WO2015174774A2 - Novel porphyrin-based derivative, organic dye for dye-sensitized solar cell comprising same derivative, and dye-sensitized solar cell comprising same organic dye - Google Patents

Novel porphyrin-based derivative, organic dye for dye-sensitized solar cell comprising same derivative, and dye-sensitized solar cell comprising same organic dye Download PDF

Info

Publication number
WO2015174774A2
WO2015174774A2 PCT/KR2015/004880 KR2015004880W WO2015174774A2 WO 2015174774 A2 WO2015174774 A2 WO 2015174774A2 KR 2015004880 W KR2015004880 W KR 2015004880W WO 2015174774 A2 WO2015174774 A2 WO 2015174774A2
Authority
WO
WIPO (PCT)
Prior art keywords
dye
porphyrin
compound
solar cell
sensitized solar
Prior art date
Application number
PCT/KR2015/004880
Other languages
French (fr)
Korean (ko)
Other versions
WO2015174774A3 (en
Inventor
김환규
강성호
정승영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150067199A external-priority patent/KR101722003B1/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015174774A2 publication Critical patent/WO2015174774A2/en
Publication of WO2015174774A3 publication Critical patent/WO2015174774A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/65Metal complexes of amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a novel porphyrin-based derivative for organic electronic devices, an organic dye for a dye-sensitized solar cell including the porphyrin-based derivative, and a dye-sensitized solar cell including the organic dye, and more specifically, various electron donors and porphyrins.
  • Porphyrin derivatives having carbon-carbon triple bonds or single bonds introduced at the same time, carbon-carbon triple bonds or single bonds introduced between various electron acceptors and porphyrins, and new high efficiency with improved long-term stability and energy conversion efficiency
  • An organic dye for a dye-sensitized solar cell and a high efficiency dye-sensitized solar cell comprising the same.
  • Solar cells are devices that can convert sunlight directly into current (voltage), and research on low-cost organic solar cells in addition to pn junction solar cells using pn junctions of existing inorganic semiconductors is actively underway.
  • the advantages of organic solar cells besides being inexpensive and environmentally friendly, are transparent, thin and light properties that can realize indoor applications and power windows.
  • Dye-sensitized solar cells are used for dye-sensitization solar cells using dye-sensitization by adsorbing dyes absorbing visible light in a semiconductor having a wide bandgap. to be.
  • DSSC was first developed in 1991 by the Gratzel Group, Switzerland, by adsorbing Ru (II) -based complexes to TiO 2 metal oxides with optically transparent nanoparticle sizes (15-20 nm). It consists of a layer metal oxide, dye photosensitive agent, electrolyte, and an electrode.
  • a transparent conducting oxide electrode such as fluorinated tin oxide (FTO) and indium tin oxide (ITO), which are used as substrates of both electrodes, and an oxide semiconductor layer not forming fine particles such as TiO 2 and ZnO (met salts such as nonoparticulated oxide semi-conductor layers, dye-sensitization such as inorganic or organic dyes such as ruthenium, electrolytes containing electrolytes and redox couples, and metal salts such as platinum, which act as counter electrodes Is generated.
  • FTO fluorinated tin oxide
  • ITO indium tin oxide
  • Japanese Patent Application Laid-Open No. 2002-063949 discloses porphyrin derivatives in which phenyl groups are substituted at positions 5, 10, 15, and 20 of porphyrin as porphyrin conductors having photoelectric conversion characteristics.
  • porphyrin derivatives for dye-sensitized solar cells having superior long-term stability compared to conventional ruthenium-based dyes and excellent photoelectric conversion rates compared to conventional porphyrin-based dyes.
  • An object of the present invention is to solve the above problems, it is easy to synthesize and excellent in the photoelectric conversion rate as well as by introducing a variety of substituents or carbon-carbon triple bonds in porphyrin derivatives, the largest existing ruthenium-based dye It is to provide a porphyrin derivative that can solve the problem of device application due to lack of long-term stability and overcome the low efficiency of the solar cell using a conventional porphyrin derivative.
  • Another object of the present invention is to provide a dye for a high efficiency dye-sensitized solar cell prepared using a novel porphyrin-based derivative according to the present invention and a dye-sensitized solar cell comprising the dye.
  • the present invention provides a porphyrin derivative represented by the following formula (1):
  • R 1 to R 6 are each independently (C 1 -C 20) alkyl
  • R 'and R' ' are each independently hydrogen or (C1-C20) alkoxy
  • L 1 and L 2 are each independently a single bond or (C6-C20) arylene, which arylene may be further substituted with (C1-C20) alkyl;
  • n is an integer of 0 or 1;
  • A is selected from the following structures
  • B is selected from the following structure
  • R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
  • the present invention also provides an organic dye for a dye-sensitized solar cell comprising the porphyrin derivative.
  • the present invention also provides a dye-sensitized solar cell comprising the organic dye for the dye-sensitized solar cell.
  • the solar cell using the organic dye for high efficiency dye-sensitized solar cell including the porphyrin-based derivative of the present invention shows long-term stability even in the external environment, alkoxy-substituted phenyl derivative having strong electron donor ability, arylamine derivative substituted with alkoxy or carbon Intramolecular electron transfer through carbon triple bonds is strengthened, and light absorption in the near-infrared region can be absorbed by increasing the planarity and conjugation of the molecule, thereby securing a large absorption range from the visible to the near-infrared region. There is an advantage to obtain energy conversion efficiency.
  • Figure 4 is a graph showing the current density of the solar cell using the porphyrin compound of Examples 1 to 3.
  • IPCE current conversion efficiency
  • IPCE current conversion efficiency
  • the present invention relates to a porphyrin derivative represented by the following general formula (1):
  • R 1 to R 6 are each independently (C 1 -C 20) alkyl
  • R 'and R' ' are each independently hydrogen or (C1-C20) alkoxy
  • L 1 and L 2 are each independently a single bond or (C6-C20) arylene, which arylene may be further substituted with (C1-C20) alkyl;
  • n is an integer of 0 or 1;
  • A is selected from the following structures
  • B is selected from the following structure
  • R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
  • Porphyrin-based derivatives according to the present invention are intended to overcome the difficulties in device applications due to lack of long-term stability, which is the biggest problem of conventional ruthenium-based dyes, and to overcome the low efficiency of solar cells using conventional porphyrin derivatives.
  • the porphyrin derivatives according to the present invention have a phenyl group substituted with two (C1-C20) alkoxy substituents at positions 5 and 15 of porphyrin and one or two (C1-C20) alkoxy substitutions at position 10 of porphyrin. It is characterized by a structure in which a substituted arylamino group in which phenyl is substituted is introduced, and in some cases, may have a carbon-carbon triple bond between the arylamino group and porphyrin.
  • the solar cell using the new porphyrin derivative according to the present invention shows long-term stability even in the external environment, and has a strong electron donating ability, alkoxy-substituted phenyl derivative, alkoxy-substituted arylamine derivative or carbon-carbon triple bond.
  • the electron transfer is stronger and the light absorption in the near infrared region is possible by increasing the planarity and conjugation of the molecule, so that the high energy conversion efficiency can be obtained by securing the wide absorption region from the visible light to the near infrared region. There is this.
  • the porphyrin-based derivative includes a porphyrin-based derivative represented by the following formula (2), (3), (4) or (5):
  • R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , R 5 , R 6 , R ', R''and A are the same as defined in Formula 1,
  • R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
  • L 1 and L 2 are each independently a single bond or are selected from the following structures:
  • R is (C1-C20) alkyl.
  • porphyrin-based derivatives may be specifically illustrated by the following structure:
  • Porphyrin-based derivatives of the present invention can be prepared, for example, by Schemes 1 and 2 below. More details are described in Examples 1-4 below. However, the production method is not limited to the following Schemes 1 and 2, and can be synthesized by various methods using known organic reactions.
  • the porphyrin derivatives represented by Formula 1 may be usefully used as dyes for dye-sensitized solar cells. Accordingly, the present invention provides a dye for a solar cell dye containing a porphyrin derivative of the formula (1).
  • the present invention also provides a dye-sensitized solar cell comprising the dye for the dye-sensitized solar cell.
  • the dye-sensitized solar cell is not limited thereto, but may have the following configuration:
  • a first electrode comprising a conductive transparent substrate
  • a second electrode disposed to face the first electrode on which the light absorption layer is formed
  • An electrolyte located in the space between the first electrode and the second electrode.
  • the first electrode including the conductive transparent substrate is a translucent electrode formed of at least one material selected from the group consisting of indium tin oxide, fluorine tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and tin oxide It may be a glass substrate or a plastic substrate comprising a.
  • the light absorption layer necessarily includes an organic dye for a dye-sensitized solar cell including the porphyrin-based derivative represented by Formula 1, and may further include a semiconductor fine particle, a dye, a compound having hole conductivity.
  • the semiconductor fine particles are not limited thereto, but may be formed of nanoparticle oxides such as titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), and zinc oxide (ZnO).
  • the dye adsorbed on the semiconductor fine particles may absorb light in the visible light region, form a strong chemical bond with the surface of the nanooxide, and may be used without limitation as long as it has thermal and optical stability. Representative examples include ruthenium-based organometallic compounds.
  • the light absorbing layer may further include a co-adsorber, and the co-adsorber fills the hole formed in the dye that absorbs the light, and becomes a hole again, and then fills the hole by the electrolyte.
  • the same electrode as the first electrode may be used, and a current collector layer further formed of platinum or the like may be used on the light transmitting electrode of the first electrode.
  • Compound 8 is J. Mater. Chem. Prepared according to A, 2013,1, 9848.
  • Compound 15 was obtained by the same method as the preparation method of compound 12 of Example 1.
  • Compound 17 was obtained by the same method as the preparation method of compound 11 of Example 1.
  • Compound 18 was obtained by the same method as the preparation method of compound 12 of Example 1.
  • Compound 27 was prepared according to reference NATURE CHEMISTRY, 2014, 6, 242, and Compound 24 was prepared according to New J. Chem, 2015, 39, 3736-3746.
  • Compound 30 was prepared according to ChemSus Chem, Volume 4, Issue 5, pages 591-594, May 23, 2011.
  • UV absorption spectra of porphyrin-based dye compounds 12 , 15 , 18 and 23 obtained in Examples 1 to 4 are shown in FIGS. 1 and 3.
  • UV emission spectra of porphyrin-based dye compounds 12 , 15 and 18 obtained in Examples 1 to 3 are shown in FIG.
  • the dye-sensitized solar cell using a porphyrin-based compound was produced as follows.
  • a dispersion of titanium oxide particles having an average particle diameter of 13 nm on the conductive film made of ITO of the first electrode was applied to an area of 0.25 cm 2 using a doctor blade method, and then subjected to a heat treatment baking process at 450 ° C. for 30 minutes.
  • a microporous membrane was prepared.
  • the dye-adsorbed porous membrane was washed with ethanol and dried at room temperature to prepare a first electrode having a light absorption layer.
  • the second electrode deposited a second conductive film made of Pt using a sputter on the first conductive film made of ITO, and made a fine hole using a 0.75 mm diameter drill to inject the electrolyte.
  • the two electrodes were joined by pressing a support table made of a thermoplastic polymer film having a thickness of 60 ⁇ m between the first electrode and the second electrode on which the porous membrane was formed and pressing at 80 ° C. for 16 seconds.
  • an electrolyte was injected through the micropores formed in the second electrode, and the micropores were sealed using a cover glass and a thermoplastic polymer film to manufacture a dye-sensitized solar cell.
  • the electrolyte used was 1-methyl-3-propylimidazolium iodide, 0.1M lithium iodide, 0.05M iodine, 0.5M 4-tert-butylpyridine. It was prepared by dissolving in 3-methoxypropionitrile.
  • IPCE voltage-current density and current conversion efficiency
  • the dye-sensitized solar cells of Examples 5 to 8 have two (C1-C20) alkoxy-substituted phenyl groups introduced at positions 5 and 15 of porphyrin, and at position 10 of porphyrin. It was found that the porphyrin derivatives of Examples 1 to 4 in which one or two (C 1 -C 20) alkoxy-substituted phenyl-substituted arylamino groups were introduced were used as dyes, so that they had excellent light conversion efficiency.
  • Example 8 one or two (C 1 -C 20) alkoxy is substituted at the 10 position of porphyrin in addition to the two (C 1 -C 20) alkoxy substituted phenyl groups introduced at positions 5 and 15 of the porphyrin.
  • Compound 23 having a carbon-carbon triple bond between the arylamino group substituted with phenyl and porphyrin was used as a dye, which showed better light conversion efficiency.
  • the battery prepared using the porphyrin-based compound according to the present invention is a phenyl derivative substituted with alkoxy, arylamine substituted with alkoxy, or carbon-carbon triple based on a porphyrin dye having high stability against light and heat, having a strong electron donating ability.
  • the solar cell using the organic dye for high efficiency dye-sensitized solar cell including the porphyrin-based derivative of the present invention shows long-term stability even in the external environment, alkoxy-substituted phenyl derivative having strong electron donor ability, arylamine derivative substituted with alkoxy or carbon Intramolecular electron transfer through carbon triple bonds is strengthened, and light absorption in the near-infrared region can be absorbed by increasing the planarity and conjugation of the molecule, thereby securing a large absorption range from the visible to the near-infrared region. There is an advantage to obtain energy conversion efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a novel porphyrin-based derivative, an organic dye for a dye-sensitized solar cell, comprising the porphyrin-based derivative, and a dye-sensitized solar cell comprising the organic dye. More specifically, the porphyrin-based derivative can be used for an organic dye for a novel high-efficiency dye-sensitized solar cell with improved long-term stability and energy conversion efficiency since, in the porphyrin-based derivative, a triple bond or a single bond is introduced between various electron donors and porphyrin and, at the same time, a triple bond or a single bond is introduced between various electron acceptors and porphyrin. Further, a high-efficiency dye-sensitized solar cell can be manufactured using the dye containing the porphyrin-based derivative of the present invention.

