KR20150132806A - Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same - Google Patents

Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same Download PDF

Info

Publication number
KR20150132806A
KR20150132806A KR1020150067199A KR20150067199A KR20150132806A KR 20150132806 A KR20150132806 A KR 20150132806A KR 1020150067199 A KR1020150067199 A KR 1020150067199A KR 20150067199 A KR20150067199 A KR 20150067199A KR 20150132806 A KR20150132806 A KR 20150132806A
Authority
KR
South Korea
Prior art keywords
dye
compound
sensitized solar
porphyrin
solar cell
Prior art date
Application number
KR1020150067199A
Other languages
Korean (ko)
Other versions
KR101722003B1 (en
Inventor
김환규
강성호
정승영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to PCT/KR2015/004880 priority Critical patent/WO2015174774A2/en
Publication of KR20150132806A publication Critical patent/KR20150132806A/en
Application granted granted Critical
Publication of KR101722003B1 publication Critical patent/KR101722003B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/65Metal complexes of amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to novel porphyrin derivatives for an organic electronic device, an organic dye for a dye-sensitized solar cell containing the same, and the dye-sensitized solar cell containing the organic dye. More specifically, as a triple bond or a single bond is introduced between various electron donors and porphyrin and, at the same time, a triple bond or a single bond is introduced between various electron acceptors and the porphyrin, the porphyrin derivatives can be used as a novel organic dye with enhanced long-term stability and energy conversion efficiency for a high efficiency dye-sensitized solar cell. In addition, the high efficiency dye-sensitized solar cell can be manufactured by using the dye containing the porphyrin derivatives of the present invention.

Description

신규한 포르피린계 유도체, 이를 포함하는 염료감응 태양전지용 유기염료 및 이를 포함하는 염료감응 태양전지{Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same}TECHNICAL FIELD The present invention relates to novel porphyrin derivatives, organic dyes for dye-sensitized solar cells containing the same, and dye-sensitized solar cells containing the same. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to novel porphyrin derivatives, Same}

본 발명은 유기 전자 소자용 신규한 포르피린계 유도체, 상기 포르피린계 유도체를 포함하는 염료감응 태양전지용 유기염료 및 상기 유기염료를 포함하는 염료감응 태양전지에 관한 것으로, 보다 구체적으로는 다양한 전자주개와 포르피린 사이에 탄소-탄소 삼중결합 또는 단일결합이 도입됨과 동시에 다양한 전자받개와 포르피린 사이에 탄소-탄소 삼중결합 또는 단일결합을 도입되어 있는 포르피린계 유도체 및 이를 포함하는 장기 안정성과 에너지 변환 효율이 향상된 새로운 고효율 염료감응 태양전지용 유기염료 및 이를 포함하는 고효율의 염료감응 태양전지에 관한 것이다.The present invention relates to a novel porphyrin derivative for organic electronic devices, an organic dye for a dye-sensitized solar cell comprising the porphyrin derivative, and a dye-sensitized solar cell comprising the organic dye. More particularly, A carbon-carbon triple bond or a single bond is introduced between the electron acceptor and the porphyrin and a carbon-carbon triple bond or a single bond is introduced between the various electron acceptors and the porphyrin, and a new high efficiency An organic dye for a dye-sensitized solar cell, and a dye-sensitized solar cell having high efficiency.

화석연료의 고갈, 환경오염, CO2 및 SO2 발생 등으로 환경 및 에너지 문제로 인해, 태양에너지는 무한 청정 에너지로서 환경친화적인 차세대 대체에너지로서 각광 받고 있다. 태양전지는 태양광을 전류(전압)으로 직접 변환할 수 있는 소자로서, 기존의 무기물 반도체의 p-n junction을 이용한 p-n junction 태양전지 외 저가의 유기태양전지 연구가 활발히 진행 중에 있다. 유기태양전지의 장점은 저가, 환경 친화적인 면 이외에, 인도어 응용 및 파워 윈도우를 실현시킬 수 있는 투명하고, 얇고, 가벼운 특성을 가진다. 이러한 유기태양전지 중 가시광선을 흡수하는 염료(dye)를 넓은 밴드갭을 갖는 반도체에 흡착시켜 염료 감응과정(dye-sensitization)을 이용한 태양전지가 염료감응 태양전지(dye-sensitized solar cells, DSSCs)이다. Due to environmental and energy problems due to depletion of fossil fuels, environmental pollution, CO 2 and SO 2 generation, solar energy is attracting attention as environmentally friendly next generation alternative energy as infinite clean energy. Solar cell is a device that can directly convert sunlight into current (voltage), and research on low cost organic solar cell other than pn junction solar cell using pn junction of existing inorganic semiconductor is actively under way. The advantage of organic solar cells is that they are transparent, thin, lightweight, capable of realizing indoor applications and power windows in addition to low cost, environmentally friendly aspects. Dye-sensitized solar cells (DSSCs) using dye-sensitization have been developed by adsorbing visible light-absorbing dyes in semiconductors having a wide band gap, to be.

DSSC는 1991년에 스위스 그라첼(Gratzel) 그룹에서 광학적으로 투명한 나노입자 크기 (15-20nm)를 가지는 TiO2 금속 산화물에 Ru(Ⅱ)계열의 착화합물을 흡착시켜 처음 개발한 것으로, 투명전극, 반도체층 금속산화물, 염료 광감응제, 전해질, 및 전극으로 구성되어 있다. DSSC was first developed in 1991 by the adsorption of Ru (Ⅱ) based complexes on a TiO 2 metal oxide having optically transparent nanoparticle size (15-20 nm) in the Gratzel group in Switzerland. A layer metal oxide, a dye photosensitizer, an electrolyte, and an electrode.

이를 구체적으로 살펴보면, 양쪽 전극의 기판으로 사용되는 Fluorinated Tin Oxide(FTO), Indium Tin Oxide(ITO)와 같은 투명전극(transparent conducting oxide electrode)과 TiO2, ZnO 와 같은 미립자를 이루지 않은 산화 반도체층(nonoparticulated oxide semi-conductor layer), 루테늄(ruthenium)과 같은 무기 또는 유기 염료와 같은 염료 감응, 전해질 및 산화/환원쌍(redox couple)이 포함된 전해질과 상대전극의 역할을 하는 백금과 같은 금속 염으로 생성된다. Specifically, a transparent conducting oxide electrode such as a fluorinated tin oxide (FTO) or an indium tin oxide (ITO) used as a substrate of both electrodes and an oxide semiconductor layer (not shown) such as TiO 2 and ZnO nonoparticulated oxide semi-conductor layer, ruthenium, an electrolyte containing an electrolyte and an oxidation / redox couple, and a metal salt such as platinum acting as a counter electrode .

루테늄계 착화합물을 염료로서 사용한 이 태양전지는 10%를 상회하는 에너지 변환 효율을 나타냄으로써 학계의 주목을 받았으나 착화합물계 염료의 가장 큰 문제점인 안정성이 떨어지는 한계점으로 인해 아직 상용화 되지 못 하고 있는 실정이다. 이러한 문제점을 극복하기 위하여 새로운 유기 화합물들이 염료로서 연구되고 있으며 그 중 광합성 물질로 잘 알려진 포르피린 화합물을 염료로서 사용하는 많은 연구가 있었으나 효율은 1~3% 정도로 높지 않았다. 이에 대해 영국의 임페리얼(imperial) 대학의 듀런트(Durrant) 연구팀은 루테늄계 착화합물에 비해 포르피린 염료가 효율이 낮은 이유는 인접한 포르피린 화합물 간의 쌍극자 쌍극자 인력에 의해 여기상태의 포르피린 염료가 바닥상태로 전환됨에 있다고 보고하였다. This solar cell using a ruthenium-based complex as a dye has received attention from academia due to its energy conversion efficiency exceeding 10%, but it has not been commercialized due to a limit of stability which is the biggest problem of a complex dye. In order to overcome these problems, new organic compounds have been studied as dyes. Among them, many studies have been made to use porphyrin compounds, which are well known as photosynthetic substances, as dyes, but their efficiencies were not as high as 1 ~ 3%. The Durrant team at the Imperial University in the UK found that porphyrin dyes are less efficient than ruthenium based complexes because the porphyrin dyes in the excited state are converted to the ground state by dipole dipole attraction between adjacent porphyrin compounds Respectively.

한편, 일본공개공보 제2002-063949호에는 광전변환 특성을 가지는 포르피린 도체로서 하기와 같이 포르피린의 5, 10, 15, 20 위치에 페닐기가 치환된 포르피린계 유도체를 공지하고 있다. 그러나, 하기의 포르피린 화합물(R=수소원자 또는 산성 치환기)은 포르피린 염료간의 여기전자의 재결합으로 인하여 낮은 에너지 변환 효율을 보이는 단점이 있다.On the other hand, Japanese Patent Application Laid-Open No. 2002-063949 discloses a porphyrin derivative having a photoelectric conversion property, in which a phenyl group is substituted at 5th, 10th, 15th and 20th positions of porphyrin as described below. However, the following porphyrin compounds (R = a hydrogen atom or an acidic substituent) have a disadvantage in that they exhibit low energy conversion efficiency due to recombination of exciton electrons between porphyrin dyes.

Figure pat00001
Figure pat00001

따라서, 기존의 루테늄계 염료에 비해 장기안정성이 우수하고, 종래의 포르피린계 염료에 비해 우수한 광전변환율을 갖는 염료감응 태양전지용 포르피린 유도체 개발의 필요성이 증대되고 있다.Accordingly, there is a growing need for the development of porphyrin derivatives for dye-sensitized solar cells which are superior in long-term stability to conventional ruthenium-based dyes and have a photoelectric conversion rate superior to that of conventional porphyrin-based dyes.

일본공개공보 제2002-063949호Japanese Laid-Open Publication No. 2002-063949

본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서, 합성이 용이하고 광전변환율이 우수할 뿐만 아니라 포르피린계 유도체에 다양한 치환기 또는 탄소-탄소 삼중결합을 도입하여 기존의 루테늄계 염료가 가지는 가장 큰 문제점인 장기안정성 결여로 인한 소자 응용에의 어려움을 해소하고 종래의 포르피린계 유도체를 사용한 태양전지의 낮은 효율을 극복할 수 있는 포르피린계 유도체를 제공하는데 있다. SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide a ruthenium-based dye which is easy to synthesize and has excellent photoelectric conversion rate, The present invention provides a porphyrin derivative which overcomes difficulties in application of a device due to a lack of long-term stability and overcomes low efficiency of a solar cell using a conventional porphyrin derivative.

또한, 본 발명의 또 다른 목적은 본 발명에 따른 새로운 포르피린계 유도체를 사용하여 제조된 고효율의 염료감응 태양전지용 염료 및 상기 염료를 포함하는 염료감응 태양전지를 제공하는 데 있다.Still another object of the present invention is to provide a dye for a dye-sensitized solar cell and a dye-sensitized solar cell comprising the dye, which are produced using the novel porphyrin derivative according to the present invention.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 포르피린 유도체를 제공한다:In order to achieve the above object, the present invention provides a porphyrin derivative represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure pat00002
Figure pat00002

상기 화학식 1에서,In Formula 1,

R1 내지 R6는 각각 독립적으로 (C1-C20)알킬이고;R 1 to R 6 are each independently (C 1 -C 20) alkyl;

R' 및 R''는 각각 독립적으로 수소 또는 (C1-C20)알콕시이고;R ' and R " are each independently hydrogen or (C1-C20) alkoxy;

L1 및 L2는 각각 독립적으로 단일결합 또는 (C6-C20)아릴렌이고, 상기 아릴렌은 (C1-C20)알킬로 더 치환될 수 있고;L 1 and L 2 are each independently a single bond or (C 6 -C 20) arylene, and the arylene may be further substituted with (C 1 -C 20) alkyl;

m은 0 또는 1의 정수이고;m is an integer of 0 or 1;

A는 하기 구조에서 선택되고;A is selected from the following structures;

Figure pat00003
Figure pat00003

n이 0인 경우 B는

Figure pat00004
이고;When n is 0, B is
Figure pat00004
ego;

n은 1인 경우 B는 하기 구조에서 선택되고;when n is 1, B is selected from the following structures;

Figure pat00005
Figure pat00005

R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.
R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.

