KR20110086272A - New triphenylamine derivatives and dye-sensitized solar cell comprising the same - Google Patents

New triphenylamine derivatives and dye-sensitized solar cell comprising the same Download PDF

Info

Publication number
KR20110086272A
KR20110086272A KR1020100005913A KR20100005913A KR20110086272A KR 20110086272 A KR20110086272 A KR 20110086272A KR 1020100005913 A KR1020100005913 A KR 1020100005913A KR 20100005913 A KR20100005913 A KR 20100005913A KR 20110086272 A KR20110086272 A KR 20110086272A
Authority
KR
South Korea
Prior art keywords
dye
triphenylamine
sensitized solar
solar cell
formula
Prior art date
Application number
KR1020100005913A
Other languages
Korean (ko)
Inventor
김재홍
이정관
양유석
조효정
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020100005913A priority Critical patent/KR20110086272A/en
Publication of KR20110086272A publication Critical patent/KR20110086272A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE: A triphenylamine derivative, a producing method thereof, and a dye-sensitized solar battery containing thereof are provided to obtain the high efficiency-low cost solar battery by including plural electron-receptor functional groups. CONSTITUTION: A producing method of a triphenylamine derivative marked with chemical formula 1 comprises the following steps: reacting triphenylamine and phosphorus oxychloride to obtain a benzaldehyde derivative; and reacting the benzaldehyde derivative with 2-cyanoacetic acid. In the chemical formula 1, R1, R2, and R3 are hydrogen or 2-cyanoacrylic acid.

Description

신규 트리페닐아민 유도체 및 이를 포함하는 염료감응형 태양전지{New triphenylamine derivatives and dye-sensitized solar cell comprising the same}New triphenylamine derivatives and dye-sensitized solar cell comprising the same

본 발명은 다수의 전자수용체 관능기를 포함하기 때문에 염료감응형 태양전지용 염료로 사용하면 고효율 저가의 태양전지를 얻을 수 있는 신규 트리페닐아민 유도체 및 이를 포함하는 염료감응형 태양전지에 관한 것이다.The present invention relates to a novel triphenylamine derivative and a dye-sensitized solar cell including the same, which can be used as a dye for a dye-sensitized solar cell because it includes a plurality of electron acceptor functional groups.

태양전지는 다른 에너지원과 달리 자원이 무한하고 환경 친화적인 에너지원으로서, 실리콘 태양전지, 염료감응 태양전지 등이 알려져 있다. Unlike other energy sources, solar cells are endlessly resource-friendly and environmentally friendly sources. Silicon solar cells, dye-sensitized solar cells, and the like are known.

실리콘 태양전지는 제작비용이 상당히 고가라서 실용화가 곤란하고, 전지 효율을 개선하는데 많은 어려움이 따른다. 이에 비해 염료감응 태양전지는 기존의 실리콘계 태양전지에 비해 제조단가가 현저하게 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성을 가지고 있고, 실리콘 태양전지와 달리 가시광선을 흡수하여 전자-홀 쌍을 생성할 수 있는 염료분자와, 생성된 전자를 전달하는 전이금속 산화물을 주 구성 재료로 하는 광전기화학적 태양전지이다.Since silicon solar cells are quite expensive to manufacture, they are difficult to be commercialized, and there are many difficulties in improving battery efficiency. In contrast, dye-sensitized solar cells have a significantly lower manufacturing cost than conventional silicon-based solar cells, and thus have the potential to replace conventional amorphous silicon solar cells. Unlike silicon solar cells, electron-holes can be absorbed by absorbing visible light. It is a photoelectrochemical solar cell whose main component is a dye molecule capable of generating a pair and a transition metal oxide that transfers generated electrons.

염료 감응 태양전지의 염료로는 루테늄 염료가 알려져 있는데, 이러한 루테늄 염료는 제조단가가 고가일 뿐 아니라, 환경친화적 측면에서 문제가 되고 있다. Ruthenium dyes are known as dyes for dye-sensitized solar cells. These ruthenium dyes are not only expensive to manufacture, but also become environmentally problematic.

따라서, 제조단가가 훨씬 저렴하면서도 광전변환 효율이 우수하고 친환경적인 유기 염료의 개발이 시급한 실정이다.Therefore, there is an urgent need to develop organic dyes which are much cheaper and have excellent photoelectric conversion efficiency and are environmentally friendly.

상기 종래기술의 문제점을 해결하기 위하여, 본 발명자는 발색단 중 2개 이상의 전자 수용체를 지닌 유기 염료를 광감작제로 사용하여 염료감응형 태양전지(DSSC)에서의 전력 변환 효율을 검토하였고, 하나의 전자 수용체를 지닌 유기 염료에 비해 높은 전력 변환 효율을 나타내는 것을 확인함으로써 본 발명을 완성하였다.In order to solve the problems of the prior art, the present inventors examined the power conversion efficiency in the dye-sensitized solar cell (DSSC) using an organic dye having two or more electron acceptors of the chromophore as a photosensitizer, one electron The present invention was completed by confirming that it exhibits a high power conversion efficiency compared to the organic dye having a receptor.

이에, 본 발명의 목적은 분자 내에 2개 이상의 전자 수용체 관능기를 지닌 유기 염료인 화합물을 합성하고, 합성된 화합물의 DSSC에서의 성능을 평가하여 염료감응형 태양전지용으로 적용하기에 적합한 유기 염료를 제공하는 데에 있다.Accordingly, an object of the present invention is to synthesize a compound which is an organic dye having two or more electron acceptor functional groups in a molecule, and to evaluate the performance of the synthesized compound in DSSC to provide an organic dye suitable for application for dye-sensitized solar cells. It's there.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 트리페닐아민 유도체를 제공한다:In order to achieve the above object, the present invention provides a triphenylamine derivative represented by the following formula (1):

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

이때, 상기 R1, R2 및 R3는 수소 또는 2-시아노아크릴산에서 선택되며, 하나 이상이 2-시아노아크릴산이다.Wherein R 1 , R 2 and R 3 are selected from hydrogen or 2-cyanoacrylic acid, and at least one is 2-cyanoacrylic acid.

바람직하게는, 상기 R1, R2 및 R3 중 어느 하나의 치환기가 수소이고, 나머지 두 개의 치환기가 2-시아노아크릴산일 수 있고, 보다 바람직하게는 상기 R1, R2 및 R3가 각각 2-시아노아크릴산일 수 있다.Preferably, the substituent of any one of R 1 , R 2 and R 3 is hydrogen, the other two substituents may be 2-cyanoacrylic acid, more preferably the R 1 , R 2 and R 3 is Each may be 2-cyanoacrylic acid.