Description

신규한 포르피린계 유도체, 이를 포함하는 염료감응 태양전지용 유기염료 및 이를 포함하는 염료감응 태양전지Novel porphyrin derivatives, organic dyes for dye-sensitized solar cells comprising the same, and dye-sensitized solar cells comprising the same
본 발명은 유기 전자 소자용 신규한 포르피린계 유도체, 상기 포르피린계 유도체를 포함하는 염료감응 태양전지용 유기염료 및 상기 유기염료를 포함하는 염료감응 태양전지에 관한 것으로, 보다 구체적으로는 다양한 전자주개와 포르피린 사이에 탄소-탄소 삼중결합 또는 단일결합이 도입됨과 동시에 다양한 전자받개와 포르피린 사이에 탄소-탄소 삼중결합 또는 단일결합을 도입되어 있는 포르피린계 유도체 및 이를 포함하는 장기 안정성과 에너지 변환 효율이 향상된 새로운 고효율 염료감응 태양전지용 유기염료 및 이를 포함하는 고효율의 염료감응 태양전지에 관한 것이다.The present invention relates to a novel porphyrin-based derivative for organic electronic devices, an organic dye for a dye-sensitized solar cell including the porphyrin-based derivative, and a dye-sensitized solar cell including the organic dye, and more specifically, various electron donors and porphyrins. Porphyrin derivatives having carbon-carbon triple bonds or single bonds introduced at the same time, carbon-carbon triple bonds or single bonds introduced between various electron acceptors and porphyrins, and new high efficiency with improved long-term stability and energy conversion efficiency An organic dye for a dye-sensitized solar cell and a high efficiency dye-sensitized solar cell comprising the same.
화석연료의 고갈, 환경오염, CO2 및 SO2 발생 등으로 환경 및 에너지 문제로 인해, 태양에너지는 무한 청정 에너지로서 환경친화적인 차세대 대체에너지로서 각광 받고 있다. 태양전지는 태양광을 전류(전압)으로 직접 변환할 수 있는 소자로서, 기존의 무기물 반도체의 p-n junction을 이용한 p-n junction 태양전지 외 저가의 유기태양전지 연구가 활발히 진행 중에 있다. 유기태양전지의 장점은 저가, 환경 친화적인 면 이외에, 인도어 응용 및 파워 윈도우를 실현시킬 수 있는 투명하고, 얇고, 가벼운 특성을 가진다. 이러한 유기태양전지 중 가시광선을 흡수하는 염료(dye)를 넓은 밴드갭을 갖는 반도체에 흡착시켜 염료 감응과정(dye-sensitization)을 이용한 태양전지가 염료감응 태양전지(dye-sensitized solar cells, DSSCs)이다. Due to environmental and energy issues such as fossil fuel depletion, environmental pollution, and CO 2 and SO 2 generation, solar energy is spotlighted as the next generation of environmentally friendly alternative energy as infinitely clean energy. Solar cells are devices that can convert sunlight directly into current (voltage), and research on low-cost organic solar cells in addition to pn junction solar cells using pn junctions of existing inorganic semiconductors is actively underway. The advantages of organic solar cells, besides being inexpensive and environmentally friendly, are transparent, thin and light properties that can realize indoor applications and power windows. Dye-sensitized solar cells (DSSCs) are used for dye-sensitization solar cells using dye-sensitization by adsorbing dyes absorbing visible light in a semiconductor having a wide bandgap. to be.
DSSC는 1991년에 스위스 그라첼(Gratzel) 그룹에서 광학적으로 투명한 나노입자 크기 (15-20nm)를 가지는 TiO2 금속 산화물에 Ru(Ⅱ)계열의 착화합물을 흡착시켜 처음 개발한 것으로, 투명전극, 반도체층 금속산화물, 염료 광감응제, 전해질, 및 전극으로 구성되어 있다. DSSC was first developed in 1991 by the Gratzel Group, Switzerland, by adsorbing Ru (II) -based complexes to TiO 2 metal oxides with optically transparent nanoparticle sizes (15-20 nm). It consists of a layer metal oxide, dye photosensitive agent, electrolyte, and an electrode.
이를 구체적으로 살펴보면, 양쪽 전극의 기판으로 사용되는 Fluorinated Tin Oxide(FTO), Indium Tin Oxide(ITO)와 같은 투명전극(transparent conducting oxide electrode)과 TiO2, ZnO 와 같은 미립자를 이루지 않은 산화 반도체층(nonoparticulated oxide semi-conductor layer), 루테늄(ruthenium)과 같은 무기 또는 유기 염료와 같은 염료 감응, 전해질 및 산화/환원쌍(redox couple)이 포함된 전해질과 상대전극의 역할을 하는 백금과 같은 금속 염으로 생성된다. Specifically, a transparent conducting oxide electrode such as fluorinated tin oxide (FTO) and indium tin oxide (ITO), which are used as substrates of both electrodes, and an oxide semiconductor layer not forming fine particles such as TiO 2 and ZnO ( metal salts such as nonoparticulated oxide semi-conductor layers, dye-sensitization such as inorganic or organic dyes such as ruthenium, electrolytes containing electrolytes and redox couples, and metal salts such as platinum, which act as counter electrodes Is generated.
루테늄계 착화합물을 염료로서 사용한 이 태양전지는 10%를 상회하는 에너지 변환 효율을 나타냄으로써 학계의 주목을 받았으나 착화합물계 염료의 가장 큰 문제점인 안정성이 떨어지는 한계점으로 인해 아직 상용화 되지 못 하고 있는 실정이다. 이러한 문제점을 극복하기 위하여 새로운 유기 화합물들이 염료로서 연구되고 있으며 그 중 광합성 물질로 잘 알려진 포르피린 화합물을 염료로서 사용하는 많은 연구가 있었으나 효율은 1~3% 정도로 높지 않았다. 이에 대해 영국의 임페리얼(imperial) 대학의 듀런트(Durrant) 연구팀은 루테늄계 착화합물에 비해 포르피린 염료가 효율이 낮은 이유는 인접한 포르피린 화합물 간의 쌍극자 쌍극자 인력에 의해 여기상태의 포르피린 염료가 바닥상태로 전환됨에 있다고 보고하였다. This solar cell using ruthenium-based complexes as dyes has attracted the attention of academics by exhibiting energy conversion efficiencies of more than 10%, but has not yet been commercialized due to the limitation of stability, the biggest problem of complex-based dyes. In order to overcome these problems, new organic compounds have been studied as dyes, and many studies using porphyrin compounds known as photosynthetic materials as dyes have been conducted, but the efficiency was not as high as 1 to 3%. Durur and his colleagues at Imperial University in the UK say that porphyrin dyes are less efficient than ruthenium complexes because the dipole dipole attraction between adjacent porphyrin compounds converts the excited porphyrin dye to the ground state. Reported.
한편, 일본공개공보 제2002-063949호에는 광전변환 특성을 가지는 포르피린 도체로서 하기와 같이 포르피린의 5, 10, 15, 20 위치에 페닐기가 치환된 포르피린계 유도체를 공지하고 있다. 그러나, 하기의 포르피린 화합물(R=수소원자 또는 산성 치환기)은 포르피린 염료간의 여기전자의 재결합으로 인하여 낮은 에너지 변환 효율을 보이는 단점이 있다.On the other hand, Japanese Patent Application Laid-Open No. 2002-063949 discloses porphyrin derivatives in which phenyl groups are substituted at positions 5, 10, 15, and 20 of porphyrin as porphyrin conductors having photoelectric conversion characteristics. However, the following porphyrin compounds (R = hydrogen atom or acidic substituent) have a disadvantage of showing low energy conversion efficiency due to recombination of exciton electrons between porphyrin dyes.
Figure PCTKR2015004880-appb-I000001
Figure PCTKR2015004880-appb-I000001
따라서, 기존의 루테늄계 염료에 비해 장기안정성이 우수하고, 종래의 포르피린계 염료에 비해 우수한 광전변환율을 갖는 염료감응 태양전지용 포르피린 유도체 개발의 필요성이 증대되고 있다.Accordingly, there is an increasing need for developing porphyrin derivatives for dye-sensitized solar cells having superior long-term stability compared to conventional ruthenium-based dyes and excellent photoelectric conversion rates compared to conventional porphyrin-based dyes.
본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서, 합성이 용이하고 광전변환율이 우수할 뿐만 아니라 포르피린계 유도체에 다양한 치환기 또는 탄소-탄소 삼중결합을 도입하여 기존의 루테늄계 염료가 가지는 가장 큰 문제점인 장기안정성 결여로 인한 소자 응용에의 어려움을 해소하고 종래의 포르피린계 유도체를 사용한 태양전지의 낮은 효율을 극복할 수 있는 포르피린계 유도체를 제공하는데 있다. An object of the present invention is to solve the above problems, it is easy to synthesize and excellent in the photoelectric conversion rate as well as by introducing a variety of substituents or carbon-carbon triple bonds in porphyrin derivatives, the largest existing ruthenium-based dye It is to provide a porphyrin derivative that can solve the problem of device application due to lack of long-term stability and overcome the low efficiency of the solar cell using a conventional porphyrin derivative.
또한, 본 발명의 또 다른 목적은 본 발명에 따른 새로운 포르피린계 유도체를 사용하여 제조된 고효율의 염료감응 태양전지용 염료 및 상기 염료를 포함하는 염료감응 태양전지를 제공하는 데 있다.In addition, another object of the present invention is to provide a dye for a high efficiency dye-sensitized solar cell prepared using a novel porphyrin-based derivative according to the present invention and a dye-sensitized solar cell comprising the dye.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 포르피린 유도체를 제공한다:In order to achieve the above object, the present invention provides a porphyrin derivative represented by the following formula (1):
[화학식 1][Formula 1]
Figure PCTKR2015004880-appb-I000002
Figure PCTKR2015004880-appb-I000002
상기 화학식 1에서,In Chemical Formula 1,
R1 내지 R6는 각각 독립적으로 (C1-C20)알킬이고;R 1 to R 6 are each independently (C 1 -C 20) alkyl;
R' 및 R''는 각각 독립적으로 수소 또는 (C1-C20)알콕시이고;R 'and R' 'are each independently hydrogen or (C1-C20) alkoxy;
L1 및 L2는 각각 독립적으로 단일결합 또는 (C6-C20)아릴렌이고, 상기 아릴렌은 (C1-C20)알킬로 더 치환될 수 있고;L 1 and L 2 are each independently a single bond or (C6-C20) arylene, which arylene may be further substituted with (C1-C20) alkyl;
m은 0 또는 1의 정수이고;m is an integer of 0 or 1;
A는 하기 구조에서 선택되고;A is selected from the following structures;
Figure PCTKR2015004880-appb-I000003
Figure PCTKR2015004880-appb-I000003
n이 0인 경우 B는
Figure PCTKR2015004880-appb-I000004
이고;
If n is 0 then B is
Figure PCTKR2015004880-appb-I000004
ego;
n은 1인 경우 B는 하기 구조에서 선택되고;when n is 1, B is selected from the following structure;
Figure PCTKR2015004880-appb-I000005
Figure PCTKR2015004880-appb-I000005
R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
또한, 본 발명은 상기 포르피린계 유도체를 포함하는 염료감응 태양전지용 유기염료를 제공한다.The present invention also provides an organic dye for a dye-sensitized solar cell comprising the porphyrin derivative.
또한, 본 발명은 상기 염료감응 태양전지용 유기염료를 포함하는 염료감응 태양전지를 제공한다.The present invention also provides a dye-sensitized solar cell comprising the organic dye for the dye-sensitized solar cell.
본 발명의 포르피린계 유도체를 포함하는 고효율 염료감응 태양전지용 유기염료를 사용한 태양 전지는 외부 환경에서도 장기적인 안정성을 보이며, 전자주개 능력이 강한 알콕시가 치환된 페닐 유도체, 알콕시가 치환된 아릴아민 유도체 또는 탄소-탄소 삼중결합을 통한 분자 내 전자전달이 강해지고, 분자의 평면성과 컨쥬게이션의 증가로 근적외선 영역의 빛 흡수가 가능해짐으로써, 가시광선에서 근적외석 영역대까지의 넓은 흡수영역 대의 확보를 통한 높은 에너지 변환 효율을 얻을 수 있는 장점이 있다.The solar cell using the organic dye for high efficiency dye-sensitized solar cell including the porphyrin-based derivative of the present invention shows long-term stability even in the external environment, alkoxy-substituted phenyl derivative having strong electron donor ability, arylamine derivative substituted with alkoxy or carbon Intramolecular electron transfer through carbon triple bonds is strengthened, and light absorption in the near-infrared region can be absorbed by increasing the planarity and conjugation of the molecule, thereby securing a large absorption range from the visible to the near-infrared region. There is an advantage to obtain energy conversion efficiency.
도 1 및 도 2는 실시예 1 내지 3의 포르피린계 화합물의 UV 흡수 및 발광 스펙트럼이다.1 and 2 are UV absorption and emission spectra of the porphyrin-based compounds of Examples 1 to 3.
도 3은 실시예 4의 포르피린계 화합물의 UV 흡수 스펙트럼이다.3 is a UV absorption spectrum of the porphyrin-based compound of Example 4.
도 4는 실시예 1 내지 3의 포르피린계 화합물을 이용한 태양전지의 전류밀도를 나타낸 그래프이다.Figure 4 is a graph showing the current density of the solar cell using the porphyrin compound of Examples 1 to 3.
도 5는 실시예 1 내지 3의 포르피린계 화합물을 이용한 태양전지의 전류변환효율(IPCE)를 나타낸 그래프이다.5 is a graph showing the current conversion efficiency (IPCE) of the solar cell using the porphyrin-based compound of Examples 1 to 3.
도 6은 실시예 4의 포르피린계 화합물을 이용한 태양전지의 전류변환효율(IPCE)를 나타낸 그래프이다.6 is a graph showing the current conversion efficiency (IPCE) of the solar cell using the porphyrin-based compound of Example 4.
도 7은 실시예 4의 포르피린계 화합물을 이용한 태양전지의 전류밀도를 나타낸 그래프이다.7 is a graph showing the current density of the solar cell using the porphyrin-based compound of Example 4.
본 발명에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 갖는 것으로 해석될 수 있다.Unless otherwise defined in the technical and scientific terms used in the present invention, it can be interpreted as having a meaning commonly understood by those skilled in the art.
본 발명은 하기 화학식 1로 표시되는 포르피린계 유도체에 관한 것이다:The present invention relates to a porphyrin derivative represented by the following general formula (1):
[화학식 1][Formula 1]
Figure PCTKR2015004880-appb-I000006
Figure PCTKR2015004880-appb-I000006
상기 화학식 1에서,In Chemical Formula 1,
R1 내지 R6는 각각 독립적으로 (C1-C20)알킬이고;R 1 to R 6 are each independently (C 1 -C 20) alkyl;
R' 및 R''는 각각 독립적으로 수소 또는 (C1-C20)알콕시이고;R 'and R' 'are each independently hydrogen or (C1-C20) alkoxy;
L1 및 L2는 각각 독립적으로 단일결합 또는 (C6-C20)아릴렌이고, 상기 아릴렌은 (C1-C20)알킬로 더 치환될 수 있고;L 1 and L 2 are each independently a single bond or (C6-C20) arylene, which arylene may be further substituted with (C1-C20) alkyl;
m은 0 또는 1의 정수이고;m is an integer of 0 or 1;
A는 하기 구조에서 선택되고;A is selected from the following structures;
Figure PCTKR2015004880-appb-I000007
Figure PCTKR2015004880-appb-I000007
n이 0인 경우 B는
Figure PCTKR2015004880-appb-I000008
이고;
If n is 0 then B is
Figure PCTKR2015004880-appb-I000008
ego;
n은 1인 경우 B는 하기 구조에서 선택되고;when n is 1, B is selected from the following structure;
Figure PCTKR2015004880-appb-I000009
Figure PCTKR2015004880-appb-I000009
R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
본 발명에 따른 포르피린계 유도체는 기존의 루테늄계 염료가 가지는 가장 큰 문제점인 장기안정성 결여로 인한 소자 응용에의 어려움을 해소하고 종래의 포르피린 유도체를 사용한 태양전지의 낮은 효율을 극복하기 위한 것으로서, 본 발명에 따른 포르피린계 유도체는 포르피린의 5번과 15번 위치에 두 개의 (C1-C20)알콕시가 치환된 페닐기가 도입되어 있고 포르피린의 10번 위치에 하나 또는 두 개의 (C1-C20)알콕시가 치환되어 있는 페닐이 치환된 아릴아미노기가 도입된 구조를 특징으로 하고 있으며, 경우에 따라 상기 아릴아미노기와 포르피린 사이에 탄소-탄소 삼중결합을 가질 수도 있다.Porphyrin-based derivatives according to the present invention are intended to overcome the difficulties in device applications due to lack of long-term stability, which is the biggest problem of conventional ruthenium-based dyes, and to overcome the low efficiency of solar cells using conventional porphyrin derivatives. The porphyrin derivatives according to the present invention have a phenyl group substituted with two (C1-C20) alkoxy substituents at positions 5 and 15 of porphyrin and one or two (C1-C20) alkoxy substitutions at position 10 of porphyrin. It is characterized by a structure in which a substituted arylamino group in which phenyl is substituted is introduced, and in some cases, may have a carbon-carbon triple bond between the arylamino group and porphyrin.
