JP5280853B2 - Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound - Google Patents

Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound Download PDF

Info

Publication number
JP5280853B2
JP5280853B2 JP2008543032A JP2008543032A JP5280853B2 JP 5280853 B2 JP5280853 B2 JP 5280853B2 JP 2008543032 A JP2008543032 A JP 2008543032A JP 2008543032 A JP2008543032 A JP 2008543032A JP 5280853 B2 JP5280853 B2 JP 5280853B2
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
sup
compound
sensitizing dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008543032A
Other languages
Japanese (ja)
Other versions
JPWO2008056567A1 (en
Inventor
香奈 小林
昌司 渡部
克巳 飯田
悦也 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Original Assignee
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, AGC Seimi Chemical Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2008543032A priority Critical patent/JP5280853B2/en
Publication of JPWO2008056567A1 publication Critical patent/JPWO2008056567A1/en
Application granted granted Critical
Publication of JP5280853B2 publication Critical patent/JP5280853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/148Stilbene dyes containing the moiety -C6H5-CH=CH-C6H5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This invention provides an aromatic compound containing an amino group at its end represented by formula (1): (1) wherein R<SUP>1</SUP>, R<SUP>2</SUP>, R<SUP>4</SUP>, and R<SUP>5</SUP> each independently represent a hydrogen atom or an optionally substituted monovalent organic residue, provided that R<SUP>1</SUP> and R<SUP>2</SUP> together may form a ring and R<SUP>1</SUP> and/or R<SUP>2</SUP>, together with X, may form a ring; and R<SUP>3</SUP> represents an anchor group which can be linked to an inorganic porous material having semiconductor properties. By virtue of the specific partial structure, the above aromatic compoud has a broad absorption band in a visible range and can be used as photofunctional materials, particularly sensitizing dyes for photoelectric conversion. In particular, the use of the aromatic compound in dye-sensitized photoelectric conversion batteries can realize the provision of photoelectric conversion batteries having high photoelectric conversion efficiency and high stability.

Description

本発明は、新規なアミノ基含有芳香族化合物、これを用いた光電変換用増感色素、これを用いた光電変換材料、光電変換電極、およびこれを用いた光電変換用太陽電池に関する。   The present invention relates to a novel amino group-containing aromatic compound, a sensitizing dye for photoelectric conversion using the same, a photoelectric conversion material using the same, a photoelectric conversion electrode, and a solar cell for photoelectric conversion using the same.

現在、石油、石炭、天然ガスに代表される化石燃料にエネルギーは大きく依存しており、今後化石燃料の枯渇が大きく叫ばれている。また化石燃料からエネルギーを得る際にはどうしても二酸化炭素の排出が問題として残り、環境への大きな負荷も問題視されている。   At present, energy relies heavily on fossil fuels represented by oil, coal, and natural gas, and the depletion of fossil fuels has been greatly screamed in the future. In addition, carbon dioxide emissions inevitably remain a problem when obtaining energy from fossil fuels, and a large burden on the environment is regarded as a problem.

最近これらの懸念から太陽光発電は一層注目を浴びており、現在単結晶もしくは多結晶の結晶シリコンまたはアモルファスシリコンを用いたシリコン太陽電池、あるいはガリウム、ヒ素を用いた化合物半導体太陽電池等について盛んに開発検討がなされてはいるものの、製造上のコスト等の諸問題を克服する必要が依然として残るために汎用性に乏しいのが現状である。一方で光増感性を有する色素を利用した太陽電池についても多く提案はされているが変換効率が低く、耐久性が悪いといった点に問題があった。   Recently, solar power generation has attracted more attention due to these concerns. Currently, silicon solar cells using monocrystalline or polycrystalline crystalline silicon or amorphous silicon, or compound semiconductor solar cells using gallium or arsenic are actively used. Although development studies have been made, the current situation is that the versatility is poor because it is still necessary to overcome problems such as manufacturing costs. On the other hand, many solar cells using a photosensitizing dye have been proposed, but there is a problem in that conversion efficiency is low and durability is poor.