또한, 본 발명은 상기 포르피린계 유도체를 포함하는 염료감응 태양전지용 유기염료를 제공한다.The present invention also provides an organic dye for a dye-sensitized solar cell comprising the porphyrin derivative.

또한, 본 발명은 상기 염료감응 태양전지용 유기염료를 포함하는 염료감응 태양전지를 제공한다.The present invention also provides a dye-sensitized solar cell comprising the organic dye for the dye-sensitized solar cell.

본 발명의 포르피린계 유도체를 포함하는 고효율 염료감응 태양전지용 유기염료를 사용한 태양 전지는 외부 환경에서도 장기적인 안정성을 보이며, 전자주개 능력이 강한 알콕시가 치환된 페닐 유도체, 알콕시가 치환된 아릴아민 유도체 또는 탄소-탄소 삼중결합을 통한 분자 내 전자전달이 강해지고, 분자의 평면성과 컨쥬게이션의 증가로 근적외선 영역의 빛 흡수가 가능해짐으로써, 가시광선에서 근적외석 영역대까지의 넓은 흡수영역 대의 확보를 통한 높은 에너지 변환 효율을 얻을 수 있는 장점이 있다.The solar cell using the organic dye for the high-efficiency dye-sensitized solar cell including the porphyrin derivative of the present invention shows long-term stability even in the external environment, and is a phenyl derivative substituted with an alkoxy, an arylamine derivative substituted with an alkoxy, - Intracellular electron transfer through the carbon triple bonds is strengthened, and the planarity and conjugation of the molecules are increased, so that the absorption of light in the near infrared region becomes possible. Thus, by securing a wide absorption region band from the visible ray to the near- Energy conversion efficiency can be obtained.

도 1 및 도 2는 실시예 1 내지 3의 포르피린계 화합물의 UV 흡수 및 발광 스펙트럼이다.
도 3은 실시예 4의 포르피린계 화합물의 UV 흡수 스펙트럼이다.
도 4는 실시예 1 내지 3의 포르피린계 화합물을 이용한 태양전지의 전류밀도를 나타낸 그래프이다.
도 5는 실시예 1 내지 3의 포르피린계 화합물을 이용한 태양전지의 전류변환효율(IPCE)를 나타낸 그래프이다.
도 6은 실시예 4의 포르피린계 화합물을 이용한 태양전지의 전류변환효율(IPCE)를 나타낸 그래프이다.
도 7은 실시예 4의 포르피린계 화합물을 이용한 태양전지의 전류밀도를 나타낸 그래프이다.
1 and 2 are UV absorption and emission spectra of the porphyrin compounds of Examples 1 to 3.
3 is a UV absorption spectrum of the porphyrin compound of Example 4. Fig.
4 is a graph showing the current density of a solar cell using the porphyrin compounds of Examples 1 to 3. FIG.
5 is a graph showing the current conversion efficiency (IPCE) of a solar cell using the porphyrin compounds of Examples 1 to 3. Fig.
6 is a graph showing current conversion efficiency (IPCE) of a solar cell using the porphyrin compound of Example 4. Fig.
7 is a graph showing the current density of a solar cell using the porphyrin compound of Example 4. Fig.

본 발명에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 갖는 것으로 해석될 수 있다.The technical terms and scientific terms used in the present invention can be construed as meaning ordinary meanings understood by those of ordinary skill in the art without departing from the scope of the present invention.

본 발명은 하기 화학식 1로 표시되는 포르피린계 유도체에 관한 것이다:The present invention relates to a porphyrin derivative represented by the following formula (1)

[화학식 1][Chemical Formula 1]

Figure pat00006
Figure pat00006

상기 화학식 1에서,In Formula 1,

R1 내지 R6는 각각 독립적으로 (C1-C20)알킬이고;R 1 to R 6 are each independently (C 1 -C 20) alkyl;

R' 및 R''는 각각 독립적으로 수소 또는 (C1-C20)알콕시이고;R ' and R " are each independently hydrogen or (C1-C20) alkoxy;

L1 및 L2는 각각 독립적으로 단일결합 또는 (C6-C20)아릴렌이고, 상기 아릴렌은 (C1-C20)알킬로 더 치환될 수 있고;L 1 and L 2 are each independently a single bond or (C 6 -C 20) arylene, and the arylene may be further substituted with (C 1 -C 20) alkyl;

m은 0 또는 1의 정수이고;m is an integer of 0 or 1;

A는 하기 구조에서 선택되고;A is selected from the following structures;

Figure pat00007
Figure pat00007

n이 0인 경우 B는

Figure pat00008
이고;When n is 0, B is
Figure pat00008
ego;

n은 1인 경우 B는 하기 구조에서 선택되고;when n is 1, B is selected from the following structures;

Figure pat00009
Figure pat00009

R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.
R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.

본 발명에 따른 포르피린계 유도체는 기존의 루테늄계 염료가 가지는 가장 큰 문제점인 장기안정성 결여로 인한 소자 응용에의 어려움을 해소하고 종래의 포르피린 유도체를 사용한 태양전지의 낮은 효율을 극복하기 위한 것으로서, 본 발명에 따른 포르피린계 유도체는 포르피린의 5번과 15번 위치에 두 개의 (C1-C20)알콕시가 치환된 페닐기가 도입되어 있고 포르피린의 10번 위치에 하나 또는 두 개의 (C1-C20)알콕시가 치환되어 있는 페닐이 치환된 아릴아미노기가 도입된 구조를 특징으로 하고 있으며, 경우에 따라 상기 아릴아미노기와 포르피린 사이에 탄소-탄소 삼중결합을 가질 수도 있다.The porphyrin-based derivative according to the present invention is intended to overcome the difficulties in application of a device due to lack of long-term stability which is the biggest problem of existing ruthenium-based dyes and to overcome the low efficiency of a solar cell using a conventional porphyrin derivative, The porphyrin derivative according to the present invention has two (C1-C20) alkoxy substituted phenyl groups at positions 5 and 15 of porphyrin and one or two (C1-C20) alkoxy substituents at position 10 of porphyrin And a phenyl-substituted arylamino group is introduced. In some cases, a carbon-carbon triple bond may be formed between the arylamino group and porphyrin.

본 발명에 따른 새로운 포르피린계 유도체를 사용한 태양 전지는 외부 환경에서도 장기적인 안정성을 보이며, 전자주개 능력이 강한 알콕시가 치환된 페닐 유도체, 알콕시가 치환된 아릴아민 유도체 또는 탄소-탄소 삼중결합을 통한 분자 내 전자전달이 강해지고, 분자의 평면성과 컨쥬게이션의 증가로 근적외선 영역의 빛 흡수가 가능해짐으로써, 가시광선에서 근적외석 영역대까지의 넓은 흡수영역 대의 확보를 통한 높은 에너지 변환 효율을 얻을 수 있는 장점이 있다.
The solar cell using the novel porphyrin derivative according to the present invention exhibits long-term stability even in the external environment and can be produced by a phenyl derivative substituted with an alkoxy such as an electron donating ability, an arylamine derivative substituted with an alkoxy, It is possible to obtain a high energy conversion efficiency by securing a wide absorption region band from visible light to near infrared light zone by strengthening electron transmission and increasing absorption of near infrared region by increasing planarity and conjugation of molecule .

본 발명의 일 실시예에 있어서, 상기 포르피린계 유도체는 하기 화학식 2, 화학식 3, 화학식 4 또는 화학식 5로 표시되는 포르피린계 유도체를 포함한다:In one embodiment of the present invention, the porphyrin derivative includes a porphyrin derivative represented by the following general formula (2), (3), (4) or (5)

[화학식 2] (2)

Figure pat00010
Figure pat00010

[화학식 3](3)

Figure pat00011
Figure pat00011

[화학식 4][Chemical Formula 4]

Figure pat00012
Figure pat00012

[화학식 5][Chemical Formula 5]

Figure pat00013
Figure pat00013

상기 R1, R2, R3, R4, L1, L2, R5, R6, R', R'' 및 A는 상기 화학식 1에서의 정의와 동일하고,Wherein R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , R 5 , R 6 , R ', R "and A are the same as defined in Formula 1,

B는 하기 구조에서 선택되고;B is selected from the following structures;

Figure pat00014
Figure pat00014

R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.
R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.

본 발명의 일 실시예에 있어서, 상기 L1 및 L2는 각각 독립적으로 단일결합이거나, 하기 구조에서 선택된다:In one embodiment of the present invention, L 1 and L 2 are each independently a single bond or is selected from the following structures:

상기 R는 (C1-C20)알킬이다.
Wherein R is (C1-C20) alkyl.

본 발명의 일 실시예에 있어서, 상기 포르피린계 유도체는 구체적으로 하기 구조로 예시될 수 있다:In one embodiment of the present invention, the porphyrin-based derivative can be specifically exemplified by the following structure:

Figure pat00016
Figure pat00016

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

Figure pat00020
Figure pat00020

Figure pat00021

Figure pat00021

본 발명의 포르피린계 유도체는 예를 들어 하기 반응식 1 및 2에 의해 제조될 수 있다. 더 자세한 내용은 하기 실시예 1 내지 4에서 설명된다. 그러나, 제조 방법이 하기 반응식 1 및 2에 한정하는 것은 아니고, 공지의 유기 반응을 이용하여 다양한 방법으로 합성할 수 있다.The porphyrin derivatives of the present invention can be prepared, for example, by the following Reaction Schemes 1 and 2. Further details are described in Examples 1 to 4 below. However, the production method is not limited to the following Reaction Schemes 1 and 2, but can be synthesized by various methods using known organic reactions.

[반응식 1][Reaction Scheme 1]

Figure pat00022
Figure pat00022

[반응식 2][Reaction Scheme 2]

Figure pat00023
Figure pat00023

상기 화학식 1로 표시되는 포르피린계 유도체는 염료감응 태양전지용 염료로서 유용하게 사용될 수 있다. 따라서, 본 발명은 상기 화학식 1의 포르피린계 유도체를 포함하는 염료감응 태양전지용 염료를 제공한다.The porphyrin derivative represented by Formula 1 may be useful as a dye for a dye-sensitized solar cell. Accordingly, the present invention provides a dye for a dye-sensitized solar cell comprising the porphyrin derivative of Formula 1.

또한, 본 발명은 상기 염료감응 태양전지용 염료를 포함하는 염료감응 태양전지를 제공한다.The present invention also provides a dye-sensitized solar cell comprising the dye for the dye-sensitized solar cell.