본 발명에 따른 새로운 포르피린계 유도체를 사용한 태양 전지는 외부 환경에서도 장기적인 안정성을 보이며, 전자주개 능력이 강한 알콕시가 치환된 페닐 유도체, 알콕시가 치환된 아릴아민 유도체 또는 탄소-탄소 삼중결합을 통한 분자 내 전자전달이 강해지고, 분자의 평면성과 컨쥬게이션의 증가로 근적외선 영역의 빛 흡수가 가능해짐으로써, 가시광선에서 근적외석 영역대까지의 넓은 흡수영역 대의 확보를 통한 높은 에너지 변환 효율을 얻을 수 있는 장점이 있다.The solar cell using the new porphyrin derivative according to the present invention shows long-term stability even in the external environment, and has a strong electron donating ability, alkoxy-substituted phenyl derivative, alkoxy-substituted arylamine derivative or carbon-carbon triple bond. The electron transfer is stronger and the light absorption in the near infrared region is possible by increasing the planarity and conjugation of the molecule, so that the high energy conversion efficiency can be obtained by securing the wide absorption region from the visible light to the near infrared region. There is this.
본 발명의 일 실시예에 있어서, 상기 포르피린계 유도체는 하기 화학식 2, 화학식 3, 화학식 4 또는 화학식 5로 표시되는 포르피린계 유도체를 포함한다:In one embodiment of the present invention, the porphyrin-based derivative includes a porphyrin-based derivative represented by the following formula (2), (3), (4) or (5):
[화학식 2] [Formula 2]
Figure PCTKR2015004880-appb-I000010
Figure PCTKR2015004880-appb-I000010
[화학식 3][Formula 3]
Figure PCTKR2015004880-appb-I000011
Figure PCTKR2015004880-appb-I000011
[화학식 4][Formula 4]
Figure PCTKR2015004880-appb-I000012
Figure PCTKR2015004880-appb-I000012
[화학식 5][Formula 5]
Figure PCTKR2015004880-appb-I000013
Figure PCTKR2015004880-appb-I000013
상기 R1, R2, R3, R4, L1, L2, R5, R6, R', R'' 및 A는 상기 화학식 1에서의 정의와 동일하고,R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , R 5 , R 6 , R ', R''and A are the same as defined in Formula 1,
B는 하기 구조에서 선택되고;B is selected from the following structures;
Figure PCTKR2015004880-appb-I000014
Figure PCTKR2015004880-appb-I000014
R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
본 발명의 일 실시예에 있어서, 상기 L1 및 L2는 각각 독립적으로 단일결합이거나, 하기 구조에서 선택된다:In one embodiment of the present invention, L 1 and L 2 are each independently a single bond or are selected from the following structures:
Figure PCTKR2015004880-appb-I000015
Figure PCTKR2015004880-appb-I000015
상기 R는 (C1-C20)알킬이다.R is (C1-C20) alkyl.
본 발명의 일 실시예에 있어서, 상기 포르피린계 유도체는 구체적으로 하기 구조로 예시될 수 있다:In one embodiment of the invention, the porphyrin-based derivatives may be specifically illustrated by the following structure:
Figure PCTKR2015004880-appb-I000016
Figure PCTKR2015004880-appb-I000016
Figure PCTKR2015004880-appb-I000017
Figure PCTKR2015004880-appb-I000017
Figure PCTKR2015004880-appb-I000018
Figure PCTKR2015004880-appb-I000018
Figure PCTKR2015004880-appb-I000019
Figure PCTKR2015004880-appb-I000019
Figure PCTKR2015004880-appb-I000020
Figure PCTKR2015004880-appb-I000020
Figure PCTKR2015004880-appb-I000021
Figure PCTKR2015004880-appb-I000021
본 발명의 포르피린계 유도체는 예를 들어 하기 반응식 1 및 2에 의해 제조될 수 있다. 더 자세한 내용은 하기 실시예 1 내지 4에서 설명된다. 그러나, 제조 방법이 하기 반응식 1 및 2에 한정하는 것은 아니고, 공지의 유기 반응을 이용하여 다양한 방법으로 합성할 수 있다.Porphyrin-based derivatives of the present invention can be prepared, for example, by Schemes 1 and 2 below. More details are described in Examples 1-4 below. However, the production method is not limited to the following Schemes 1 and 2, and can be synthesized by various methods using known organic reactions.
[반응식 1]Scheme 1
Figure PCTKR2015004880-appb-I000022
Figure PCTKR2015004880-appb-I000022
[반응식 2]Scheme 2
Figure PCTKR2015004880-appb-I000023
Figure PCTKR2015004880-appb-I000023
상기 화학식 1로 표시되는 포르피린계 유도체는 염료감응 태양전지용 염료로서 유용하게 사용될 수 있다. 따라서, 본 발명은 상기 화학식 1의 포르피린계 유도체를 포함하는 염료감응 태양전지용 염료를 제공한다.The porphyrin derivatives represented by Formula 1 may be usefully used as dyes for dye-sensitized solar cells. Accordingly, the present invention provides a dye for a solar cell dye containing a porphyrin derivative of the formula (1).
또한, 본 발명은 상기 염료감응 태양전지용 염료를 포함하는 염료감응 태양전지를 제공한다.The present invention also provides a dye-sensitized solar cell comprising the dye for the dye-sensitized solar cell.
본 발명에서 염료감응 태양전지는, 이에 한정되는 것은 아니나, 다음과 같은 구성을 가질 수 있다:In the present invention, the dye-sensitized solar cell is not limited thereto, but may have the following configuration:
전도성 투명 기판을 포함하는 제1전극;A first electrode comprising a conductive transparent substrate;
상기 제1전극의 어느 일면에 형성된 광흡수층;A light absorption layer formed on one surface of the first electrode;
상기 광흡수층이 형성된 제1전극에 대향하여 배치되는 제2전극; 및A second electrode disposed to face the first electrode on which the light absorption layer is formed; And
상기 제1전극과 제2전극 사이의 공간에 위치하는 전해질.An electrolyte located in the space between the first electrode and the second electrode.
상기 태양전지를 구성하는 소재들을 예를 들어 설명하면 다음과 같다.Referring to the materials constituting the solar cell as an example.
전도성 투명 기판을 포함하는 제1전극은 인듐 틴 옥사이드, 플루오린 틴 옥사이드, ZnO-Ga2O3, ZnO-Al2O3 및 주석계 산화물로 이루어진 군에서 선택되는 1종 이상의 물질로 형성된 투광성 전극을 포함하는 유리 기판 또는 플라스틱 기판일 수 있다.The first electrode including the conductive transparent substrate is a translucent electrode formed of at least one material selected from the group consisting of indium tin oxide, fluorine tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and tin oxide It may be a glass substrate or a plastic substrate comprising a.
상기 광흡수층은 상기 화학식 1로 표시되는 포르피린계 유도체를 포함하는 염료감응 태양전지용 유기 염료를 반드시 포함하며, 반도체 미립자, 염료, 정공전도특성을 갖는 화합물 등을 추가로 포함할 수 있다. 상기 반도체 미립자는, 이에 한정되는 것은 아니나, 이산화티탄(TiO2), 이산화주석(SnO2), 산화아연(ZnO) 등의 나노입자 산화물로 형성될 수 있다. 상기 반도체 미립자 상에 흡착되는 염료로는 가시광선 영역의 빛을 흡수할 수 있으며, 나노산화물 표면과 견고한 화학결합을 이루며, 열 및 광확적 안정성을 지니고 있는 것이라면 제한 없이 사용될 수 있다. 대표적인 예로서, 루테늄계 유기금속화합물을 들 수 있다. 그리고 상기 광흡수층에는 공흡착체를 더 포함할 수 있으며, 상기 공흡착체는 빛을 흡수하여 전자를 내준 염료에 생긴 홀을 채우며 자신이 다시 홀이 되며, 다시금 전해질에 의하여 홀을 채운다.The light absorption layer necessarily includes an organic dye for a dye-sensitized solar cell including the porphyrin-based derivative represented by Formula 1, and may further include a semiconductor fine particle, a dye, a compound having hole conductivity. The semiconductor fine particles are not limited thereto, but may be formed of nanoparticle oxides such as titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), and zinc oxide (ZnO). The dye adsorbed on the semiconductor fine particles may absorb light in the visible light region, form a strong chemical bond with the surface of the nanooxide, and may be used without limitation as long as it has thermal and optical stability. Representative examples include ruthenium-based organometallic compounds. The light absorbing layer may further include a co-adsorber, and the co-adsorber fills the hole formed in the dye that absorbs the light, and becomes a hole again, and then fills the hole by the electrolyte.
상기 제2전극으로는 상기 제1전극과 동일한 것이 사용될 수 있으며, 제1전극의 투광성 전극 상에 백금 등으로 집전층이 더 형성된 것이 사용될 수도 있다.As the second electrode, the same electrode as the first electrode may be used, and a current collector layer further formed of platinum or the like may be used on the light transmitting electrode of the first electrode.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나, 이러한 실시예는 본 발명을 좀 더 명확하게 설명하기 위하여 제시되는 것일 뿐, 본 발명의 범위를 제한하는 목적으로 제시되는 것은 아니다. 본 발명의 범위는 후술하는 특허청구범위의 기술적 사상에 의해 정해질 것이다.Hereinafter, the present invention will be described in detail through examples. However, these examples are only presented to explain the present invention more clearly, and are not intended to limit the scope of the present invention. The scope of the invention will be defined by the technical spirit of the claims below.
[제조예 1] 화합물 6의 제조Preparation Example 1 Preparation of Compound 6
Figure PCTKR2015004880-appb-I000024
Figure PCTKR2015004880-appb-I000024
화합물 compound 44 의 제조Manufacture
화합물 2 (2.0 g, 5.52 mmol), 다이(1H-피롤-2-일)메탄 (di(1H-pyrrol-2-yl)methane, 화합물 1) (0.4 g, 2.76 mmol) 및 4-(다이(1H-피롤-2-일)메틸)벤조나이트릴 (4-(di(1H-pyrrol-2-yl)methyl)benzonitrile, 화합물 3) (0.68 g, 2.76 mmol)을 클로로폼 (980 mL)에 용해시켰다. 그 다음, 실린지를 통해 BF3·OEt2 (200 μL, 1.66 mmol)를 빠르게 첨가한 후 24℃에서 2시간동안 교반시켰다. 그 다음, DDQ(2,3-dichloro-5,6-dicyano-p-benzoquinone) (1.88 g, 8.28 mmol)를 첨가하고 다시 12시간동안 교반시켰다. 용매를 증발시킨 다음, 클로로폼에 의해 실리카켈 숏 패드를 통해 조 생성물을 용출시켰다. 반응혼합물을 플래쉬 컬럼 크로마토그래피(용리액 n-C6H14/CH3Cl(부피비=1:3))로 정제시킨 다음, 재결정(에탄올/물=부피비20/1)시켜 다크 브라운 레드 고체로 화합물 4 (0.6 g, 11 %)을 수득하였다.Compound 2 (2.0 g, 5.52 mmol) , the die (1 H - pyrrole-2-yl) methane (di (1 H -pyrrol-2 -yl) methane, compound 1) (0.4 g, 2.76 mmol ) and 4- ( die (1 H - pyrrole-2-yl) methyl) benzonitrile (4- (di (1 H -pyrrol -2-yl) methyl) benzonitrile, compound 3) (0.68 g, 2.76 mmol ) with chloroform (980 mL). Then, BF 3 · OEt 2 (200 μL, 1.66 mmol) was quickly added through a syringe, followed by stirring at 24 ° C. for 2 hours. Then, DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) (1.88 g, 8.28 mmol) was added and stirred for another 12 hours. The solvent was evaporated and then the crude product was eluted through chloroform shot pads. The reaction mixture was purified by flash column chromatography (eluent n- C 6 H 14 / CH 3 Cl (volume ratio = 1: 3)) and then recrystallized (ethanol / water = volume ratio 20/1) to yield a dark brown red solid. 4 (0.6 g, 11%) was obtained.
1H-NMR (300 MHz; CDCl3; TMS) δ 10.248 (1 H, s, meso-Ar-H), 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH2), 0.440-0.951 (60 H), -2.76 (2 H, s). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 10.248 (1 H, s, meso-Ar-H), 9.355 (2 H, d, J = 4.8 Hz, Ar-H), 9.038 (2 H, d, J = 4.5 Hz, Ar-H), 8.931 (2H, d, J = 4.8 Hz, Ar-H), 8.821 (2H, d, J = 4.8 Hz, Ar-H), 8.442 (2H , d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar -H), 3.918 (8H, m, -OCH 2 ), 0.440-0.951 (60H), -2.76 (2H, s). FT-IR (KBr) [cm −1 ] 2230 (−CN).
화합물 compound 55 의 제조Manufacture
화합물 4 (500 mg, 0.46 mmol)를 CHCl3 (150 mL)에 용해시킨 다음, NBS(N-bromosuccinimide) (100 mg, 0.56 mmol)를 첨가하고 반응혼합물을 12시간동안 환류시킨 후 증류수를 가하여 반응을 종료시켰다. 유기층은 소금물로 여러 번 씻어주고 무수 황산 나트륨으로 건조시켰다. 용매를 진공 하에서 증발시킨 후 조 생성물을 컬럼 크로마토그래피(용리액 : 클로로폼)로 정제시켜 어두운 보라색 고체로 화합물 5 (491 mg, 91 %)를 수득하였다.Compound 4 (500 mg, 0.46 mmol) was dissolved in CHCl 3 (150 mL), NBS (N-bromosuccinimide) (100 mg, 0.56 mmol) was added and the reaction mixture was refluxed for 12 hours, followed by distilled water. Was terminated. The organic layer was washed several times with brine and dried over anhydrous sodium sulfate. After evaporation of the solvent under vacuum the crude product was purified by column chromatography (eluent: chloroform) to give compound 5 (491 mg, 91%) as a dark purple solid.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH2), 0.440-0.951 (60 H), -2.76 (2 H, s). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 3.918 (8H, m, -OCH 2 ), 0.440-0.951 (60 H), -2.76 (2 H, s). FT-IR (KBr) [cm −1 ] 2230 (−CN).
화합물 compound 66 의 제조Manufacture
화합물 5 (500 mg, 0.11 mmol)을 THF (100 mL)에 용해시키고, 아연 아세테이트 이수화물(350 mg, 0.54 mmol)을 첨가시킨 다음, 12시간동안 환류시켰다. 용매을 증발시킨 후 조 생성물을 CH2Cl2로 추출하였다. 유기층을 소금물로 여러 번 씻어주고 무수 황산 나트륨으로 건조시킨 후 여과시켰다. 여액을 진공 하에서 증발시켜 보라색 고체의 화합물 6 (360 mg, 94 %)을 수득하였다.Compound 5 (500 mg, 0.11 mmol) was dissolved in THF (100 mL), zinc acetate dihydrate (350 mg, 0.54 mmol) was added and then refluxed for 12 h. After evaporation of the solvent the crude product was extracted with CH 2 Cl 2 . The organic layer was washed several times with brine, dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated in vacuo to yield Compound 6 (360 mg, 94%) as a purple solid.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 3.918 (8 H, m, -OCH2), 0.440-0.951 (60 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 3.918 (8H, m, -OCH 2 ), 0.440-0.951 (60 H, m-CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 2230 (−CN).
[제조예 2] 화합물 7의 제조Preparation Example 2 Preparation of Compound 7
Figure PCTKR2015004880-appb-I000025
Figure PCTKR2015004880-appb-I000025
질소 대기 하, 2',4'-비스(헥실옥시)바이페닐-4-아민 (2.5 g, 4.55 mmol), 2,4-비스(헥실옥시)-4'-아이오도바이페닐 (2.32 g, 4.78 mmol), Pd(OAc)2 (0.05 g, 0.23 mmol), dppf(1,1'-Bis(diphenylphosphino)ferrocene) (0.25 g, 0.45 mmol) 및 tert-BuO-Na+ (1.31 g, 13.65 mmol)를 무수 톨루엔 (50 mL)에 용해시켰다. 반응 혼합물을 밤새 환류시켰다. 반응 후, 반응 혼합물을 상온으로 냉각하고 CH2Cl2로 추출한 다음, 소금물로 여러 번 씻어주었다. 유기층은 무수 황산 마그네슘으로 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 실리카겔 컬럼 크로마토그래피(용리액 CH2Cl2 : n-hexane = 3:1)로 정제시켜 화합물 7 (3.5 g, 81%)을 수득하였다.2 ', 4'-bis (hexyloxy) biphenyl-4-amine (2.5 g, 4.55 mmol), 2,4-bis (hexyloxy) -4'-iodobiphenyl (2.32 g) under a nitrogen atmosphere , 4.78 mmol), Pd (OAc) 2 (0.05 g, 0.23 mmol), dppf (1,1'-Bis (diphenylphosphino) ferrocene) (0.25 g, 0.45 mmol) and tert -BuO - Na + (1.31 g, 13.65 mmol) was dissolved in anhydrous toluene (50 mL). The reaction mixture was refluxed overnight. After the reaction, the reaction mixture was cooled to room temperature, extracted with CH 2 Cl 2 , and washed several times with brine. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was evaporated under vacuum and purified by silica gel column chromatography (eluent CH 2 Cl 2 : n- hexane = 3: 1) to afford compound 7 (3.5 g, 81%).