このような経緯の中で1991年Graetzelらによる報告があり(非特許文献1)、色素によって光増感された無機半導体多孔質体を用いた光電変換電極および光電変換電池が注目を浴びることとなった。この報告にある光電変換素子は酸化チタン等の比較的安価な無機酸化物半導体を用いて製造されており、汎用品であるシリコン太陽電池よりも低コストで光電変換素子を得ることができる可能性をもっている。しかし、現状ではルテニウム系の増感色素でないと高い光電変換効率が得られないため、色素のコスト高、そしてクラーク数が低いことからそれらの安定供給にも問題が残る。一方で有機系色素の開発検討も活発に行われてはいるものの変換効率の低さ等から実用化までに至っていない。また、特定のアクリル酸部位を有する色素やアミド誘導体を有する増感色素も開示されているが(特許文献1、特許文献2、特許文献3参照)、充分な性能を有すると言えないものであった。   Under such circumstances, there was a report by Graetzel et al. (Non-Patent Document 1) in 1991, and the photoelectric conversion electrode and photoelectric conversion battery using a porous inorganic semiconductor photosensitized with a dye attracted attention. became. The photoelectric conversion element in this report is manufactured using a relatively inexpensive inorganic oxide semiconductor such as titanium oxide, and it is possible to obtain a photoelectric conversion element at a lower cost than a silicon solar battery that is a general-purpose product. Have However, at present, a high photoelectric conversion efficiency cannot be obtained unless it is a ruthenium-based sensitizing dye. Therefore, there is a problem in the stable supply of the dye because of the high cost of the dye and the low number of Clarkes. On the other hand, although organic dyes are being actively studied, they have not been put into practical use because of their low conversion efficiency. Further, although a dye having a specific acrylic acid moiety and a sensitizing dye having an amide derivative have been disclosed (see Patent Document 1, Patent Document 2, and Patent Document 3), it cannot be said to have sufficient performance. It was.

国際公開第02/011213号パンフレットInternational Publication No. 02/011213 Pamphlet 特開2004−143355号公報JP 2004-143355 A 特開2005−097561号公報JP 2005-097561 A ブライアン オレガン(Brian O’Regan),ミカエル グラツェル(Michael Graetzel)、「色素増感コロイダルTiO2膜ベースの低コスト、高効率太陽電池(A low−cost,high−efficiency solar cell based on dye−sensitized colloidal titanium dioxide films)」、ネイチャー(Nature)、英国、1991年10月、第353巻、p.737〜740Brian O'Regan, Michael Graetzel, “Dye-sensitized colloidal TiO2 film-based, low-cost, high-efficiency solar cell based on citrus oxidised-anti-oxidized solar cell dioxide films ", Nature, UK, October 1991, Vol. 353, pp. 737-740.

本発明は、可視領域に広い吸収帯を持ち、色素増感型の光電変換電池に使用される光電変換用増感色素として有用な、新規アミノ基含有芳香族化合物の提供を目的とする。また、半導体特性を示す無機多孔質物質とこの光電変換用増感色素とを連結させた光電変換材料、この光電変換材料を透明電極に積層してなる光電変換電極、およびこの光電変換電極、電解質層および導電性対極を含んでなる光電変換電池を提供することを目的とする。   An object of the present invention is to provide a novel amino group-containing aromatic compound having a wide absorption band in the visible region and useful as a sensitizing dye for photoelectric conversion used in a dye-sensitized photoelectric conversion battery. Further, a photoelectric conversion material obtained by connecting an inorganic porous substance exhibiting semiconductor characteristics and the sensitizing dye for photoelectric conversion, a photoelectric conversion electrode formed by laminating the photoelectric conversion material on a transparent electrode, and the photoelectric conversion electrode and electrolyte An object of the present invention is to provide a photoelectric conversion battery comprising a layer and a conductive counter electrode.