특히, 화학식 1로 표시되는 트리페닐아민 유도체는 2-시아노-3-(4-디페닐아미노-페닐)-아크릴산[2-Cyano-3-(4-(phenyl(4-vinylphenyl)amino)phenyl)acrylic Acid; 2b] 또는 3-(4-{[4-(2-카르복시-2-시아노-비닐)-페닐]-페닐-아미노}-페닐)-2-시아노-아크릴산[3-(4-{[4-(2-Carboxy-2-cyano-vinyl)-phenyl]-phenyl-amino}-phenyl)-2-cyano-acrylic acid; 2c]일 수 있다.In particular, the triphenylamine derivative represented by Formula 1 is 2-cyano-3- (4-diphenylamino-phenyl) -acrylic acid [2-Cyano-3- (4- (phenyl (4-vinylphenyl) amino) phenyl ) acrylic Acid; 2b] or 3- (4-{[4- (2-carboxy-2-cyano-vinyl) -phenyl] -phenyl-amino} -phenyl) -2-cyano-acrylic acid [3- (4-{[ 4- (2-Carboxy-2-cyano-vinyl) -phenyl] -phenyl-amino} -phenyl) -2-cyano-acrylic acid; 2c].

또한, 본 발명은 전자 공여체로서 트리페닐아민을, 전자 수용체로서 다수의 시아노아세트산을 이용하여 분자 내 푸시풀시스템(push-pull system)으로 화학식 1로 표시되는 트리페닐아민 유도체를 제조할 수 있다.In addition, the present invention can prepare a triphenylamine derivative represented by the formula (1) in an intramolecular push-pull system using triphenylamine as the electron donor and a plurality of cyanoacetic acid as the electron acceptor. .

보다 상세하게는, 본 발명은 트리페닐아민과 옥시염화 인(Phosphorus oxychloride)을 반응시켜 벤즈알데히드 유도체를 제조하는 단계(Vilsmeier-Haack 포르밀화 반응); 및 상기 벤즈알데히드 유도체와 2-시아노아세트산을 반응시키는 단계(Knoevenagel 반응)를 포함하는 공정을 통해 화학식 1로 표시되는 트리페닐아민 유도체를 제조할 수 있다.More specifically, the present invention comprises the steps of preparing a benzaldehyde derivative by reacting triphenylamine and phosphorus oxychloride (Phosphorus oxychloride) (Vilsmeier-Haack formylation reaction); And a triphenylamine derivative represented by Chemical Formula 1 through a process including reacting the benzaldehyde derivative with 2-cyanoacetic acid (Knoevenagel reaction).

또한, 본 발명은 화학식 1로 표시되는 트리페닐아민 유도체를 포함하는 염료감응형 태양전지용 유기염료를 제공한다. In addition, the present invention provides an organic dye for a dye-sensitized solar cell comprising a triphenylamine derivative represented by the formula (1).

또한, 본 발명은 화학식 1로 표시되는 트리페닐아민 유도체를 광흡수층으로 사용하는 것을 특징으로 하는 염료 감응 형 태양전지를 제공한다.In another aspect, the present invention provides a dye-sensitized solar cell characterized in that the triphenylamine derivative represented by the formula (1) is used as the light absorption layer.

상기 염료 감응형 태양전지(DSSC)는 a) 음극, b) 화학식 1로 표시되는 트리페닐아민 유도체를 함유하는 나노결정성 금속 산화물, c) 전해질, 및 d) 반대 전극을 포함할 수 있고, 상기 화학식 1로 표시되는 트리페닐아민 유도체가 나노 결정성 금속 산화물 상에 흡착되어 공유 적으로 결합된 것이며, 상기 나노결정성 금속 산화물이 나노결정성 TiO2를 포함할 수 있다. 또한, 상기 음극이 불소-도핑 된 틴-옥사이드 (FTO) 글라스를 포함하고, 상기 반대 전극이 열 증착된 Pt를 갖는 FTO 유리를 포함할 수 있다.The dye-sensitized solar cell (DSSC) may include a) a cathode, b) a nanocrystalline metal oxide containing a triphenylamine derivative represented by Formula 1, c) an electrolyte, and d) an opposite electrode. The triphenylamine derivative represented by Chemical Formula 1 is adsorbed onto the nanocrystalline metal oxide and covalently bound, and the nanocrystalline metal oxide may include nanocrystalline TiO 2 . In addition, the cathode may include fluorine-doped tin-oxide (FTO) glass, and the counter electrode may include FTO glass having thermally deposited Pt.

보다 상세하게는, 상기 염료 감응형 태양전지는 글라스 기판을 세정하는 단계; TiO2 페이스트를 준비하는 단계; 글라스 기판에 TiO2 페이스트를 코팅하고 소성하는 단계; TiO2 입자를 이용하여 상기 소성층을 재 코팅하고 소성하는 단계; TiO2 필름을 사염화티타늄 수용액에 담구는 단계; TiO2 필름을 화학식 1로 표시되는 트리페닐아민 유도체 용액에 담구어 염료를 흡착시키는 단계; 염료 흡착된 TiO2 필름과 반대 전극을 조립하는 단계; 및 전해질을 도입하는 단계를 포함하여 제조될 수 있다.More specifically, the dye-sensitized solar cell comprises the steps of cleaning a glass substrate; Preparing a TiO 2 paste; Coating and firing the TiO 2 paste on the glass substrate; Recoating and calcining the calcined layer using TiO 2 particles; Dipping the TiO 2 film in an aqueous titanium tetrachloride solution; Dipping a TiO 2 film in a solution of a triphenylamine derivative represented by Formula 1 to adsorb the dye; Assembling the dye adsorbed TiO 2 film and the opposite electrode; And introducing an electrolyte.

본 발명에 따른 트리페닐아민 유도체의 전자 수용체가 많을수록 염료 감응 형 태양전지에서 TiO2 표면에서 흡착된 염료의 양이 증가하였고, 이는 단락 광전류 밀도를 증가시켰다. As the electron acceptor of the triphenylamine derivative according to the present invention increased, the amount of dye adsorbed on the TiO 2 surface increased in the dye-sensitized solar cell, which increased the short-circuit photocurrent density.