1H-NMR (300 MHz; (CDCl3; TMS) δ 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 5.546 (H, Br-S, N-H), 3.969-4.032 (8 H, t, -OCH2), 0.857-2.057 (44 H, m, -CH2, -CH3). FT-IR (KBr) [cm-1] 3400 (-NH). 1 H-NMR (300 MHz; (CDCl 3 ; TMS) δ 7.415-7.452 (4H, d, J = 8.4 Hz, Ar-H), 7.153-7.231 (6H, d, J = 8.7 Hz, Ar- H), 6.545-6.612 (4H d, J = 8.7 Hz, Ar-H), 5.546 (H, Br-S, NH), 3.969-4.032 (8H, t, -OCH 2 ), 0.857-2.057 (44 H, m, -CH 2 , -CH 3 ) FT-IR (KBr) [cm -1 ] 3400 (-NH).
[실시예 1] 화합물 12 의 제조Example 1 Preparation of Compound 12
Figure PCTKR2015004880-appb-I000026
Figure PCTKR2015004880-appb-I000026
화합물 compound 1010 의 제조Manufacture
화합물 6 (제조예 1, 500 mg, 0.71mmol), 화합물 7 (제조예 2, 0.95 g, 2.83 mmol), 60 % NaH (578 mg, 14.17 mmol), Pd(OAc)2 (64 mg, 0.28 mmol) 및 DPEphos(Bis[(2-diphenylphosphino)phenyl] ether) (305 mg, 0.57 mmol)를 무수 THF (50 mL)에 용해시킨 후 24시간동안 환류시켰다. 용매를 증발시키고 CH2Cl2와 소금물로 여러 번 추출하였다. 유기층을 무수 황산 나트륨을 건조시키고 필터하여 얻은 여액을 진공 하에서 증발시켰다. 그 다음 용리액으로 클로로폼을 이용하여 플래쉬 컬럼 크로마토그래피로 정제시켜 어두운 녹색 오일로 화합물 10 (170 mg, 25 %)을 수득하였다.Compound 6 (Preparation Example 1, 500 mg, 0.71 mmol), Compound 7 (Preparation Example 2, 0.95 g, 2.83 mmol), 60% NaH (578 mg, 14.17 mmol), Pd (OAc) 2 (64 mg, 0.28 mmol ) And DPEphos (Bis [(2-diphenylphosphino) phenyl] ether) (305 mg, 0.57 mmol) were dissolved in anhydrous THF (50 mL) and refluxed for 24 h. The solvent was evaporated and extracted several times with CH 2 Cl 2 and brine. The organic layer was dried over anhydrous sodium sulfate and filtered and the filtrate was evaporated under vacuum. Then purified by flash column chromatography using chloroform as eluent to afford compound 10 (170 mg, 25%) as dark green oil.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH2), 0.440-0.951 (104 H, m, CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 7.415-7.452 (4H, d, J = 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J = 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J = 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH 2 ), 0.440-0.951 (104 H, m, CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 2230 (−CN).
화합물 compound 1111 의 제조Manufacture
화합물 10 (130 mg, 0.14 mmol)을 무수 CH2Cl2 (25 mL)에 가한 다음, 0℃, 질소 대기 하에서 DIBAL-H 용액 (Diisobutylaluminium hydride, 1 M in hexanes, 0.27 mL, 0.27 mmol)을 드랍-와이즈(drop-wise)로 첨가하였다. 반응 혼합물을 상온에서 4시간동안 교반시키고, 그 다음 NH4Cl 수용액 (200 mL)로 켄칭하고 2시간동안 추가 교반시켰다. 수용액 층을 제거한 후 유기층을 소금물로 씻어주고 무수 황산 나트륨으로 건조시켰다. 실리카겔 컬럼 크로마토그래피(용리액 CHCl3)로 정제시켜 어두운 녹색 오일로 화합물 11 (100 mg, 77 %)를 수득하였다.Compound 10 (130 mg, 0.14 mmol) was added to anhydrous CH 2 Cl 2 (25 mL), followed by dropping DIBAL-H solution (Diisobutylaluminium hydride, 1 M in hexanes, 0.27 mL, 0.27 mmol) under nitrogen atmosphere at 0 ° C. -Added drop-wise. The reaction mixture was stirred at room temperature for 4 hours, then quenched with aqueous NH 4 Cl solution (200 mL) and further stirred for 2 hours. After removing the aqueous layer, the organic layer was washed with brine and dried over anhydrous sodium sulfate. Purification by silica gel column chromatography (eluent CHCl 3 ) yielded compound 11 (100 mg, 77%) as a dark green oil.
1H-NMR (300 MHz; CDCl3; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH2), 0.440-0.951 (104 H, m, CH2, -CH3). FT-IR (KBr) [cm-1] 1750 (-CO). MS (MALDI-TOF): m/z found: 1862.93 (M+), calc.: 1860.93. 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 (2H, d, J = 4.8 Hz, Ar-H), 8.821 (2H, d, J = 4.8 Hz, Ar-H), 8.442 (2H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 7.415-7.452 (4H, d, J = 8.4 Hz, Ar-H), 7.153-7.231 (6H, d, J = 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J = 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH 2 ), 0.440-0.951 (104 H, m, CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 1750 (−CO). MS (MALDI-TOF): m / z found: 1862.93 (M + ), calc .: 1860.93.
화합물 compound 1212 의 제조Manufacture
화합물 11 (100 mg, 0.10 mmol), 피페리딘 여러 방울 및 시아노아세트산 (36 mg, 0.36 mmol)을 CHCl3 (50 mL)에 용해시키고 1일동안 환류시켰다. 반응 혼합물을 상온으로 냉각시킨 다음, CH2Cl2로 추출하였다. 유기층을 물로 여러 번 씻은 후 무수 황산 나트륨으로 건조시키고 필터하였다. 여액을 진공 하에서 농축시켜 어두운 녹색 오일로 화합물 12 (80 mg, 75 %)를 수득하였다.Compound 11 (100 mg, 0.10 mmol), several drops of piperidine and cyanoacetic acid (36 mg, 0.36 mmol) were dissolved in CHCl 3 (50 mL) and refluxed for 1 day. The reaction mixture was cooled to room temperature and then extracted with CH 2 Cl 2 . The organic layer was washed several times with water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to afford compound 12 (80 mg, 75%) as a dark green oil.
1H-NMR (300 MHz; CDCl3; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.415-7.452 (4 H, d, J= 8.4 Hz, Ar-H), 7.153-7.231 (6 H, d, J= 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J= 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH2), 0.440-0.951 (104 H, m, CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). MS (MALDI-TOF): m/z found: 1929.97 (M+), calc.: 1928.01. 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 10.325 (1H, s, -CHO), 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 (2H, d, J = 4.8 Hz, Ar-H), 8.821 (2H, d, J = 4.8 Hz, Ar-H), 8.442 (2H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 7.415-7.452 (4H, d, J = 8.4 Hz, Ar-H), 7.153-7.231 (6H, d, J = 8.7 Hz, Ar-H), 6.545-6.612 (4H d, J = 8.7 Hz, Ar-H), 3.850-3.972 (16 H, m, -OCH 2 ), 0.440-0.951 (104 H, m, CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 2230 (−CN). MS (MALDI-TOF): m / z found: 1929.97 (M + ), calc .: 1928.01.
[실시예 2] 화합물 15 의 제조Example 2 Preparation of Compound 15
Figure PCTKR2015004880-appb-I000027
Figure PCTKR2015004880-appb-I000027
화합물 8은 J. Mater. Chem. A, 2013,1, 9848에 따라 제조하였다.Compound 8 is J. Mater. Chem. Prepared according to A, 2013,1, 9848.
화합물 compound 1313 의 제조Manufacture
실시예 1의 화합물 10의 제조방법과 동일한 방법으로 화합물 13을 수득하였다.Compound 13 was obtained in the same manner as the preparation method of compound 10 of Example 1.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.70 (8 H, m, Ar-H), 7.43 (2 H, d, J=8.1HzAr-H), 7.31 (2 H, d, J=8.4 Hz, Ar-H), 7.17 (2 H, d, J=8.1 Hz, Ar-H), 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH2), 0.440-0.951 (104 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 7.70 (8H, m, Ar-H ), 7.43 (2H, d, J = 8.1 HzAr-H), 7.31 (2H, d, J = 8.4 Hz, Ar-H), 7.17 (2H, d, J = 8.1 Hz, Ar-H) , 6.63 (4H, m, Ar-H), 3.918 (16H, m, -OCH 2 ), 0.440-0.951 (104H, m-CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 2230 (−CN).
화합물 compound 1414 의 제조Manufacture
실시예 1의 화합물 11의 제조방법과 동일한 방법으로 화합물 14을 수득하였다.Compound 14 was obtained in the same manner as the preparation method of compound 11 of Example 1.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.70 (8 H, m, Ar-H), 7.43 (2 H, d, J=8.1 Hz, Ar-H), 7.31 (2 H, d, J=8.4 Hz, Ar-H), 7.17 (2H, d, J=8.1 Hz, Ar-H), 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH2), 0.440-0.951 (104 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 1750(-CO). MS (MALDI-TOF): m/z found: 2095.25 (M+), calc.: 2093.22. 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 7.70 (8H, m, Ar-H ), 7.43 (2H, d, J = 8.1 Hz, Ar-H), 7.31 (2H, d, J = 8.4 Hz, Ar-H), 7.17 (2H, d, J = 8.1 Hz, Ar-H ), 6.63 (4H, m, Ar-H), 3.918 (16H, m, -OCH 2 ), 0.440-0.951 (104H, m-CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 1750 (−CO). MS (MALDI-TOF): m / z found: 2095.25 (M + ), calc .: 2093.22.
화합물 compound 1515 의 제조Manufacture
실시예 1의 화합물 12의 제조방법과 동일한 방법으로 화합물 15을 수득하였다. Compound 15 was obtained by the same method as the preparation method of compound 12 of Example 1.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 7.70 (8 H, m, Ar-H), 7.43 (2 H, d, J=8.1 Hz, Ar-H), 7.31 (2 H, d, J=8.4 Hz, Ar-H), 7.17 (2 H, d, J=8.1 Hz, Ar-H), 6.63 (4 H, m, Ar-H), 3.918 (16 H, m, -OCH2), 0.440-0.951 (104 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). MS (MALDI-TOF): m/z found: 2162.29.25 (M+), calc.: 2160.23. 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 7.70 (8H, m, Ar-H ), 7.43 (2H, d, J = 8.1 Hz, Ar-H), 7.31 (2H, d, J = 8.4 Hz, Ar-H), 7.17 (2H, d, J = 8.1 Hz, Ar- H), 6.63 (4H, m, Ar-H), 3.918 (16H, m, -OCH 2 ), 0.440-0.951 (104H, m-CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 2230 (−CN). MS (MALDI-TOF): m / z found: 2162.29.25 (M + ), calc .: 2160.23.
[실시예 3] 화합물 18 의 제조Example 3 Preparation of Compound 18
Figure PCTKR2015004880-appb-I000028
Figure PCTKR2015004880-appb-I000028
화합물 compound 1616 의 제조Manufacture
실시예 1의 화합물 10의 제조방법과 동일한 방법으로 화합물 16을 수득하였다.Compound 16 was obtained in the same manner as the preparation method of compound 10 of Example 1.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 6.968-6.938 (4 H, d, J= 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J= 9 Hz, Ar-H), 3.918 (12 H, m, -OCH2), 0.440-0.951 (82 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230 (-CN). MS (MALDI-TOF): m/z found: 1494.40 (M+), calc.: 1693.85. 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 6.968-6.938 (4H, d, J = 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J = 9 Hz, Ar-H), 3.918 (12 H, m, -OCH 2 ), 0.440-0.951 (82 H, m-CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 2230 (−CN). MS (MALDI-TOF): m / z found: 1494.40 (M + ), calc .: 1693.85.
화합물 compound 1717 의 제조Manufacture
실시예 1의 화합물 11의 제조방법과 동일한 방법으로 화합물 17을 수득하였다.Compound 17 was obtained by the same method as the preparation method of compound 11 of Example 1.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 6.968-6.938 (4 H, d, J= 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J= 9 Hz, Ar-H), 3.918 (12 H, m, -OCH2), 0.440-0.951 (82 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 1750 (-CO). MS (MALDI-TOF): m/z found: 1510.42 (M+), calc.: 1508.82. 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 6.968-6.938 (4H, d, J = 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J = 9 Hz, Ar-H), 3.918 (12 H, m, -OCH 2 ), 0.440-0.951 (82 H, m-CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 1750 (−CO). MS (MALDI-TOF): m / z found: 1510.42 (M + ), calc .: 1508.82.
화합물 compound 1818 의 제조Manufacture
실시예 1의 화합물 12의 제조방법과 동일한 방법으로 화합물 18을 수득하였다. Compound 18 was obtained by the same method as the preparation method of compound 12 of Example 1.
1H-NMR (300 MHz; CDCl3; TMS) δ 9.355 (2 H, d, J=4.8 Hz, Ar-H), 9.038 (2 H, d, J=4.5 Hz, Ar-H), 8.931 (2 H, d, J=4.8 Hz, Ar-H), 8.821 (2 H, d, J=4.8 Hz, Ar-H), 8.442 (2 H, d, J=4.8 Hz, Ar-H), 8.307 (2 H, d, J=4.8 Hz, Ar-H), 8.249 (4 H, m, Ar-H), 7.782 (6 H, m, Ar-H), 6.968-6.938 (4 H, d, J= 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J= 9 Hz, Ar-H), 3.918 (12 H, m, -OCH2), 0.440-0.951 (82 H, m-CH2, -CH3). FT-IR (KBr) [cm-1] 2230(-CN). MS (MALDI-TOF): m/z found: 1577.46 (M+), calc.: 1575.85. 1 H-NMR (300 MHz; CDCl 3 ; TMS) δ 9.355 (2H, d, J = 4.8 Hz, Ar-H), 9.038 (2H, d, J = 4.5 Hz, Ar-H), 8.931 ( 2 H, d, J = 4.8 Hz, Ar-H), 8.821 (2 H, d, J = 4.8 Hz, Ar-H), 8.442 (2 H, d, J = 4.8 Hz, Ar-H), 8.307 (2H, d, J = 4.8 Hz, Ar-H), 8.249 (4H, m, Ar-H), 7.782 (6H, m, Ar-H), 6.968-6.938 (4H, d, J = 9 Hz, Ar-H), 6.822-6.792 (4 H, d, J = 9 Hz, Ar-H), 3.918 (12 H, m, -OCH 2 ), 0.440-0.951 (82 H, m-CH 2 , -CH 3 ). FT-IR (KBr) [cm −1 ] 2230 (−CN). MS (MALDI-TOF): m / z found: 1577.46 (M + ), calc .: 1575.85.
[실시예 4] 화합물 23의 제조Example 4 Preparation of Compound 23
Figure PCTKR2015004880-appb-I000029
Figure PCTKR2015004880-appb-I000029
화합물 19 및 화합물 21은 참고문헌 NATURE CHEMISTRY, 2014, 6, 242에 따라 제조하였다.Compound 19 and compound 21 were prepared according to the reference NATURE CHEMISTRY, 2014, 6, 242.
화합물 compound 2020 의 제조Manufacture
60 % NaH (0.43 g, 10.62 mmol), Pd(OAc)2 (0.03 g, 27mmol), DPEphos (0.18 g, 0.34 mmol), 화합물 19 (0.5 g, 0.71 mmol) 및 화합물 8 (1.8g, 2.48mmol)이 담긴 250 mL 슈렝크 플라스크에 냉각기를 장치하고 진공 하에서 건조하였다. 건조가 완료되면 질소 환류 하에서 무수 THF (50 mL)를 첨가한 후 80℃에서 24시간 동안 환류, 교반 하였다. 반응이 종료되면 온도를 상온으로 내리고 CH2Cl2로 추출하여 증류수로 여러 번 세척 하었다. 유기층을 무수MgSO4로 건조한 후 감압하에서 용매를 제거하고, 관 크로마토그래피(용리액 CHCl3)로 분리하여 화합물 20 (20 %)을 수득하였다.60% NaH (0.43 g, 10.62 mmol), Pd (OAc) 2 (0.03 g, 27 mmol), DPEphos (0.18 g, 0.34 mmol), compound 19 (0.5 g, 0.71 mmol) and compound 8 (1.8 g, 2.48 mmol) The 250 mL Schlenk flask containing) was equipped with a cooler and dried under vacuum. After drying, anhydrous THF (50 mL) was added under nitrogen reflux, and the mixture was refluxed and stirred at 80 ° C. for 24 hours. When the reaction was completed, the temperature was lowered to room temperature, extracted with CH 2 Cl 2 and washed several times with distilled water. The organic layer was dried over anhydrous MgSO 4 , the solvent was removed under reduced pressure, and the residue was separated by column chromatography (eluent CHCl 3 ) to give compound 20 (20%).
