WO2021167214A1 - Hole transporting material for solar cell, and solar cell comprising same - Google Patents

Hole transporting material for solar cell, and solar cell comprising same Download PDF

Info

Publication number
WO2021167214A1
WO2021167214A1 PCT/KR2020/017803 KR2020017803W WO2021167214A1 WO 2021167214 A1 WO2021167214 A1 WO 2021167214A1 KR 2020017803 W KR2020017803 W KR 2020017803W WO 2021167214 A1 WO2021167214 A1 WO 2021167214A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
solar cell
hole transport
independently
transport material
Prior art date
Application number
PCT/KR2020/017803
Other languages
French (fr)
Korean (ko)
Inventor
양창덕
정민규
Original Assignee
울산과학기술원
한국동서발전(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200155579A external-priority patent/KR102491190B1/en
Application filed by 울산과학기술원, 한국동서발전(주) filed Critical 울산과학기술원
Publication of WO2021167214A1 publication Critical patent/WO2021167214A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a hole transport material for a solar cell and a solar cell comprising the same.
  • Solar cell technology is a technology that directly converts light into electrical energy, and most of the solar cells being put into practical use are inorganic solar cells using inorganic materials such as silicon.
  • the manufacturing cost of the inorganic solar cell is increased due to the complicated manufacturing process and the material is expensive, the manufacturing cost is low through a relatively simple manufacturing process and research on the organic solar cell having a low material cost is being actively conducted.
  • organic solar cells the structure of BHJ is deteriorated by moisture or oxygen in the air, so that its efficiency is rapidly reduced, that is, there is a big problem in the stability of the solar cell.
  • the price increases.
  • the current perovskite solar cell is the closest to commercialization based on excellent photovoltaic characteristics, cost reduction and easy process among next-generation solar cells including dye-sensitized and organic solar cells, and full-scale research on stability and large area is required. .
  • the perovskite solar cell without the hole transport material showed lower charge extraction and charge recombination at the interface than the perovskite solar cell containing the hole transport material, indicating a decrease in the open circuit voltage and charge rate.
  • HTM plays an important role.
  • perovskite solar cells have been actively studied for several years due to their unique photochemical properties, strong light absorption ability and high efficiency, and have recently achieved efficiencies of 20% or more.
  • the transport capability of the hole transport material is one of the important points, but there is a problem in that the materials used for the hole transport layer of the currently reported high-efficiency perovskite solar cell are limited.
  • One object of the present invention is to provide a hole transport material for a solar cell excellent in performance to be able to replace the conventional hole transport material.
  • Another object of the present invention is to provide a solar cell including the hole transport material for a solar cell in a hole transport layer.
  • a hole transport material for a solar cell represented by the following formula (1):
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 are each independently a phenyl or naphthyl group substituted with 0 to 4 fluorine (F) atoms,
  • a 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are each independently a single bond, an oxygen (O) atom, or a sulfur (S) atom,
  • R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms;
  • n 11 , n 12 , n 13 , and n 14 are each independently an integer of 0 to 4,
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 are a phenyl group, and A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are an oxygen (O) atom.
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 is substituted with one or more fluorine atoms.
  • a solar cell comprising the hole transport material in the hole transport layer.
  • the hole transport material according to the present invention not only has excellent properties of the material itself, such as maintaining excellent stability without deterioration even for a long period of time, but also the solar cell including it in the hole transport layer has the same device performance as PCE. It shows an improvement compared to the case where a transport material is used.
  • FIG. 1 is a diagram schematically showing the structure of an n-i-p-perovskite solar cell prepared in Comparative Examples and Preparation Examples of the present invention.
  • FIG. 2A to 2C are graphs showing J-V curves of solar cells manufactured according to Comparative Examples and Preparation Examples
  • FIG. 2D is a graph showing a distribution of PCE values of each solar cell.
  • FIGS. 3B to 3D are graphs showing the change in JV curve with time will be.
  • perovskite solar cell refers to a solar cell including an organic-inorganic halide material having a perovskite crystal structure.
  • a hole transport material for a solar cell represented by the following formula (1), specifically, a hole transport material for a perovskite solar cell:
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 are each independently a phenyl or naphthyl group substituted with 0 to 4 fluorine (F) atoms; Specifically, each independently may be one substituted with 0 to 2 fluorine atoms; More specifically, each independently may be a phenyl group substituted with 0 to 2 fluorine atoms.
  • the material of Formula 1 may be one in which at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 is substituted with one or two fluorine (F) atoms, and in another embodiment Accordingly, at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 may be a phenyl group substituted with one or two fluorine (F) atoms.
  • a 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are each independently a single bond, an oxygen (O) atom, or sulfur (S ) is an atom; Specifically, each independently may be a single bond or an oxygen atom.
  • a 1 , A 2 , A 3 , and A 4 may be identical to each other
  • the material of Formula 1 in the material of Formula 1 , at least one of A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 is an oxygen (O) atom or a sulfur (S) atom may be According to another embodiment, the material of formula 1 has a set of A 1 , A 2 , A 3 , and A 4 and one of the sets of A 11 , A 12 , A 13 , and A 14 are all oxygen atoms and the other One set may be an oxygen atom or a single bond.
  • R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; Specifically, it may be a hydrogen atom or a branched or straight-chain alkyl group having 1 to 4 carbon atoms.
  • R 1 , R 2 , R 3 , and R 4 may be identical to each other
  • R 11 , R 12 , R 13 , and R 14 may be identical to each other, provided that R 1 , R 2 , R
  • the set of 3 , and R 4 and the set of R 11 , R 12 , R 13 , and R 14 may be the same as or different from each other.
  • R 1 , R 2 , R 3 , and R 4 are each independently an alkyl group having 1 to 8 carbon atoms, and R 11 , R 12 , R 13 , and R 14 are each independently , a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; or R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 11 , R 12 , R 13 , and R 14 are each independently, each having 1 to 8 carbon atoms It may be an alkyl group.
  • n 11 , n 12 , n 13 , and n 14 are each independently an integer of 0 to 4; Specifically, each independently may be an integer of 0 to 2. According to one embodiment, n 11 , n 12 , n 13 , and n 14 may be 0.
  • the material of Formula 1 may be represented by Formula 2 below:
  • a 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , A 14 , R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , R 14 , n 11 , n 12 , n 13 , and n 14 are as defined in Formula 1 above,
  • n 1 , n 2 , n 3 , and n 4 are each independently an integer of 0 to 4,
  • n 1 , n 2 , n 3 , and n 4 are oxygen (O) atoms
  • at least one of n 1 , n 2 , n 3 , and n 4 . is an integer greater than or equal to 1.
  • a 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are the same as each other, and an oxygen (O) atom or sulfur (S) atom
  • R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are the same as each other and are an alkyl group having 1 to 8 carbon atoms
  • n 1 , n 2 , n 3 , n 4 , n 11 , n 12 , n 13 , and n 14 are integers from 0 to 2 with the proviso that n 1 , n 2 , n 3 , n 4 , n 11 , n 12 , n 13 , and n
  • At least one of 14 may be an integer of 1 or 2.
  • the material of Formula 1 may be represented by Formula 3 below:
  • a 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , A 14 , R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , R 14 , n 11 , n 12 , n 13 , and n 14 are as defined in Formula 1 above,
  • n 1 , n 2 , n 3 , and n 4 are each independently an integer of 0 to 4.
  • the hole transport material of the present invention may be selected from the group consisting of the following Chemical Formulas 4 to 10:
  • the hole transport material according to the present invention can be synthesized through an amination reaction, specifically, a coupling reaction between an aryl halide and an amine under a Pd catalyst, and more specifically, a Buchwald-Hartwig C-N coupling reaction.
  • a method for manufacturing a hole transport material according to an embodiment of the present invention is as follows [Scheme 1]:
  • Examples of the diphenylamine derivative in [Scheme 1] include the following derivatives:
  • a solar cell comprising the hole transport material in the hole transport layer.
  • the solar cell may be a perovskite solar cell.
  • the solar cell may include a first electrode; a photoactive layer disposed on the first electrode and comprising perovskite; and a hole transport layer disposed on the photoactive layer.
  • the solar cell may further include a second electrode on the hole transport layer;
  • An electron transport layer may be further included between the first electrode and the photoactive layer.
  • the photoactive layer further comprises a photoactive material other than the perovskite material, for example a semiconductor material, or the photoactive layer further comprises, in addition to the layer comprising the perovskite, other It may further include another layer comprising a photoactive material, for example a semiconductor layer.
  • the first electrode may be one of an anode and a cathode
  • the second electrode may be the other one of an anode and a cathode.
  • either or both of the first electrode and the second electrode may be coated on the substrate.
  • the hole transport layer after dissolving a hole transport material in a solvent or dispersing it in a dispersion medium, spin coating method, spray coating method, screen printing method, bar coating method, inkjet printing method, slot die coating method and the like, and may be formed by thermal evaporation or sputtering under vacuum.
  • 2,2',7,7'-tetrabromo-9,9'-spirobifluorene 500 mg, 0.79 mmol
  • DPA-mF 840.7 mg, 3.40 mmol
  • tri- tert-Butylphosphonium tetrafluoroborate 13.8 mg, 0.047 mmol
  • sodium tert-butoxide 456.5 mg, 4.75 mmol
  • the crude product is purified by silica gel column chromatography using as a solid to obtain spiro-mF.
  • the resulting solid is dissolved in THF and mixed with hydrazine hydrate.After vigorous stirring, the solution is in methanol (200mL) Precipitation, filtration and washing with methanol Drying in a high vacuum oven afforded the desired product spiro-mF as a pale yellow solid (550 mg, 53.7% yield).
  • DPA-oF was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF, except that 4-bromo-3-fluoro-1-methoxybenzene was used. A green liquid was obtained (4.9 g, 81.3% yield).
  • Spiro-oF was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that DPA-oF was used instead of DPA-mF. A pale yellow solid was obtained (513 mg, 50.1% yield).
  • F-methylDPA was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF, except that p-toluidine and 4-bromo-2-fluorotoluene were used. A white solid was obtained (5.03 g, 84.3% yield).
  • Spiro-TTBF was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that F-methylDPA was used instead of DPA-mF.
  • the crude product was purified by silica gel column chromatography using hexane/methylene chloride (2:1, v/v) as eluent to give spiro-TTBF as a solid. A pale yellow solid was obtained (468 mg, 50.6% yield).
  • DPA-Naph was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF. A brown solid was obtained (5.64 g, 83.5% yield).
  • DPA-OP was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF. A brown solid was obtained (4.85 g, 79.8% yield).
  • DPA-ON was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF. A brown solid was obtained (6.56 g, 82.6% yield).
  • IPA isopropyl alcohol
  • the paste was diluted with 2-methoxyethanol/terpineol (78:22 w/w) 1:6 (g/g).
  • the prepared substrate was heated once more at 500° C. for 1 hour.
  • a solution of lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) in 0.1 M acetonitrile was spin-coated at 3000 rpm for 30 seconds. Thereafter, the Li-treated substrate was sintered at 500° C. for 1 hour.
  • 1,550 mg mL -1 FAPbI 3 and 61 mg MACl were dissolved in a mixture of DMF and DMSO (4:1 volume ratio).
  • 70 ⁇ L of the filtered solution was spin coated on the mp-TiO 2 layer at 8000 rpm.
  • 1 mL diethyl ether was added dropwise for 10 seconds after spin.
  • the film was annealed at 150° C. for 10 minutes on a hotplate.
  • 20 mM n-octylammonium iodide was spin coated on the perovskite layer at 3000 rpm and the film was heated at 100° C. for 1 minute.
  • Spiro-oF (Formula 5) (90.9 mg mL ⁇ 1 ), 15-32 ⁇ L of Li-TFSI, 39 ⁇ L of tBP, and 10 ⁇ L of FK209 were used to prepare the hole transport material, spiro-oF For dissolution, the perovskite solar solution was heated in the same manner as in the comparative example above, except that the spiro-oF solution was heated at 70 °C for 30 min after the addition of tBP for dissolution, and Li-TSFI and FK209 were added after cooling. A battery was prepared.
  • FIG. 1 schematically shows the structure of the n-i-p-perovskite solar cell prepared in Comparative Examples and Preparation Examples of the present invention.
  • a solar cell was manufactured according to the Comparative Example and Preparation Example, and the current density-voltage (JV ) at 100 mA cm -2 , AM 1.5 G using a solar simulator (McScience, K3000 Lab solar cell IV measurement system, Class AAA). ) curves were measured. At this time, the light intensity was corrected using a Si reference electrode (certified by NREL) before the measurement, there was no light penetration before the potential scan, and the JV curve was reverse scan (short-circuited at forward bias 1.2 V). to 0 V) and forward scan (forward bias 0 V to short circuit 1.2 V). The step voltage was fixed at 100 mV.
  • the device of the comparative example exhibited a short circuit current density (J SC ) 26.04 mA cm -2 , an open circuit voltage (V OC ) 1.152 V, a charging factor (FF) of 78.13%, and a maximum PCE of 23.44% in an area of 0.0819 cm 2 , these characteristic values were comparable to those reported for the highest PCE of perovskite solar cells in the prior art.
  • both preparation devices using the fluorinated hole transport material according to the present invention showed almost identical (J SC ) values of 26.34 to 26.35 mA cm -2 and excellent V OC values of over 1.16 V. indicated.
  • the device using the spiro-mF of Preparation Example 1 exhibited a slightly higher FF (80.90%) than the other devices, and, as a result, showed the highest PCE of 24.82%.
  • spiro-TTBF and spiro-S a solar cell having a structure different from that of the preparation example was prepared, and at this time, the material of the comparative example (spiro-OMeTAD (2,2',7,7'-tetrakis[N, A solar cell using N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) showed a low performance of 10% or less, while the same structure using spiro-TTBF and spiro-S It was confirmed that efficiencies as high as 10% or more can be achieved in solar cells.
  • a hole transport material maintaining excellent stability without deterioration even for a long period of time, and a solar cell having improved device performance such as PCE by including the hole transport material in a hole transport layer can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a hole transporting material for a solar cell, and to a solar cell comprising same in a hole transporting layer, wherein the hole transporting material according to the present invention exhibits an improved performance of a solar cell device including PCE, lasts a long time before deteriorating, and has stability, in comparison with a spirobifluorene-type hole transport material of the prior art.