본 발명에 따른 트리페닐아민 유도체 중 특히 유기염료로서 TPA2를 사용한 염료 감응형 태양전지는 다른 염료를 사용한 염료 감응 형 태양전지보다 가장 탁월한 광전자-전력 변환 효율을 나타내었다. 즉, AM 1.5 조사(100mW/cm2) 하에서 4.5%의 최대 η값(Voc = 740mV, Jsc = 8.7mA/cm-2, FF = 0.68%)을 나타낸 반면, 동일한 조건 하에서 N719 염료는 8.3% 값을 나타내었다. Among the triphenylamine derivatives according to the present invention, in particular, dye-sensitized solar cells using TPA2 as organic dyes exhibited the most excellent opto-power conversion efficiency than dye-sensitized solar cells using other dyes. That is, a maximum η value of 4.5% (Voc = 740 mV, Jsc = 8.7 mA / cm -2 , FF = 0.68%) under AM 1.5 irradiation (100 mW / cm 2 ), while the N719 dye value was 8.3% under the same conditions Indicated.

본 발명에 따른 트리페닐아민 유도체는 다수의 전자수용체 관능기를 포함하여 염료 감응 형 태양전지에서 염료로 사용되는 경우 금속산화물 예를 들어 TiO2 표면에 흡착된 염료 양이 증가되어 단락 광전류 밀도를 증가시키기 때문에 염료 감응형 태양전지용 염료로 사용하면 고효율 저가의 태양전지를 얻을 수 있다.The triphenylamine derivative according to the present invention includes a plurality of electron acceptor functional groups, and when used as a dye in a dye-sensitized solar cell, the amount of dye adsorbed on the surface of a metal oxide, for example, TiO 2 is increased to increase the short-circuit photocurrent density. Therefore, when used as a dye for a dye-sensitized solar cell, a high efficiency and low cost solar cell can be obtained.

도 1은 본 발명에 따른 트리페닐아민 유도체를 제조하는 과정을 나타낸 것이고,
도 2 중 a는 본 발명에 따른 트리페닐아민 유도체들의 용액 상에서 광 흡수에 따른 스펙트럼을 나타낸 것이고, b는 본 발명에 따른 트리페닐아민 유도체들의 TiO2 필름에 흡착되었을 때 광 흡수에 따른 스펙트럼을 낸 것이고,
도 3은 본 발명에 따른 트리페닐아민 유도체들의 광이 흡수되면 전자를 내어주며 여기되는 산화점을 전압과 전류에 따라 나타낸 것이고,
도 4는 염료 감응 태양전지용 유기염료인 본 발명에 따른 트리페닐아민 유도체들의 광전류 밀도에 대한 전압 곡선으로 변환 효율 곡선을 나타낸 것이고,
도 5는 염료 감응 태양전지용 유기염료인 본 발명에 따른 트리페닐아민 유도체들의 흡수 파장에 따른 최대 광전 변환 효율에 관한 분석이다.
1 shows a process for preparing a triphenylamine derivative according to the present invention,
2 shows a spectrum according to light absorption on a solution of triphenylamine derivatives according to the present invention, and b shows a spectrum according to light absorption when adsorbed onto a TiO 2 film of triphenylamine derivatives according to the present invention. Will,
3 is a graph showing the oxidation point being excited according to voltage and current when electrons are absorbed when light of the triphenylamine derivatives according to the present invention is absorbed,
Figure 4 shows the conversion efficiency curve as a voltage curve for the photocurrent density of the triphenylamine derivatives according to the present invention that is an organic dye for dye-sensitized solar cells,
5 is an analysis of the maximum photoelectric conversion efficiency according to the absorption wavelength of the triphenylamine derivatives according to the present invention that is an organic dye for dye-sensitized solar cells.

이하, 하기 실시 예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시 예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시 예 1> 4-포르밀트리페닐아민(4-Formyltriphenylamine; 1a)Example 1 4-Formyltriphenylamine (1a)

트리페닐아민 (40 g, 163 mmol)을 80mL DMF에 용해시킨 후, 0℃의 온도에서 POCl3(76 mL, 815 mmol) 몇 방울을 첨가하였다. 온도를 실온으로 상승시킴에 따라 혼합물은 명백히 밝은 빨간색 용액으로 변하였다. 상기 반응혼합물을 45℃에서 2시간 동안 가열하였다. 냉각 후, 반응혼합물을 교반하면서 아이스 증류수에 붓고, 중탄산나트륨으로 중화시켜 중성으로 맞춰주었다. 추출에 의해 모아진 반응혼합물을 에탄올에서 재결정 화시켜 엷은 노란색 고체(42.9g, 96%)를 얻었다. 이때, 1H NMR 분석은 Varian Mercury NMR 300Hz 분광기에 의해 분석하였다. Triphenylamine (40 g, 163 mmol) was dissolved in 80 mL DMF and then a few drops of POCl 3 (76 mL, 815 mmol) were added at a temperature of 0 ° C. As the temperature rose to room temperature, the mixture turned into a bright red solution. The reaction mixture was heated at 45 ° C. for 2 hours. After cooling, the reaction mixture was poured into iced distilled water with stirring, neutralized with sodium bicarbonate and neutralized. The reaction mixture collected by extraction was recrystallized in ethanol to give a pale yellow solid (42.9 g, 96%). At this time, 1 H NMR analysis was analyzed by Varian Mercury NMR 300Hz spectrometer.

1H NMR (300 MHz, CDCl3): d 9.79 (s, 1H), 7.30-7.36 (t, 4H), 7.67 (d, 2H), 7.15-7.18 (m, 6H), 7.00 (d, 2H). 1 H NMR (300 MHz, CDCl 3 ): d 9.79 (s, 1H), 7.30-7.36 (t, 4H), 7.67 (d, 2H), 7.15-7.18 (m, 6H), 7.00 (d, 2H) .

<실시 예 2> 4,4'-디포르밀트리페닐아민(4,4'-Diformyltriphenylamine; 1b)Example 2 4,4'-Diformyltriphenylamine (1b)

트리페닐아민 (4.900 g, 20 mmol)과 40mL 무수 DMF를 질소 분위기 하에서 250-mL 둥근바닥 플라스크에 첨가하였다. 상기 반응혼합물을 0℃의 온도로 냉각한 후, POCl3 (18.0 mL, 200 mmol) 몇방울을 첨가하였다. 상기 반응혼합물을 85℃에서 10시간 동안 가열하였고, 얻어진 반응혼합물을 아이스 증류수에 붓고, 2N 농도의 수산화나트륨 수용액으로 중화시켜 중성으로 맞춰주고 디클로로메탄으로 추출하며 상기 용매를 감압하여 제거하였다. 추출 후 남은 반응물은 컬럼 크로마토그래피(실리카겔, 석유에테르/에틸아세테이트= 4:1)로 정제하여 순수한 생성물(4.81g, 80%)을 얻었다.Triphenylamine (4.900 g, 20 mmol) and 40 mL anhydrous DMF were added to a 250-mL round bottom flask under nitrogen atmosphere. After cooling the reaction mixture to a temperature of 0 ° C., a few drops of POCl 3 (18.0 mL, 200 mmol) were added. The reaction mixture was heated at 85 ° C. for 10 hours, and the obtained reaction mixture was poured into iced distilled water, neutralized with a 2N aqueous sodium hydroxide solution, neutralized, extracted with dichloromethane, and the solvent was removed under reduced pressure. The remaining reaction product after extraction was purified by column chromatography (silica gel, petroleum ether / ethyl acetate = 4: 1) to give the pure product (4.81g, 80%).