本発明者等は、前記課題を解決すべく鋭意努力研究を重ねた結果、特定の部分構造を有する化合物が、光電変換用増感色素として有用であることを見出した。すなわち本発明は、下記式(1)で表される末端にアミノ基を含有する芳香族化合物を提供する。
下記式(1)で表される、末端にアミノ基を含有する芳香族化合物。

式(1)において、R1 および2 、それぞれ独立して、炭素数1〜4のアルキル基である。R3は、カルボキシル基である。 4 は、シアノ基である。R 5 は、水素原子である。Xは、置換基を有していても良い1,4−フェニレン基である。Yは、置換基を有していても良い1,4−フェニレン基である。Zは、環基と共役鎖状連結基が組み合わさった下記の構造下記の構造において、Yと結合する側にYと記載してある。

ただし、Xからアンカー基R3までπ共役系を形成する構造である。また、XおよびYの少なくとも一方は、1つ以上のフッ素原子で置換された1,4−フェニレン基である。mは、1ある。nは0または1の整数である。上記式(1)中の二重結合は、シス−トランス異性体のいずれを生じさせるものであってもよい。
As a result of intensive efforts to solve the above problems, the present inventors have found that a compound having a specific partial structure is useful as a sensitizing dye for photoelectric conversion. That is, the present invention provides an aromatic compound containing an amino group at the terminal represented by the following formula (1).
An aromatic compound containing an amino group at the end, represented by the following formula (1).

In the formula (1), R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms . R 3 is a carboxyl group. R 4 is a cyano group. R 5 is a hydrogen atom. X is a 1,4-phenylene group which may have a substituent . Y is a 1,4-phenylene group which may have a substituent . Z is the following structure in which a cyclic group and a conjugated chain linking group are combined . In the following structure, Y is written on the side bonded to Y.

However, the structure forms a π-conjugated system from X to the anchor group R 3 . At least one of X and Y is a 1,4-phenylene group substituted with one or more fluorine atoms. m is 1. n is an integer of 0 or 1. The double bond in the above formula (1) may give rise to any of the cis-trans isomers.

また、本発明は式(1)で表される末端にアミノ基を含有する芳香族化合物からなることを特徴とする光電変換用増感色素を提供する。   Moreover, this invention provides the sensitizing dye for photoelectric conversion characterized by consisting of the aromatic compound containing an amino group at the terminal represented by Formula (1).

上記の光電変換用増感色素は、式(1)で表される末端にアミノ基を含有する芳香族化合物以外の光増感色素をさらに含んでもよい。   The sensitizing dye for photoelectric conversion may further contain a photosensitizing dye other than the aromatic compound containing an amino group at the terminal represented by the formula (1).

また、本発明は、上記の光電変換用増感色素と、半導体特性を示す無機多孔質物質とを連結させてなる光電変換材料を提供する。   Moreover, this invention provides the photoelectric conversion material formed by connecting said sensitizing dye for photoelectric conversions, and the inorganic porous substance which shows a semiconductor characteristic.

また、本発明は、上記の光電変換用増感色素とあわせて共吸着剤を用いることを特徴とする光電変換材料を提供する。   Moreover, this invention provides the photoelectric conversion material characterized by using a coadsorbent in combination with said sensitizing dye for photoelectric conversion.

上記の半導体特性を示す無機多孔質物質は、無機酸化物で構成されることが好ましい。   The inorganic porous material exhibiting the semiconductor characteristics is preferably composed of an inorganic oxide.

また、本発明は、上記の光電変換材料を透明電極に積層してなる光電変換電極を提供する。   Moreover, this invention provides the photoelectric conversion electrode formed by laminating | stacking said photoelectric conversion material on a transparent electrode.

また、本発明は、上記の光電変換電極、電解質層、および導電性対極を含んでなる光電変換電池を提供する。   The present invention also provides a photoelectric conversion battery comprising the photoelectric conversion electrode, an electrolyte layer, and a conductive counter electrode.

本発明のアミノ基含有芳香族化合物は、特定の部分構造を有することにより、可視領域に広い吸収帯を持ち、光機能材料、特に光電変換用増感色素として用いることができる。特に、色素増感型光電変換電池に用いることにより、光電変換効率が高く、安定性の高い光電変換電池を提供することができる。
また、特定の置換基の選択により、HOMOやLUMOのエネルギー準位を容易に調節することができるため、色素増感型光電変換電池を構成する他の材料に合わせて所望の性能を発揮することができる。
Since the amino group-containing aromatic compound of the present invention has a specific partial structure, it has a wide absorption band in the visible region, and can be used as an optical functional material, particularly as a sensitizing dye for photoelectric conversion. In particular, by using it for a dye-sensitized photoelectric conversion battery, a photoelectric conversion battery having high photoelectric conversion efficiency and high stability can be provided.
In addition, since the energy level of HOMO and LUMO can be easily adjusted by selecting specific substituents, the desired performance should be exhibited in accordance with other materials constituting the dye-sensitized photoelectric conversion battery. Can do.