1H NMR (300 MHz, CDCl3): δ 9.59 (d, J=4.4 Hz, 2H), 9.11 (d, J=4.4Hz, 2H), 8.80(d, J= 4.8Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J=8.4 Hz, 2H), 7.20 (d, J= 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J= 8.4Hz, 4H), 6.48 (d, J= 6.6Hz, 4H), 6.44(d, J=2.2 Hz, 1H), 6.42, (d. J=2.2Hz, 1H), 3.91 (t, J=6.6Hz, 4H), 3.89 (t, J=6.6Hz, 4H), 3.82(t, J= 6.6Hz, 8H), 1.80-1.65 (m,8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 9.59 (d, J = 4.4 Hz, 2H), 9.11 (d, J = 4.4 Hz, 2H), 8.80 (d, J = 4.8 Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J = 8.4 Hz, 2H), 7.20 (d, J = 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J = 8.4 Hz, 4H), 6.48 (d, J = 6.6 Hz, 4H), 6.44 (d, J = 2.2 Hz, 1H), 6.42, (d. J = 2.2 Hz, 1H), 3.91 (t, J = 6.6 Hz, 4H), 3.89 (t, J = 6.6 Hz, 4H), 3.82 (t, J = 6.6 Hz, 8H), 1.80-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 2222 의 제조Manufacture
화합물 20 (222mg, 0.1475 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (80mg, 0.280mmol), Pd2(dba)3 (25mg, 0.030mmol), 화합물 21 (100mg, 0.280mmol), THF (20mL) 및 Et3N (3mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 22 (200mg, 70%)를 수득하였다.Compound 20 (222 mg, 0.1475 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1M in THF, 0.35 mL, 0.320 mmol) were added to a round flask containing THF (20 mL) and stirred for 30 minutes. After stirring, the mixture was extracted using distilled water and CH 2 Cl 2 , and the organic layer was dried over sodium sulfate. AsPH 3 (80mg, 0.280mmol), Pd 2 (dba) 3 (25mg, 0.030mmol), Compound 21 (100mg, 0.280mmol), THF (20mL) and Et 3 N (3 mL) was added and refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 22 (200 mg, 70%).
1H NMR (300 MHz, CDCl3): δ 9.80 (d, J=4.4 Hz, 2H), 9.24 (d, J=4.4Hz, 2H), 8.80(d, J= 4.8Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J=8.4 Hz, 2H), 8.46 (d, J=8.4 Hz, 2H), 7.20 (d, J= 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J= 8.4Hz, 4H), 6.48 (d, J= 6.6Hz, 4H), 6.44(d, J=2.2 Hz, 1H), 6.42, (d. J=2.2Hz, 1H), 3.91 (t, J=6.6Hz, 4H), 3.89 (t, J=6.6Hz, 4H), 3.82(t, J= 6.6Hz, 8H), 1.80-1.65 (m,8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 9.80 (d, J = 4.4 Hz, 2H), 9.24 (d, J = 4.4 Hz, 2H), 8.80 (d, J = 4.8 Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J = 8.4 Hz, 2H), 8.46 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J = 8.4 Hz, 4H), 6.48 (d, J = 6.6 Hz, 4H), 6.44 (d, J = 2.2 Hz, 1H), 6.42, (d. J = 2.2 Hz, 1H), 3.91 (t, J = 6.6 Hz, 4H), 3.89 (t, J = 6.6 Hz, 4H), 3.82 (t, J = 6.6 Hz, 8H), 1.80-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 2323 의 제조방법Manufacturing Method
화합물 22 (150mg, 0.090mmol), 수산화나트륨 (20% w/w in water, 8mL), THF/MeOH(21mL:3mL (7:3))을 둥근플라스크에 넣고 60℃에서 3시간 교반한 뒤, TLC로 화합물 22가 다 사라지면 반응을 종결하고 1M의 HCl로 PH7까지 중화시켜주었다. 그런 다음, CH2Cl2과 증류수로 추출하고 소듐설페이트로 유기층을 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 얻어진 고체를 실리카 컬럼크로마토그래피(용리액 디클로로메탄 : 메탄올 (10:1))로 정제시켜 화합물 23을 수득하였다.Compound 22 (150 mg, 0.090 mmol), sodium hydroxide (20% w / w in water, 8 mL) and THF / MeOH (21 mL: 3 mL (7: 3)) were added to a round flask and stirred at 60 ° C. for 3 hours. When compound 22 disappeared by TLC, the reaction was terminated and neutralized to PH7 with 1M HCl. Then, the mixture was extracted with CH 2 Cl 2 and distilled water, and the organic layer was dried over sodium sulfate and filtered. The filtrate was evaporated under vacuum and the solid obtained was purified by silica column chromatography (eluent dichloromethane: methanol (10: 1)) to give compound 23 .
1H NMR (300 MHz, CDCl3): δ 9.80 (d, J=4.4 Hz, 2H), 9.24 (d, J=4.4Hz, 2H), 8.80(d, J= 4.8Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J=8.4 Hz, 2H), 8.46 (d, J=8.4 Hz, 2H), 7.20 (d, J= 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J= 8.4Hz, 4H), 6.48 (d, J= 6.6Hz, 4H), 6.44(d, J=2.2 Hz, 1H), 6.42, (d. J=2.2Hz, 1H), 3.91 (t, J=6.6Hz, 4H), 3.89 (t, J=6.6Hz, 4H), 3.82(t, J= 6.6Hz, 8H), 1.80-1.65 (m,8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 9.80 (d, J = 4.4 Hz, 2H), 9.24 (d, J = 4.4 Hz, 2H), 8.80 (d, J = 4.8 Hz), 2H), 8.65 (d, J = 4.8 Hz, 2H), 8.46 (t, J = 8.4 Hz, 2H), 8.46 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.6 Hz, 4H), 7.15-7.07 (m, 6H), 6.96 (d, J = 8.4 Hz, 4H), 6.48 (d, J = 6.6 Hz, 4H), 6.44 (d, J = 2.2 Hz, 1H), 6.42, (d. J = 2.2 Hz, 1H), 3.91 (t, J = 6.6 Hz, 4H), 3.89 (t, J = 6.6 Hz, 4H), 3.82 (t, J = 6.6 Hz, 8H), 1.80-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
[실시예 5] 화합물 29의 제조Example 5 Preparation of Compound 29
Figure PCTKR2015004880-appb-I000030
Figure PCTKR2015004880-appb-I000030
화합물 27은 참고문헌 NATURE CHEMISTRY, 2014, 6, 242에 따라, 화합물 24은 New J. Chem, 2015, 39, 3736-3746 에 따라 제조하였다.Compound 27 was prepared according to reference NATURE CHEMISTRY, 2014, 6, 242, and Compound 24 was prepared according to New J. Chem, 2015, 39, 3736-3746.
화합물 compound 2525 의 제조Manufacture
화합물 19 (146mg, 0.13 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.34mL, 0.340mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (78mg, 0.260mmol), Pd2(dba)3 (23mg, 0.030mmol), 화합물 24 (146mg, 0.260mmol), THF (40mL) 및 Et3N (3mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 25 (150mg, 74%)를 수득하였다.Compound 19 (146mg, 0.13 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1M in THF, 0.34mL, 0.340mmol) were added to a round flask containing THF (20mL) and stirred for 30 minutes. After stirring, the mixture was extracted using distilled water and CH 2 Cl 2 , and the organic layer was dried over sodium sulfate. To a solid obtained by evaporating the organic solvent of the dried organic layer, AsPH 3 (78 mg, 0.260 mmol), Pd 2 (dba) 3 (23 mg, 0.030 mmol), Compound 24 (146 mg, 0.260 mmol), THF (40 mL), and Et 3 N (3 mL) was added and refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 25 (150 mg, 74%).
1H NMR (300 MHz, CDCl3): δ 9.679 (d, J=4.5 Hz, 2H), 9.592 (d, J=4.5Hz, 2H), 8.867 (d, J= 4.5Hz, 2H), 8.847 (d, J = 4.5 Hz, 2H), 7.75(d, J=8.4Hz, 2H), 7.688 (t, J=8.4 Hz, 2H), 7.168 (d, J= 8.4 Hz, 4H), 7.063-7.034 (d, 2H), 7.017-7.004 (d, J= 8.4Hz, 4H), 6.904-6.873 (d, J= 6.6Hz, 4H), 3.992 (t, J=6.6Hz, 4H), 3.854 (t, J=6.6Hz, 4H), 1.80-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 9.679 (d, J = 4.5 Hz, 2H), 9.592 (d, J = 4.5 Hz, 2H), 8.867 (d, J = 4.5 Hz, 2H), 8.847 ( d, J = 4.5 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.688 (t, J = 8.4 Hz, 2H), 7.168 (d, J = 8.4 Hz, 4H), 7.063-7.034 ( d, 2H), 7.017-7.004 (d, J = 8.4 Hz, 4H), 6.904-6.873 (d, J = 6.6 Hz, 4H), 3.992 (t, J = 6.6 Hz, 4H), 3.854 (t, J = 6.6 Hz, 4H), 1.80-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H ), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 2626 의 제조Manufacture
화합물 25 (67mg, 0.04 mmol)와 CuI (1mg, 0.001mmol), Pd(PPh3)2Cl2 (3mg, 0.001mmol) 을 슈렝크 플라스크에 넣는다. 한 시간 동안 진공 압을 잡은 후, Dry Toluene 40ml를 넣어 준다. 그리고 Et3N (64mg, 0.63mmol)을 넣고, TIPS(Triisopropylsilylacetylene) (20ml, 0.08mmol)을 넣고 12시간동안 환류 시킨다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 26 (54mg, 76%)를 수득하였다.Compound 25 (67 mg, 0.04 mmol), CuI (1 mg, 0.001 mmol) and Pd (PPh 3 ) 2 Cl 2 (3 mg, 0.001 mmol) were placed in a Schlenk flask. After vacuuming for an hour, add 40 ml of dry toluene. Add Et 3 N (64mg, 0.63mmol), add TIPS (Triisopropylsilylacetylene) (20ml, 0.08mmol) and reflux for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 26 (54 mg, 76%).
1H NMR (300 MHz, CDCl3): δ 9.669 (d, J=4.4 Hz, 2H), 9.646 (d, J=4.4Hz, 2H), 8.854(d, J= 4.8Hz), 2H), 8.839 (d, J = 4.8 Hz, 2H), 7.788 (d, J=8.4 Hz, 2H), 7.701 (t, J= 8.6 Hz, 2H), 7.170 (d, 4H), 7.068 (d, J= 8.4Hz, 2H), 6.996 (d, J= 6.6Hz, 4H), 6.901(d, J=2.2 Hz, 4H), 3.992 (t, J=6.6Hz, 4H), 3.846 (t, J=6.6Hz, 8H), 1.826-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 9.669 (d, J = 4.4 Hz, 2H), 9.646 (d, J = 4.4 Hz, 2H), 8.854 (d, J = 4.8 Hz), 2H), 8.839 (d, J = 4.8 Hz, 2H), 7.788 (d, J = 8.4 Hz, 2H), 7.701 (t, J = 8.6 Hz, 2H), 7.170 (d, 4H), 7.068 (d, J = 8.4 Hz , 2H), 6.996 (d, J = 6.6 Hz, 4H), 6.901 (d, J = 2.2 Hz, 4H), 3.992 (t, J = 6.6 Hz, 4H), 3.846 (t, J = 6.6 Hz, 8H ), 1.826-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 2828 의 제조Manufacture
화합물 26 (60mg, 0.04 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (24mg, 0.080mmol), Pd2(dba)3 (7mg, 0.010mmol), 화합물 27 (31mg, 0.080mmol), THF (20mL) 및 Et3N (0.68mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 28 (45mg, 64%)를 수득하였다.Compound 26 (60mg, 0.04 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol) were added to a round flask containing THF (20mL) and stirred for 30 minutes. After stirring, the mixture was extracted using distilled water and CH 2 Cl 2 , and the organic layer was dried over sodium sulfate. AsPH 3 (24 mg, 0.080 mmol), Pd 2 (dba) 3 (7 mg, 0.010 mmol), Compound 27 (31 mg, 0.080 mmol), THF (20 mL), and Et 3 N (0.68 mL) was added and refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 28 (45 mg, 64%).
1H NMR (300 MHz, CDCl3): δ 10.013 (d, J=4.4 Hz, 2H), 9.667 (d, J=4.4Hz, 2H), 8.952(d, J= 4.8Hz), 2H), 8.852 (d, J = 4.8 Hz, 2H), 8.298 (t, J=8.4 Hz, 2H), 8.172 (d, J=8.4 Hz, 2H), 7.957 (d, J= 8.6 Hz, 1H), 7.791-7.606 (m, 4H), 7.191 (d, J= 8.4Hz, 4H), 7.122 (d, J= 8.4Hz, 2H), 7.022 (d, J= 6.6Hz, 4H), 6.909(d, J=2.2 Hz, 4H), 4.405 (t, J=6.6Hz, 2H), 3.995 (t, J=6.6Hz, 4H), 3.877(t, J= 6.6Hz, 8H), 1.811-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 10.013 (d, J = 4.4 Hz, 2H), 9.667 (d, J = 4.4 Hz, 2H), 8.952 (d, J = 4.8 Hz), 2H), 8.852 (d, J = 4.8 Hz, 2H), 8.298 (t, J = 8.4 Hz, 2H), 8.172 (d, J = 8.4 Hz, 2H), 7.957 (d, J = 8.6 Hz, 1H), 7.791-7.606 (m, 4H), 7.191 (d, J = 8.4 Hz, 4H), 7.122 (d, J = 8.4 Hz, 2H), 7.022 (d, J = 6.6 Hz, 4H), 6.909 (d, J = 2.2 Hz , 4H), 4.405 (t, J = 6.6 Hz, 2H), 3.995 (t, J = 6.6 Hz, 4H), 3.877 (t, J = 6.6 Hz, 8H), 1.811-1.65 (m, 8H), 4.48 -1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 2929 의 제조Manufacture
화합물 28 (45mg, 0.020mmol), 수산화나트륨 (20% w/w in water, 8mL), THF/MeOH(21mL:3mL (7:3))을 둥근플라스크에 넣고 60℃에서 3시간 교반한 뒤, TLC로 화합물 28가 다 사라지면 반응을 종결하고 1M의 HCl로 PH7까지 중화시켜주었다. 그런 다음, CH2Cl2과 증류수로 추출하고 소듐설페이트로 유기층을 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 얻어진 고체를 실리카 컬럼크로마토그래피(용리액 디클로로메탄 : 메탄올 (10:1))로 정제시켜 화합물 29을 수득하였다. Compound 28 (45 mg, 0.020 mmol), sodium hydroxide (20% w / w in water, 8 mL) and THF / MeOH (21 mL: 3 mL (7: 3)) were added to a round flask and stirred at 60 ° C. for 3 hours. When compound 28 disappeared by TLC, the reaction was terminated and neutralized to PH7 with 1M HCl. Then, the mixture was extracted with CH 2 Cl 2 and distilled water, and the organic layer was dried over sodium sulfate and filtered. The filtrate was evaporated under vacuum and the solid obtained was purified by silica column chromatography (eluent dichloromethane: methanol (10: 1)) to give compound 29 .
1H NMR (300 MHz, CDCl3): δ 10.002 (d, J=4.4 Hz, 2H), 9.659 (d, J=4.4Hz, 2H), 8.941(d, J= 4.8Hz), 2H), 8.848 (d, J = 4.8 Hz, 2H), 8.290 (t, J=8.4 Hz, 2H), 8.164 (d, J=8.4 Hz, 2H), 7.949 (d, J= 8.6 Hz, 1H), 7.783-7.598 (m, 4H), 7.183 (d, J= 8.4Hz, 4H), 7.114 (d, J= 8.4Hz, 2H), 7.014 (d, J= 6.6Hz, 4H), 6.909(d, J=2.2 Hz, 4H), 3.982 (t, J=6.6Hz, 4H), 3.861(t, J= 6.6Hz, 8H), 1.824-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 10.002 (d, J = 4.4 Hz, 2H), 9.659 (d, J = 4.4 Hz, 2H), 8.941 (d, J = 4.8 Hz), 2H), 8.848 (d, J = 4.8 Hz, 2H), 8.290 (t, J = 8.4 Hz, 2H), 8.164 (d, J = 8.4 Hz, 2H), 7.949 (d, J = 8.6 Hz, 1H), 7.783-7.598 (m, 4H), 7.183 (d, J = 8.4 Hz, 4H), 7.114 (d, J = 8.4 Hz, 2H), 7.014 (d, J = 6.6 Hz, 4H), 6.909 (d, J = 2.2 Hz , 4H), 3.982 (t, J = 6.6 Hz, 4H), 3.861 (t, J = 6.6 Hz, 8H), 1.824-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 ( m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
[실시예 6] 화합물 34의 제조Example 6 Preparation of Compound 34
Figure PCTKR2015004880-appb-I000031
Figure PCTKR2015004880-appb-I000031
화합물 30은 ChemSusChem, Volume 4, Issue 5, pages 591-594, May 23, 2011에 따라 제조하였다. Compound 30 was prepared according to ChemSus Chem, Volume 4, Issue 5, pages 591-594, May 23, 2011.
화합물 compound 3131 의 제조Manufacture
화합물 19 (100mg, 0.09 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol)를 THF (40mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (54mg, 0.180mmol), Pd2(dba)3 (16mg, 0.20mmol), 화합물 30 (162mg, 0.180mmol), THF (40mL) 및 Et3N (0.18mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 31 (81mg, 48%)를 수득하였다.Compound 19 (100mg, 0.09 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1M in THF, 0.35mL, 0.320mmol) were added to a round flask containing THF (40mL) and stirred for 30 minutes. After stirring, the mixture was extracted using distilled water and CH 2 Cl 2 , and the organic layer was dried over sodium sulfate. AsPH 3 (54mg, 0.180mmol), Pd 2 (dba) 3 (16mg, 0.20mmol), Compound 30 (162mg, 0.180mmol), THF (40mL) and Et 3 N (0.18 mL) was added and refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 31 (81 mg, 48%).