본 발명에서 염료감응 태양전지는, 이에 한정되는 것은 아니나, 다음과 같은 구성을 가질 수 있다:In the present invention, the dye-sensitized solar cell may have the following configuration, but not limited thereto:

전도성 투명 기판을 포함하는 제1전극;A first electrode comprising a conductive transparent substrate;

상기 제1전극의 어느 일면에 형성된 광흡수층;A light absorbing layer formed on one surface of the first electrode;

상기 광흡수층이 형성된 제1전극에 대향하여 배치되는 제2전극; 및A second electrode disposed opposite to the first electrode on which the light absorbing layer is formed; And

상기 제1전극과 제2전극 사이의 공간에 위치하는 전해질.
Wherein the electrolyte is located in a space between the first electrode and the second electrode.

상기 태양전지를 구성하는 소재들을 예를 들어 설명하면 다음과 같다.The materials constituting the solar cell will be described as follows.

전도성 투명 기판을 포함하는 제1전극은 인듐 틴 옥사이드, 플루오린 틴 옥사이드, ZnO-Ga2O3, ZnO-Al2O3 및 주석계 산화물로 이루어진 군에서 선택되는 1종 이상의 물질로 형성된 투광성 전극을 포함하는 유리 기판 또는 플라스틱 기판일 수 있다.The first electrode including the conductive transparent substrate is formed of a transparent electrode formed of at least one material selected from the group consisting of indium tin oxide, fluorine tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and tin oxide Or a plastic substrate.

상기 광흡수층은 상기 화학식 1로 표시되는 포르피린계 유도체를 포함하는 염료감응 태양전지용 유기 염료를 반드시 포함하며, 반도체 미립자, 염료, 정공전도특성을 갖는 화합물 등을 추가로 포함할 수 있다. 상기 반도체 미립자는, 이에 한정되는 것은 아니나, 이산화티탄(TiO2), 이산화주석(SnO2), 산화아연(ZnO) 등의 나노입자 산화물로 형성될 수 있다. 상기 반도체 미립자 상에 흡착되는 염료로는 가시광선 영역의 빛을 흡수할 수 있으며, 나노산화물 표면과 견고한 화학결합을 이루며, 열 및 광확적 안정성을 지니고 있는 것이라면 제한 없이 사용될 수 있다. 대표적인 예로서, 루테늄계 유기금속화합물을 들 수 있다. 그리고 상기 광흡수층에는 공흡착체를 더 포함할 수 있으며, 상기 공흡착체는 빛을 흡수하여 전자를 내준 염료에 생긴 홀을 채우며 자신이 다시 홀이 되며, 다시금 전해질에 의하여 홀을 채운다.The light absorbing layer necessarily contains an organic dye for a dye-sensitized solar cell comprising a porphyrin derivative represented by the general formula (1), and may further comprise semiconductor fine particles, a dye, a compound having hole conduction properties, and the like. The semiconductor fine particles may be formed of a nanoparticle oxide such as titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO) or the like, though not limited thereto. The dye adsorbed on the semiconductor fine particles may be used without limitation as long as it absorbs light in the visible light region, forms a strong chemical bond with the surface of the nano-oxide, and has heat and optical stability. As a representative example, a ruthenium-based organometallic compound can be mentioned. The light absorbing layer may further include a co-adsorbent. The co-adsorbent absorbs light to fill holes formed in dyes that receive electrons, and the holes again become holes, and the holes are filled with the electrolyte again.

상기 제2전극으로는 상기 제1전극과 동일한 것이 사용될 수 있으며, 제1전극의 투광성 전극 상에 백금 등으로 집전층이 더 형성된 것이 사용될 수도 있다.
The second electrode may be the same as the first electrode, or a conductive layer formed of platinum or the like on the light-transmitting electrode of the first electrode may be used.

이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나, 이러한 실시예는 본 발명을 좀 더 명확하게 설명하기 위하여 제시되는 것일 뿐, 본 발명의 범위를 제한하는 목적으로 제시되는 것은 아니다. 본 발명의 범위는 후술하는 특허청구범위의 기술적 사상에 의해 정해질 것이다.
Hereinafter, the present invention will be described in detail by way of examples. However, these embodiments are provided to explain the present invention more clearly and not to limit the scope of the present invention. The scope of the present invention will be determined by the technical idea of the following claims.

[제조예 1] 화합물 6의 제조[Preparation Example 1] Preparation of Compound 6

Figure pat00024
Figure pat00024

화합물 compound 44 의 제조Manufacturing

화합물 2 (2.0 g, 5.52 mmol), 다이(1H-피롤-2-일)메탄 (di(1H-pyrrol-2-yl)methane, 화합물 1) (0.4 g, 2.76 mmol) 및 4-(다이(1H-피롤-2-일)메틸)벤조나이트릴 (4-(di(1H-pyrrol-2-yl)methyl)benzonitrile, 화합물 3) (0.68 g, 2.76 mmol)을 클로로폼 (980 mL)에 용해시켰다. 그 다음, 실린지를 통해 BF3·OEt2 (200 μL, 1.66 mmol)를 빠르게 첨가한 후 24℃에서 2시간동안 교반시켰다. 그 다음, DDQ(2,3-dichloro-5,6-dicyano-p-benzoquinone) (1.88 g, 8.28 mmol)를 첨가하고 다시 12시간동안 교반시켰다. 용매를 증발시킨 다음, 클로로폼에 의해 실리카켈 숏 패드를 통해 조 생성물을 용출시켰다. 반응혼합물을 플래쉬 컬럼 크로마토그래피(용리액 n-C6H14/CH3Cl(부피비=1:3))로 정제시킨 다음, 재결정(에탄올/물=부피비20/1)시켜 다크 브라운 레드 고체로 화합물 4 (0.6 g, 11 %)을 수득하였다.Compound 2 (2.0 g, 5.52 mmol) , the die (1 H - pyrrole-2-yl) methane (di (1 H -pyrrol-2 -yl) methane, compound 1) (0.4 g, 2.76 mmol ) and 4- ( die (1 H - pyrrole-2-yl) methyl) benzonitrile (4- (di (1 H -pyrrol -2-yl) methyl) benzonitrile, compound 3) (0.68 g, 2.76 mmol ) with chloroform (980 mL). Then, BF 3 OEt 2 (200 μL, 1.66 mmol) was added rapidly through the syringe and stirred at 24 ° C for 2 hours. Then, DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) (1.88 g, 8.28 mmol) was added and stirred for another 12 hours. The solvent was evaporated and the crude product was eluted through a silica gel pad with chloroform. The reaction mixture was purified by flash column chromatography (eluent n -C 6 H 14 / CH 3 Cl (volume ratio = 1: 3)) and then recrystallized (ethanol / water = 20/1 by volume) to give a dark brown red solid 4 (0.6 g, 11%).

1H-NMR (300 MHz; CDCl3; TMS) δ 10.248 (1 H, s, meso-Ar-H), 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH2), 0.440-0.951 (60 H), -2.76 (2 H, s). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3 ; TMS)? 10.248 (1 H, s, meso-Ar-H), 9.355 (2H, d, J = 4.8 Hz, Ar- d, J = 4.5 Hz, Ar -H), 8.931 (2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H (d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 -H), 3.918 (8 H, m, -OCH 2), 0.440-0.951 (60 H), -2.76 (2 H, s). FT-IR (KBr) [cm- 1 ] 2230 (-CN).

화합물 compound 55 의 제조Manufacturing

화합물 4 (500 mg, 0.46 mmol)를 CHCl3 (150 mL)에 용해시킨 다음, NBS(N-bromosuccinimide) (100 mg, 0.56 mmol)를 첨가하고 반응혼합물을 12시간동안 환류시킨 후 증류수를 가하여 반응을 종료시켰다. 유기층은 소금물로 여러 번 씻어주고 무수 황산 나트륨으로 건조시켰다. 용매를 진공 하에서 증발시킨 후 조 생성물을 컬럼 크로마토그래피(용리액 : 클로로폼)로 정제시켜 어두운 보라색 고체로 화합물 5 (491 mg, 91 %)를 수득하였다.Compound 4 (500 mg, 0.46 mmol) was dissolved in CHCl 3 (150 mL) and NBS (N-bromosuccinimide) (100 mg, 0.56 mmol) was added and the reaction mixture was refluxed for 12 hours, Lt; / RTI > The organic layer was washed several times with brine and dried over anhydrous sodium sulfate. The solvent was evaporated in vacuo and the crude product was purified by column chromatography (eluent: chloroform) to give compound 5 (491 mg, 91%) as a dark purple solid.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH2), 0.440-0.951 (60 H), -2.76 (2 H, s). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2 H, d, J = 4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH 2 ), 0.440-0.951 (60 H), -2.76 (2 H, s). FT-IR (KBr) [cm- 1 ] 2230 (-CN).

화합물 compound 66 의 제조Manufacturing

화합물 5 (500 mg, 0.11 mmol)을 THF (100 mL)에 용해시키고, 아연 아세테이트 이수화물(350 mg, 0.54 mmol)을 첨가시킨 다음, 12시간동안 환류시켰다. 용매을 증발시킨 후 조 생성물을 CH2Cl2로 추출하였다. 유기층을 소금물로 여러 번 씻어주고 무수 황산 나트륨으로 건조시킨 후 여과시켰다. 여액을 진공 하에서 증발시켜 보라색 고체의 화합물 6 (360 mg, 94 %)을 수득하였다.Compound 5 (500 mg, 0.11 mmol) was dissolved in THF (100 mL) and zinc acetate dihydrate (350 mg, 0.54 mmol) was added and refluxed for 12 hours. The solvent was evaporated and the crude product was extracted with CH 2 Cl 2 . The organic layer was washed several times with brine, dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated in vacuo to give compound 6 (360 mg, 94%) as a violet solid.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH2), 0.440-0.951 (60 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN).
1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2 H, d, J = 4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH 2 ), 0.440-0.951 (60 H, m -CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 2230 (-CN).

[제조예 2] 화합물 7의 제조[Preparation Example 2] Preparation of Compound 7

Figure pat00025
Figure pat00025

질소 대기 하, 2',4'-비스(헥실옥시)바이페닐-4-아민 (2.5 g, 4.55 mmol), 2,4-비스(헥실옥시)-4'-아이오도바이페닐 (2.32 g, 4.78 mmol), Pd(OAc)2 (0.05 g, 0.23 mmol), dppf(1,1'-Bis(diphenylphosphino)ferrocene) (0.25 g, 0.45 mmol) 및 tert-BuO-Na+ (1.31 g, 13.65 mmol)를 무수 톨루엔 (50 mL)에 용해시켰다. 반응 혼합물을 밤새 환류시켰다. 반응 후, 반응 혼합물을 상온으로 냉각하고 CH2Cl2로 추출한 다음, 소금물로 여러 번 씻어주었다. 유기층은 무수 황산 마그네슘으로 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 실리카겔 컬럼 크로마토그래피(용리액 CH2Cl2 : n-hexane = 3:1)로 정제시켜 화합물 7 (3.5 g, 81%)을 수득하였다.(2.5 g, 4.55 mmol) and 2, 4'-bis (hexyloxy) -4'-iodobiphenyl (2.32 g, , 4.78 mmol), Pd (OAc ) 2 (0.05 g, 0.23 mmol), dppf (1,1'-Bis (diphenylphosphino) ferrocene) (0.25 g, 0.45 mmol) and tert -BuO - Na + (1.31 g , 13.65 mmol) were dissolved in anhydrous toluene (50 mL). The reaction mixture was refluxed overnight. After the reaction, the reaction mixture was cooled to room temperature, extracted with CH 2 Cl 2 , and washed several times with brine. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was evaporated in vacuo and purified by silica gel column chromatography (eluent CH 2 Cl 2 : n- hexane = 3: 1) to give compound 7 (3.5 g, 81%).