図1は、実施例の光電変換試験で使用した光電変換セルの試験サンプルの模式図である。FIG. 1 is a schematic diagram of a test sample of a photoelectric conversion cell used in the photoelectric conversion test of the example.

符号の説明Explanation of symbols

1:ガラス基板
2:透明電極層
3:白金電極層
4:酸化チタン多孔質層(光電変換用増感色素が吸着したもの)
5:電解液
6:樹脂フィルム製スペーサ
7:測定用導線
1: Glass substrate 2: Transparent electrode layer 3: Platinum electrode layer 4: Titanium oxide porous layer (adsorbed with sensitizing dye for photoelectric conversion)
5: Electrolyte 6: Spacer made of resin film 7: Lead wire for measurement

以下、本発明を詳細に説明する。
なお、本明細書において、「置換基を有していても良い」と記載する場合、置換基とは、具体的には、脂肪族炭化水素基、芳香族炭化水素基もしくは芳香族複素環基、またはハロゲン原子、シアノ基、イソシアノ基、チオシアネート基、イソチオシアネート基、ニトロ基、ヒドロキシ基、メルカプト基、アミノ基、アミド基、あるいは下記式(2)で表される1価の基である。

式(2)において、A1およびA2は、それぞれ独立して、O、NHまたはSである。Bはカルボニル基、チオカルボニル基、スルフィニル基またはスルホニル基である。oおよびpは、それぞれ独立して0または1である。R6は、水素原子、それぞれ置換基を有していても良い1価の脂肪族炭化水素基、芳香族炭化水素基もしくは芳香族複素環基、またはハロゲン原子、シアノ基、イソシアノ基、チオシアネート基、イソチオシアネート基、ニトロ基、ヒドロキシ基、メルカプト基、アミノ基もしくはアミド基である。
Hereinafter, the present invention will be described in detail.
In addition, in this specification, when it is described as “may have a substituent”, the substituent is specifically an aliphatic hydrocarbon group, an aromatic hydrocarbon group or an aromatic heterocyclic group. Or a halogen atom, a cyano group, an isocyano group, a thiocyanate group, an isothiocyanate group, a nitro group, a hydroxy group, a mercapto group, an amino group, an amide group, or a monovalent group represented by the following formula (2).

In Formula (2), A 1 and A 2 are each independently O, NH, or S. B is a carbonyl group, a thiocarbonyl group, a sulfinyl group or a sulfonyl group. o and p are each independently 0 or 1. R 6 represents a hydrogen atom, a monovalent aliphatic hydrocarbon group, an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, or a halogen atom, a cyano group, an isocyano group or a thiocyanate group. , Isothiocyanate group, nitro group, hydroxy group, mercapto group, amino group or amide group.

本発明の新規アミノ基含有芳香族化合物は、特定の部分構造を有するアミノ基含有化合物であり、具体的には、下記式(1)で表される末端アミノ基含有化合物である。

式(1)において、R1、R2、R4およびR5は、それぞれ独立して、水素原子、または置換基を有していてもよい1価の有機残基である。ここで、R1およびR2は共同して環を形成してもよい。また、R1および/またはR2は、Xと共同して環を形成してもよい。R3は、半導体特性を示す無機多孔質物質と連結し得るアンカー基である。Xは、2価の芳香族炭化水素基、または2個以上の2価の芳香族炭化水素基の組合せである。該2価の芳香族炭化水素基は、置換基を有していても良く、2個以上の環が縮合していてもよい。mは、1〜3の整数である。nは0または1の整数である。Yは2価の芳香族炭化水素基である。該2価の芳香族炭化水素基は置換基を有していても良く、2個以上の環が縮合していても良い。Zは、2価の芳香族複素環基、2価の芳香族炭化水素基、2価の不飽和炭化水素基、およびこれらの組合せである。2価の芳香族複素環基、2価の芳香族炭化水素基および2価の不飽和炭化水素基は置換基を有していても良く、該2価の芳香族複素環基および2価の芳香族炭化水素環基は2個以上の環が縮合していても良い。ただし、Xからアンカー基R3までπ共役系を形成する構造である。また、XおよびYの少なくとも一方は、一つ以上のフッ素原子で置換された2価の芳香族炭化水素基である。式(1)中の二重結合は、シス−トランス異性体のいずれを生じさせるものであってもよい。
The novel amino group-containing aromatic compound of the present invention is an amino group-containing compound having a specific partial structure, and specifically, a terminal amino group-containing compound represented by the following formula (1).