1H NMR (300 MHz, CDCl3): δ 9.698 (d, J=4.5 Hz, 2H), 9.599 (d, J=4.5Hz, 2H), 8.883 (d, J= 4.5Hz, 2H), 8.854 (d, J = 4.5 Hz, 2H), 7.867(d, J=8.4Hz, 2H), 7.691 (t, J=8.4 Hz, 2H), 7.553 (d, J= 8.4 Hz, 4H), 7.327-7.7245 (m, J=8.4Hz, 10H), 7.005 (d, 4H), 6.574 (d, J= 8.4Hz, 4H), 4.022 (t, J=6.6Hz, 8H), 3.858 (t, J=6.6Hz, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 9.698 (d, J = 4.5 Hz, 2H), 9.599 (d, J = 4.5 Hz, 2H), 8.883 (d, J = 4.5 Hz, 2H), 8.854 ( d, J = 4.5 Hz, 2H), 7.867 (d, J = 8.4 Hz, 2H), 7.691 (t, J = 8.4 Hz, 2H), 7.553 (d, J = 8.4 Hz, 4H), 7.327-7.7245 ( m, J = 8.4 Hz, 10H), 7.005 (d, 4H), 6.574 (d, J = 8.4 Hz, 4H), 4.022 (t, J = 6.6 Hz, 8H), 3.858 (t, J = 6.6 Hz, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 3232 의 제조Manufacture
화합물 31 (70mg, 0.04 mmol)와 CuI (1mg, 0.001mmol), Pd(PPh3)2Cl2 (3mg, 0.001mmol) 을 슈렝크 플라스크에 넣는다. 한 시간 동안 진공 압을 잡은 후, Dry Toluene 40ml를 넣어 준다. 그리고 Et3N (90ml, 0.66mmol)을 넣고, TIPS(Triisopropylsilylacetylene) (30ml, 0.13mmol)을 넣고 12시간동안 환류 시킨다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 32 (27mg, 37%)를 수득하였다.Compound 31 (70 mg, 0.04 mmol), CuI (1 mg, 0.001 mmol) and Pd (PPh 3 ) 2 Cl 2 (3 mg, 0.001 mmol) were placed in a Schlenk flask. After vacuuming for an hour, add 40 ml of dry toluene. Then add Et 3 N (90ml, 0.66mmol), add TIPS (Triisopropylsilylacetylene) (30ml, 0.13mmol) and reflux for 12 hours. The solvent was then evaporated and purified by column chromatography to yield 32 (27 mg, 37%).
1H NMR (300 MHz, CDCl3): δ 9.686 (d, J=4.4 Hz, 2H), 9.648 (d, J=4.4Hz, 2H), 8.860(d, J= 4.8Hz, 4H), 7.872 (d, J=8.4 Hz, 2H), 7.703 (t, J= 8.6 Hz, 2H), 7.533 (d, 4H), 7.327-7.245 (m, J= 8.4Hz, 4H), 6.996 (d, J= 6.6Hz, 4H), 6.574(d, J=2.2 Hz, 4H), 4.180 (t, J=6.6Hz, 8H), 3.966 (t, J=6.6Hz, 8H), 1.826-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 9.686 (d, J = 4.4 Hz, 2H), 9.648 (d, J = 4.4 Hz, 2H), 8.860 (d, J = 4.8 Hz, 4H), 7.872 ( d, J = 8.4 Hz, 2H), 7.703 (t, J = 8.6 Hz, 2H), 7.533 (d, 4H), 7.327-7.245 (m, J = 8.4 Hz, 4H), 6.996 (d, J = 6.6 Hz, 4H), 6.574 (d, J = 2.2 Hz, 4H), 4.180 (t, J = 6.6 Hz, 8H), 3.966 (t, J = 6.6 Hz, 8H), 1.826-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 3333 의 제조Manufacture
화합물 32 (80mg, 0.04 mmol)와 TBAF(Tetra-n-butylammonium fluoride) (1M in THF, 0.04mL, 0.040mmol)를 THF (20mL)가 들어있는 둥근플라스크에 넣고 30분간 교반하였다. 교반 후에 증류수와 CH2Cl2를 이용하여 추출하고 유기층의 수분을 소듐설페이트로 건조시켰다. 건조시킨 유기층의 유기용매를 증발시켜 얻어진 고체에 AsPH3 (26mg, 0.090mmol), Pd2(dba)3 (8mg, 0.010mmol), 화합물 27 (33mg, 0.090mmol), THF (35mL) 및 Et3N (0.75mL)를 넣고 12시간동안 환류시켰다. 그 후 용매를 증발시키고 컬럼크로마토 그래피로 정제하여 화합물 33 (10mg, 40%)를 수득하였다.Compound 32 (80 mg, 0.04 mmol) and TBAF (Tetra-n-butylammonium fluoride) (1M in THF, 0.04 mL, 0.040 mmol) were added to a round flask containing THF (20 mL) and stirred for 30 minutes. After stirring, the mixture was extracted using distilled water and CH 2 Cl 2 , and the organic layer was dried over sodium sulfate. AsPH 3 (26mg, 0.090mmol), Pd 2 (dba) 3 (8mg, 0.010mmol), Compound 27 (33mg, 0.090mmol), THF (35mL) and Et 3 N (0.75 mL) was added and refluxed for 12 hours. The solvent was then evaporated and purified by column chromatography to give compound 33 (10 mg, 40%).
1H NMR (300 MHz, CDCl3): δ 10.021 (d, J=4.4 Hz, 2H), 9.689 (d, J=4.4Hz, 2H), 8.960(d, J= 4.8Hz), 2H), 8.869 (d, J = 4.8 Hz, 2H), 8.294 (t, J=8.4 Hz, 2H), 8.157 (d, J=8.4 Hz, 2H), 7.940 (d, J= 8.6 Hz, 1H), 7.878 (d, 2H), 7.735 (d, J= 8.4Hz, 4H), 7.538 (d, J= 8.4Hz, 2H), 7.026 (d, J= 6.6Hz, 4H), 6.577(d, J=2.2 Hz, 4H), 4.426 (t, J=6.6Hz, 2H), 4.025 (t, J=6.6Hz, 8H), 3.884(t, J= 6.6Hz, 8H), 1.836-1.65 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 10.021 (d, J = 4.4 Hz, 2H), 9.689 (d, J = 4.4 Hz, 2H), 8.960 (d, J = 4.8 Hz), 2H), 8.869 (d, J = 4.8 Hz, 2H), 8.294 (t, J = 8.4 Hz, 2H), 8.157 (d, J = 8.4 Hz, 2H), 7.940 (d, J = 8.6 Hz, 1H), 7.878 (d , 2H), 7.735 (d, J = 8.4 Hz, 4H), 7.538 (d, J = 8.4 Hz, 2H), 7.026 (d, J = 6.6 Hz, 4H), 6.577 (d, J = 2.2 Hz, 4H ), 4.426 (t, J = 6.6 Hz, 2H), 4.025 (t, J = 6.6 Hz, 8H), 3.884 (t, J = 6.6 Hz, 8H), 1.836-1.65 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
화합물 compound 3434 의 제조Manufacture
화합물 33 (10mg, 0.001mmol), 수산화나트륨 (20% w/w in water, 8mL), THF/MeOH(21mL:3mL (7:3))을 둥근플라스크에 넣고 60℃에서 3시간 교반한 뒤, TLC로 화합물 33가 다 사라지면 반응을 종결하고 1M의 HCl로 PH7까지 중화시켜주었다. 그런 다음, CH2Cl2과 증류수로 추출하고 소듐설페이트로 유기층을 건조시킨 후 여과하였다. 여액을 진공 하에서 증발시킨 후 얻어진 고체를 실리카 컬럼크로마토그래피(용리액 디클로로메탄 : 메탄올 (10:1))로 정제시켜 화합물 34을 수득하였다. Compound 33 (10 mg, 0.001 mmol), sodium hydroxide (20% w / w in water, 8 mL) and THF / MeOH (21 mL: 3 mL (7: 3)) were added to a round flask and stirred at 60 ° C. for 3 hours. When compound 33 disappeared by TLC, the reaction was terminated and neutralized to PH7 with 1M HCl. Then, the mixture was extracted with CH 2 Cl 2 and distilled water, and the organic layer was dried over sodium sulfate and filtered. The filtrate was evaporated under vacuum and the solid obtained was purified by silica column chromatography (eluent dichloromethane: methanol (10: 1)) to give compound 34 .
1H NMR (300 MHz, CDCl3): δ 10.015 (d, J=4.4 Hz, 2H), 9.686 (d, J=4.4Hz, 2H), 8.957(d, J= 4.8Hz, 2H), 8.866 (d, J = 4.8 Hz, 2H), 8.292 (d, J=8.4 Hz, 2H), 8.186 (d, J=8.4 Hz, 2H), 7.952 (d, J= 8.6 Hz, 1H), 7.875 (d, 2H), 7.735 (t, J= 8.4Hz, 2H), 7.535(d, J= 8.4Hz, 4H), 7.322-7.248 (m, J= 6.6Hz, 4H), 7.026(d, J=2.2 Hz, 4H), 6.577-6.563(m, J=2.4Hz, 4H), 4.025 (t, J=6.6Hz, 8H), 3.884(t, J= 6.6Hz, 8H), 2.791 (t, J=6.3Hz, 6H), 2.375-2.325 (m, 8H), 4.48-1.33(m, 8H), 1.32-1.20(m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m,16H), 0.60-0.38 (m, 16H) 0.55 (t, J = 7.3Hz, 12H) 1 H NMR (300 MHz, CDCl 3 ): δ 10.015 (d, J = 4.4 Hz, 2H), 9.686 (d, J = 4.4 Hz, 2H), 8.957 (d, J = 4.8 Hz, 2H), 8.866 ( d, J = 4.8 Hz, 2H), 8.292 (d, J = 8.4 Hz, 2H), 8.186 (d, J = 8.4 Hz, 2H), 7.952 (d, J = 8.6 Hz, 1H), 7.875 (d, 2H), 7.735 (t, J = 8.4 Hz, 2H), 7.535 (d, J = 8.4 Hz, 4H), 7.322-7.248 (m, J = 6.6 Hz, 4H), 7.026 (d, J = 2.2 Hz, 4H), 6.577-6.563 (m, J = 2.4 Hz, 4H), 4.025 (t, J = 6.6 Hz, 8H), 3.884 (t, J = 6.6 Hz, 8H), 2.791 (t, J = 6.3 Hz, 6H), 2.375-2.325 (m, 8H), 4.48-1.33 (m, 8H), 1.32-1.20 (m, 16H), 1.01-0.80 (m, 28H), 0.77-0.60 (m, 16H), 0.60- 0.38 (m, 16H) 0.55 (t, J = 7.3 Hz, 12H)
분광학적 특성 평가Spectroscopic evaluation
상기 실시예 1 내지 4에서 수득한 포르피린계 염료 화합물 12, 화합물15, 화합물 18 및 화합물 23의 UV 흡수 스펙트럼을 도 1 및 도 3에 도시하였다. 상기 실시예 1 내지 3에서 수득한 포르피린계 염료 화합물 12, 화합물15 및 화합물 18의 UV 발광 스펙트럼을 도 2에 도시하였다. UV absorption spectra of porphyrin-based dye compounds 12 , 15 , 18 and 23 obtained in Examples 1 to 4 are shown in FIGS. 1 and 3. UV emission spectra of porphyrin-based dye compounds 12 , 15 and 18 obtained in Examples 1 to 3 are shown in FIG.
[실시예 5 내지 8 및 비교예 1 내지 3] 염료감응 태양전지의 제작 및 특성 평가[Examples 5 to 8 and Comparative Examples 1 to 3] Fabrication and Characterization of Dye-Sensitized Solar Cells
포르피린계 화합물을 이용한 염료감응 태양전지는 다음과 같이 제작되었다.The dye-sensitized solar cell using a porphyrin-based compound was produced as follows.
제1전극의 ITO로 이루어진 전도성 필름 상에 평균입경 13nm 입경을 갖는 티타늄산화물 입자의 분산액을 닥터 블레이드법을 이용하여 0.25㎠ 면적에 도포하고, 이를 450℃에서 30분동안 열처리 소성공정을 하여, 10 ㎛두께의 다공질막을 제작하였다. A dispersion of titanium oxide particles having an average particle diameter of 13 nm on the conductive film made of ITO of the first electrode was applied to an area of 0.25 cm 2 using a doctor blade method, and then subjected to a heat treatment baking process at 450 ° C. for 30 minutes. A microporous membrane was prepared.
이어서, 상기 결과물을 80℃에서 유지하고 이를 상기 실시예 1 내지 4에서 수득한 포르피린계 화합물 각각을 에탄올에 용해한 0.3 mM 염료 분산액에 침지하여 염료 흡착 처리를 12시간 이상 수행하였다.Subsequently, the resultant was maintained at 80 ° C., and each of the porphyrin-based compounds obtained in Examples 1 to 4 was immersed in a 0.3 mM dye dispersion dissolved in ethanol to perform dye adsorption for 12 hours or more.
그 후 염료 흡착된 다공질막을 에탄올을 이용하여 씻어내고 상온 건조하여 광흡수층이 형성된 제1전극을 제조하였다.After that, the dye-adsorbed porous membrane was washed with ethanol and dried at room temperature to prepare a first electrode having a light absorption layer.
이와 별도로 제2전극은, ITO로 이루어진 제1전도성 필름 위에 스퍼터를 이용하여 Pt로 이루어진 제2전도성 필름을 증착하였고, 전해액 주입을 위해 0.75 mm 직경의 드릴을 이용하여 미세 구멍을 만들었다.Separately, the second electrode deposited a second conductive film made of Pt using a sputter on the first conductive film made of ITO, and made a fine hole using a 0.75 mm diameter drill to inject the electrolyte.
이후, 60㎛ 두께의 열가소성 고분자 필름으로 이루어진 지지대를 다공질막이 형성된 제1전극과 제2전극 사이에 두고 80℃에서 16초 압착시킴으로써 두 전극을 접합시켰다. 그리고, 제2전극에 형성된 미세구멍을 통하여 전해질을 주입하고 커버 글라스와 열가소성 고분자 필름을 이용하여 미세 구멍을 밀봉하여 염료감응 태양전지를 제조하였다. 이 때 이용된 전해질은 1-메틸-3-프로필이미다졸리움아이오다이드, 0.1M의 리튬 아이오다이드(lithium iodide), 0.05M의 요오드(iodine), 0.5M 의 4-터트-부틸피리딘을 3-메톡시프로피오니트릴(3-methoxypropionitrile) 에 용해하여 준비하였다.Subsequently, the two electrodes were joined by pressing a support table made of a thermoplastic polymer film having a thickness of 60 μm between the first electrode and the second electrode on which the porous membrane was formed and pressing at 80 ° C. for 16 seconds. Then, an electrolyte was injected through the micropores formed in the second electrode, and the micropores were sealed using a cover glass and a thermoplastic polymer film to manufacture a dye-sensitized solar cell. In this case, the electrolyte used was 1-methyl-3-propylimidazolium iodide, 0.1M lithium iodide, 0.05M iodine, 0.5M 4-tert-butylpyridine. It was prepared by dissolving in 3-methoxypropionitrile.
상기 제조된 전지의 전압-전류밀도 및 전류변환효율(IPCE)를 측정하여 각각 도 4, 도 5 및 도 6에 도시하였으며, 이를 표 1에 정리하여 나타내었다.The voltage-current density and current conversion efficiency (IPCE) of the manufactured battery were measured and shown in FIGS. 4, 5, and 6, respectively, and are summarized in Table 1 below.
표 1
포르피린계 유도체 Jsc[mA cm-2] Voc[mV] FF(%) η(%)
실시예 5 화합물 12(실시예 1) 13.34 723 72.3 6.97
실시예 6 화합물 15(실시예 2) 13.91 707 75.2 7.40
실시예 7 화합물 18(실시예 3) 14.26 722 74.7 7.69
실시예 8 화합물 23(실시예 4) 17.6 913 75.0 12.1
Table 1
Porphyrin derivatives J sc [mA cm -2 ] V oc [mV] FF (%) η (%)
Example 5 Compound 12 (Example 1) 13.34 723 72.3 6.97
Example 6 Compound 15 (Example 2) 13.91 707 75.2 7.40
Example 7 Compound 18 (Example 3) 14.26 722 74.7 7.69
Example 8 Compound 23 (Example 4) 17.6 913 75.0 12.1
상기 표 1에 기재된 결과로부터, 실시예 5 내지 8의 염료감응 태양전지는 포르피린의 5번과 15번 위치에 두 개의 (C1-C20)알콕시가 치환된 페닐기가 도입되어 있고 포르피린의 10번 위치에 하나 또는 두 개의 (C1-C20)알콕시가 치환되어 있는 페닐이 치환된 아릴아미노기가 도입되어 있는 실시예 1 내지 4의 포르피린계 유도체를 염료로 사용있어 우수한 광변환 효율을 가짐을 알 수 있었다. 특히 실시예 8의 경우 포르피린의 5번과 15번 위치에 도입된 두 개의 (C1-C20)알콕시가 치환된 페닐기 이외에 포르피린의 10번 위치에 하나 또는 두 개의 (C1-C20)알콕시가 치환되어 있는 페닐이 치환된 아릴아미노기와 포르피린 사이에 탄소-탄소 삼중결합을 가진 화합물 23을 염료로 사용하고 있어 더욱 우수한 광변환 효율을 나타내었다.From the results shown in Table 1, the dye-sensitized solar cells of Examples 5 to 8 have two (C1-C20) alkoxy-substituted phenyl groups introduced at positions 5 and 15 of porphyrin, and at position 10 of porphyrin. It was found that the porphyrin derivatives of Examples 1 to 4 in which one or two (C 1 -C 20) alkoxy-substituted phenyl-substituted arylamino groups were introduced were used as dyes, so that they had excellent light conversion efficiency. Particularly, in Example 8, one or two (C 1 -C 20) alkoxy is substituted at the 10 position of porphyrin in addition to the two (C 1 -C 20) alkoxy substituted phenyl groups introduced at positions 5 and 15 of the porphyrin. Compound 23 having a carbon-carbon triple bond between the arylamino group substituted with phenyl and porphyrin was used as a dye, which showed better light conversion efficiency.
본 발명에 따른 포르피린계 화합물을 이용하여 제조된 전지는 빛과 열에 대한 안정성이 높은 포르피린 염료를 기반으로 전자주개 능력이 강한 알콕시가 치환된 페닐 유도체, 알콕시가 치환된 아릴아민 유도체 또는 탄소-탄소 삼중결합을 도입함으로써 높은 효율의 염료감응 태양전지 구동이 가능한 특성을 갖는 것을 알 수 있었다.The battery prepared using the porphyrin-based compound according to the present invention is a phenyl derivative substituted with alkoxy, arylamine substituted with alkoxy, or carbon-carbon triple based on a porphyrin dye having high stability against light and heat, having a strong electron donating ability. By introducing the bond, it was found that the dye-sensitized solar cell can be driven with high efficiency.
본 발명의 포르피린계 유도체를 포함하는 고효율 염료감응 태양전지용 유기염료를 사용한 태양 전지는 외부 환경에서도 장기적인 안정성을 보이며, 전자주개 능력이 강한 알콕시가 치환된 페닐 유도체, 알콕시가 치환된 아릴아민 유도체 또는 탄소-탄소 삼중결합을 통한 분자 내 전자전달이 강해지고, 분자의 평면성과 컨쥬게이션의 증가로 근적외선 영역의 빛 흡수가 가능해짐으로써, 가시광선에서 근적외석 영역대까지의 넓은 흡수영역 대의 확보를 통한 높은 에너지 변환 효율을 얻을 수 있는 장점이 있다.The solar cell using the organic dye for high efficiency dye-sensitized solar cell including the porphyrin-based derivative of the present invention shows long-term stability even in the external environment, alkoxy-substituted phenyl derivative having strong electron donor ability, arylamine derivative substituted with alkoxy or carbon Intramolecular electron transfer through carbon triple bonds is strengthened, and light absorption in the near-infrared region can be absorbed by increasing the planarity and conjugation of the molecule, thereby securing a large absorption range from the visible to the near-infrared region. There is an advantage to obtain energy conversion efficiency.