1H NMR (300 MHz, CDCl3) : d 9.89 (s, 2H), 7.76-7.78 (d, 4H), 7.38-7.41 (t, 2H), 7.25-7.28 (t, 1H), 7.17-7.19 (m, 6H). 1 H NMR (300 MHz, CDCl 3 ): d 9.89 (s, 2H), 7.76-7.78 (d, 4H), 7.38-7.41 (t, 2H), 7.25-7.28 (t, 1H), 7.17-7.19 (m, 6H).

<실시 예 3> 4,4',4"-(페닐아잔디일)트리벤즈알데히드[4,4',4"-(phenyl azanediyl)tribenzaldehyde; 1c]Example 3 4,4 ', 4 "-(phenylazanediyl) tribenzaldehyde [4,4', 4"-(phenyl azanediyl) tribenzaldehyde; 1c]

트리페닐아민 (4.900 g, 20 mmol)과 40mL 무수 DMF를 질소 분위기 하에서 250-mL 둥근바닥 플라스크에 첨가하였다. 상기 반응혼합물을 0℃의 온도로 냉각한 후, POCl3 (18.0 mL, 300 mmol) 몇 방울을 첨가하였다. 상기 반응혼합물을 85℃에서 10시간 동안 가열하였고, 얻어진 반응 혼합물을 아이스 증류수에 붓고, 2N 농도의 수산화나트륨 수용액으로 중화시켜 중성으로 맞춰주고, 디클로로메탄으로 추출하며, 상기 용매를 감압하여 제거하였다. 추출 후 남은 반응물은 컬럼 크로마토그래피(실리카겔, 석유에테르/에틸아세테이트= 4:1)로 정제하여 순수한 생성물(1.97g, 30%)을 얻었다.Triphenylamine (4.900 g, 20 mmol) and 40 mL anhydrous DMF were added to a 250-mL round bottom flask under nitrogen atmosphere. After cooling the reaction mixture to a temperature of 0 ° C., a few drops of POCl 3 (18.0 mL, 300 mmol) were added. The reaction mixture was heated at 85 ° C. for 10 hours, and the resulting reaction mixture was poured into ice distilled water, neutralized with a 2N aqueous sodium hydroxide solution to give neutrality, extracted with dichloromethane, and the solvent was removed under reduced pressure. The remaining reaction after extraction was purified by column chromatography (silica gel, petroleum ether / ethyl acetate = 4: 1) to obtain a pure product (1.97g, 30%).

1H NMR (300 MHz, DMSO-d 6) : d 9.85 (s, 3H), 7.83-7.7.81 (d, 6H), 7.20-7.17 (d, 6H). 1 H NMR (300 MHz, DMSO- d 6 ): d 9.85 (s, 3H), 7.83-7.7.81 (d, 6H), 7.20-7.17 (d, 6H).

<실시 예 4> 2-시아노-3-(4-디페닐아미노-페닐)-아크릴산[2-Cyano-3-(4-diphenylamino-phenyl)-acrylic acid; 2a]Example 4 2-Cyano-3- (4-diphenylamino-phenyl) -acrylic acid [2-Cyano-3- (4-diphenylamino-phenyl) -acrylic acid; 2a]

4-(디페닐아미노)벤즈알데히드(1g, 3.7mmol)와 2-시아노아세트산 (0.47g, 5.5 mmol)을 15mL 빙초산에 첨가하고, 암모늄 아세테이트(0.42g, 5.5mmol) 존재 하에서 3시간 동안 환류 하였다. 실온으로 냉각한 후, 상기 반응혼합물을 아이스 증류수에 쏟아 부었다. 얻어진 침전물을 여과하고 증류수로 세척 한 뒤 진공 하에서 건조하여 얻은 생성물들을 컬럼 크로마토 그래피(에틸아세테이트/에탄올=9:1)로 정제하여 노란 분말인 TPA1(0.23 g, 80%)을 얻었다.4- (diphenylamino) benzaldehyde (1 g, 3.7 mmol) and 2-cyanoacetic acid (0.47 g, 5.5 mmol) were added to 15 mL glacial acetic acid and refluxed for 3 hours in the presence of ammonium acetate (0.42 g, 5.5 mmol). . After cooling to room temperature, the reaction mixture was poured into iced distilled water. The obtained precipitate was filtered, washed with distilled water and dried under vacuum to obtain the product was purified by column chromatography (ethyl acetate / ethanol = 9: 1) to give a yellow powder of TPA1 (0.23 g, 80%).

1H NMR (300 MHz, DMSO-d 6) : d 8.13 (s, 1H), 7.90-7.93 (d, 2H), 7.40-7.43 (t, 4H), 7.20-7.27 (m, 6H), 6.84-6.87 (d, 2H). 1 H NMR (300 MHz, DMSO- d 6 ): d 8.13 (s, 1H), 7.90-7.93 (d, 2H), 7.40-7.43 (t, 4H), 7.20-7.27 (m, 6H), 6.84- 6.87 (d, 2 H).