Description

태양 전지용 정공 수송 재료 및 이를 포함하는 태양 전지Hole transport material for solar cell and solar cell comprising same
본 발명은 태양 전지용 정공 수송 재료 및 이를 포함하는 태양 전지에 관한 것이다.The present invention relates to a hole transport material for a solar cell and a solar cell comprising the same.
화석연료의 고갈 우려와 이의 남용에 따른 온난화 및 기후 변화, 그리고 원자력 에너지에 상존하는 안전 우려 등으로 인해, 지속 가능한 에너지인 태양광 발전의 필요성은 그 어느 때보다 높이 요구되고 있다.Due to concerns about the depletion of fossil fuels, global warming and climate change caused by their abuse, and safety concerns that exist in nuclear energy, the need for solar power generation, a sustainable energy, is higher than ever.
태양전지 기술은 빛을 전기에너지로 직접 바꿔주는 기술로서, 실용화되고 있는 태양전지의 대부분은 실리콘과 같은 무기물을 이용한 무기 태양전지이다. 그러나 무기태양전지는 복잡한 제조 공정으로 인하여 제조비용이 증가하고 재료가 고가이기 때문에, 비교적 간단한 제조 공정을 통해 제조비용이 적게 들고, 소재 비용이 저가인 유기 태양전지에 대한 연구가 활발히 이루어지고 있다. 그러나 유기 태양전지는 BHJ의 구조가 공기 중의 수분이나, 산소에 의해 열화되어 그 효율이 빠르게 저하되는 즉 태양전지의 안정성에 큰 문제성이 있으며, 이를 해결하기 위한 방법으로 완전한 실링 기술을 도입하면 안정성이 증가하나 가격이 올라가는 문제점이 있다.Solar cell technology is a technology that directly converts light into electrical energy, and most of the solar cells being put into practical use are inorganic solar cells using inorganic materials such as silicon. However, since the manufacturing cost of the inorganic solar cell is increased due to the complicated manufacturing process and the material is expensive, the manufacturing cost is low through a relatively simple manufacturing process and research on the organic solar cell having a low material cost is being actively conducted. However, in organic solar cells, the structure of BHJ is deteriorated by moisture or oxygen in the air, so that its efficiency is rapidly reduced, that is, there is a big problem in the stability of the solar cell. However, there is a problem that the price increases.
이에 현재 페로브스카이트 태양전지는 염료감응 및 유기 태양전지를 비롯한 차세대 태양전지 중에서 뛰어난 광전지 특성, 비용 절감과 쉬운 공정을 바탕으로 가장 상용화에 근접해 있으며 안정성 및 대면적화에 대한 본격적인 연구가 요구되고 있다. 이 중 정공 수송 재료가 없는 페로브스카이트 태양전지는 정공 수송 재료가 포함된 페로브스카이트 태양전지보다 낮은 전하 추출과 계면에서의 전하 재결합을 보임으로써, 개방전압 및 충전률의 하락을 나타냈다.Therefore, the current perovskite solar cell is the closest to commercialization based on excellent photovoltaic characteristics, cost reduction and easy process among next-generation solar cells including dye-sensitized and organic solar cells, and full-scale research on stability and large area is required. . Among them, the perovskite solar cell without the hole transport material showed lower charge extraction and charge recombination at the interface than the perovskite solar cell containing the hole transport material, indicating a decrease in the open circuit voltage and charge rate.
따라서, 더 높은 전력변환효율(Power Conversion Efficiency, PCE)을 보이기 위해서는 전하 추출의 상승과 계면에서의 원하지 않는 전하 재결합을 완화시켜야 하고, 이를 위해서는 페로브스카이트 태양 전지에서 정공 수송 재료(Hole Transporting Materials, HTM)의 역할이 중요하다.Therefore, in order to exhibit higher power conversion efficiency (PCE), it is necessary to alleviate the rise in charge extraction and unwanted charge recombination at the interface. , HTM) plays an important role.
이와 같은 상황 속에서 페로브스카이트 태양 전지는 독특한 광화학적 특성, 강한 광흡수 능력 및 높은 효율로 최근 수년 동안 활발한 연구가 진행되었으며, 최근에는 20% 이상의 효율을 달성한 바 있다. 이러한 고효율 소자의 제작을 위해서는 정공 수송 재료의 수송 능력이 중요한 요점 중 하나이지만, 현재 보고되어 있는 고효율 페로브스카이트 태양 전지의 정공 수송 층에 활용되는 재료는 한정되어 있다는 문제점이 있다.Under such circumstances, perovskite solar cells have been actively studied for several years due to their unique photochemical properties, strong light absorption ability and high efficiency, and have recently achieved efficiencies of 20% or more. For the fabrication of such a high-efficiency device, the transport capability of the hole transport material is one of the important points, but there is a problem in that the materials used for the hole transport layer of the currently reported high-efficiency perovskite solar cell are limited.
본 발명의 일 목적은 기존의 정공 수송 재료를 대체할 수 있을 만큼 성능이 뛰어난 태양 전지용 정공 수송 재료를 제공하는 것이다.One object of the present invention is to provide a hole transport material for a solar cell excellent in performance to be able to replace the conventional hole transport material.
본 발명의 다른 일 목적은 상기 태양 전지용 정공 수송 재료를 정공 수송 층에 포함하는 태양 전지를 제공하는 것이다.Another object of the present invention is to provide a solar cell including the hole transport material for a solar cell in a hole transport layer.
본 발명의 일 양태에 따르면, 하기 화학식 1로 표시되는 태양 전지용 정공 수송 재료가 제공된다:According to one aspect of the present invention, there is provided a hole transport material for a solar cell represented by the following formula (1):
[화학식 1][Formula 1]
Figure PCTKR2020017803-appb-I000001
Figure PCTKR2020017803-appb-I000001
상기 화학식 1에서,In Formula 1,
Ar1, Ar2, Ar3, 및 Ar4는, 각각 독립적으로, 0 내지 4개의 불소(F) 원자에 의해 치환된, 페닐 또는 나프틸기이고, Ar 1 , Ar 2 , Ar 3 , and Ar 4 are each independently a phenyl or naphthyl group substituted with 0 to 4 fluorine (F) atoms,
A1, A2, A3, A4, A11, A12, A13, 및 A14는, 각각 독립적으로, 단일 결합, 산소(O) 원자, 또는 황(S) 원자이고,A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are each independently a single bond, an oxygen (O) atom, or a sulfur (S) atom,
R1, R2, R3, R4, R11, R12, R13, 및 R14는, 각각 독립적으로, 수소 원자 또는 탄소수 1 내지 8의 알킬기이고,R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms;
n11, n12, n13, 및 n14 는, 각각 독립적으로 0 내지 4의 정수이고, n 11 , n 12 , n 13 , and n 14 are each independently an integer of 0 to 4,
단, 상기 Ar1, Ar2, Ar3, 및 Ar4가 페닐기이고 상기 A1, A2, A3, A4, A11, A12, A13, 및 A14가 산소(O) 원자일 경우, Ar1, Ar2, Ar3, 및 Ar4 중 적어도 하나는 1개 이상의 불소 원자로 치환된다.provided that Ar 1 , Ar 2 , Ar 3 , and Ar 4 are a phenyl group, and A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are an oxygen (O) atom. In this case, at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 is substituted with one or more fluorine atoms.
본 발명의 다른 일 양태에 따르면, 상기 정공 수송 재료를 정공 수송 층에 포함하는 것을 특징으로 하는 태양 전지가 제공된다.According to another aspect of the present invention, there is provided a solar cell comprising the hole transport material in the hole transport layer.
본 발명에 따른 정공 수송 재료는 장기간 동안에도 열화가 없이 우수한 안정성이 유지되는 등, 재료 자체의 특성이 우수할 뿐만 아니라, 이를 정공 수송 층에 포함하는 태양 전지는 PCE와 같은 소자 성능이 기존의 정공 수송 재료를 사용한 경우에 비하여 개선을 나타낸다.The hole transport material according to the present invention not only has excellent properties of the material itself, such as maintaining excellent stability without deterioration even for a long period of time, but also the solar cell including it in the hole transport layer has the same device performance as PCE. It shows an improvement compared to the case where a transport material is used.
도 1은 본 발명의 비교예 및 제조예에서 제조한 n-i-p-페로브스카이트 태양 전지의 구조를 도식적으로 나타내는 도면이다.1 is a diagram schematically showing the structure of an n-i-p-perovskite solar cell prepared in Comparative Examples and Preparation Examples of the present invention.
도 2a 내지 도 2c는 비교예와 제조예에 따라 제작한 태양 전지의 J-V 곡선을 나타내고, 도 2d는 각 태양 전지의 PCE 값 분포도를 나타내는 그래프이다.2A to 2C are graphs showing J-V curves of solar cells manufactured according to Comparative Examples and Preparation Examples, and FIG. 2D is a graph showing a distribution of PCE values of each solar cell.
도 3a는 비교예와 제조예에 따라 제작한 태양 전지의 장기간 안정성을 알아보기 위한 것으로, 시간에 따른 PCE 값의 변화를 나타내는 그래프이고, 도 3b 내지 도 3d는 시간에 따른 J-V 곡선의 변화를 나타내는 것이다.3A is a graph showing the change in PCE value with time, which is for examining the long-term stability of solar cells manufactured according to Comparative Examples and Preparation Examples, and FIGS. 3B to 3D are graphs showing the change in JV curve with time will be.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 출원에서 사용한 용어는 단지 특정한 구현예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. The terminology used in this application is only used to describe specific embodiments and is not intended to limit the present invention. Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다, "함유"한다, "가지다"라고 할 때, 이는 특별히 달리 정의되지 않는 한, 다른 구성 요소를 더 포함할 수 있다는 것을 의미한다.Throughout the specification, when a part "includes", "contains", or "has" a certain element, it means that other elements may be further included unless otherwise defined.
명세서 전체에서, "페로브스카이트 태양 전지"는 페로브스카이트 결정 구조를 갖는 유무기 할라이드 물질을 포함하는 태양 전지를 의미한다.Throughout the specification, "perovskite solar cell" refers to a solar cell including an organic-inorganic halide material having a perovskite crystal structure.
본 발명의 일 양태에 따르면, 하기 화학식 1로 표시되는 태양 전지용 정공 수송 재료, 구체적으로는 페로브스카이트 태양 전지용 정공 수송 재료가 제공된다:According to one aspect of the present invention, there is provided a hole transport material for a solar cell represented by the following formula (1), specifically, a hole transport material for a perovskite solar cell:
[화학식 1][Formula 1]
Figure PCTKR2020017803-appb-I000002
Figure PCTKR2020017803-appb-I000002