Claims (7)

  1. 하기 화학식 1로 표시되는 포르피린 유도체:Porphyrin derivatives represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2015004880-appb-I000032
    Figure PCTKR2015004880-appb-I000032
    상기 화학식 1에서,In Chemical Formula 1,
    R1 내지 R6는 각각 독립적으로 (C1-C20)알킬이고;R 1 to R 6 are each independently (C 1 -C 20) alkyl;
    R' 및 R''는 각각 독립적으로 수소 또는 (C1-C20)알콕시이고;R 'and R' 'are each independently hydrogen or (C1-C20) alkoxy;
    L1 및 L2는 각각 독립적으로 단일결합 또는 (C6-C20)아릴렌이고, 상기 아릴렌은 (C1-C20)알킬로 더 치환될 수 있고;L 1 and L 2 are each independently a single bond or (C6-C20) arylene, which arylene may be further substituted with (C1-C20) alkyl;
    m은 0 또는 1의 정수이고;m is an integer of 0 or 1;
    A는 하기 구조에서 선택되고;A is selected from the following structures;
    Figure PCTKR2015004880-appb-I000033
    Figure PCTKR2015004880-appb-I000033
    n이 0인 경우 B는
    Figure PCTKR2015004880-appb-I000034
    이고;
    If n is 0 then B is
    Figure PCTKR2015004880-appb-I000034
    ego;
    n은 1인 경우 B는 하기 구조에서 선택되고;when n is 1, B is selected from the following structure;
    Figure PCTKR2015004880-appb-I000035
    Figure PCTKR2015004880-appb-I000035
    R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
  2. 제 1항에 있어서,The method of claim 1,
    하기 화학식 2, 화학식 3, 화학식 4 또는 화학식 5로 표시되는 포르피린계 유도체:Porphyrin derivatives represented by the following formula (2), (3), (4) or (5):
    [화학식 2] [Formula 2]
    Figure PCTKR2015004880-appb-I000036
    Figure PCTKR2015004880-appb-I000036
    [화학식 3][Formula 3]
    Figure PCTKR2015004880-appb-I000037
    Figure PCTKR2015004880-appb-I000037
    [화학식 4][Formula 4]
    Figure PCTKR2015004880-appb-I000038
    Figure PCTKR2015004880-appb-I000038
    [화학식 5][Formula 5]
    Figure PCTKR2015004880-appb-I000039
    Figure PCTKR2015004880-appb-I000039
    상기 R1, R2, R3, R4, L1, L2, R5, R6, R', R'' 및 A는 청구항 제1항에서의 정의와 동일하고,R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , R 5 , R 6 , R ', R''and A are the same as defined in claim 1,
    B는 하기 구조에서 선택되고;B is selected from the following structures;
    Figure PCTKR2015004880-appb-I000040
    Figure PCTKR2015004880-appb-I000040
    R7은 수소, (C1-C20)알킬 또는 (C1-C20)알콕시이다.R 7 is hydrogen, (C 1 -C 20) alkyl or (C 1 -C 20) alkoxy.
  3. 제 2항에 있어서,The method of claim 2,
    상기 L1 및 L2는 각각 독립적으로 단일결합이거나, 하기 구조에서 선택되는 포르피린계 유도체:L 1 and L 2 are each independently a single bond or a porphyrin derivative selected from the following structures:
    Figure PCTKR2015004880-appb-I000041
    Figure PCTKR2015004880-appb-I000041
    상기 R는 (C1-C20)알킬이다.R is (C1-C20) alkyl.
  4. 제 2항에 있어서,The method of claim 2,
    하기 구조로부터 선택되는 포르피린계 유도체:Porphyrin derivatives selected from the following structures:
    Figure PCTKR2015004880-appb-I000042
    Figure PCTKR2015004880-appb-I000042
    Figure PCTKR2015004880-appb-I000043
    Figure PCTKR2015004880-appb-I000043
    Figure PCTKR2015004880-appb-I000044
    Figure PCTKR2015004880-appb-I000044
    Figure PCTKR2015004880-appb-I000045
    Figure PCTKR2015004880-appb-I000045
    Figure PCTKR2015004880-appb-I000046
    Figure PCTKR2015004880-appb-I000046
    Figure PCTKR2015004880-appb-I000047
    Figure PCTKR2015004880-appb-I000047
  5. 제 1항 내지 제 4항에서 선택되는 어느 한 항의 포르피린계 유도체를 포함하는 염료감응 태양전지용 염료.Dye-sensitized solar cell dye comprising a porphyrin-based derivative of any one of claims 1 to 4.
  6. 제 5항의 염료감응 태양전지용 염료를 포함하는 염료감응 태양전지.A dye-sensitized solar cell comprising the dye for dye-sensitized solar cell of claim 5.
  7. 제 6항에 있어서,The method of claim 6,
    상기 염료감응 태양전지는The dye-sensitized solar cell
    전도성 투명 기판을 포함하는 제1전극;A first electrode comprising a conductive transparent substrate;
    상기 제1전극의 어느 일면에 형성된 광흡수층;A light absorption layer formed on one surface of the first electrode;
    상기 광흡수층이 형성된 제1전극에 대향하여 배치되는 제2전극; 및A second electrode disposed to face the first electrode on which the light absorption layer is formed; And
    상기 제1전극과 제2전극 사이의 공간에 위치하는 전해질을 포함하는 것을 특징으로 하는 염료감응 태양전지.Dye-sensitized solar cell comprising an electrolyte located in the space between the first electrode and the second electrode.
PCT/KR2015/004880 2014-05-15 2015-05-15 Novel porphyrin-based derivative, organic dye for dye-sensitized solar cell comprising same derivative, and dye-sensitized solar cell comprising same organic dye WO2015174774A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140058564 2014-05-15
KR10-2014-0058564 2014-05-15
KR1020150067199A KR101722003B1 (en) 2014-05-15 2015-05-14 Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
KR10-2015-0067199 2015-05-14