1H-NMR (300 MHz; (CDCl3; TMS) δ 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 5.546 (H, Br-S, N-H), 3.969-4.032 (8 H, t, -OCH2), 0.857-2.057 (44 H, m, -CH2, -CH3). FT-IR (KBr) [cm-1] 3400 (-NH).
1 H-NMR (300 MHz; (CDCl 3; TMS) δ 7.415-7.452 (4 H, d, J = 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J = 8.7 Hz, Ar- H), 6.545-6.612 (4H d, J = 8.7 Hz, Ar-H), 5.546 (H, Br-S, NH), 3.969-4.032 (8 H, t, -OCH 2), 0.857-2.057 (44 H, m, -CH 2, -CH 3). FT-IR (KBr) [cm -1] 3400 (-NH).

[실시예 1] 화합물 12의 제조[Example 1] Preparation of Compound 12

Figure pat00026
Figure pat00026

화합물 compound 1010 의 제조Manufacturing

화합물 6 (제조예 1, 500 mg, 0.71mmol), 화합물 7 (제조예 2, 0.95 g, 2.83 mmol), 60 % NaH (578 mg, 14.17 mmol), Pd(OAc)2 (64 mg, 0.28 mmol) 및 DPEphos(Bis[(2-diphenylphosphino)phenyl] ether) (305 mg, 0.57 mmol)를 무수 THF (50 mL)에 용해시킨 후 24시간동안 환류시켰다. 용매를 증발시키고 CH2Cl2와 소금물로 여러 번 추출하였다. 유기층을 무수 황산 나트륨을 건조시키고 필터하여 얻은 여액을 진공 하에서 증발시켰다. 그 다음 용리액으로 클로로폼을 이용하여 플래쉬 컬럼 크로마토그래피로 정제시켜 어두운 녹색 오일로 화합물 10 (170 mg, 25 %)을 수득하였다.Compound 6 (Preparation 1, 500 mg, 0.71mmol), compound 7 (Preparation 2, 0.95 g, 2.83 mmol) , 60% NaH (578 mg, 14.17 mmol), Pd (OAc) 2 (64 mg, 0.28 mmol ) And DPEphos (Bis [(2-diphenylphosphino) phenyl] ether (305 mg, 0.57 mmol) were dissolved in anhydrous THF (50 mL) and refluxed for 24 hours. The solvent was evaporated and extracted several times with CH 2 Cl 2 and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and the filtrate was evaporated under vacuum. And then purified by flash column chromatography using chloroform as eluent to give compound 10 (170 mg, 25%) as a dark green oil.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH2), 0.440-0.951 (104 H, m, CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 = 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J = 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J = 8.7 Hz, Ar-H), 3.850-3.972 H, m, -OCH 2), 0.440-0.951 (104 H, m, CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 2230 (-CN).

화합물 compound 1111 의 제조Manufacturing

화합물 10 (130 mg, 0.14 mmol)을 무수 CH2Cl2 (25 mL)에 가한 다음, 0℃, 질소 대기 하에서 DIBAL-H 용액 (Diisobutylaluminium hydride, 1 M in hexanes, 0.27 mL, 0.27 mmol)을 드랍-와이즈(drop-wise)로 첨가하였다. 반응 혼합물을 상온에서 4시간동안 교반시키고, 그 다음 NH4Cl 수용액 (200 mL)로 켄칭하고 2시간동안 추가 교반시켰다. 수용액 층을 제거한 후 유기층을 소금물로 씻어주고 무수 황산 나트륨으로 건조시켰다. 실리카겔 컬럼 크로마토그래피(용리액 CHCl3)로 정제시켜 어두운 녹색 오일로 화합물 11 (100 mg, 77 %)를 수득하였다.Compound 10 (130 mg, 0.14 mmol) was added to anhydrous CH 2 Cl 2 (25 mL) and then a solution of DIBAL-H (Diisobutylaluminium hydride, 1 M in hexanes, 0.27 mL, 0.27 mmol) was added dropwise at 0 ° C. under a nitrogen atmosphere - < / RTI > drop-wise. The reaction mixture was stirred at room temperature for 4 hours, then quenched with aqueous NH 4 Cl (200 mL) and further stirred for 2 hours. After the aqueous layer was removed, the organic layer was washed with brine and dried over anhydrous sodium sulfate. Purification by silica gel column chromatography (eluent CHCl 3 ) gave compound 11 (100 mg, 77%) as a dark green oil.

1H-NMR (300 MHz; CDCl3; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH2), 0.440-0.951 (104 H, m, CH2, -CH3). FT-IR (KBr) [cm-1] 1750 (-CO). MS (MALDI-TOF): m/z found: 1862.93 (M+), calc.: 1860.93. 1 H-NMR (300 MHz; CDCl 3; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 (2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J (2H, m, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H) J = 8.7 Hz, Ar-H), 6.545-6.612 (4H, d, J = 8.7 Hz, Ar-H), 7.153-7.231 Ar-H), 3.850-3.972 (16 H, m, -OCH 2), 0.440-0.951 (104 H, m, CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 1750 (-CO). MS (MALDI-TOF): m / z found: 1862.93 (M + ), calc .: 1860.93.

화합물 compound 1212 의 제조Manufacturing

화합물 11 (100 mg, 0.10 mmol), 피페리딘 여러 방울 및 시아노아세트산 (36 mg, 0.36 mmol)을 CHCl3 (50 mL)에 용해시키고 1일동안 환류시켰다. 반응 혼합물을 상온으로 냉각시킨 다음, CH2Cl2로 추출하였다. 유기층을 물로 여러 번 씻은 후 무수 황산 나트륨으로 건조시키고 필터하였다. 여액을 진공 하에서 농축시켜 어두운 녹색 오일로 화합물 12 (80 mg, 75 %)를 수득하였다.Compound 11 (100 mg, 0.10 mmol), several drops of piperidine and cyanoacetic acid (36 mg, 0.36 mmol) were dissolved in CHCl 3 (50 mL) and refluxed for 1 day. The reaction mixture was cooled to room temperature and extracted with CH 2 Cl 2 . The organic layer was washed several times with water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to give compound 12 (80 mg, 75%) as a dark green oil.

1H-NMR (300 MHz; CDCl3; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH2), 0.440-0.951 (104 H, m, CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). MS (MALDI-TOF): m/z found: 1929.97 (M+), calc.: 1928.01.
1 H-NMR (300 MHz; CDCl 3; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 (2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J (2H, m, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H) J = 8.7 Hz, Ar-H), 6.545-6.612 (4H, d, J = 8.7 Hz, Ar-H), 7.153-7.231 Ar-H), 3.850-3.972 (16 H, m, -OCH 2), 0.440-0.951 (104 H, m, CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 2230 (-CN). MS (MALDI-TOF): m / z found: 1929.97 (M + ), calc .: 1928.01.

[실시예 2] 화합물 15의 제조[Example 2] Preparation of Compound 15

Figure pat00027
Figure pat00027

화합물 8은 J. Mater. Chem. A, 2013,1, 9848에 따라 제조하였다.Compound 8 was prepared as described in J. Mater. Chem. A, 2013, 1, 9848.

화합물 compound 1313 의 제조Manufacturing

실시예 1의 화합물 10의 제조방법과 동일한 방법으로 화합물 13을 수득하였다.Compound 13 was obtained in the same manner as in the preparation of Compound 10 of Example 1.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.70 (8 H, m, Ar-H), 7.43 (2 H, d, J=8.1HzAr-H), 7.31 (2 H, d, J=8.4 Hz, Ar-H), 7.17 (2 H, d, J=8.1 Hz, Ar-H), 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH2), 0.440-0.951 (104 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 ), 7.43 (2 H, d , J = 8.1HzAr-H), 7.31 (2 H, d, J = 8.4 Hz, Ar-H), 7.17 (2 H, d, J = 8.1 Hz, Ar-H) , 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH 2), 0.440-0.951 (104 H, m-CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 2230 (-CN).

화합물 compound 1414 의 제조Manufacturing

실시예 1의 화합물 11의 제조방법과 동일한 방법으로 화합물 14을 수득하였다.Compound 14 was obtained in the same manner as in the preparation of Compound 11 of Example 1.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.70 (8 H, m, Ar-H), 7.43 (2 H, d, J=8.1 Hz, Ar-H), 7.31 (2 H, d, J=8.4 Hz, Ar-H), 7.17 (2H, d, J=8.1 Hz, Ar-H), 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH2), 0.440-0.951 (104 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 1750(-CO). MS (MALDI-TOF): m/z found: 2095.25 (M+), calc.: 2093.22. 1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 ), 7.43 (2 H, d , J = 8.1 Hz, Ar-H), 7.31 (2 H, d, J = 8.4 Hz, Ar-H), 7.17 (2H, d, J = 8.1 Hz, Ar-H ), 6.63 (4 H, m , Ar-H), 3.918 (16 H, m, -OCH 2), 0.440-0.951 (104 H, m-CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 1750 (-CO). MS (MALDI-TOF): m / z found: 2095.25 (M + ), calc .: 2093.22.

화합물 compound 1515 의 제조Manufacturing

실시예 1의 화합물 12의 제조방법과 동일한 방법으로 화합물 15을 수득하였다.Compound 15 was obtained in the same manner as in the preparation of Compound 12 of Example 1.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.70 (8 H, m, Ar-H), 7.43 (2 H, d, J=8.1 Hz, Ar-H), 7.31 (2 H, d, J=8.4 Hz, Ar-H), 7.17 (2 H, d, J=8.1 Hz, Ar-H), 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH2), 0.440-0.951 (104 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). MS (MALDI-TOF): m/z found: 2162.29.25 (M+), calc.: 2160.23.
1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 ), 7.43 (2 H, d , J = 8.1 Hz, Ar-H), 7.31 (2 H, d, J = 8.4 Hz, Ar-H), 7.17 (2 H, d, J = 8.1 Hz, Ar- H), 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH 2), 0.440-0.951 (104 H, m-CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 2230 (-CN). MS (MALDI-TOF): m / z found: 2162.29.25 (M + ), calc .: 2160.23.

[실시예 3] 화합물 18의 제조[Example 3] Preparation of Compound 18

Figure pat00028
Figure pat00028

화합물 compound 1616 의 제조Manufacturing

실시예 1의 화합물 10의 제조방법과 동일한 방법으로 화합물 16을 수득하였다.Compound 16 was obtained in the same manner as in the preparation of Compound 10 of Example 1.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 6.968-6.938 (4 H, d, J= 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J= 9 Hz, Ar-H), 3.918 (12 H, m, -OCH2), 0.440-0.951 (82 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). MS (MALDI-TOF): m/z found: 1494.40 (M+), calc.: 1693.85. 1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 = 9 Hz, Ar-H) , 6.822-6.792 (4 H, d, J = 9 Hz, Ar-H), 3.918 (12 H, m, -OCH 2), 0.440-0.951 (82 H, m-CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 2230 (-CN). MS (MALDI-TOF): m / z found: 1494.40 (M + ), calc .: 1693.85.

화합물 compound 1717 의 제조Manufacturing

실시예 1의 화합물 11의 제조방법과 동일한 방법으로 화합물 17을 수득하였다.Compound 17 was obtained in the same manner as in the preparation of Compound 11 of Example 1.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 6.968-6.938 (4 H, d, J= 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J= 9 Hz, Ar-H), 3.918 (12 H, m, -OCH2), 0.440-0.951 (82 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 1750 (-CO). MS (MALDI-TOF): m/z found: 1510.42 (M+), calc.: 1508.82. 1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 = 9 Hz, Ar-H) , 6.822-6.792 (4 H, d, J = 9 Hz, Ar-H), 3.918 (12 H, m, -OCH 2), 0.440-0.951 (82 H, m-CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 1750 (-CO). MS (MALDI-TOF): m / z found: 1510.42 (M + ), calc .: 1508.82.