상기 화학식 1에서, Ar1, Ar2, Ar3, 및 Ar4는, 각각 독립적으로, 0 내지 4개의 불소(F) 원자에 의해 치환된, 페닐 또는 나프틸기이고; 구체적으로는 각각 독립적으로 0 내지 2개의 불소 원자에 의해 치환된 것일 수 있으며; 더 구체적으로는 각각 독립적으로, 0 내지 2개의 불소 원자에 의해 치환된 페닐기일 수 있다. 일 구현예에 따르면, 화학식 1의 재료는 Ar1, Ar2, Ar3, 및 Ar4 중 하나 이상이 1개 또는 2개의 불소(F) 원자에 의해 치환된 것일 수 있고, 다른 일 구현예에 따르면, Ar1, Ar2, Ar3, 및 Ar4 중 하나 이상이 1개 또는 2개의 불소(F) 원자에 의해 치환된 페닐기일 수 있다.In Formula 1, Ar 1 , Ar 2 , Ar 3 , and Ar 4 are each independently a phenyl or naphthyl group substituted with 0 to 4 fluorine (F) atoms; Specifically, each independently may be one substituted with 0 to 2 fluorine atoms; More specifically, each independently may be a phenyl group substituted with 0 to 2 fluorine atoms. According to one embodiment, the material of Formula 1 may be one in which at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 is substituted with one or two fluorine (F) atoms, and in another embodiment Accordingly, at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 may be a phenyl group substituted with one or two fluorine (F) atoms.
또한, 상기 화학식 1에서, A1, A2, A3, A4, A11, A12, A13, 및 A14는, 각각 독립적으로, 단일 결합, 산소(O) 원자, 또는 황(S) 원자이고; 구체적으로는, 각각 독립적으로 단일 결합 또는 산소 원자일 수 있다. 구체적으로, A1, A2, A3, 및 A4는 서로 동일할 수 있고, A11, A12, A13, 및 A14는 서로 동일할 수 있으며, 단, A1, A2, A3, 및 A4의 세트와 A11, A12, A13, 및 A14의 세트는 서로 동일하거나, 서로 상이할 수도 있다. 일 구현예에 따르면, 화학식 1의 재료는 A1, A2, A3, A4, A11, A12, A13, 및 A14 중 적어도 하나가 산소(O) 원자 또는 황(S) 원자인 것일 수 있다. 다른 일 구현예에 따르면, 화학식 1의 재료는 A1, A2, A3, 및 A4의 세트 및 A11, A12, A13, 및 A14의 세트 중 한 세트가 모두 산소 원자이고 다른 한 세트는 산소 원자 또는 단일 결합일 수 있다.In addition, in Formula 1, A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are each independently a single bond, an oxygen (O) atom, or sulfur (S ) is an atom; Specifically, each independently may be a single bond or an oxygen atom. Specifically, A 1 , A 2 , A 3 , and A 4 may be identical to each other , and A 11 , A 12 , A 13 , and A 14 may be identical to each other, provided that A 1 , A 2 , A The set of 3 , and A 4 and the set of A 11 , A 12 , A 13 , and A 14 may be the same as or different from each other. According to one embodiment, in the material of Formula 1 , at least one of A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 is an oxygen (O) atom or a sulfur (S) atom may be According to another embodiment, the material of formula 1 has a set of A 1 , A 2 , A 3 , and A 4 and one of the sets of A 11 , A 12 , A 13 , and A 14 are all oxygen atoms and the other One set may be an oxygen atom or a single bond.
또한, 상기 화학식 1에서, R1, R2, R3, R4, R11, R12, R13, 및 R14는, 각각 독립적으로, 수소 원자 또는 탄소수 1 내지 8의 알킬기이고; 구체적으로는 수소 원자 또는 탄소수 1 내지 4의 분지쇄 또는 직쇄 알킬기일 수 있다. 구체적으로, R1, R2, R3, 및 R4 는 서로 동일할 수 있고, R11, R12, R13, 및 R14는 서로 동일할 수 있으며, 단, R1, R2, R3, 및 R4 의 세트와 R11, R12, R13, 및 R14 의 세트는 서로 동일하거나, 서로 상이할 수도 있다. 일 구현예에 따르면, 화학식 1의 재료는 R1, R2, R3, 및 R4 가 각각 독립적으로, 탄소수 1 내지 8의 알킬기이고 R11, R12, R13, 및 R14 가 각각 독립적으로, 수소 원자 또는 탄소수 1 내지 8의 알킬기이거나; 또는 R1, R2, R3, 및 R4 가 각각 독립적으로, 수소 원자 또는 탄소수 1 내지 8의 알킬기이고 R11, R12, R13, 및 R14 가 각각 독립적으로, 탄소수 1 내지 8의 알킬기인 것일 수 있다.In addition, in Formula 1, R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; Specifically, it may be a hydrogen atom or a branched or straight-chain alkyl group having 1 to 4 carbon atoms. Specifically, R 1 , R 2 , R 3 , and R 4 may be identical to each other , and R 11 , R 12 , R 13 , and R 14 may be identical to each other, provided that R 1 , R 2 , R The set of 3 , and R 4 and the set of R 11 , R 12 , R 13 , and R 14 may be the same as or different from each other. According to one embodiment, in the material of Formula 1, R 1 , R 2 , R 3 , and R 4 are each independently an alkyl group having 1 to 8 carbon atoms, and R 11 , R 12 , R 13 , and R 14 are each independently , a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; or R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 11 , R 12 , R 13 , and R 14 are each independently, each having 1 to 8 carbon atoms It may be an alkyl group.
또한, 상기 화학식 1에서, n11, n12, n13, 및 n14 는, 각각 독립적으로 0 내지 4의 정수이고; 구체적으로는 각각 독립적으로 0 내지 2의 정수일 수 있다. 일 구현예에 따르면, n11, n12, n13, 및 n14 는 0일 수 있다.In addition, in Formula 1, n 11 , n 12 , n 13 , and n 14 are each independently an integer of 0 to 4; Specifically, each independently may be an integer of 0 to 2. According to one embodiment, n 11 , n 12 , n 13 , and n 14 may be 0.
본 발명의 일 구현예에 따르면, 상기 화학식 1의 재료는 하기 화학식 2로 표시될 수 있다:According to one embodiment of the present invention, the material of Formula 1 may be represented by Formula 2 below:
[화학식 2][Formula 2]
Figure PCTKR2020017803-appb-I000003
Figure PCTKR2020017803-appb-I000003
상기 화학식 2에서,In Formula 2,
A1, A2, A3, A4, A11, A12, A13, A14, R1, R2, R3, R4, R11, R12, R13, R14, n11, n12, n13, 및 n14 는 상기 화학식 1에서 정의한 바와 같고, A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , A 14 , R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , R 14 , n 11 , n 12 , n 13 , and n 14 are as defined in Formula 1 above,
n1, n2, n3, 및 n4 는, 각각 독립적으로 0 내지 4의 정수이고, n 1 , n 2 , n 3 , and n 4 are each independently an integer of 0 to 4,
단, 상기 A1, A2, A3, A4, A11, A12, A13, 및 A14가 산소(O) 원자일 경우 n1, n2, n3, 및 n4 중 적어도 하나는 1 이상의 정수이다.However, when A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are oxygen (O) atoms, at least one of n 1 , n 2 , n 3 , and n 4 . is an integer greater than or equal to 1.
본 발명의 일 구현예에 따르면, 상기 화학식 2에서, A1, A2, A3, A4, A11, A12, A13, 및 A14 가 서로 동일하고, 산소(O) 원자 또는 황(S) 원자이고, R1, R2, R3, R4, R11, R12, R13, 및 R14 이 서로 동일하고, 탄소수 1 내지 8의 알킬기이고, n1, n2, n3, n4, n11, n12, n13, 및 n14 는 0 내지 2의 정수이고, 단, n1, n2, n3, n4, n11, n12, n13, 및 n14 중 적어도 하나는 1 또는 2의 정수일 수 있다.According to one embodiment of the present invention, in Formula 2, A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are the same as each other, and an oxygen (O) atom or sulfur (S) atom, R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are the same as each other and are an alkyl group having 1 to 8 carbon atoms, n 1 , n 2 , n 3 , n 4 , n 11 , n 12 , n 13 , and n 14 are integers from 0 to 2 with the proviso that n 1 , n 2 , n 3 , n 4 , n 11 , n 12 , n 13 , and n At least one of 14 may be an integer of 1 or 2.
또한, 본 발명의 다른 일 구현예에 따르면, 상기 화학식 1의 재료는 하기 화학식 3으로 표시될 수 있다:In addition, according to another embodiment of the present invention, the material of Formula 1 may be represented by Formula 3 below:
[화학식 3][Formula 3]
Figure PCTKR2020017803-appb-I000004
Figure PCTKR2020017803-appb-I000004
상기 화학식 3에서,In Formula 3,
A1, A2, A3, A4, A11, A12, A13, A14, R1, R2, R3, R4, R11, R12, R13, R14, n11, n12, n13, 및 n14 는 상기 화학식 1에서 정의한 바와 같고,A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , A 14 , R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , R 14 , n 11 , n 12 , n 13 , and n 14 are as defined in Formula 1 above,
n1, n2, n3, 및 n4 는, 각각 독립적으로 0 내지 4의 정수이다.n 1 , n 2 , n 3 , and n 4 are each independently an integer of 0 to 4.
본 발명의 다른 일 구현예에 따르면, 본 발명의 정공 수송 재료는 하기 화학식 4 내지 화학식 10으로 이루어진 군에서 선택될 수 있다:According to another embodiment of the present invention, the hole transport material of the present invention may be selected from the group consisting of the following Chemical Formulas 4 to 10:
[화학식 4] [Formula 4]
Figure PCTKR2020017803-appb-I000005
Figure PCTKR2020017803-appb-I000005
[화학식 5] [Formula 5]
Figure PCTKR2020017803-appb-I000006
Figure PCTKR2020017803-appb-I000006
[화학식 6] [Formula 6]
Figure PCTKR2020017803-appb-I000007
Figure PCTKR2020017803-appb-I000007
[화학식 7] [Formula 7]
Figure PCTKR2020017803-appb-I000008
Figure PCTKR2020017803-appb-I000008
[화학식 8] [Formula 8]
Figure PCTKR2020017803-appb-I000009
Figure PCTKR2020017803-appb-I000009
[화학식 9] [Formula 9]
Figure PCTKR2020017803-appb-I000010
Figure PCTKR2020017803-appb-I000010
[화학식 10][Formula 10]
Figure PCTKR2020017803-appb-I000011
Figure PCTKR2020017803-appb-I000011
본 발명에 따른 정공 수송 재료는 아민화 반응, 구체적으로는 Pd 촉매 하에 아릴 할라이드와 아민의 커플링 반응을 통해, 더 구체적으로는 Buchwald-Hartwig C-N 커플링 반응을 통해 합성할 수 있다. 본 발명의 일 구현예에 따른 정공 수송 재료의 제조 방법을 도식적으로 나타내면 하기 [반응식 1] 과 같다:The hole transport material according to the present invention can be synthesized through an amination reaction, specifically, a coupling reaction between an aryl halide and an amine under a Pd catalyst, and more specifically, a Buchwald-Hartwig C-N coupling reaction. A schematic representation of a method for manufacturing a hole transport material according to an embodiment of the present invention is as follows [Scheme 1]:
[반응식 1][Scheme 1]
Figure PCTKR2020017803-appb-I000012
Figure PCTKR2020017803-appb-I000012
상기 [반응식 1]에서 디페닐아민 유도체의 예로는 하기의 유도체를 들 수 있다:Examples of the diphenylamine derivative in [Scheme 1] include the following derivatives:
Figure PCTKR2020017803-appb-I000013
Figure PCTKR2020017803-appb-I000013
본 발명의 다른 일 양태에 따르면, 상기 정공 수송 재료를 정공 수송 층에 포함하는 것을 특징으로 하는 태양 전지가 제공된다.According to another aspect of the present invention, there is provided a solar cell comprising the hole transport material in the hole transport layer.