In the formula (1), R 1 , R 2 , R 4 and R 5 are each independently a hydrogen atom or a monovalent organic residue which may have a substituent. Here, R 1 and R 2 may jointly form a ring. R 1 and / or R 2 may form a ring together with X. R 3 is an anchor group that can be linked to an inorganic porous material exhibiting semiconductor properties. X is a divalent aromatic hydrocarbon group or a combination of two or more divalent aromatic hydrocarbon groups. The divalent aromatic hydrocarbon group may have a substituent, and two or more rings may be condensed. m is an integer of 1-3. n is an integer of 0 or 1. Y is a divalent aromatic hydrocarbon group. The divalent aromatic hydrocarbon group may have a substituent, and two or more rings may be condensed. Z is a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, a divalent unsaturated hydrocarbon group, or a combination thereof. The divalent aromatic heterocyclic group, divalent aromatic hydrocarbon group and divalent unsaturated hydrocarbon group may have a substituent, and the divalent aromatic heterocyclic group and divalent aromatic In the aromatic hydrocarbon ring group, two or more rings may be condensed. However, the structure forms a π-conjugated system from X to the anchor group R 3 . Further, at least one of X and Y is a divalent aromatic hydrocarbon group substituted with one or more fluorine atoms. The double bond in formula (1) may give rise to any of the cis-trans isomers.

まず式(1)中のXについて説明する。Xは、2価の芳香族炭化水素基、または2個以上の2価の芳香族炭化水素基の組合わせを表す。該2価の芳香族炭化水素基は、置換基を有していてもよく、2個以上の環が縮合していてもよい。また、置換基を有する場合、2つ以上の置換基同士が互いに結合して環を形成していてもよい。また、R1および/またはR2が、Xと共同して環を形成してもよい。2個以上の2価の芳香族炭化水素基の組合わせとは、具体的には、2個以上の2価の芳香族炭化水素基が直結した構造である。First, X in the formula (1) will be described. X represents a divalent aromatic hydrocarbon group or a combination of two or more divalent aromatic hydrocarbon groups. The divalent aromatic hydrocarbon group may have a substituent, and two or more rings may be condensed. Moreover, when it has a substituent, two or more substituents may combine with each other to form a ring. R 1 and / or R 2 may form a ring together with X. Specifically, the combination of two or more divalent aromatic hydrocarbon groups is a structure in which two or more divalent aromatic hydrocarbon groups are directly connected.

2価の芳香族炭化水素基としては、それぞれ置換基を有していても良いフェニレン基、ナフチレン基、アンスリレン基、フェナンスリレン基等が挙げられる。また、2価の芳香族炭化水素基が直結した構造を有する基としては、ビフェニレン基、ターフェニレン基等が挙げられる。Xとしては、特に置換基を有していても良い1,4−フェニレン基が好ましい。   Examples of the divalent aromatic hydrocarbon group include a phenylene group, a naphthylene group, an anthrylene group, and a phenanthrylene group, each of which may have a substituent. Examples of the group having a structure in which a divalent aromatic hydrocarbon group is directly connected include a biphenylene group and a terphenylene group. X is particularly preferably a 1,4-phenylene group which may have a substituent.