화합물 compound 1818 의 제조Manufacturing

실시예 1의 화합물 12의 제조방법과 동일한 방법으로 화합물 18을 수득하였다.Compound 18 was obtained in the same manner as in the preparation of Compound 12 of Example 1.

1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 6.968-6.938 (4 H, d, J= 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J= 9 Hz, Ar-H), 3.918 (12 H, m, -OCH2), 0.440-0.951 (82 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230(-CN). MS (MALDI-TOF): m/z found: 1577.46 (M+), calc.: 1575.85.
1 H-NMR (300 MHz; CDCl 3; TMS) δ 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 = 9 Hz, Ar-H) , 6.822-6.792 (4 H, d, J = 9 Hz, Ar-H), 3.918 (12 H, m, -OCH 2), 0.440-0.951 (82 H, m-CH 2, -CH 3). FT-IR (KBr) [cm- 1 ] 2230 (-CN). MS (MALDI-TOF): m / z found: 1577.46 (M + ), calc .: 1575.85.

[실시예 4] 화합물 23의 제조[Example 4] Preparation of Compound 23

Figure pat00029
Figure pat00029

화합물 19 및 화합물 21은 참고문헌 NATURE CHEMISTRY, 2014, 6, 242에 따라 제조하였다.Compound 19 and compound 21 were prepared according to the references NATURE CHEMISTRY, 2014, 6, 242.

화합물 compound 2020 의 제조Manufacturing

60 % NaH (0.43 g, 10.62 mmol), Pd(OAc)2 (0.03 g, 27mmol), DPEphos (0.18 g, 0.34 mmol), 화합물 19 (0.5 g, 0.71 mmol) 및 화합물 8 (1.8g, 2.48mmol)이 담긴 250 mL 슈렝크 플라스크에 냉각기를 장치하고 진공 하에서 건조하였다. 건조가 완료되면 질소 환류 하에서 무수 THF (50 mL)를 첨가한 후 80℃에서 24시간 동안 환류, 교반 하였다. 반응이 종료되면 온도를 상온으로 내리고 CH2Cl2로 추출하여 증류수로 여러 번 세척 하었다. 유기층을 무수MgSO4로 건조한 후 감압하에서 용매를 제거하고, 관 크로마토그래피(용리액 CHCl3)로 분리하여 화합물 20 (20 %)을 수득하였다.(0.18 g, 0.34 mmol), Compound 19 (0.5 g, 0.71 mmol) and Compound 8 (1.8 g, 2.48 mmol) in 60% NaH (0.43 g, 10.62 mmol), Pd (OAc) 2 (0.03 g, 27 mmol), DPEphos ) In a 250 mL Schlenk flask equipped with a condenser and dried under vacuum. When drying was completed, anhydrous THF (50 mL) was added under nitrogen reflux, and the mixture was refluxed and stirred at 80 DEG C for 24 hours. When the reaction was completed, the temperature was lowered to room temperature, extracted with CH 2 Cl 2 , and washed several times with distilled water. The organic layer was dried over anhydrous MgSO 4 , the solvent was removed under reduced pressure, and the product was separated by column chromatography (eluent CHCl 3 ) to obtain 20 (20%).

1H NMR (300 MHz, CDCl3): δ 9.59 (d, J=4.4 Hz, 2H), 9.11 (d, J=4.4Hz, 2H), 8.80(d, J= 4.8Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J=8.4 Hz, 2H), 7.20 (d, J= 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J= 8.4Hz, 4H), 6.48 (d, J= 6.6Hz, 4H), 6.44(d, J=2.2 Hz, 1H), 6.42, (d. J=2.2Hz, 1H), 3.91 (t, J=6.6Hz, 4H), 3.89 (t, J=6.6Hz, 4H), 3.82(t, J= 6.6Hz, 8H), 1.80-1.65 (m,8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 9.59 (d, J = 4.4 Hz, 2H), 9.11 (d, J = 4.4Hz, 2H), 8.80 (d, J = 4.8Hz), 2H), 8.65 (m, 6H), 6.96 (d, J = 8.4 Hz, 2H), 7.20 (d, J = J = 6.6 Hz, 4H), 6.44 (d, J = 2.2 Hz, 1H), 6.42 (d, J = 2.2 Hz, 1H), 3.91 4H), 3.82 (t, J = 6.6Hz, 4H), 3.82 (t, J = 6.6Hz, 8H), 1.80-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38

화합물 compound 2222 의 제조Manufacturing

화합물 20 (222mg, 0.1475 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (80mg, 0.280mmol), Pd2(dba)3 (25mg, 0.030mmol), 화합물 21 (100mg, 0.280mmol), THF (20mL) 및 Et3N (3mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 22 (200mg, 70%)를 수득하였다.Compound 20 (222 mg, 0.1475 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1 M in THF, 0.35 mL, 0.320 mmol) were added to a round flask containing THF (20 mL) and stirred for 30 minutes. After stirring, the mixture was extracted with distilled water and CH 2 Cl 2 , and the organic layer was dried with sodium sulfate. AsPH on evaporating the organic solvent of the dried organic layer resulting solid 3 (80mg, 0.280mmol), Pd 2 (dba) 3 (25mg, 0.030mmol), compound 21 (100mg, 0.280mmol), THF (20mL) and Et 3 N (3 mL) was added and the mixture was refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 22 (200 mg, 70%).

1H NMR (300 MHz, CDCl3): δ 9.80 (d, J=4.4 Hz, 2H), 9.24 (d, J=4.4Hz, 2H), 8.80(d, J= 4.8Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J=8.4 Hz, 2H), 8.46 (d, J=8.4 Hz, 2H), 7.20 (d, J= 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J= 8.4Hz, 4H), 6.48 (d, J= 6.6Hz, 4H), 6.44(d, J=2.2 Hz, 1H), 6.42, (d. J=2.2Hz, 1H), 3.91 (t, J=6.6Hz, 4H), 3.89 (t, J=6.6Hz, 4H), 3.82(t, J= 6.6Hz, 8H), 1.80-1.65 (m,8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 9.80 (d, J = 4.4 Hz, 2H), 9.24 (d, J = 4.4Hz, 2H), 8.80 (d, J = 4.8Hz), 2H), 8.65 (d, J = 8.8 Hz, 2H), 8.46 (t, J = 8.4 Hz, 2H), 8.46 (d, J = 6.6 Hz, 4H), 6.44 (d, J = 2.2 Hz, J = 6.6 Hz, 4H), 3.82 (t, J = 6.6 Hz, 8H), 1.80-1.65 (m, 8H) 16H), 0.60-0.38 (m, 16H), 0.55 (t, J = 7.3 Hz, 12H)

화합물 compound 2323 의 제조방법≪ / RTI &

화합물 22 (150mg, 0.090mmol), 수산화나트륨 (20% w/w in water, 8mL), THF/MeOH(21mL:3mL (7:3))을 둥근플라스크에 넣고 60℃에서 3시간 교반한 뒤, TLC로 화합물 22가 다 사라지면 반응을 종결하고 1M의 HCl로 PH7까지 중화시켜주었다. 그런 다음, CH2Cl2과 증류수로 추출하고 소듐설페이트로 유기층을 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 얻어진 고체를 실리카 컬럼크로마토그래피(용리액 디클로로메탄 : 메탄올 (10:1))로 정제시켜 화합물 23을 수득하였다.Compound 22 (150 mg, 0.090 mmol), sodium hydroxide (20% w / w in water, 8 mL) and THF / MeOH (21 mL: 3 mL (7: 3)) were placed in a round flask, When the compound 22 disappeared with TLC, the reaction was terminated and neutralized to pH 7 with 1M HCl. It was then extracted with CH 2 Cl 2 and distilled water, the organic layer was dried over sodium sulfate and filtered. The filtrate was evaporated in vacuo and the resulting solid was purified by silica column chromatography (eluent dichloromethane: methanol (10: 1)) to afford 23 .

1H NMR (300 MHz, CDCl3): δ 9.80 (d, J=4.4 Hz, 2H), 9.24 (d, J=4.4Hz, 2H), 8.80(d, J= 4.8Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J=8.4 Hz, 2H), 8.46 (d, J=8.4 Hz, 2H), 7.20 (d, J= 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J= 8.4Hz, 4H), 6.48 (d, J= 6.6Hz, 4H), 6.44(d, J=2.2 Hz, 1H), 6.42, (d. J=2.2Hz, 1H), 3.91 (t, J=6.6Hz, 4H), 3.89 (t, J=6.6Hz, 4H), 3.82(t, J= 6.6Hz, 8H), 1.80-1.65 (m,8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H)
1 H NMR (300 MHz, CDCl 3): δ 9.80 (d, J = 4.4 Hz, 2H), 9.24 (d, J = 4.4Hz, 2H), 8.80 (d, J = 4.8Hz), 2H), 8.65 (d, J = 8.8 Hz, 2H), 8.46 (t, J = 8.4 Hz, 2H), 8.46 (d, J = 6.6 Hz, 4H), 6.44 (d, J = 2.2 Hz, J = 6.6 Hz, 4H), 3.82 (t, J = 6.6 Hz, 8H), 1.80-1.65 (m, 8H) 16H), 0.60-0.38 (m, 16H), 0.55 (t, J = 7.3 Hz, 12H)

[실시예 5] 화합물 29의 제조[Example 5] Preparation of Compound 29

Figure pat00030
Figure pat00030

화합물 27은 참고문헌 NATURE CHEMISTRY, 2014, 6, 242에 따라, 화합물 24은 New J. Chem, 2015, 39, 3736-3746 에 따라 제조하였다.Compound 27 was prepared according to the reference NATURE CHEMISTRY, 2014, 6, 242, and Compound 24 was prepared according to New J. Chem, 2015, 39, 3736-3746.

화합물 compound 2525 의 제조Manufacturing

화합물 19 (146mg, 0.13 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.34mL, 0.340mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (78mg, 0.260mmol), Pd2(dba)3 (23mg, 0.030mmol), 화합물 24 (146mg, 0.260mmol), THF (40mL) 및 Et3N (3mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 25 (150mg, 74%)를 수득하였다.Compound 19 (146 mg, 0.13 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1 M in THF, 0.34 mL, 0.340 mmol) were added to a round flask containing THF (20 mL) and stirred for 30 min. After stirring, the mixture was extracted with distilled water and CH 2 Cl 2 , and the organic layer was dried with sodium sulfate. The evaporation of the organic solvent of the dried organic layer resulting solid AsPH 3 (78mg, 0.260mmol), Pd 2 (dba) 3 (23mg, 0.030mmol), compound 24 (146mg, 0.260mmol), THF (40mL) and Et 3 N (3 mL) was added and the mixture was refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 25 (150 mg, 74%).