본 발명의 일 구현예에 따르면, 상기 태양 전지는 페로브스카이트 태양 전지일 수 있다. 구체적으로, 상기 태양 전지는 제1 전극; 상기 제1 전극 상에 배치되고 페로브스카이트를 포함하는 광활성 층; 및 상기 광활성 층 상에 배치되는 정공 수송 층을 포함하는 태양 전지일 수 있다. 상기 태양 전지는 상기 정공 수송 층 상에 제2 전극을 더 포함할 수 있고; 상기 제1 전극과 상기 광활성층 사이에 전자 전달 층을 더 포함할 수 있다. 또한, 상기 태양 전지는 상기 광활성 층이 페로브스카이트 물질 이외의 다른 광활성 물질, 예를 들어 반도체 물질을 더 포함하거나, 또는 상기 광활성층은 상기 페로브스카이트를 포함하는 층 이외에, 추가의 다른 광활성 물질을 포함하는 다른 층, 예를 들어, 반도체 층을 더 포함할 수 있다. According to one embodiment of the present invention, the solar cell may be a perovskite solar cell. Specifically, the solar cell may include a first electrode; a photoactive layer disposed on the first electrode and comprising perovskite; and a hole transport layer disposed on the photoactive layer. the solar cell may further include a second electrode on the hole transport layer; An electron transport layer may be further included between the first electrode and the photoactive layer. Further, in the solar cell, the photoactive layer further comprises a photoactive material other than the perovskite material, for example a semiconductor material, or the photoactive layer further comprises, in addition to the layer comprising the perovskite, other It may further include another layer comprising a photoactive material, for example a semiconductor layer.
상기 태양 전지에서, 상기 제1 전극은 애노드 및 캐소드 중 하나 일 수 있고, 상기 제2 전극은 애노드 및 캐소드 중 다른 하나일 수 있다. 또한, 상기 제1 전극과 제2 전극 중 어느 하나 또는 둘 모두가 기판 상에 코팅될 수 있다. In the solar cell, the first electrode may be one of an anode and a cathode, and the second electrode may be the other one of an anode and a cathode. In addition, either or both of the first electrode and the second electrode may be coated on the substrate.
상기 정공 수송 층의 형성 방법으로서 정공 수송 재료를 용매에 용해 또는 분산 매질에 분산시킨 후, 스핀 코팅법, 스프레이 코팅법, 스크린 인쇄법, 바(bar) 코팅법, 잉크젯 프린팅법, 슬롯다이 코팅법 등에 의해 형성할 수 있으며, 진공 하에서 열증착이나 스퍼터링 방식에 의해 형성될 수도 있다.As a method of forming the hole transport layer, after dissolving a hole transport material in a solvent or dispersing it in a dispersion medium, spin coating method, spray coating method, screen printing method, bar coating method, inkjet printing method, slot die coating method and the like, and may be formed by thermal evaporation or sputtering under vacuum.
이하, 본 발명의 이해를 돕기 위하여 실시예를 참고하여 본 발명을 보다 상세히 설명한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples to aid understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.
합성예 1. 스피로-mF (화학식 4)의 합성Synthesis Example 1. Synthesis of spiro-mF (Formula 4)
Figure PCTKR2020017803-appb-I000014
Figure PCTKR2020017803-appb-I000014
(1) DPA-mF 의 합성(1) Synthesis of DPA-mF
2목 둥근바닥 플라스크에, p-아니시딘 (3 g, 24.36 mmol), 4-브로모-2-플루오로-1-메톡시벤젠 (5.49 g, 26.79 mmol), 트리-tert-부틸포스포늄 테트라플루오로보레이트 (212 mg, 0.73 mmol), 및 소듐 tert-부톡시드 (4.68 g, 48.72 mmol)를 무수 톨루엔 (40 mL)에 용해하고, 15분 동안 아르곤으로 퍼어지하였다. 그 후, 446 mg의 트리스(디벤질리덴아세톤)디팔라듐(0) (0.49 mmol)을 반응 혼합물에 첨가한 후, 20 분 동안 아르곤으로 다시 퍼어지하였다. 그 후, 반응 혼합물을 하룻밤 동안 120℃에서 교반하였다. 물을 첨가하여 반응을 켄치(quench)한 후, 혼합물을 에틸 아세테이트로 추출하였다. 유기층을 무수 MgSO4 으로 건조하고 용매를 감압 제거하였다. 조 생성물을, 헥산/에틸 아세테이트 (9:1, v/v)을 용리액으로 사용하여 실리카겔 칼럼 크로마토그래피함으로써 조 생성물을 정제하여 DPA-mF를 노란색 액체로서 수득하였다 (5.2 g, 86.3% 수율).In a two-neck round-bottom flask, p-anisidine (3 g, 24.36 mmol), 4-bromo-2-fluoro-1-methoxybenzene (5.49 g, 26.79 mmol), tri-tert-butylphosphonium tetra Fluoroborate (212 mg, 0.73 mmol), and sodium tert-butoxide (4.68 g, 48.72 mmol) were dissolved in anhydrous toluene (40 mL) and purged with argon for 15 min. Then, 446 mg of tris(dibenzylideneacetone)dipalladium(0) (0.49 mmol) was added to the reaction mixture, followed by purging again with argon for 20 minutes. After that, the reaction mixture was stirred at 120° C. overnight. After the reaction was quenched by addition of water, the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO 4 , and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate (9:1, v/v) as eluent to give DPA-mF as a yellow liquid (5.2 g, 86.3% yield).
Figure PCTKR2020017803-appb-I000015
Figure PCTKR2020017803-appb-I000015
(2) 스피로-mF (화학식 4)의 합성(2) Synthesis of spiro-mF (Formula 4)
2목 둥근바닥 플라스크에 2,2',7,7'-테트라브로모-9,9'-스피로비플루오렌 (500 mg, 0.79 mmol), DPA-mF (840.7 mg, 3.40 mmol), 트리-tert-부틸포스포늄 테트라플루오로보레이트 (13.8 mg, 0.047 mmol), 및 소듐 tert-부톡시드 (456.5 mg, 4.75 mmol)를 무수 톨루엔 (40 mL0에 용해하고 15분 동안 아르곤으로 퍼어지하였다. 그 후, 28.9 mg의 트리스(디벤질리덴아세톤)디팔라듐(0) (0.032 mmol)을 반응 혼합물에 첨가한 후, 20 분 동안 아르곤으로 다시 퍼어지하였다. 그 후, 반응 혼합물을 하룻밤 동안 120℃에서 교반하였다. 물을 첨가하여 반응을 켄치한 후, 혼합물을 에틸 아세테이트로 추출하였다. 유기층을 무수 MgSO4로 건조하고, 용매를 감압 제거하였다. 헥산/에틸 아세테이트 (2:1, v/v)를 용리액으로 사용하여 실리카 겔 칼럼 크로마토그래피로 조 생성물을 정제함으로써 스피로-mF를 고체로서 수득하였다. 생성된 고체를 THF에 용해하고 히드라진 수화물과 혼합하였다. 격렬히 교반한 후, 용액을 메탄올 (200 mL) 중에서 침전시키고, 여과하고, 메탄올로 세척하였다. 고진공 오븐에서 건조시켜 목적하는 생성물 스피로-mF를 연한 노란색 고체로서 수득하였다 (550 mg, 53.7% 수율). 2,2',7,7'-tetrabromo-9,9'-spirobifluorene (500 mg, 0.79 mmol), DPA-mF (840.7 mg, 3.40 mmol), tri- tert-Butylphosphonium tetrafluoroborate (13.8 mg, 0.047 mmol), and sodium tert-butoxide (456.5 mg, 4.75 mmol) were dissolved in anhydrous toluene (40 mL0) and purged with argon for 15 min. , 28.9 mg of tris(dibenzylideneacetone)dipalladium(0) (0.032 mmol) was added to the reaction mixture, then purged with argon for 20 minutes again.Then the reaction mixture was stirred at 120° C. overnight After quenching the reaction by adding water, extract the mixture with ethyl acetate.The organic layer was dried over anhydrous MgSO 4 , and the solvent was removed under reduced pressure.Hexane/ethyl acetate (2:1, v/v) was used as the eluent. The crude product is purified by silica gel column chromatography using as a solid to obtain spiro-mF.The resulting solid is dissolved in THF and mixed with hydrazine hydrate.After vigorous stirring, the solution is in methanol (200mL) Precipitation, filtration and washing with methanol Drying in a high vacuum oven afforded the desired product spiro-mF as a pale yellow solid (550 mg, 53.7% yield).
Figure PCTKR2020017803-appb-I000016
Figure PCTKR2020017803-appb-I000016
합성예 2. 스피로-oF (화학식 5)의 합성Synthesis Example 2. Synthesis of spiro-oF (Formula 5)
Figure PCTKR2020017803-appb-I000017
Figure PCTKR2020017803-appb-I000017
(1) DPA-oF 의 합성(1) Synthesis of DPA-oF
4-브로모-3-플루오로-1-메톡시벤젠을 사용한 것을 제외하고는, DPA-mF의 합성예 1-(1)에서와 동일한 절차에 따라 DPA-oF를 합성하였다. 녹색 액체가 수득되었다 (4.9 g, 81.3% 수율). DPA-oF was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF, except that 4-bromo-3-fluoro-1-methoxybenzene was used. A green liquid was obtained (4.9 g, 81.3% yield).
Figure PCTKR2020017803-appb-I000018
Figure PCTKR2020017803-appb-I000018
(2) 스피로-oF (화학식 5)의 합성(2) Synthesis of spiro-oF (Formula 5)
DPA-mF 대신에 DPA-oF를 사용한 것을 제외하고는, 스피로-mF의 합성예 1-(2)에서와 동일한 절차에 따라 스피로-oF를 합성하였다. 연한 노란색 고체가 수득되었다 (513 mg, 50.1% 수율).Spiro-oF was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that DPA-oF was used instead of DPA-mF. A pale yellow solid was obtained (513 mg, 50.1% yield).
Figure PCTKR2020017803-appb-I000019
Figure PCTKR2020017803-appb-I000019
합성예 3. 스피로-TTBF (화학식 6)의 합성Synthesis Example 3. Synthesis of spiro-TTBF (Formula 6)
Figure PCTKR2020017803-appb-I000020
Figure PCTKR2020017803-appb-I000020
(1) F-methylDPA 의 합성(1) Synthesis of F-methylDPA
p-톨루이딘 및 4-브로모-2-플루오로톨루엔을 사용한 것을 제외하고는, DPA-mF의 합성예 1-(1)에서와 동일한 절차에 따라 F-methylDPA를 합성하였다. 흰색 고체가 수득되었다 (5.03 g, 84.3% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 8.08 (s, 1H), 7.06 (m, 3H), 6.96 (m, 2H), 6.71 (m, 2H), 2.22 (s, 3H), 2.11 (s, 3H).F-methylDPA was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF, except that p-toluidine and 4-bromo-2-fluorotoluene were used. A white solid was obtained (5.03 g, 84.3% yield). 1 H NMR (400 MHz, DMSO-d6), δ (ppm): 8.08 (s, 1H), 7.06 (m, 3H), 6.96 (m, 2H), 6.71 (m, 2H), 2.22 (s, 3H) ), 2.11 (s, 3H).
(2) 스피로-TTBF (화학식 6)의 합성(2) Synthesis of spiro-TTBF (Formula 6)
DPA-mF 대신에 F-methylDPA를 사용한 것을 제외하고는, 스피로-mF의 합성예 1-(2)에서와 동일한 절차에 따라 스피로-TTBF를 합성하였다. 헥산/메틸렌 클로라이드 (2:1, v/v)를 용리액으로 사용하여 실리카 겔 칼럼 크로마토그래피로 조 생성물을 정제함으로써 스피로-TTBF를 고체로서 수득하였다. 연한 노란색 고체가 수득되었다 (468 mg, 50.6% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 7.64 (d, 4H), 7.08 (m, 4H), 6.85 (m, 4H), 6.54 (m, 4H), 6.35 (m, 4H), 2.26 (s, 12H), 2.14 (s, 12H).Spiro-TTBF was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that F-methylDPA was used instead of DPA-mF. The crude product was purified by silica gel column chromatography using hexane/methylene chloride (2:1, v/v) as eluent to give spiro-TTBF as a solid. A pale yellow solid was obtained (468 mg, 50.6% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 7.64 (d, 4H), 7.08 (m, 4H), 6.85 (m, 4H), 6.54 (m, 4H), 6.35 (m, 4H) ), 2.26 (s, 12H), 2.14 (s, 12H).
합성예 4. 스피로-S (화학식 7)의 합성Synthesis Example 4. Synthesis of spiro-S (Formula 7)
Figure PCTKR2020017803-appb-I000021
Figure PCTKR2020017803-appb-I000021