<실시 예 5> 2-시아노-3-(4-디페닐아미노-페닐)-아크릴산[2-Cyano-3-(4-(phenyl(4-vinylphenyl)amino)phenyl)acrylic Acid; 2b]Example 5 2-Cyano-3- (4-diphenylamino-phenyl) -acrylic acid [2-Cyano-3- (4- (phenyl (4-vinylphenyl) amino) phenyl) acrylic Acid; 2b]

4,4'-(페닐아잔디일)디벤즈알데히드(0.5g, 1.7mmol)와 2-시아노아세트산 (0.31g, 3.7 mmol)을 15mL 빙초산에 첨가하고, 암모늄 아세테이트(0.28g, 3.7mmol) 존재 하에서 3시간 동안 환류 하였다. 실온으로 냉각한 후, 상기 반응혼합물을 아이스 증류수에 쏟아 부었다. 얻어진 침전물을 여과하고 증류수로 세척한 뒤 진공 하에서 건조하여 얻은 생성물들을 컬럼 크로마토그래피(에틸아세테이트/에탄올=8:2)로 정제하여 주황색 분말인 TPA2(305 mg, 65%)을 얻었다.4,4 '-(phenylazanediyl) dibenzaldehyde (0.5 g, 1.7 mmol) and 2-cyanoacetic acid (0.31 g, 3.7 mmol) are added to 15 mL glacial acetic acid and ammonium acetate (0.28 g, 3.7 mmol) is present. Under reflux for 3 hours. After cooling to room temperature, the reaction mixture was poured into iced distilled water. The obtained precipitate was filtered, washed with distilled water and dried under vacuum to obtain the product was purified by column chromatography (ethyl acetate / ethanol = 8: 2) to give the orange powder TPA2 (305 mg, 65%).

1H NMR (300 MHz, DMSO-d 6): d8.23 (s, 2H), 8.01-8.04(d, 4H), 7.47-7.51(t, 2H), 7.32-7.36(t, 1H), 7.23-7.26(d, 2H), 7.16-7.18 (d, 4H). 1 H NMR (300 MHz, DMSO- d 6 ): d8.23 (s, 2H), 8.01-8.04 (d, 4H), 7.47-7.51 (t, 2H), 7.32-7.36 (t, 1H), 7.23-7.26 (d, 2H), 7.16-7.18 (d, 4H).

<실시 예 6> 3-(4-{[4-(2-카르복시-2-시아노-비닐)-페닐]-페닐-아미노}-페닐)-2-시아노-아크릴산[3-(4-{[4-(2-Carboxy-2-cyano-vinyl)-phenyl]-phenyl-amino}-phenyl)-2-cyano-acrylic acid; 2c]Example 6 3- (4-{[4- (2-carboxy-2-cyano-vinyl) -phenyl] -phenyl-amino} -phenyl) -2-cyano-acrylic acid [3- (4- {[4- (2-Carboxy-2-cyano-vinyl) -phenyl] -phenyl-amino} -phenyl) -2-cyano-acrylic acid; 2c]

4,4',4"-(페닐아잔디일)트리벤즈알데히드 (0.3g, 0.3mmol) 및 2-시아노아세트산 (0.09g, 1.0mmol)을 15mL 빙초산에 첨가하고, 암모늄 아세테이트(0.08g, 1mmol) 존재 하에서 3시간 동안 환류하였다. 실온으로 냉각한 후, 상기 반응혼합물을 아이스 증류수에 쏟아 부었다. 얻어진 침전물을 여과하고 증류수로 세척한 뒤 진공 하에서 건조하여 얻은 생성물들을 증류수로 세척하고 진공 하에서 건조하여 얻은 생성물들을 컬럼크로마토그래피(에틸아세테이트/에탄올=7:3)로 정제하여 어두운 주황색 분말인 TPA3(0.4g, 85%)을 얻었다.4,4 ', 4 "-(phenylazanediyl) tribenzaldehyde (0.3 g, 0.3 mmol) and 2-cyanoacetic acid (0.09 g, 1.0 mmol) are added to 15 mL glacial acetic acid and ammonium acetate (0.08 g, 1 mmol) After cooling to room temperature, the reaction mixture was poured into iced distilled water The precipitate obtained was filtered, washed with distilled water and dried under vacuum, and the resulting product was washed with distilled water and dried under vacuum. The obtained product was purified by column chromatography (ethyl acetate / ethanol = 7: 3) to obtain TPA3 (0.4g, 85%) as a dark orange powder.

1H NMR (300 MHz, DMSO-d 6): d 7.91(s, 3H), 7,77-7.80 (d, 6H), 7.01-7.04 (d, 6H). 1 H NMR (300 MHz, DMSO- d 6 ): d 7.91 (s, 3 H), 7,77-7.80 (d, 6 H), 7.01-7.04 (d, 6H).

<실시 예 7> 염료감응형 태양전지(DSSC) 제작 및 성능 평가Example 7 Fabrication and Performance Evaluation of Dye-Sensitized Solar Cell (DSSC)

초음파를 이용하여 전도성 글라스 기판(FTO; TEC8, Pilkington, 8 Ω/㎠, Thickness of 2.3 ㎜)을 에탄올에서 세정하였다. 에틸셀룰로오즈(Aldrich), 라우린산(Fluka) 및 테르피네올(Aldrich)을 이용하여 TiO2 페이스트를 준비하였다. 닥터 블레이드를 이용하여 미리 세정된 글라스 기판에 준비된 TiO2 페이스트를 코팅하고, 500℃에서 30분 동안 소성하였다. 소성된 TiO2 페이스트 층의 두께를 Alpha-step IQ surface profiler(KLA Tencor)로 측정하였다. 또 다른 TiO2 페이스트를 산란층으로서 이용하기 위하여 ca. 250nm 크기의 TiO2 입자를 이용하여 상기 소성 층을 재코팅한 후, 500℃에서 30분 동안 소성하였다. 준비된 TiO2 필름을 70℃에서 30분 동안 0.04 M TiCl4 수용액에 담구었다. 염료 흡착을 위하여, 열처리 된 TiO2 전극을 50℃에서 3시간 동안 염료 용액(0.5 mM of dye in DMF; TPA series, N3/N719)에 담구었다. Conductive glass substrates (FTO; TEC8, Pilkington, 8 Ω / cm 2, Thickness of 2.3 mm) were cleaned in ethanol using ultrasonic waves. TiO 2 pastes were prepared using ethylcellulose (Aldrich), lauric acid (Fluka) and terpineol (Aldrich). The TiO 2 paste prepared on the glass substrate previously cleaned using the doctor blade was coated and fired at 500 ° C. for 30 minutes. The thickness of the fired TiO 2 paste layer was measured with an Alpha-step IQ surface profiler (KLA Tencor). In order to use another TiO 2 paste as a scattering layer, ca. After recoating the calcined layer using 250 nm sized TiO 2 particles, it was calcined at 500 ° C. for 30 minutes. The prepared TiO 2 film was immersed in 0.04 M TiCl 4 aqueous solution at 70 ° C. for 30 minutes. For dye adsorption, the heat treated TiO 2 electrode was immersed in a dye solution (0.5 mM of dye in DMF; TPA series, N3 / N719) at 50 ° C. for 3 hours.

