102240809B (en) * 2011-06-24 2015-06-03 中国科学院上海硅酸盐研究所 Method for preparing functional gradient composite material containing components with obvious melting point difference
CN103667849B (en) * 2012-09-24 2016-03-30 中国兵器科学研究院宁波分院 A kind of metal matrix ceramic composites and manufacture method thereof and application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107812A1 (en) 2017-11-16 2019-06-06 오름테라퓨틱 주식회사 Antibody inhibiting activated ras in cell by internalizing into cytosol of cell, and use thereof
WO2021153850A1 (en) * 2020-01-31 2021-08-05 부경대학교 산학협력단 Method for manufacturing functionally graded composite material for pcb having high heat dissipating properties and electric insulating properties, and functionally graded composite material manufactured thereby
WO2021153851A1 (en) * 2020-01-31 2021-08-05 부경대학교 산학협력단 Method for manufacturing composite material for thermal shields, and composite material for thermal shields manufactured thereby
CN113333747A (en) * 2021-06-28 2021-09-03 江西理工大学 Tungsten copper functional gradient material with continuously-changed components and preparation method thereof
CN113333747B (en) * 2021-06-28 2023-05-12 江西理工大学 Tungsten-copper functionally graded material with continuously-changed components and preparation method thereof
CN116136004A (en) * 2023-04-18 2023-05-19 合肥工业大学 Aluminum-based composite material with gradient multi-layer structure
CN116136004B (en) * 2023-04-18 2023-06-16 合肥工业大学 Aluminum-based composite material with gradient multi-layer structure

Also Published As

Publication number Publication date
CN104046823A (en) 2014-09-17
JP2016003392A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
KR20150143278A (en) gradient metal-ceramic composite and preparation method thereof
JP7204689B2 (en) Method for producing non-oxide ceramic powder
CN105220049B (en) A kind of lamellar diamond reinforced metal-base composite material and preparation method
Hamidi et al. Tungsten–copper composite production by activated sintering and infiltration
Suyama et al. Development of high-strength reaction-sintered silicon carbide
CN104968634B (en) Carborundum tantalum carbide composite material and pedestal
CN105803241B (en) A kind of conveyor screw enhancing Metal Substrate or polymer matrix composite and preparation method
CN104630527B (en) A kind of method preparing copper base diamond composite
CN107778012A (en) A kind of preparation method of carborundum composite-phase ceramic
TW200839023A (en) Sputtering target of Li3PO4 and method for producing same
CN107447193A (en) A kind of black phosphorus film and preparation method thereof
TWI627292B (en) Cu-ga-in-na target
Peng et al. Facile synthesis of Ti3SiC2 powder by high energy ball-milling and vacuum pressureless heat-treating process from Ti–TiC–SiC–Al powder mixtures
Yang et al. Reactive synthesis for porous Ti3AlC2 ceramics through TiH2, Al and graphite powders
TW201510248A (en) Conductive target material
CN114956826A (en) (TiNbCrWTa) C x High-entropy ceramic and preparation method thereof
Xiao et al. Electrical properties of Al–ZrMgMo3O12 with controllable thermal expansion
CN109824382A (en) A kind of heat management SiC/ graphite film laminar composite and preparation method thereof
CN104139572A (en) Preparation process of carbon/ceramic-graphite composite material and carbon/ceramic-graphite composite material prepared through preparation process
Kwon et al. Structural and surface properties of NiCr thin films prepared by DC magnetron sputtering under variation of annealing conditions
Du et al. In-situ reactive synthesis porous two-scale lamellar Ti3SiC2 intermetallic compound
CN102826856A (en) High-purity low-density ITO target material and preparation method thereof
CN101734920A (en) Titanium nitride porous ceramics and preparation method thereof
JP2019156653A (en) SILICON MELTING CRUCIBLE, METHOD OF PRODUCING SILICON MELTING CRUCIBLE, AND METHOD OF PRODUCING REACTION SINTERED SiC
CN104707995A (en) Diamond compound body and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application