(1) S-DPA 의 합성(1) Synthesis of S-DPA
4-메틸티오아닐린 및 4-브로모티오아니솔을 사용한 것을 제외하고는, DPA-mF의 합성예 1-(1)에서와 동일한 절차에 따라 S-DPA를 합성하였다. 노란색 고체가 수득되었다 (4.54 g, 81.2% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 8.18 (s, 1H), 7.18 (d, 4H), 6.99 (d, 4H), 2.39 (s, 6H).S-DPA was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF, except that 4-methylthioaniline and 4-bromothioanisole were used. A yellow solid was obtained (4.54 g, 81.2% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 8.18 (s, 1H), 7.18 (d, 4H), 6.99 (d, 4H), 2.39 (s, 6H).
(2) 스피로-S (화학식 7)의 합성(2) Synthesis of spiro-S (Formula 7)
DPA-mF 대신에 S-DPA를 사용한 것을 제외하고는, 스피로-mF의 합성예 1-(2)에서와 동일한 절차에 따라 스피로-S를 합성하였다. 연한 노란색 고체가 수득되었다 (528 mg, 49.3% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 7.61 (d, 4H), 7.12 (d, 16H), 6.87 (d, 4H), 6.81 (d, 16H), 6.32 (s, 4H), 2.41 (s, 24H).Spiro-S was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that S-DPA was used instead of DPA-mF. A pale yellow solid was obtained (528 mg, 49.3% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 7.61 (d, 4H), 7.12 (d, 16H), 6.87 (d, 4H), 6.81 (d, 16H), 6.32 (s, 4H) ), 2.41 (s, 24H).
합성예 5. 스피로-Naph (화학식 8)의 합성Synthesis Example 5. Synthesis of spiro-Naph (Formula 8)
Figure PCTKR2020017803-appb-I000022
Figure PCTKR2020017803-appb-I000022
(1) DPA-Naph의 합성(1) Synthesis of DPA-Naph
2-브로모-6-메톡시나프탈렌을 사용한 것을 제외하고는, DPA-mF의 합성예 1-(1)에서와 동일한 절차에 따라 DPA-Naph를 합성하였다. 갈색 고체가 수득되었다 (5.64 g, 83.5% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 7.93 (s, 1H), 7.65 (d, 1H), 7.54 (d, 1H), 7.23 (m, 1H), 7.16 (m, 2H), 7.11 (d, 2H), 7.02 (dd, 1H), 6.89 (d, 2H), 3.81 (d, 3H), 3.72 (d, 3H)Except for using 2-bromo-6-methoxynaphthalene, DPA-Naph was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF. A brown solid was obtained (5.64 g, 83.5% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 7.93 (s, 1H), 7.65 (d, 1H), 7.54 (d, 1H), 7.23 (m, 1H), 7.16 (m, 2H) ), 7.11 (d, 2H), 7.02 (dd, 1H), 6.89 (d, 2H), 3.81 (d, 3H), 3.72 (d, 3H)
(2) 스피로-Naph (화학식 8)의 합성(2) Synthesis of spiro-Naph (Formula 8)
DPA-mF 대신에 DPA-Naph를 사용한 것을 제외하고는, 스피로-mF의 합성예 1-(2)에서와 동일한 절차에 따라 스피로-Naph를 합성하였다. 연한 노란색 고체가 수득되었다 (583 mg, 51.7% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 7.73 (d, 4H), 7.56 (t, 8H), 7.28 (d, 8H), 7.11 (m, 8H), 7.02 (d, 8H), 6.95 (d, 8H), 6.84 (d, 4H), 6.42 (s, 4H), 6.41 (d, 3H), 3.89 (s, 12H) 3.80 (s, 12H).Spiro-Naph was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that DPA-Naph was used instead of DPA-mF. A pale yellow solid was obtained (583 mg, 51.7% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 7.73 (d, 4H), 7.56 (t, 8H), 7.28 (d, 8H), 7.11 (m, 8H), 7.02 (d, 8H) ), 6.95 (d, 8H), 6.84 (d, 4H), 6.42 (s, 4H), 6.41 (d, 3H), 3.89 (s, 12H) 3.80 (s, 12H).
합성예 6. 스피로-OP (화학식 9)의 합성Synthesis Example 6. Synthesis of spiro-OP (Formula 9)
Figure PCTKR2020017803-appb-I000023
Figure PCTKR2020017803-appb-I000023
(1) DPA-OP 의 합성(1) Synthesis of DPA-OP
2-브로모나프탈렌을 사용한 것을 제외하고는, DPA-mF의 합성예 1-(1)에서와 동일한 절차에 따라 DPA-OP를 합성하였다. 갈색 고체가 수득되었다 (4.85 g, 79.8% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 8.10 (s, 1H), 7.70 (t, 2H), 7.58 (d, 1H), 7.32 (m, 1H), 7.17 (m, 5H), 6.92 (m, 2H), 3.74 (s, 3H).Except for using 2-bromonaphthalene, DPA-OP was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF. A brown solid was obtained (4.85 g, 79.8% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 8.10 (s, 1H), 7.70 (t, 2H), 7.58 (d, 1H), 7.32 (m, 1H), 7.17 (m, 5H) ), 6.92 (m, 2H), 3.74 (s, 3H).
(2) 스피로-OP (화학식 9)의 합성(2) Synthesis of spiro-OP (Formula 9)
DPA-mF 대신에 DPA-OP를 사용한 것을 제외하고는, 스피로-mF의 합성예 1-(2)에서와 동일한 절차에 따라 스피로-OP를 합성하였다. 연한 노란색 고체가 수득되었다 (531 mg, 51.4% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 7.79 (d, 4H), 7.72 (d, 4H), 7.54 (m, 8H), 7.34 (m, 8H), 7.19 (m, 4H), 7.07 (dd, 4H), 7.01 (d, 8H), 6.90 (d, 8H), 6.85 (dd, 4H), 6.43 (d, 4H), 3.75 (s, 12H).Spiro-OP was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that DPA-OP was used instead of DPA-mF. A pale yellow solid was obtained (531 mg, 51.4% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 7.79 (d, 4H), 7.72 (d, 4H), 7.54 (m, 8H), 7.34 (m, 8H), 7.19 (m, 4H) ), 7.07 (dd, 4H), 7.01 (d, 8H), 6.90 (d, 8H), 6.85 (dd, 4H), 6.43 (d, 4H), 3.75 (s, 12H).
합성예 7. 스피로-ON (화학식 10)의 합성Synthesis Example 7. Synthesis of spiro-ON (Formula 10)
Figure PCTKR2020017803-appb-I000024
Figure PCTKR2020017803-appb-I000024
(1) DPA-ON 의 합성(1) Synthesis of DPA-ON
아닐린 및 2-브로모-6-메톡시나프탈렌을 사용한 것을 제외하고는, DPA-mF의 합성예 1-(1)에서와 동일한 절차에 따라 DPA-ON을 합성하였다. 갈색 고체가 수득되었다 (6.56 g, 82.6% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 8.23 (s, 1H), 7.70 (d, 1H), 7.62 (d, 1H), 7.44 (m, 1H), 7.24 (m, 4H), 7.13 (m, 2H), 7.05 (m, 1H), 6.82 (m, 1H), 3.83 (s, 3H).Except for using aniline and 2-bromo-6-methoxynaphthalene, DPA-ON was synthesized according to the same procedure as in Synthesis Example 1-(1) of DPA-mF. A brown solid was obtained (6.56 g, 82.6% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 8.23 (s, 1H), 7.70 (d, 1H), 7.62 (d, 1H), 7.44 (m, 1H), 7.24 (m, 4H) ), 7.13 (m, 2H), 7.05 (m, 1H), 6.82 (m, 1H), 3.83 (s, 3H).
(2) 스피로-ON (화학식 10)의 합성(2) Synthesis of spiro-ON (Formula 10)
DPA-mF 대신에 DPA-ON를 사용한 것을 제외하고는, 스피로-mF의 합성예 1-(2)에서와 동일한 절차에 따라 스피로-ON를 합성하였다. 연한 노란색 고체가 수득되었다 (539 mg, 52.2% 수율). 1H NMR (400 MHz, DMSO-d6), δ (ppm): 7.71 (d, 4H), 7.55 (dd, 8H), 7.33 (m, 4H), 7.25 (m, 12H), 7.05 (m, 12H), 6.93 (d, 8H), 6.85 (dd, 4H), 6.44 (d, 4H), 3.84 (s, 12H).Spiro-ON was synthesized according to the same procedure as in Synthesis Example 1-(2) of spiro-mF, except that DPA-ON was used instead of DPA-mF. A pale yellow solid was obtained (539 mg, 52.2% yield). 1 H NMR (400 MHz, DMSO- d6 ), δ (ppm): 7.71 (d, 4H), 7.55 (dd, 8H), 7.33 (m, 4H), 7.25 (m, 12H), 7.05 (m, 12H) ), 6.93 (d, 8H), 6.85 (dd, 4H), 6.44 (d, 4H), 3.84 (s, 12H).
비교예. 비교용 페로브스카이트 태양 전지의 제조comparative example. Preparation of Comparative Perovskite Solar Cells
FTO 글래스 (Asahi)를 RCA-2 (H2O2/HCl/H2O = 1:1:5)을 사용하여 초음파로 15분 동안 세정하여 표면을 깨끗하게 하였다. 그 후, 순차적으로 아세톤 및 이소프로필 알콜 (IPA)로 15분 동안 추가 세정하였다.FTO glass (Asahi) was cleaned by ultrasonic waves using RCA-2 (H 2 O 2 /HCl/H 2 O = 1:1:5) for 15 minutes to clean the surface. Thereafter, further washings were performed sequentially with acetone and isopropyl alcohol (IPA) for 15 minutes.
FTO 기판 상에 70 mL의 티탄 디이소프로폭시드 비스(아세틸아세토네이트)/에탄올 (1:10 v/v) 용액을 분무하여 450℃에서 분무 열분해(spray pyrolysis)로 치밀 TiO2 (c-TiO2) 층을 적층시켰다. c-TiO2 층을 형성시킨 후, 기판을 1시간 동안 450℃에서 보관하여 전기적 특성을 개선시켰다. 그 후, 대략 50 nm 크기의 TiO2 (ShareChem)를 포함하는 TiO2 페이스트를 상기 c-TiO2 층 상에 스핀 코팅하여 메조포러스 TiO2 (mp-TiO2) 층을 적층하였다. 상기 페이스트를 2-메톡시에탄올/테르피네올 (78:22 w/w) 1:6 (g/g)을 사용하여 희석하였다. 제조된 기판을 1시간 동안 500℃에서 한차례 더 가열하였다. mp-TiO2 기판의 Li 처리를 위해, 0.1 M의 아세토니트릴 중 리튬 비스(트리플루오로메탄술포닐)이미드 (Li-TFSI) 용액을 30 초 동안 3000 rpm 으로 스핀 코팅하였다. 그 후, Li-처리된 기판을 1 시간 동안 500℃에서 소결 처리하였다. 페로브스카이트 태양 전지를 제작하기 위해, DMF와 DMSO (4:1 부피비)의 혼합물 중에 1,550 mg mL-1 FAPbI3 및 61 mg MACl을 용해시켰다. 70 μL의 여과된 상기 용액을 mp-TiO2 층 상에 8000 rpm에서 스핀 코팅하였다. 피펫을 사용하여 스핀 후 10 초 동안 1 mL 디에틸 에테르를 적가하였다. 핫플레이트 상에 10 분 동안 150℃에서 막을 어닐링하였다. 기판을 냉각시킨 후, 페로브스카이트 층 상에 20 mM의 n-옥틸암모늄 요오다이드를 3000 rpm 으로 스핀 코팅하고 막을 1 분 동안 100℃에서 가열하였다. 클로로벤젠 중 스피로-OMeTAD (2,2',7,7'-테트라키스[N,N-디(4-메톡시페닐)아미노]-9,9'-스피로비플루오렌) (Lumtech) (90.9 mg mL-1), 39 μL 4-tert-부틸피리딘 (tBP), 23 μL Li-TFSI (516 mg mL-1 아세토니트릴), 및 10 μL 트리스[2-(1H-피라졸-1-일)-4-tert-부틸피리딘]-코발트(III)-트리스[비스-(트리플루오로메틸술포닐)이미드] (FK209, Lumtech) (395 mg mL-1 아세토니트릴)을 사용하여 정공 수송 재료를 준비하고 적층하였다. 마지막으로 기판 상에 금 상대전극을 열 증착법으로 적층하였다. 10-6 Torr 압력에서의 증기 증착에 의해 적층된 70 nm 두께의 Au 막으로부터 백 컨택과 프론트 컨택이 형성되었다. Dense TiO 2 (c-TiO) by spray pyrolysis at 450° C. by spraying 70 mL of titanium diisopropoxide bis(acetylacetonate)/ethanol (1:10 v/v) solution on the FTO substrate 2 ) Layers were laminated. After forming the c-TiO 2 layer, the substrate was stored at 450° C. for 1 hour to improve electrical properties. Then, a TiO 2 paste containing TiO 2 (ShareChem) having a size of approximately 50 nm was spin-coated on the c-TiO 2 layer to laminate a mesoporous TiO 2 (mp-TiO 2 ) layer. The paste was diluted with 2-methoxyethanol/terpineol (78:22 w/w) 1:6 (g/g). The prepared substrate was heated once more at 500° C. for 1 hour. For Li treatment of the mp-TiO 2 substrate, a solution of lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) in 0.1 M acetonitrile was spin-coated at 3000 rpm for 30 seconds. Thereafter, the Li-treated substrate was sintered at 500° C. for 1 hour. To fabricate a perovskite solar cell, 1,550 mg mL -1 FAPbI 3 and 61 mg MACl were dissolved in a mixture of DMF and DMSO (4:1 volume ratio). 70 μL of the filtered solution was spin coated on the mp-TiO 2 layer at 8000 rpm. Using a pipette, 1 mL diethyl ether was added dropwise for 10 seconds after spin. The film was annealed at 150° C. for 10 minutes on a hotplate. After cooling the substrate, 20 mM n-octylammonium iodide was spin coated on the perovskite layer at 3000 rpm and the film was heated at 100° C. for 1 minute. Spiro-OMeTAD (2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) in chlorobenzene (Lumtech) (90.9 mg mL -1 ), 39 μL 4-tert-butylpyridine (tBP), 23 μL Li-TFSI (516 mg mL -1 acetonitrile), and 10 μL tris[2-(1H-pyrazol-1-yl) -4-tert-butylpyridine]-cobalt(III)-tris[bis-(trifluoromethylsulfonyl)imide] (FK209, Lumtech) (395 mg mL -1 acetonitrile) was used to prepare the hole transport material. prepared and laminated. Finally, a gold counter electrode was laminated on the substrate by thermal evaporation. Back contacts and front contacts were formed from 70 nm thick Au films deposited by vapor deposition at a pressure of 10 −6 Torr.