1H NMR (300 MHz, CDCl3): δ 9.679 (d, J=4.5 Hz, 2H), 9.592 (d, J=4.5Hz, 2H), 8.867 (d, J= 4.5Hz, 2H), 8.847 (d, J = 4.5 Hz, 2H), 7.75(d, J=8.4Hz, 2H), 7.688 (t, J=8.4 Hz, 2H), 7.168 (d, J= 8.4 Hz, 4H), 7.063-7.034 (d, 2H), 7.017-7.004 (d, J= 8.4Hz, 4H), 6.904-6.873 (d, J= 6.6Hz, 4H), 3.992 (t, J=6.6Hz, 4H), 3.854 (t, J=6.6Hz, 4H), 1.80-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 9.679 (d, J = 4.5 Hz, 2H), 9.592 (d, J = 4.5Hz, 2H), 8.867 (d, J = 4.5Hz, 2H), 8.847 ( J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.688 (d, J = 6.6 Hz, 4H), 3.992 (t, J = 6.6 Hz, 4H), 3.854 = 6.6 Hz, 4H), 1.80-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 ), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)

화합물 compound 2626 의 제조Manufacturing

화합물 25 (67mg, 0.04 mmol)와 CuI (1mg, 0.001mmol), Pd(PPh3)2Cl2 (3mg, 0.001mmol) 을 슈렝크 플라스크에 넣는다. 한 시간 동안 진공 압을 잡은 후, Dry Toluene 40ml를 넣어 준다. 그리고 Et3N (64mg, 0.63mmol)을 넣고, TIPS(Triisopropylsilylacetylene) (20ml, 0.08mmol)을 넣고 12시간동안 환류 시킨다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 26 (54mg, 76%)를 수득하였다.Compound 25 (67 mg, 0.04 mmol), CuI (1 mg, 0.001 mmol) and Pd (PPh 3 ) 2 Cl 2 (3 mg, 0.001 mmol) are placed in a Schlenk flask. Vacuum pressure for one hour, then add 40 ml of Dry Toluene. Then, Et 3 N (64 mg, 0.63 mmol) was added thereto, and TIPS (Triisopropylsilylacetylene) (20 ml, 0.08 mmol) was added thereto and refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give 26 (54 mg, 76%).

1H NMR (300 MHz, CDCl3): δ 9.669 (d, J=4.4 Hz, 2H), 9.646 (d, J=4.4Hz, 2H), 8.854(d, J= 4.8Hz), 2H), 8.839 (d, J = 4.8 Hz, 2H), 7.788 (d, J=8.4 Hz, 2H), 7.701 (t, J= 8.6 Hz, 2H), 7.170 (d, 4H), 7.068 (d, J= 8.4Hz, 2H), 6.996 (d, J= 6.6Hz, 4H), 6.901(d, J=2.2 Hz, 4H), 3.992 (t, J=6.6Hz, 4H), 3.846 (t, J=6.6Hz, 8H), 1.826-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 9.669 (d, J = 4.4 Hz, 2H), 9.646 (d, J = 4.4Hz, 2H), 8.854 (d, J = 4.8Hz), 2H), 8.839 (t, J = 8.6 Hz, 2H), 7.170 (d, 4H), 7.068 (d, J = 8.4 Hz, 2H), 7.70 J = 6.6 Hz, 4H), 6.996 (t, J = 6.6 Hz, 4H), 6.996 ), 1.826-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16 H) 0.55 (t, J = 7.3 Hz, 12 H)

화합물 compound 2828 의 제조Manufacturing

화합물 26 (60mg, 0.04 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (24mg, 0.080mmol), Pd2(dba)3 (7mg, 0.010mmol), 화합물 27 (31mg, 0.080mmol), THF (20mL) 및 Et3N (0.68mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 28 (45mg, 64%)를 수득하였다.Compound 26 (60 mg, 0.04 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1 M in THF, 0.35 mL, 0.320 mmol) were placed in a round flask containing THF (20 mL) and stirred for 30 min. After stirring, the mixture was extracted with distilled water and CH 2 Cl 2 , and the organic layer was dried with sodium sulfate. The evaporation of the organic solvent of the dried organic layer resulting solid AsPH 3 (24mg, 0.080mmol), Pd 2 (dba) 3 (7mg, 0.010mmol), compound 27 (31mg, 0.080mmol), THF (20mL) and Et 3 N (0.68 mL) was added and the mixture was refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 28 (45 mg, 64%).

1H NMR (300 MHz, CDCl3): δ 10.013 (d, J=4.4 Hz, 2H), 9.667 (d, J=4.4Hz, 2H), 8.952(d, J= 4.8Hz), 2H), 8.852 (d, J = 4.8 Hz, 2H), 8.298 (t, J=8.4 Hz, 2H), 8.172 (d, J=8.4 Hz, 2H), 7.957 (d, J= 8.6 Hz, 1H), 7.791-7.606 (m, 4H), 7.191 (d, J= 8.4Hz, 4H), 7.122 (d, J= 8.4Hz, 2H), 7.022 (d, J= 6.6Hz, 4H), 6.909(d, J=2.2 Hz, 4H), 4.405 (t, J=6.6Hz, 2H), 3.995 (t, J=6.6Hz, 4H), 3.877(t, J= 6.6Hz, 8H), 1.811-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 10.013 (d, J = 4.4 Hz, 2H), 9.667 (d, J = 4.4Hz, 2H), 8.952 (d, J = 4.8Hz), 2H), 8.852 (d, J = 4.8 Hz, 2H), 8.298 (t, J = 8.4 Hz, 2H), 8.172 (d, J = 8.4 Hz, 2H), 7.957 (d, J = 8.6 Hz, 1H), 7.791-7.606 (d, J = 8.4 Hz, 2H), 7.022 (d, J = 6.6 Hz, 4H), 6.909 J = 6.6 Hz, 4H), 3.877 (t, J = 6.6 Hz, 8H), 1.811-1.65 (m, 8H), 4.48 (M, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)

화합물 compound 2929 의 제조Manufacturing

화합물 28 (45mg, 0.020mmol), 수산화나트륨 (20% w/w in water, 8mL), THF/MeOH(21mL:3mL (7:3))을 둥근플라스크에 넣고 60℃에서 3시간 교반한 뒤, TLC로 화합물 28가 다 사라지면 반응을 종결하고 1M의 HCl로 PH7까지 중화시켜주었다. 그런 다음, CH2Cl2과 증류수로 추출하고 소듐설페이트로 유기층을 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 얻어진 고체를 실리카 컬럼크로마토그래피(용리액 디클로로메탄 : 메탄올 (10:1))로 정제시켜 화합물 29을 수득하였다. Compound 28 (45 mg, 0.020 mmol), sodium hydroxide (20% w / w in water, 8 mL) and THF / MeOH (21 mL: 3 mL (7: 3)) were placed in a round flask, When the compound 28 had disappeared with TLC, the reaction was terminated and neutralized to pH 7 with 1M HCl. It was then extracted with CH 2 Cl 2 and distilled water, the organic layer was dried over sodium sulfate and filtered. The filtrate was evaporated in vacuo and the resulting solid was purified by silica column chromatography (eluent dichloromethane: methanol (10: 1)) to afford 29 .

1H NMR (300 MHz, CDCl3): δ 10.002 (d, J=4.4 Hz, 2H), 9.659 (d, J=4.4Hz, 2H), 8.941(d, J= 4.8Hz), 2H), 8.848 (d, J = 4.8 Hz, 2H), 8.290 (t, J=8.4 Hz, 2H), 8.164 (d, J=8.4 Hz, 2H), 7.949 (d, J= 8.6 Hz, 1H), 7.783-7.598 (m, 4H), 7.183 (d, J= 8.4Hz, 4H), 7.114 (d, J= 8.4Hz, 2H), 7.014 (d, J= 6.6Hz, 4H), 6.909(d, J=2.2 Hz, 4H), 3.982 (t, J=6.6Hz, 4H), 3.861(t, J= 6.6Hz, 8H), 1.824-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H)
1 H NMR (300 MHz, CDCl 3): δ 10.002 (d, J = 4.4 Hz, 2H), 9.659 (d, J = 4.4Hz, 2H), 8.941 (d, J = 4.8Hz), 2H), 8.848 (d, J = 8.4 Hz, 2H), 8.290 (t, J = 8.4 Hz, 2H), 8.164 (d, J = 8.4 Hz, 2H), 7.014 (d, J = 6.6 Hz, 4H), 6.909 , 4H), 3.982 (t, J = 6.6 Hz, 4H), 3.861 (t, J = 6.6 Hz, 8H), 1.824-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 J = 7.3 Hz, 12H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38

[실시예 6] 화합물 34의 제조[Example 6] Preparation of Compound 34

Figure pat00031
Figure pat00031

화합물 30은 ChemSusChem, Volume 4, Issue 5, pages 591-594, May 23, 2011에 따라 제조하였다.Compound 30 was prepared according to ChemSus Chem, Volume 4, Issue 5, pages 591-594, May 23,

화합물 compound 3131 의 제조Manufacturing

화합물 19 (100mg, 0.09 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol)를 THF (40mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (54mg, 0.180mmol), Pd2(dba)3 (16mg, 0.20mmol), 화합물 30 (162mg, 0.180mmol), THF (40mL) 및 Et3N (0.18mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 31 (81mg, 48%)를 수득하였다.Compound 19 (100 mg, 0.09 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1 M in THF, 0.35 mL, 0.320 mmol) were added to a round flask containing THF (40 mL) and stirred for 30 min. After stirring, the mixture was extracted with distilled water and CH 2 Cl 2 , and the organic layer was dried with sodium sulfate. The evaporation of the organic solvent of the dried organic layer resulting solid AsPH 3 (54mg, 0.180mmol), Pd 2 (dba) 3 (16mg, 0.20mmol), compound 30 (162mg, 0.180mmol), THF (40mL) and Et 3 N (0.18 mL) was added and the mixture was refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 31 (81 mg, 48%).

1H NMR (300 MHz, CDCl3): δ 9.698 (d, J=4.5 Hz, 2H), 9.599 (d, J=4.5Hz, 2H), 8.883 (d, J= 4.5Hz, 2H), 8.854 (d, J = 4.5 Hz, 2H), 7.867(d, J=8.4Hz, 2H), 7.691 (t, J=8.4 Hz, 2H), 7.553 (d, J= 8.4 Hz, 4H), 7.327-7.7245 (m, J=8.4Hz, 10H), 7.005 (d, 4H), 6.574 (d, J= 8.4Hz, 4H), 4.022 (t, J=6.6Hz, 8H), 3.858 (t, J=6.6Hz, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 9.698 (d, J = 4.5 Hz, 2H), 9.599 (d, J = 4.5Hz, 2H), 8.883 (d, J = 4.5Hz, 2H), 8.854 ( J = 8.4 Hz, 2H), 7.867 (d, J = 8.4 Hz, 2H), 7.691 (t, J = 8.4 Hz, 2H), 7.553 (d, J = 8.4 Hz, 4H), 7.327-7.7245 J = 6.4 Hz, 4H), 4.022 (t, J = 6.6 Hz, 8H), 3.858 (t, J = 6.6 Hz, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H), 1.32-1.20 (m, 16H), 1.01-0.80

화합물 compound 3232 의 제조Manufacturing

화합물 31 (70mg, 0.04 mmol)와 CuI (1mg, 0.001mmol), Pd(PPh3)2Cl2 (3mg, 0.001mmol) 을 슈렝크 플라스크에 넣는다. 한 시간 동안 진공 압을 잡은 후, Dry Toluene 40ml를 넣어 준다. 그리고 Et3N (90ml, 0.66mmol)을 넣고, TIPS(Triisopropylsilylacetylene) (30ml, 0.13mmol)을 넣고 12시간동안 환류 시킨다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 32 (27mg, 37%)를 수득하였다.Compound 31 (70 mg, 0.04 mmol), CuI (1 mg, 0.001 mmol) and Pd (PPh 3 ) 2 Cl 2 (3 mg, 0.001 mmol) are placed in a Schlenk flask. Vacuum pressure for one hour, then add 40 ml of Dry Toluene. Add Et 3 N (90 ml, 0.66 mmol), add TIPS (Triisopropylsilylacetylene) (30 ml, 0.13 mmol) and reflux for 12 hours. The solvent was then evaporated and purified by column chromatography to give 32 (27 mg, 37%).