Publications (2)

Publication Number Publication Date
WO2015174774A2 true WO2015174774A2 (en) 2015-11-19
WO2015174774A3 WO2015174774A3 (en) 2016-06-02

Family

ID=54480883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004880 WO2015174774A2 (en) 2014-05-15 2015-05-15 Novel porphyrin-based derivative, organic dye for dye-sensitized solar cell comprising same derivative, and dye-sensitized solar cell comprising same organic dye

Country Status (1)

Country Link
WO (1) WO2015174774A2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103044952A (en) * 2013-01-04 2013-04-17 北京科技大学 Asymmetric porphyrin solar cell dye and preparation method thereof

Also Published As

Publication number Publication date
WO2015174774A3 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2013085285A1 (en) Co-absorbent for dye-sensitized solar cell having hole conduction properties and dye-sensitized solar cell including same
WO2016133368A9 (en) Heterocyclic compound and organic solar cell comprising same
WO2013129835A1 (en) Organic light emitting diode
WO2014171755A1 (en) Fullerene derivative, organic solar cell using same, and manufacturing method thereof
WO2010087655A2 (en) Fullerene derivatives and organic electronic device comprising the same
WO2015163614A1 (en) Heterocyclic compound and organic solar cell comprising same
WO2011081431A2 (en) Organic light emitting compound, and organic electroluminescent device using same
WO2010002154A2 (en) Novel organic dye and method for preparing same
WO2016171465A2 (en) Heterocyclic compound and organic solar cell comprising same
WO2018088797A1 (en) Spirobifluorene compound and perovskite solar cell comprising same
WO2010062015A1 (en) Novel organic dye containing benzothiadiazole chromophore and preparation method thereof
WO2014175627A1 (en) Nitrogen-containing heterocyclic compound and organic electronic device comprising same
WO2021118238A1 (en) Novel polymer and organic electronic device using same
WO2019004781A1 (en) Perovskite solar cell
WO2015122722A1 (en) Copolymer and organic solar cell comprising same
WO2015190762A2 (en) Fused ring derivative and organic solar cell including same
WO2014061867A1 (en) Novel organic semiconductor compound, and method for preparing same
WO2019004605A1 (en) Organic solar cell
WO2018225999A1 (en) Compound and organic solar cell comprising same
WO2015068987A1 (en) Novel organic compound, and organic electroluminescent element and electronic device comprising same
WO2016175573A2 (en) Compound and organic solar cell comprising same
WO2021167214A1 (en) Hole transporting material for solar cell, and solar cell comprising same
WO2015167228A1 (en) Precursor for preparing perovskite, preparation method therefor, and perovskite solar cell, and manufacturing method therefor
WO2022186439A1 (en) Conductive substrate, perovskite substrate using same, and solar cell using same
WO2015182973A1 (en) Organic semiconductor compound containing phosphine oxide group, and organic solar cell using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791900

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15791900

Country of ref document: EP

Kind code of ref document: A2