제조예 1. 본 발명의 페로브스카이트 태양 전지의 제조Preparation Example 1. Preparation of the perovskite solar cell of the present invention
정공 수송 재료를 준비하기 위해 스피로-mF (화학식 4) (90.9 mg mL-1), 15~32 μL의 Li-TFSI, 39 μL의 tBP, 및 10 μL의 FK209를 사용한 것을 제외하고는, 상기 비교예에서와 동일한 방식으로 페로브스카이트 태양 전지를 제조하였다.The above comparison except that spiro-mF (Formula 4) (90.9 mg mL −1 ), 15-32 μL of Li-TFSI, 39 μL of tBP, and 10 μL of FK209 were used to prepare the hole transport material. A perovskite solar cell was prepared in the same manner as in the example.
제조예 2. 본 발명의 페로브스카이트 태양 전지의 제조Preparation Example 2. Preparation of the perovskite solar cell of the present invention
정공 수송 재료를 준비하기 위해 스피로-oF (화학식 5)(90.9 mg mL-1), 15~32 μL의 Li-TFSI, 39 μL의 tBP, 및 10 μL의 FK209를 사용하였다는 점, 스피로-oF 용해를 위해 tBP 첨가 후 스피로-oF 용액을 30 분 동안 70°C에서 가열하고 냉각후 Li-TSFI 및 FK209를 첨가하였다는 점을 제외하고는, 상기 비교예에서와 동일한 방식으로 페로브스카이트 태양 전지를 제조하였다. Spiro-oF (Formula 5) (90.9 mg mL −1 ), 15-32 μL of Li-TFSI, 39 μL of tBP, and 10 μL of FK209 were used to prepare the hole transport material, spiro-oF For dissolution, the perovskite solar solution was heated in the same manner as in the comparative example above, except that the spiro-oF solution was heated at 70 °C for 30 min after the addition of tBP for dissolution, and Li-TSFI and FK209 were added after cooling. A battery was prepared.
도 1은 본 발명의 비교예 및 제조예에서 제조한 n-i-p-페로브스카이트 태양 전지의 구조를 도식적으로 나타낸다.1 schematically shows the structure of the n-i-p-perovskite solar cell prepared in Comparative Examples and Preparation Examples of the present invention.
실험예 1. 광기전 특성 분석 실험 (비교예 및 제조예 1, 2의 태양 전지)Experimental Example 1. Photovoltaic characteristic analysis experiment (solar cells of Comparative Examples and Preparation Examples 1 and 2)
상기 비교예와 제조예에 따라 태양 전지를 제작하였고, 태양광 시뮬레이터 (McScience, K3000 Lab solar cell I-V 측정 시스템, Class AAA)를 사용하여 100 mA cm-2, AM 1.5 G에서 전류 밀도-전압 (J-V) 곡선을 측정하였다. 이 때, 광 강도는 측정 전에 Si 참조 전극 (NREL에서 보증된 것)을 사용하여 보정하였고, 포텐셜 스캔 전에 광 침투는 없었으며, J-V 곡선은 역방향 스캔(reverse scan) (순방향 바이어스 1.2 V에서 단락 회로 0 V 까지) 및 순방향 스캔(forward scan) (순방향 바이어스 0 V에서 단락 회로 1.2 V 까지)을 사용하여 측정하였다. 계단 전압은 100 mV 로 고정하였다. 개방 회로 전압 (VOC), 단락 회로 전류 밀도 (JSC), 충전 인자 (FF), 및 전력 변환 효율 (PCE) 등의 파라미터에 대한 분석 결과를 [도 2a] 내지 [도 2d] 에 나타내었으며, 그 결과를 하기 [표 1]에 요약하였다.A solar cell was manufactured according to the Comparative Example and Preparation Example, and the current density-voltage (JV ) at 100 mA cm -2 , AM 1.5 G using a solar simulator (McScience, K3000 Lab solar cell IV measurement system, Class AAA). ) curves were measured. At this time, the light intensity was corrected using a Si reference electrode (certified by NREL) before the measurement, there was no light penetration before the potential scan, and the JV curve was reverse scan (short-circuited at forward bias 1.2 V). to 0 V) and forward scan (forward bias 0 V to short circuit 1.2 V). The step voltage was fixed at 100 mV. The analysis results for parameters such as open circuit voltage (V OC ), short circuit current density (J SC ), charge factor (FF), and power conversion efficiency (PCE) are shown in [Fig. 2a] to [Fig. 2d], , the results are summarized in [Table 1] below.
[표 1][Table 1]
Figure PCTKR2020017803-appb-I000025
Figure PCTKR2020017803-appb-I000025
모든 경우에서 J-V 스캔의 역방향 스캔과 순방향 스캔 사이에 히스테리시스(hysteresis)가 작게 관찰되었다. 비교예의 장치는 0.0819 cm2 의 영역에서, 단락 회로 전류 밀도 (JSC) 26.04 mA cm-2, 개방 회로 전압 (VOC) 1.152 V, 충전인자(FF) 78.13%, 최대 PCE 23.44%를 나타내었고, 이러한 특성 값은 종래 기술에서 페로브스카이트 태양 전지의 가장 높은 PCE 로 보고된 값에 필적하는 수준이었다. In all cases, small hysteresis was observed between the reverse scan and the forward scan of the JV scan. The device of the comparative example exhibited a short circuit current density (J SC ) 26.04 mA cm -2 , an open circuit voltage (V OC ) 1.152 V, a charging factor (FF) of 78.13%, and a maximum PCE of 23.44% in an area of 0.0819 cm 2 , , these characteristic values were comparable to those reported for the highest PCE of perovskite solar cells in the prior art.
비교예의 장치와 비교했을 때, 본 발명에 따라 불소화된 정공 수송 물질을 사용한 두 제조예의 장치 모두, 26.34 내지 26.35 mA cm-2의 거의 동일한 (JSC) 값 및 1.16 V가 넘는 뛰어난 VOC 값을 나타내었다. 제조예 1의 스피로-mF를 사용한 장치가 다른 장치들에 비해 다소 더 높은 FF (80.90%)를 나타내었고, 이에 따라 결과적으로 24.82%의 최고 PCE를 보여줬다.When compared with the device of the comparative example, both preparation devices using the fluorinated hole transport material according to the present invention showed almost identical (J SC ) values of 26.34 to 26.35 mA cm -2 and excellent V OC values of over 1.16 V. indicated. The device using the spiro-mF of Preparation Example 1 exhibited a slightly higher FF (80.90%) than the other devices, and, as a result, showed the highest PCE of 24.82%.
실험예 2. 추가의 광기전 특성 분석 실험 (화학식 6, 7, 8의 물질)Experimental Example 2. Additional photovoltaic characterization experiments (materials of formulas 6, 7, and 8)
전술한 실험예 1 이후, 추가로, 스피로-Naph (화학식 8의 물질), 스피로-TTBF (화학식 6의 물질), 스피로-S (화학식 7의 물질)를 정공수송재료로 사용하여 태양 전지를 제작한 후 광기전 특성을 측정해 보았다. 그 결과, 스피로-Naph의 경우 Voc 값이 1.16 V, JSC 값이 25.97 mA cm-2, FF 값이 80.67%, PCE 값이 24.43%, PCEavg 값이 23.59% 였다. After the aforementioned Experimental Example 1, additionally, spiro-Naph (material of Formula 8), spiro-TTBF (material of Formula 6), and spiro-S (material of Formula 7) were used as hole transport materials to fabricate a solar cell After that, the photovoltaic properties were measured. As a result, in the case of spiro-Naph, the Voc value was 1.16 V, the J SC value was 25.97 mA cm -2 , the FF value was 80.67%, the PCE value was 24.43%, and the PCE avg value was 23.59%.
스피로-TTBF 및 스피로-S의 경우에는 제조예에서와 다른 구조의 태양 전지를 제작해보았고, 이 때, 비교예의 소재 (스피로-OMeTAD (2,2',7,7'-테트라키스[N,N-디(4-메톡시페닐)아미노]-9,9'-스피로비플루오렌)를 사용한 태양 전지에서는 10% 이하의 낮은 성능이 나오는 반면, 스피로-TTBF 및 스피로-S를 사용한 동일 구조의 태양 전지에서는 10% 이상의 높은 효율을 달성할 수 있다는 점을 확인하였다. In the case of spiro-TTBF and spiro-S, a solar cell having a structure different from that of the preparation example was prepared, and at this time, the material of the comparative example (spiro-OMeTAD (2,2',7,7'-tetrakis[N, A solar cell using N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) showed a low performance of 10% or less, while the same structure using spiro-TTBF and spiro-S It was confirmed that efficiencies as high as 10% or more can be achieved in solar cells.
실험예 3. 장기 안정성 시험Experimental Example 3. Long-term stability test
페로브스카이트 막의 열화에 대해 알아보기 위해, -50% RH에서 캡슐화하지 않은 비교예, 제조예 1, 2의 3종 장치를 사용하여 장기간 안정성에 대해 시험하였다. 그 결과를 [도 3a] 내지 [도 3d]에 나타내었다. 비교예의 장치는 23.21%에서 500 시간 후 13.74% 까지 떨어졌는데, 이는 최초 PCE 의 대략 60%에 해당하는 값이었다. 이에 반해, 본 발명에 따라 불소화된 물질을 사용한 제조예 1과 제조예 2의 장치 모두, PCE 값이 상당히 안정적이어서, 비교예와 동일한 측정 기간에도 매우 높은 PCE 값 유지력 (>87%)을 보여주었다.In order to investigate the deterioration of the perovskite membrane, three kinds of devices of Comparative Examples and Preparation Examples 1 and 2 that were not encapsulated at -50% RH were tested for long-term stability. The results are shown in [Fig. 3a] to [Fig. 3d]. The comparative device dropped from 23.21% to 13.74% after 500 hours, which was approximately 60% of the initial PCE. On the other hand, both the devices of Preparation Example 1 and Preparation Example 2 using the fluorinated material according to the present invention showed a very high PCE value retention (>87%) even during the same measurement period as the comparative example, as the PCE values were quite stable. .
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The description of the present invention described above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
본 발명에 따르면 장기간 동안에도 열화가 없이 우수한 안정성이 유지되는 정공 수송 재료, 및 상기 정공 수송 재료를 정공 수송 층에 포함하여 PCE 와 같은 소자 성능이 개선된 태양 전지가 제공될 수 있다.According to the present invention, a hole transport material maintaining excellent stability without deterioration even for a long period of time, and a solar cell having improved device performance such as PCE by including the hole transport material in a hole transport layer can be provided.