2-프로판올에 용해된 7mM H2PtCl6 용액으로부터 형성된 박막의 400℃에서 20분간의 열적 환원을 통해 Pt 상대전극을 준비하였다. 염료 흡착된 TiO2 전극과 Pt 상대전극을 결합제로서 60㎛-thick Surlyn (Dupont 1702)를 이용하여 조립하였다. 상대전극 상의 천공 홀을 통해 액체 전해질을 도입하였다. 전해질은 아세토니트릴/발레로니트릴(85:15)에 용해된 3-프로필-1-메틸-이미다졸리윰 아이오다이드(PMII, 0.7M), 리튬 아이오다이드(LiI, 0.2M), 요오드(I2, 0.05M), t-부틸피리딘(TBP, 0.5M)으로 구성되었다. 염료 흡착 TiO2 필름의 활성 영역은 이미지-분석-소프트웨어(Moticam 1000)을 구비한 디지털 현미경 카메라에 의해 평가하였다.The Pt counter electrode was prepared by thermal reduction at 400 ° C. for 20 minutes in a thin film formed from a 7 mM H 2 PtCl 6 solution dissolved in 2-propanol. A dye adsorbed TiO 2 electrode and a Pt counter electrode were assembled using 60 μm-thick Surlyn (Dupont 1702) as a binder. The liquid electrolyte was introduced through the puncture holes on the counter electrode. The electrolyte was 3-propyl-1-methyl-imidazolysin iodide (PMII, 0.7M), lithium iodide (LiI, 0.2M), iodine dissolved in acetonitrile / valeronitrile (85:15). (I 2 , 0.05M), t -butylpyridine (TBP, 0.5M). The active area of the dye adsorbed TiO 2 film was evaluated by a digital microscope camera equipped with image-analysis-software (Moticam 1000).

한편, 실시 예에 따른 3가지 염료의 환원 특성은 100 mV/s 주사속도에서 순환 전압전류법(Model:CV-BAS-Epsilon)을 이용하여 평가하였다. 이때, 수분이 제거되어 증류 상태인 아세토니트릴에 용해된 0.10M 테트라부틸암모늄 헥사플루오로포스페이트(TBAPF6)를 전해질 용액으로 사용하였고, Ag/AgCl 및 백금 선(직경 0.5 mm) 전극을 각각 표준전극 및 상대전극으로 사용하였다. On the other hand, the reduction properties of the three dyes according to the embodiment was evaluated using cyclic voltammetry (Model: CV-BAS-Epsilon) at a scanning speed of 100 mV / s. At this time, 0.10M tetrabutylammonium hexafluorophosphate (TBAPF 6 ) dissolved in distilled acetonitrile was used as an electrolyte solution, and Ag / AgCl and platinum wires (0.5 mm in diameter) were used as standard electrodes. And a counter electrode.

(1) 유기염료의 광학적 특성 평가(1) Evaluation of optical properties of organic dyes

도 1 및 표 1과 같이, 본 발명에 따른 유기염료가 다수의 전자수용체 관능기를 지님에 따라 몰흡광계수가 증가되었다. 유기염료의 흡수 파장은 TiO2 필름 상에서 단파장 이동을 나타내었다. 흡수 파장의 단파장 이동은 TiO2 표면 상에 유기염료의 H-응집체 형성에 의한 것으로 판단되며, 유기염료의 광학 및 전기화학적 특성은 표 1과 같다.As shown in Figure 1 and Table 1, the molar absorption coefficient was increased as the organic dye according to the present invention has a plurality of electron acceptor functional groups. The absorption wavelength of the organic dye showed a short wavelength shift on the TiO 2 film. The short wavelength shift of the absorption wavelength is determined by the formation of H-aggregates of organic dyes on the TiO 2 surface, and the optical and electrochemical characteristics of the organic dyes are shown in Table 1.

DyeDye εmax a
/M-1 cm-1
ε max a
/ M -1 cm -1
λmax a
/nm
Soln.
λ max a
/ nm
Soln.
λmax a
/nm TiO2
λ max a
/ nm TiO 2
λmax b
/nm
λ max b
/ nm
E0-0 (eV) c
(abs/em)
E 0-0 (eV) c
(abs / em)
Eox d
(V vs NHE)
E ox d
(V vs NHE)
Eox-E0-0 d
(V vs NHE)
E ox -E 0-0 d
(V vs NHE)
HOMO (eV)HOMO (eV) LUMO
(eV)
LUMO
(eV)
TPA1TPA1 2541325413 421 421 407407 518518 2.692.69 0.930.93 -1.76-1.76 -5.38-5.38 -2.69-2.69 TPA2TPA2 3609936099 448 448 433433 514514 2.352.35 1.091.09 -1.26-1.26 -5.57-5.57 -3.22-3.22 TPA3TPA3 4198041980 433 433 415415 514514 2.462.46 1.061.06 -1.40-1.40 -5.54-5.54 -3.08-3.08

이때, 상기 λmax 및 λmax는 각각 DMSO 용액에서 측정된 흡광 및 발광 스펙트럼이고, 발광 스펙트럼은 293K에서 5X10-5M의 농도에서 측정한 것이다. 또, εmax은 흡착 λmax에서의 몰 흡광계수이며, E0-0은 흡수 스펙트럼의 말단 부분의 접선법에 의한 접점으로부터 산출되며, 염료의 전자를 내어주는 산화 점에 의한 CV는 지지전해질로서 0.1M 테트라부틸암모늄 헥사플루오로포스페이트(TBAPF6)을 함유한 증류된 아세토니트릴에서 측정하였다. 이때, 기준전극으로 글래스 카본, 표준 전극으로 내부표준으로 Fc/Fc+로 적정된 Ag/Ag+, 상대전극으로 Pt를 사용하였다. 산화점을 구하는 식은 다음과 같다. In this case, λ max and λ max are absorbance and emission spectra measured in DMSO solution, respectively, and the emission spectra are measured at a concentration of 5 × 10 −5 M at 293K. Ε max is the molar extinction coefficient at the adsorption λ max , E 0-0 is calculated from the junction by the tangential method of the terminal portion of the absorption spectrum, CV by the oxidation point giving the electrons of the dye as a supporting electrolyte It was measured in distilled acetonitrile containing 0.1M tetrabutylammonium hexafluorophosphate (TBAPF 6 ). In this case, glass carbon was used as a reference electrode, Ag / Ag + titrated with Fc / Fc + as an internal standard, and Pt was used as a counter electrode. The equation for calculating the oxidation point is as follows.