1H NMR (300 MHz, CDCl3): δ 9.686 (d, J=4.4 Hz, 2H), 9.648 (d, J=4.4Hz, 2H), 8.860(d, J= 4.8Hz, 4H), 7.872 (d, J=8.4 Hz, 2H), 7.703 (t, J= 8.6 Hz, 2H), 7.533 (d, 4H), 7.327-7.245 (m, J= 8.4Hz, 4H), 6.996 (d, J= 6.6Hz, 4H), 6.574(d, J=2.2 Hz, 4H), 4.180 (t, J=6.6Hz, 8H), 3.966 (t, J=6.6Hz, 8H), 1.826-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 9.686 (d, J = 4.4 Hz, 2H), 9.648 (d, J = 4.4Hz, 2H), 8.860 (d, J = 4.8Hz, 4H), 7.872 ( (d, J = 8.4 Hz, 2H), 7.703 (t, J = 8.6 Hz, 2H), 7.533 (d, 4H), 7.327-7.245 (T, J = 6.6 Hz, 8H), 3.966 (t, J = 6.6 Hz, 8H), 1.826-1.65 (m, 8H) 16H), 0.60-0.38 (m, 16H), 0.55 (t, J = 7.3 Hz, 12H)

화합물 compound 3333 의 제조Manufacturing

화합물 32 (80mg, 0.04 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.04mL, 0.040mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (26mg, 0.090mmol), Pd2(dba)3 (8mg, 0.010mmol), 화합물 27 (33mg, 0.090mmol), THF (35mL) 및 Et3N (0.75mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 33 (10mg, 40%)를 수득하였다.Compound 32 (80 mg, 0.04 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1 M in THF, 0.04 mL, 0.040 mmol) were placed in a round flask containing THF (20 mL) and stirred for 30 min. After stirring, the mixture was extracted with distilled water and CH 2 Cl 2 , and the organic layer was dried with sodium sulfate. The evaporation of the organic solvent of the dried organic layer resulting solid AsPH 3 (26mg, 0.090mmol), Pd 2 (dba) 3 (8mg, 0.010mmol), compound 27 (33mg, 0.090mmol), THF (35mL) and Et 3 N (0.75 mL) was added and the mixture was refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give 33 (10 mg, 40%).

1H NMR (300 MHz, CDCl3): δ 10.021 (d, J=4.4 Hz, 2H), 9.689 (d, J=4.4Hz, 2H), 8.960(d, J= 4.8Hz), 2H), 8.869 (d, J = 4.8 Hz, 2H), 8.294 (t, J=8.4 Hz, 2H), 8.157 (d, J=8.4 Hz, 2H), 7.940 (d, J= 8.6 Hz, 1H), 7.878 (d, 2H), 7.735 (d, J= 8.4Hz, 4H), 7.538 (d, J= 8.4Hz, 2H), 7.026 (d, J= 6.6Hz, 4H), 6.577(d, J=2.2 Hz, 4H), 4.426 (t, J=6.6Hz, 2H), 4.025 (t, J=6.6Hz, 8H), 3.884(t, J= 6.6Hz, 8H), 1.836-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3): δ 10.021 (d, J = 4.4 Hz, 2H), 9.689 (d, J = 4.4Hz, 2H), 8.960 (d, J = 4.8Hz), 2H), 8.869 (d, J = 8.4 Hz, 2H), 8.294 (t, J = 8.4 Hz, 2H), 8.157 , 2H), 7.735 (d, J = 8.4 Hz, 4H), 7.538 (d, J = 8.4 Hz, 2H), 7.026 ), 4.426 (t, J = 6.6 Hz, 2H), 4.025 (t, J = 6.6 Hz, 8H), 3.884 (t, J = 6.6 Hz, 8H), 1.836-1.65 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 12H)

화합물 compound 3434 의 제조Manufacturing

화합물 33 (10mg, 0.001mmol), 수산화나트륨 (20% w/w in water, 8mL), THF/MeOH(21mL:3mL (7:3))을 둥근플라스크에 넣고 60℃에서 3시간 교반한 뒤, TLC로 화합물 33가 다 사라지면 반응을 종결하고 1M의 HCl로 PH7까지 중화시켜주었다. 그런 다음, CH2Cl2과 증류수로 추출하고 소듐설페이트로 유기층을 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 얻어진 고체를 실리카 컬럼크로마토그래피(용리액 디클로로메탄 : 메탄올 (10:1))로 정제시켜 화합물 34을 수득하였다. Compound 33 (10 mg, 0.001 mmol), sodium hydroxide (20% w / w in water, 8 mL) and THF / MeOH (21 mL: 3 mL (7: 3)) were placed in a round flask, When the compound 33 disappeared with TLC, the reaction was terminated and neutralized to PH7 with 1M HCl. It was then extracted with CH 2 Cl 2 and distilled water, the organic layer was dried over sodium sulfate and filtered. The filtrate was evaporated in vacuo and the resulting solid was purified by silica column chromatography (eluent dichloromethane: methanol (10: 1)) to afford 34 .

1H NMR (300 MHz, CDCl3): δ 10.015 (d, J=4.4 Hz, 2H), 9.686 (d, J=4.4Hz, 2H), 8.957(d, J= 4.8Hz, 2H), 8.866 (d, J = 4.8 Hz, 2H), 8.292 (d, J=8.4 Hz, 2H), 8.186 (d, J=8.4 Hz, 2H), 7.952 (d, J= 8.6 Hz, 1H), 7.875 (d, 2H), 7.735 (t, J= 8.4Hz, 2H), 7.535(d, J= 8.4Hz, 4H), 7.322-7.248 (m, J= 6.6Hz, 4H), 7.026(d, J=2.2 Hz, 4H), 6.577-6.563(m, J=2.4Hz, 4H), 4.025 (t, J=6.6Hz, 8H), 3.884(t, J= 6.6Hz, 8H), 2.791 (t, J=6.3Hz, 6H), 2.375-2.325 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H)
1 H NMR (300 MHz, CDCl 3): δ 10.015 (d, J = 4.4 Hz, 2H), 9.686 (d, J = 4.4Hz, 2H), 8.957 (d, J = 4.8Hz, 2H), 8.866 ( (d, J = 8.4 Hz, 2H), 8.292 (d, J = 8.4 Hz, 2H), 8.186 2H), 7.735 (t, J = 8.4 Hz, 2H), 7.535 (d, J = 8.4 Hz, 4H), 7.322-7.248 J = 6.6 Hz, 8H), 3.884 (t, J = 6.6 Hz, 8H), 2.791 (t, J = 6.3 Hz, 4H), 6.577-6.563 (m, 6H), 2.375-2.325 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 0.38 (m, 16 H) 0.55 (t, J = 7.3 Hz, 12 H)

분광학적 특성 평가Evaluation of spectroscopic characteristics

상기 실시예 1 내지 4에서 수득한 포르피린계 염료 화합물 12, 화합물15, 화합물 18 및 화합물 23의 UV 흡수 스펙트럼을 도 1 및 도 3에 도시하였다. 상기 실시예 1 내지 3에서 수득한 포르피린계 염료 화합물 12, 화합물15 및 화합물 18의 UV 발광 스펙트럼을 도 2에 도시하였다.
The UV absorption spectra of the porphyrin-based dye compounds 12 , 15 , 18 and 23 obtained in Examples 1 to 4 are shown in FIGS. The UV emission spectra of the porphyrin-based dye compounds 12 , 15 and 18 obtained in Examples 1 to 3 are shown in Fig.

[실시예 5 내지 8 및 비교예 1 내지 3] 염료감응 태양전지의 제작 및 특성 평가[Examples 5 to 8 and Comparative Examples 1 to 3] Preparation and characterization of dye-sensitized solar cell

포르피린계 화합물을 이용한 염료감응 태양전지는 다음과 같이 제작되었다.A dye-sensitized solar cell using a porphyrin compound was fabricated as follows.

제1전극의 ITO로 이루어진 전도성 필름 상에 평균입경 13nm 입경을 갖는 티타늄산화물 입자의 분산액을 닥터 블레이드법을 이용하여 0.25㎠ 면적에 도포하고, 이를 450℃에서 30분동안 열처리 소성공정을 하여, 10 ㎛두께의 다공질막을 제작하였다. A dispersion of titanium oxide particles having an average particle size of 13 nm in particle diameter was applied on a conductive film made of ITO of the first electrode to a surface area of 0.25 cm 2 by a doctor blade method and subjected to a heat treatment and firing process at 450 캜 for 30 minutes, A porous film having a thickness of 탆 was prepared.

이어서, 상기 결과물을 80℃에서 유지하고 이를 상기 실시예 1 내지 4에서 수득한 포르피린계 화합물 각각을 에탄올에 용해한 0.3 mM 염료 분산액에 침지하여 염료 흡착 처리를 12시간 이상 수행하였다.Then, the resultant was kept at 80 ° C., and the porphyrin compound obtained in each of Examples 1 to 4 was immersed in a 0.3 mM dye dispersion in ethanol, and the dye adsorption treatment was performed for 12 hours or more.

그 후 염료 흡착된 다공질막을 에탄올을 이용하여 씻어내고 상온 건조하여 광흡수층이 형성된 제1전극을 제조하였다.Thereafter, the dye-adsorbed porous membrane was washed with ethanol and dried at room temperature to prepare a first electrode having a light absorbing layer.

이와 별도로 제2전극은, ITO로 이루어진 제1전도성 필름 위에 스퍼터를 이용하여 Pt로 이루어진 제2전도성 필름을 증착하였고, 전해액 주입을 위해 0.75 mm 직경의 드릴을 이용하여 미세 구멍을 만들었다.Separately, the second electrode was formed by depositing a second conductive film made of Pt on a first conductive film made of ITO by sputtering, and using a drill having a diameter of 0.75 mm for injecting an electrolyte, a fine hole was formed.

이후, 60㎛ 두께의 열가소성 고분자 필름으로 이루어진 지지대를 다공질막이 형성된 제1전극과 제2전극 사이에 두고 80℃에서 16초 압착시킴으로써 두 전극을 접합시켰다. 그리고, 제2전극에 형성된 미세구멍을 통하여 전해질을 주입하고 커버 글라스와 열가소성 고분자 필름을 이용하여 미세 구멍을 밀봉하여 염료감응 태양전지를 제조하였다. 이 때 이용된 전해질은 1-메틸-3-프로필이미다졸리움아이오다이드, 0.1M의 리튬 아이오다이드(lithium iodide), 0.05M의 요오드(iodine), 0.5M 의 4-터트-부틸피리딘을 3-메톡시프로피오니트릴(3-methoxypropionitrile) 에 용해하여 준비하였다.Thereafter, the support made of a thermoplastic polymer film having a thickness of 60 μm was sandwiched between the first and second electrodes having the porous film formed thereon at 80 ° C. for 16 seconds to bond the two electrodes. Then, the electrolyte was injected through the micropores formed in the second electrode, and the micropores were sealed using a cover glass and a thermoplastic polymer film to prepare a dye-sensitized solar cell. The electrolyte used herein was 1-methyl-3-propylimidazolium iodide, 0.1M lithium iodide, 0.05M iodine, 0.5M 4-tert-butylpyridine And then dissolved in 3-methoxypropionitrile.