Claims (11)

  1. 하기 화학식 1로 표시되는 태양 전지용 정공 수송 재료:A hole transport material for a solar cell represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2020017803-appb-I000026
    Figure PCTKR2020017803-appb-I000026
    상기 화학식 1에서,In Formula 1,
    Ar1, Ar2, Ar3, 및 Ar4는, 각각 독립적으로, 0 내지 4개의 불소(F) 원자에 의해 치환된, 페닐 또는 나프틸기이고, Ar 1 , Ar 2 , Ar 3 , and Ar 4 are each independently a phenyl or naphthyl group substituted with 0 to 4 fluorine (F) atoms,
    A1, A2, A3, A4, A11, A12, A13, 및 A14는, 각각 독립적으로, 단일 결합, 산소(O) 원자, 또는 황(S) 원자이고,A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are each independently a single bond, an oxygen (O) atom, or a sulfur (S) atom,
    R1, R2, R3, R4, R11, R12, R13, 및 R14는, 각각 독립적으로, 수소 원자 또는 탄소수 1 내지 8의 알킬기이고,R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms;
    n11, n12, n13, 및 n14 는, 각각 독립적으로 0 내지 4의 정수이고, n 11 , n 12 , n 13 , and n 14 are each independently an integer of 0 to 4,
    단, 상기 Ar1, Ar2, Ar3, 및 Ar4가 페닐기이고 상기 A1, A2, A3, A4, A11, A12, A13, 및 A14가 산소(O) 원자일 경우, Ar1, Ar2, Ar3, 및 Ar4 중 적어도 하나는 1개 이상의 불소 원자로 치환된다.provided that Ar 1 , Ar 2 , Ar 3 , and Ar 4 are a phenyl group, and A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are an oxygen (O) atom. In this case, at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 is substituted with one or more fluorine atoms.
  2. 제1항에 있어서, Ar1, Ar2, Ar3, 및 Ar4 중 하나 이상이 1개 또는 2개의 불소(F) 원자에 의해 치환된 것을 특징으로 하는 태양 전지용 정공 수송 재료. The hole transport material for a solar cell according to claim 1 , wherein at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 is substituted with one or two fluorine (F) atoms.
  3. 제1항에 있어서, A1, A2, A3, A4, A11, A12, A13, 및 A14 중 적어도 하나가 산소(O) 원자 또는 황(S) 원자인 것을 특징으로 하는 태양 전지용 정공 수송 재료.The method of claim 1 , wherein at least one of A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 is an oxygen (O) atom or a sulfur (S) atom. Hole transport material for solar cells.
  4. 제1항에 있어서, R1, R2, R3, 및 R4 가 각각 독립적으로, 탄소수 1 내지 8의 알킬기이고 R11, R12, R13, 및 R14 가 각각 독립적으로, 수소 원자 또는 탄소수 1 내지 8의 알킬기이거나; 또는 R1, R2, R3, 및 R4 가 각각 독립적으로, 수소 원자 또는 탄소수 1 내지 8의 알킬기이고 R11, R12, R13, 및 R14 가 각각 독립적으로, 탄소수 1 내지 8의 알킬기인 것을 특징으로 하는 태양 전지용 정공 수송 재료.The method according to claim 1 , wherein R 1 , R 2 , R 3 , and R 4 are each independently an alkyl group having 1 to 8 carbon atoms, and R 11 , R 12 , R 13 , and R 14 are each independently a hydrogen atom or or an alkyl group having 1 to 8 carbon atoms; or R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 11 , R 12 , R 13 , and R 14 are each independently, each having 1 to 8 carbon atoms A hole transport material for solar cells, characterized in that it is an alkyl group.
  5. 제1항에 있어서, 하기 화학식 2로 표시되는 것을 특징으로 하는 태양 전지용 정공 수송 재료:[Claim 2] The hole transport material for solar cells according to claim 1, characterized in that it is represented by the following Chemical Formula 2:
    [화학식 2][Formula 2]
    Figure PCTKR2020017803-appb-I000027
    Figure PCTKR2020017803-appb-I000027
    상기 화학식 2에서,In Formula 2,
    A1, A2, A3, A4, A11, A12, A13, A14, R1, R2, R3, R4, R11, R12, R13, R14, n11, n12, n13, 및 n14 는 제1항에서 정의한 바와 같고,A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , A 14 , R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , R 14 , n 11 , n 12 , n 13 , and n 14 are as defined in claim 1,
    n1, n2, n3, 및 n4 는, 각각 독립적으로 0 내지 4의 정수이고, n 1 , n 2 , n 3 , and n 4 are each independently an integer of 0 to 4,
    단, 상기 A1, A2, A3, A4, A11, A12, A13, 및 A14가 산소(O) 원자일 경우 n1, n2, n3, 및 n4 중 적어도 하나는 1 이상의 정수이다.However, when A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are oxygen (O) atoms, at least one of n 1 , n 2 , n 3 , and n 4 . is an integer greater than or equal to 1.
  6. 제5항에 있어서, A1, A2, A3, A4, A11, A12, A13, 및 A14 가 서로 동일하고, 산소(O) 원자 또는 황(S) 원자이고, The method according to claim 5, wherein A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , and A 14 are the same as each other and are an oxygen (O) atom or a sulfur (S) atom,
    R1, R2, R3, R4, R11, R12, R13, 및 R14 이 서로 동일하고, 탄소수 1 내지 8의 알킬기이고,R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , and R 14 are the same as each other and are an alkyl group having 1 to 8 carbon atoms,
    n1, n2, n3, n4, n11, n12, n13, 및 n14 는 0 내지 2의 정수이고, 단, n1, n2, n3, n4, n11, n12, n13, 및 n14 중 적어도 하나는 1 또는 2의 정수인 것을 특징으로 하는 태양 전지용 정공 수송 재료.n 1 , n 2 , n 3 , n 4 , n 11 , n 12 , n 13 , and n 14 are integers from 0 to 2 with the proviso that n 1 , n 2 , n 3 , n 4 , n 11 , n 12 , n 13 , and at least one of n 14 is an integer of 1 or 2, a hole transport material for a solar cell.
  7. 제1항에 있어서, 하기 화학식 3 으로 표시되는 것을 특징으로 하는 태양 전지용 정공 수송 재료:The hole transport material for a solar cell according to claim 1, characterized in that it is represented by the following formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2020017803-appb-I000028
    Figure PCTKR2020017803-appb-I000028
    상기 화학식 3에서,In Formula 3,
    A1, A2, A3, A4, A11, A12, A13, A14, R1, R2, R3, R4, R11, R12, R13, R14, n11, n12, n13, 및 n14 는 제1항에서 정의한 바와 같고,A 1 , A 2 , A 3 , A 4 , A 11 , A 12 , A 13 , A 14 , R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 , R 14 , n 11 , n 12 , n 13 , and n 14 are as defined in claim 1,
    n1, n2, n3, 및 n4 는, 각각 독립적으로 0 내지 4의 정수이다.n 1 , n 2 , n 3 , and n 4 are each independently an integer of 0 to 4.
  8. 제1항에 있어서, 하기 화학식 4 내지 화학식 10으로 이루어진 군에서 선택되는 것을 특징으로 하는 태양 전지용 정공 수송 재료:According to claim 1, wherein the hole transport material for solar cells, characterized in that selected from the group consisting of Chemical Formulas 4 to 10:
    [화학식 4] [Formula 4]
    Figure PCTKR2020017803-appb-I000029
    Figure PCTKR2020017803-appb-I000029
    [화학식 5][Formula 5]
    Figure PCTKR2020017803-appb-I000030
    Figure PCTKR2020017803-appb-I000030
    [화학식 6][Formula 6]
    Figure PCTKR2020017803-appb-I000031
    Figure PCTKR2020017803-appb-I000031
    [화학식 7][Formula 7]
    Figure PCTKR2020017803-appb-I000032
    Figure PCTKR2020017803-appb-I000032
    [화학식 8][Formula 8]
    Figure PCTKR2020017803-appb-I000033
    Figure PCTKR2020017803-appb-I000033
    [화학식 9][Formula 9]
    Figure PCTKR2020017803-appb-I000034
    Figure PCTKR2020017803-appb-I000034
    [화학식 10][Formula 10]
    Figure PCTKR2020017803-appb-I000035
    Figure PCTKR2020017803-appb-I000035
  9. 제1항에 있어서, 페로브스카이트 태양 전지에 사용되는 것을 특징으로 하는 태양 전지용 정공 수송 재료.The hole transport material for a solar cell according to claim 1, which is used in a perovskite solar cell.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 정공 수송 재료를 정공 수송층에 포함하는 것을 특징으로 하는 태양 전지.A solar cell comprising the hole transport material according to any one of claims 1 to 9 in the hole transport layer.
  11. 제10항에 있어서, 제1 전극; 상기 제1 전극 상에 배치되고 페로브스카이트를 포함하는 광활성 층; 및 상기 광활성 층 상에 배치되는 정공 수송 층을 포함하는 태양 전지.11. The method of claim 10, wherein the first electrode; a photoactive layer disposed on the first electrode and comprising perovskite; and a hole transport layer disposed on the photoactive layer.
PCT/KR2020/017803 2020-02-21 2020-12-08 Hole transporting material for solar cell, and solar cell comprising same WO2021167214A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200021577 2020-02-21
KR10-2020-0021577 2020-02-21
KR10-2020-0155579 2020-11-19
KR1020200155579A KR102491190B1 (en) 2020-02-21 2020-11-19 Hole transporting materials for solar cells and solar cells comprising the same