[수학식 1][Equation 1]

HOMO(eV) = -4.8-(Eonset-E(Ferrocene)) HOMO (eV) = -4.8- (E onset -E (Ferrocene) )

(2) 전기화학적 특성(2) electrochemical properties

염료 분자의 LUMO 수준이 TiO2의 전도 밴드 말단보다 더 큰 음의 값이어야 염료 분자에서 TiO2 필름의 전도 밴드로의 효율적인 전자 주입을 가능하며, HOMO 수준이 I3-/I-의 환원 전위보다 양의 값이어야 염료 분자의 재생을 가능하게 한다고 알려져 있다. The LUMO level of the dye molecules, and enabling efficient injection of electrons to the conduction of the TiO 2 film at a dye to be a large negative value than the conduction band of TiO 2 molecular terminal band, the HOMO level 3- I / I - than the reduction potential of the A positive value is known to enable the regeneration of dye molecules.

도 2와 같이, 본 발명에 따른 유기염료의 HOMO 수준을 순환 전류 전압법(CV)으로부터 산출하였다. TPA2 및 TPA3는 각각 -5.57 및 -5.54 eV와 같이 유사한 에너지 수준을 나타내었다. E0-0 값은 정상 UV 흡착 분석의 교점으로부터 얻어지며, 염료의 LUMO 수준을 다음 식(ELUMO = EHOMO - E0-0)에 따라 산출하였고, 그 결과는 표 1과 같다.As shown in FIG. 2, the HOMO level of the organic dye according to the present invention was calculated from cyclic voltammetry (CV). TPA2 and TPA3 showed similar energy levels, such as -5.57 and -5.54 eV, respectively. The E 0-0 value was obtained from the intersection of normal UV adsorption analysis, and the LUMO level of the dye was calculated according to the following formula (E LUMO = E HOMO -E 0-0 ), and the results are shown in Table 1.

(3) 유기염료의 태양광 성능(3) Solar Performance of Organic Dyes

유기염료의 태양광 성능과 DSSC에서 TiO2 표면에 흡착된 염료 양을 표 2에 나타내었다. 관련하여 광전류-전압 곡선을 도 3에 나타내었다. TPA2 및 TPA3은 8.7 및 8.0 mAcm-2의 단락 광전류 밀도(Jsc)를 나타내어 TPA1(7.1 mAcm-2)보다 좋은 특성을 나타내었다. TiO2 표면 상에 흡착된 염료가 많을수록 더 높은 Jsc(단락전류)를 나타내었기 때문에 하나의 전자 수용체 보다는 하나 이상의 전자 수용체를 가진 것이 효율이 높아진다고 볼 수 있다. The photovoltaic performance of organic dyes and the amount of dye adsorbed on TiO 2 surface in DSSC are shown in Table 2. Regarding the photocurrent-voltage curve is shown in FIG. 3. TPA2 and TPA3 exhibited short-circuit photocurrent densities (Jsc) of 8.7 and 8.0 mAcm -2 , showing better properties than TPA1 (7.1 mAcm -2 ). The more dyes adsorbed on the TiO 2 surface, the higher the J sc (short-circuit current). Therefore, it is more efficient to have more than one electron acceptor rather than one electron acceptor.

하지만 TPA3의 경우, 상대적으로 낮은 개방전압(Voc)을 나타내어 오히려 두개의 전자 수송체를 가진 것보다 효율이 낮아 진 것으로 분석되었다. 염료 감응 태양전지용 염료를 파장에 따른 광자를 전류로 변환 시키는 최대 효율(IPCEs)을 이용하여 55-W Xe 램프를 이용하여 검출한 결과, 도 4와 같다. IPCE 값은 다음 식에 따라 5nm 간격으로 결정되었다.However, TPA3 showed a relatively low open-circuit voltage (Voc), which was less efficient than having two electron transporters. As a result of detecting a dye for a solar cell dye using a 55-W Xe lamp using the maximum efficiency (IPCEs) for converting photons according to the wavelength into a current, as shown in FIG. IPCE values were determined at 5 nm intervals according to the following equation.

[수학식 2][Equation 2]

Figure pat00002
Figure pat00002

유기염료의 IPCE는 400nm에서 500nm의 분석 범위에서 70% 이상으로 나타났다. 460nm에서 TPA2는 가장 높은 값인 83%를 나타내었고, 표 2에 나타난 Jsc 값과 관련된다.The IPCE of organic dyes was over 70% in the analysis range of 400nm to 500nm. TPA2 at 460 nm exhibited the highest value of 83% and is related to the J sc values shown in Table 2.

염료dyes Jsc
/mAcm-2
Jsc
/ mAcm -2
Voc
/mV
Voc
/ mV
FF
/%
FF
/%
η
/%
η
/%
Active area/cm2 Active area / cm 2 Layer thickn./μmLayer thickn./μm Amount
/10-8 mol cm-2
Amount
/ 10 -8 mol cm -2
TPA1TPA1 7.17.1 732.7732.7 70.6270.62 3.73.7 0.4210.421 7.467.46 223223 TPA2TPA2 8.78.7 740.3740.3 69.9569.95 4.54.5 0.4330.433 7.357.35 815815 TPA3TPA3 8.08.0 630.0630.0 65.7365.73 3.33.3 0.3930.393 7.417.41 554554 N719N719 15.615.6 780.0780.0 68.4568.45 8.38.3 0.4640.464 6.206.20 20992099

Claims (6)

하기 화학식 1로 표시되는 트리페닐아민 유도체:
[화학식 1]
Figure pat00003

이때, 상기 R1, R2 및 R3는 수소 또는 2-시아노아크릴산에서 선택되며, 하나 이상이 2-시아노아크릴산임.
Triphenylamine derivative represented by the following formula (1):
[Formula 1]
Figure pat00003

Wherein R 1 , R 2 and R 3 are selected from hydrogen or 2-cyanoacrylic acid, and at least one is 2-cyanoacrylic acid.
청구항 1에 있어서, 상기 R1, R2 및 R3 중 어느 하나의 치환기가 수소이고, 나머지 두 개의 치환기가 2-시아노아크릴산인 트리페닐아민 유도체.The triphenylamine derivative according to claim 1, wherein the substituent of any one of R 1 , R 2 and R 3 is hydrogen, and the other two substituents are 2-cyanoacrylic acid. 청구항 1에 있어서, 상기 R1, R2 및 R3가 각각 2-시아노아크릴산인 트리페닐아민 유도체.The triphenylamine derivative according to claim 1, wherein R 1 , R 2 and R 3 are each 2-cyanoacrylic acid. 트리페닐아민과 옥시염화 인(Phosphorus oxychloride)을 반응시켜 벤즈알데히드 유도체를 제조하는 단계; 및
상기 벤즈알데히드 유도체와 2-시아노아세트산을 반응시키는 단계
를 포함하여 이루어지는 것을 특징으로 하는 하기 화학식 1로 표시되는 트리페닐아민 유도체 제조방법:
[화학식 1]
Figure pat00004