상기 제조된 전지의 전압-전류밀도 및 전류변환효율(IPCE)를 측정하여 각각 도 4, 도 5 및 도 6에 도시하였으며, 이를 표 1에 정리하여 나타내었다.The voltage-current density and the current conversion efficiency (IPCE) of the battery were measured and are shown in FIGS. 4, 5, and 6, respectively, and are shown in Table 1.

포르피린계 유도체Porphyrin derivative Jsc[mA cm-2]J sc [mA cm -2 ] Voc[mV]V oc [mV] FF(%)FF (%) η(%)侶 (%) 실시예 5Example 5 화합물 12
(실시예 1)
Compound 12
(Example 1)
13.34 13.34 723 723 72.3 72.3 6.97 6.97
실시예 6Example 6 화합물 15
(실시예 2)
Compound 15
(Example 2)
13.91 13.91 707 707 75.2 75.2 7.40 7.40
실시예 7Example 7 화합물 18
(실시예 3)
Compound 18
(Example 3)
14.26 14.26 722 722 74.7 74.7 7.69 7.69
실시예 8Example 8 화합물 23
(실시예 4)
Compound 23
(Example 4)
17.617.6 913913 75.075.0 12.112.1

상기 표 1에 기재된 결과로부터, 실시예 5 내지 8의 염료감응 태양전지는 포르피린의 5번과 15번 위치에 두 개의 (C1-C20)알콕시가 치환된 페닐기가 도입되어 있고 포르피린의 10번 위치에 하나 또는 두 개의 (C1-C20)알콕시가 치환되어 있는 페닐이 치환된 아릴아미노기가 도입되어 있는 실시예 1 내지 4의 포르피린계 유도체를 염료로 사용있어 우수한 광변환 효율을 가짐을 알 수 있었다. 특히 실시예 8의 경우 포르피린의 5번과 15번 위치에 도입된 두 개의 (C1-C20)알콕시가 치환된 페닐기 이외에 포르피린의 10번 위치에 하나 또는 두 개의 (C1-C20)알콕시가 치환되어 있는 페닐이 치환된 아릴아미노기와 포르피린 사이에 탄소-탄소 삼중결합을 가진 화합물 23을 염료로 사용하고 있어 더욱 우수한 광변환 효율을 나타내었다.From the results shown in Table 1, it can be seen that the dye-sensitized solar cells of Examples 5 to 8 have two (C1-C20) alkoxy substituted phenyl groups at positions 5 and 15 of porphyrin, It has been found that the use of the porphyrin derivatives of Examples 1 to 4 in which an arylamino group substituted with phenyl substituted with one or two (C1-C20) alkoxy is used as a dye has excellent light conversion efficiency. In particular, in the case of Example 8, in addition to the phenyl group substituted with two (C1-C20) alkoxy substituted at positions 5 and 15 of porphyrin, one or two (C1-C20) Compound 23 having a carbon-carbon triple bond between a phenyl-substituted arylamino group and porphyrin was used as a dye, and thus exhibited excellent photoconversion efficiency.

본 발명에 따른 포르피린계 화합물을 이용하여 제조된 전지는 빛과 열에 대한 안정성이 높은 포르피린 염료를 기반으로 전자주개 능력이 강한 알콕시가 치환된 페닐 유도체, 알콕시가 치환된 아릴아민 유도체 또는 탄소-탄소 삼중결합을 도입함으로써 높은 효율의 염료감응 태양전지 구동이 가능한 특성을 갖는 것을 알 수 있었다.The battery produced by using the porphyrin compound according to the present invention is a battery which is based on a porphyrin dye having high stability against light and heat, and has an alkoxy-substituted phenyl derivative having strong electron-donating ability, an alkoxy substituted arylamine derivative, It has been found that the dye-sensitized solar cell can be driven with high efficiency.

Claims (7)

하기 화학식 1로 표시되는 포르피린 유도체:
[화학식 1]
Figure pat00032

상기 화학식 1에서,
R1 내지 R6는 각각 독립적으로 (C1-C20)알킬이고;
R' 및 R''는 각각 독립적으로 수소 또는 (C1-C20)알콕시이고;
L1 및 L2는 각각 독립적으로 단일결합 또는 (C6-C20)아릴렌이고, 상기 아릴렌은 (C1-C20)알킬로 더 치환될 수 있고;
m은 0 또는 1의 정수이고;
A는 하기 구조에서 선택되고;
Figure pat00033

n이 0인 경우 B는
Figure pat00034
이고;
n은 1인 경우 B는 하기 구조에서 선택되고;
Figure pat00035

R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.
A porphyrin derivative represented by the following Formula 1:
[Chemical Formula 1]
Figure pat00032

In Formula 1,
R 1 to R 6 are each independently (C 1 -C 20) alkyl;
R ' and R " are each independently hydrogen or (C1-C20) alkoxy;
L 1 and L 2 are each independently a single bond or (C 6 -C 20) arylene, and the arylene may be further substituted with (C 1 -C 20) alkyl;
m is an integer of 0 or 1;
A is selected from the following structures;
Figure pat00033

When n is 0, B is
Figure pat00034
ego;
when n is 1, B is selected from the following structures;
Figure pat00035

R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
제 1항에 있어서,
하기 화학식 2, 화학식 3, 화학식 4 또는 화학식 5로 표시되는 포르피린계 유도체:
[화학식 2]
Figure pat00036

[화학식 3]
Figure pat00037

[화학식 4]
Figure pat00038

[화학식 5]
Figure pat00039

상기 R1, R2, R3, R4, L1, L2, R5, R6, R', R'' 및 A는 청구항 제1항에서의 정의와 동일하고,
B는 하기 구조에서 선택되고;
Figure pat00040

R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.
The method according to claim 1,
A porphyrin derivative represented by the following general formula (2), (3), (4) or (5)
(2)
Figure pat00036

(3)
Figure pat00037

[Chemical Formula 4]
Figure pat00038

[Chemical Formula 5]
Figure pat00039

Wherein R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , R 5 , R 6 , R ', R "and A are as defined in claim 1,
B is selected from the following structures;
Figure pat00040

R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
제 2항에 있어서,
상기 L1 및 L2는 각각 독립적으로 단일결합이거나, 하기 구조에서 선택되는 포르피린계 유도체:
Figure pat00041

상기 R는 (C1-C20)알킬이다.
3. The method of claim 2,
Wherein L 1 and L 2 are each independently a single bond or a porphyrin derivative selected from the following structures:
Figure pat00041

Wherein R is (C1-C20) alkyl.
제 2항에 있어서,
하기 구조로부터 선택되는 포르피린계 유도체:
Figure pat00042

Figure pat00043

Figure pat00044

Figure pat00045

Figure pat00046

Figure pat00047
3. The method of claim 2,
A porphyrin derivative selected from the following structures:
Figure pat00042

Figure pat00043

Figure pat00044

Figure pat00045

Figure pat00046

Figure pat00047
제 1항 내지 제 4항에서 선택되는 어느 한 항의 포르피린계 유도체를 포함하는 염료감응 태양전지용 염료.A dye for a dye-sensitized solar cell comprising a porphyrin derivative according to any one of claims 1 to 4. 제 5항의 염료감응 태양전지용 염료를 포함하는 염료감응 태양전지.A dye-sensitized solar cell comprising the dye for a dye-sensitized solar cell of claim 5. 제 6항에 있어서,
상기 염료감응 태양전지는
전도성 투명 기판을 포함하는 제1전극;
상기 제1전극의 어느 일면에 형성된 광흡수층;
상기 광흡수층이 형성된 제1전극에 대향하여 배치되는 제2전극; 및
상기 제1전극과 제2전극 사이의 공간에 위치하는 전해질을 포함하는 것을 특징으로 하는 염료감응 태양전지.
The method according to claim 6,
The dye-sensitized solar cell
A first electrode comprising a conductive transparent substrate;
A light absorbing layer formed on one surface of the first electrode;
A second electrode disposed opposite to the first electrode on which the light absorbing layer is formed; And
And an electrolyte located in a space between the first electrode and the second electrode.
KR1020150067199A 2014-05-15 2015-05-14 Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same KR101722003B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/004880 WO2015174774A2 (en) 2014-05-15 2015-05-15 Novel porphyrin-based derivative, organic dye for dye-sensitized solar cell comprising same derivative, and dye-sensitized solar cell comprising same organic dye

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140058564 2014-05-15
KR20140058564 2014-05-15

Publications (2)

Publication Number Publication Date
KR20150132806A true KR20150132806A (en) 2015-11-26
KR101722003B1 KR101722003B1 (en) 2017-04-03

Family

ID=54847376

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150067199A KR101722003B1 (en) 2014-05-15 2015-05-14 Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same

Country Status (1)

Country Link
KR (1) KR101722003B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063949A (en) 2000-08-16 2002-02-28 National Institute Of Advanced Industrial & Technology Dye sensitized solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063949A (en) 2000-08-16 2002-02-28 National Institute Of Advanced Industrial & Technology Dye sensitized solar battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nature Chemistry, Vol. 6, pp. 242-247(2014.02.02.)* *

Also Published As

Publication number Publication date
KR101722003B1 (en) 2017-04-03

Similar Documents

Publication Publication Date Title
KR101747443B1 (en) Photoelectric conversion devices comprising novel ligands and sensitizers
Sirohi et al. Novel di-anchoring dye for DSSC by bridging of two mono anchoring dye molecules: a conformational approach to reduce aggregation
US20090293951A1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR20190003201A (en) perovskite solar cells
Tomkeviciene et al. Diphenylamino-substituted derivatives of 9-phenylcarbazole as glass-forming hole-transporting materials for solid state dye sensitized solar cells
KR20180052100A (en) spirobifluorene compound and perovskite solar cells comprising the same
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101760492B1 (en) Novel compounds, method of preparation thereof and organic solar cell comprising the same
KR101598426B1 (en) Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
KR101473320B1 (en) Benzoindole-based compound and Dye sensitized solar cell using the same
KR101267658B1 (en) Dye for dye-sensitized solarcell, preparation method of the same and dye-sensitized solar cell comprising the same
KR101838389B1 (en) Carbazole based on Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
KR20110086272A (en) New triphenylamine derivatives and dye-sensitized solar cell comprising the same
KR101657455B1 (en) Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
KR101722003B1 (en) Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
KR101976115B1 (en) A compound having acryl group as an absorber, method for preparation thereof, and solar cell comprising the same
KR101587829B1 (en) Dye sensitized sola cell and dye compond used therefin
KR101760493B1 (en) Benzobisoxazole derivatives, method of preparation thereof and organic solar cell comprising the same
KR20150136577A (en) Novel Polycyclic Fused Ring Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
KR20130066547A (en) Porphyrin derivatives, organic dye sensitizers containing the same for highly efficient dye-sensitized solar cells and dye-sensitized solar cells containing the same
JP7497941B2 (en) Photovoltaic devices containing cyclobutane-based hole transport materials
JP5939573B2 (en) Donor-π-acceptor compound and dye-sensitized solar cell dye
KR101778292B1 (en) Triphenylene derivatives, method of preparation thereof and organic solar cell comprising the same
KR20150087800A (en) Novel compound and solar cell including the same
KR20130120426A (en) Dual-channel anchorable heterocyclic derivatives, organic dye sensitizers containing the same for highly efficient dye-sensitized solar cells and method for preparing the same and dye-sensitized solar cells containing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 4