Publications (1)

Publication Number Publication Date
WO2021167214A1 true WO2021167214A1 (en) 2021-08-26

Family

ID=77390918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017803 WO2021167214A1 (en) 2020-02-21 2020-12-08 Hole transporting material for solar cell, and solar cell comprising same

Country Status (1)

Country Link
WO (1) WO2021167214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819457A (en) * 2022-12-06 2023-03-21 厦门大学 Carbazole organic micromolecule hole transport material containing phosphonic acid and methylthio, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082226A1 (en) * 2005-10-07 2007-04-12 Au Optronics Corp. Organic light emitting diode and display device employing the same
KR20110116199A (en) * 2009-02-02 2011-10-25 메르크 파텐트 게엠베하 Metal complexes
US20150311440A1 (en) * 2014-04-28 2015-10-29 Korea Research Institute Of Chemical Technology Hole-transporting material for inorganic/organic hybrid perovskite solar cells
WO2018079323A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Photoelectric conversion element
US20180122587A1 (en) * 2015-06-30 2018-05-03 Fujifilm Corporation Photoelectric conversion element, and solar cell using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082226A1 (en) * 2005-10-07 2007-04-12 Au Optronics Corp. Organic light emitting diode and display device employing the same
KR20110116199A (en) * 2009-02-02 2011-10-25 메르크 파텐트 게엠베하 Metal complexes
US20150311440A1 (en) * 2014-04-28 2015-10-29 Korea Research Institute Of Chemical Technology Hole-transporting material for inorganic/organic hybrid perovskite solar cells
US20180122587A1 (en) * 2015-06-30 2018-05-03 Fujifilm Corporation Photoelectric conversion element, and solar cell using the same
WO2018079323A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Photoelectric conversion element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819457A (en) * 2022-12-06 2023-03-21 厦门大学 Carbazole organic micromolecule hole transport material containing phosphonic acid and methylthio, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2010087655A2 (en) Fullerene derivatives and organic electronic device comprising the same
WO2018021794A1 (en) Method for preparing highly efficient perovskite compound film and solar cell comprising same
WO2014171755A1 (en) Fullerene derivative, organic solar cell using same, and manufacturing method thereof
WO2013085285A1 (en) Co-absorbent for dye-sensitized solar cell having hole conduction properties and dye-sensitized solar cell including same
WO2016133368A9 (en) Heterocyclic compound and organic solar cell comprising same
WO2016171465A2 (en) Heterocyclic compound and organic solar cell comprising same
WO2015064937A2 (en) Single molecule and organic solar cell comprising same
WO2019004781A1 (en) Perovskite solar cell
WO2018088797A1 (en) Spirobifluorene compound and perovskite solar cell comprising same
WO2010002154A2 (en) Novel organic dye and method for preparing same
WO2021118238A1 (en) Novel polymer and organic electronic device using same
WO2015190762A2 (en) Fused ring derivative and organic solar cell including same
WO2014061867A1 (en) Novel organic semiconductor compound, and method for preparing same
WO2021167214A1 (en) Hole transporting material for solar cell, and solar cell comprising same
WO2019045272A1 (en) Bodipy-based copolymer and solar cell comprising same
WO2022186439A1 (en) Conductive substrate, perovskite substrate using same, and solar cell using same
WO2015037966A1 (en) Copolymer and organic solar cell comprising same
WO2018225999A1 (en) Compound and organic solar cell comprising same
WO2014092408A1 (en) Copolymer and organic solar cell using same
WO2018164353A1 (en) Polymer and organic solar cell comprising same
WO2016175573A2 (en) Compound and organic solar cell comprising same
WO2015182973A1 (en) Organic semiconductor compound containing phosphine oxide group, and organic solar cell using same
WO2016144097A2 (en) Polymer and organic solar cell comprising same
WO2015167229A1 (en) Perovskite solar cell and manufacturing method therefor
WO2020171320A1 (en) Conjugated polymer for low-temperature processing, and organic solar cell using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920282

Country of ref document: EP

Kind code of ref document: A1