이때, 상기 R1, R2 및 R3는 수소 또는 2-시아노아크릴산에서 선택되며, 하나 이상이 2-시아노아크릴산임.
Reacting triphenylamine with phosphorus oxychloride to prepare a benzaldehyde derivative; And
Reacting the benzaldehyde derivative with 2-cyanoacetic acid
Method for producing a triphenylamine derivative represented by the following formula (1) comprising:
[Formula 1]
Figure pat00004

Wherein R 1 , R 2 and R 3 are selected from hydrogen or 2-cyanoacrylic acid, and at least one is 2-cyanoacrylic acid.
하기 화학식 1로 표시되는 트리페닐아민 유도체를 포함하는 염료감응형 태양전지용 유기염료:
[화학식 1]
Figure pat00005

이때, 상기 R1, R2 및 R3는 수소 또는 2-시아노아크릴산에서 선택되며, 하나 이상이 2-시아노아크릴산임.
An organic dye for a dye-sensitized solar cell comprising a triphenylamine derivative represented by Formula 1 below:
[Formula 1]
Figure pat00005

Wherein R 1 , R 2 and R 3 are selected from hydrogen or 2-cyanoacrylic acid, and at least one is 2-cyanoacrylic acid.
하기 화학식 1로 표시되는 트리페닐아민 유도체를 광흡수층으로 사용하는 것을 특징으로 하는 염료감응형 태양전지:
[화학식 1]
Figure pat00006

이때, 상기 R1, R2 및 R3는 수소 또는 2-시아노아크릴산에서 선택되며, 하나 이상이 2-시아노아크릴산임.
Dye-sensitized solar cell, characterized in that using the triphenylamine derivative represented by the formula (1) as a light absorption layer:
[Formula 1]
Figure pat00006

Wherein R 1 , R 2 and R 3 are selected from hydrogen or 2-cyanoacrylic acid, and at least one is 2-cyanoacrylic acid.
KR1020100005913A 2010-01-22 2010-01-22 New triphenylamine derivatives and dye-sensitized solar cell comprising the same KR20110086272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100005913A KR20110086272A (en) 2010-01-22 2010-01-22 New triphenylamine derivatives and dye-sensitized solar cell comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100005913A KR20110086272A (en) 2010-01-22 2010-01-22 New triphenylamine derivatives and dye-sensitized solar cell comprising the same

Publications (1)

Publication Number Publication Date
KR20110086272A true KR20110086272A (en) 2011-07-28

Family

ID=44922701

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100005913A KR20110086272A (en) 2010-01-22 2010-01-22 New triphenylamine derivatives and dye-sensitized solar cell comprising the same

Country Status (1)

Country Link
KR (1) KR20110086272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494603B1 (en) * 2013-03-22 2015-02-26 재단법인대구경북과학기술원 Triphenyl-benzenetriamine dye and dye sensitized solar cell comprising the same
KR101510591B1 (en) * 2013-09-30 2015-04-09 주식회사 엘지화학 Dye-sensitized solar cell comprising amine-based compound
JP2020155539A (en) * 2019-03-19 2020-09-24 コニカミノルタ株式会社 Organic electroluminescence element
GB2618763A (en) * 2022-03-22 2023-11-22 Ali Fadda Ahmed Improved three dyes lifelong and low cost solar cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494603B1 (en) * 2013-03-22 2015-02-26 재단법인대구경북과학기술원 Triphenyl-benzenetriamine dye and dye sensitized solar cell comprising the same
KR101510591B1 (en) * 2013-09-30 2015-04-09 주식회사 엘지화학 Dye-sensitized solar cell comprising amine-based compound
JP2020155539A (en) * 2019-03-19 2020-09-24 コニカミノルタ株式会社 Organic electroluminescence element
GB2618763A (en) * 2022-03-22 2023-11-22 Ali Fadda Ahmed Improved three dyes lifelong and low cost solar cells

Similar Documents

Publication Publication Date Title
JP5003871B2 (en) Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery
Tan et al. Highly efficient and stable organic sensitizers with duplex starburst triphenylamine and carbazole donors for liquid and quasi-solid-state dye-sensitized solar cells
JP5404058B2 (en) Ionic liquid electrolyte
Wu et al. D–π–M–π–A structured platinum acetylide sensitizer for dye-sensitized solar cells
Tian et al. Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells
JP2009269987A (en) Novel compound, photoelectric transducer and solar cell
Hu et al. Rigid triarylamine-based D–A–π–A structural organic sensitizers for solar cells: the significant enhancement of open-circuit photovoltage with a long alkyl group
KR20080077765A (en) A noble ru-type sensitizers and method for preparing of it
JP5350851B2 (en) Composition for photoelectric conversion element and photoelectric conversion element using the same
KR20110086272A (en) New triphenylamine derivatives and dye-sensitized solar cell comprising the same
JP5280853B2 (en) Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound
US7863448B2 (en) Dye for photoelectronic device, photoanode comprising the dye and photoelectronic device employing the photoanode
JP5347329B2 (en) Photoelectric conversion element and solar cell
JP5217475B2 (en) Photoelectric conversion element and solar cell
JP5233318B2 (en) Photoelectric conversion element and solar cell
KR101264082B1 (en) Photosensitizer containing benzothiazole for photovoltaic cell, and photovoltaic cell including the same
KR20160064644A (en) Novel compounds, method of preparation thereof and organic solar cell comprising the same
KR100996236B1 (en) A NOBLE Ru-TYPE SENSITIZERS AND METHOD FOR PREPARING OF IT
Shan et al. Ethoxy‐substituted Oligo‐phenylenevinylene‐Bridged Organic Dyes for Efficient Dye‐Sensitized Solar Cells
KR101587829B1 (en) Dye sensitized sola cell and dye compond used therefin
JP2010168511A (en) New compound, photoelectric transducer, and solar cell
Yu et al. Performance Improvement of Dye-Sensitized Solar Cell by Phenanthrothiadiazole Unit-Based π-Conjugated Bridge
KR102545995B1 (en) Dye-sensitized solar cell device with improved efficiency
KR101465454B1 (en) Photosensitizer for photovoltaic cell, and photovoltaic cell including same
KR20130089024A (en) Phenothiazine derivatives and dye-sensitized solar cell having the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application