Yは、置換基を有していても良い2価の芳香族炭化水素基である。該2価の芳香族炭化水素基は置換基を有していても良い。また、該2価の芳香族炭化水素基は、単環構造のもの、もしくは2個以上の環が縮合した縮合環構造のものであってよい。該2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、アンスリレン基、フェナンスリレン基等が挙げられ、1,4−フェニレン基は特に好ましい。   Y is a divalent aromatic hydrocarbon group which may have a substituent. The divalent aromatic hydrocarbon group may have a substituent. The divalent aromatic hydrocarbon group may have a monocyclic structure or a condensed ring structure in which two or more rings are condensed. Examples of the divalent aromatic hydrocarbon group include a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, and the like, and a 1,4-phenylene group is particularly preferable.

式(1)中のZは、2価の芳香族複素環基、2価の芳香族炭化水素基、2価の不飽和炭化水素基、およびこれらの組合せである。2価の芳香族複素環基、2価の芳香族炭化水素基および2価の不飽和炭化水素基は置換基を有していても良く、該2価の芳香族複素環基および2価の芳香族炭化水素環基は2個以上の環が縮合していても良い。ただし、Xからアンカー基R3までπ共役系を形成する構造である。Z in formula (1) is a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, a divalent unsaturated hydrocarbon group, or a combination thereof. The divalent aromatic heterocyclic group, divalent aromatic hydrocarbon group and divalent unsaturated hydrocarbon group may have a substituent, and the divalent aromatic heterocyclic group and divalent aromatic In the aromatic hydrocarbon ring group, two or more rings may be condensed. However, the structure forms a π-conjugated system from X to the anchor group R 3 .

環基などの組合せとしては、具体的には、2個以上の2価の芳香族複素環基が直結した構造、2個以上の2価の芳香族炭化水素基が直結した構造、1個以上の2価の芳香族複素環基と1個以上の2価の芳香族炭化水素基とが直結した構造、2個以上の2価の芳香族複素環基が2価の不飽和炭化水素基により連結された構造、2個以上の2価の芳香族炭化水素基が2価の不飽和炭化水素基により連結された構造、または1個以上の2価の芳香族複素環基と1個以上の2価の芳香族炭化水素基とが2価の不飽和炭化水素基により連結された構造等が挙げられる。ただし、2価の不飽和炭化水素基により連結された構造の場合は、2価の芳香族複素環基および芳香族炭化水素基のπ電子と2価の不飽和炭化水素基のπ電子とが共役する構造である。   Specific examples of combinations of cyclic groups include a structure in which two or more divalent aromatic heterocyclic groups are directly connected, a structure in which two or more divalent aromatic hydrocarbon groups are directly connected, and one or more A structure in which a divalent aromatic heterocyclic group of 1 and one or more divalent aromatic hydrocarbon groups are directly connected, and two or more divalent aromatic heterocyclic groups are formed by a divalent unsaturated hydrocarbon group A linked structure, a structure in which two or more divalent aromatic hydrocarbon groups are linked by a divalent unsaturated hydrocarbon group, or one or more divalent aromatic heterocyclic groups and one or more Examples thereof include a structure in which a divalent aromatic hydrocarbon group is linked by a divalent unsaturated hydrocarbon group. However, in the case of a structure linked by a divalent unsaturated hydrocarbon group, the π electrons of the divalent aromatic heterocyclic group and aromatic hydrocarbon group and the π electrons of the divalent unsaturated hydrocarbon group are It is a conjugated structure.

2価の芳香族複素環基としては、それぞれ置換基を有していても良いチエニレン基、チエノチエニレン基が挙げられ、好ましくは2,5−チエニレン基、2,5−チエノチエニレン基等が挙げられる。
2価の芳香族炭化水素基としては、例えば、それぞれ置換基を有していても良いフェニレン基、ナフチレン基、アンスリレン基、フェナンスリレン基等が挙げられる。また、2価の芳香族炭化水素基が直結した構造を有する基としては、ビフェニレン基、ターフェニレン基が挙げられる。
2価の不飽和炭化水素基としては、「−CH=CH−」「−CH=CH−CH=CH−」、「−CH=CH−CH=CH−CH=CH−」、「−CH=CH−C≡C−」など共役鎖状連結基、または1−シクロヘキセン−1,2−イレン、1−シクロペンテン−1,2−イレンなど不飽和結合を有する環状連結基、さらに前記鎖状連結基と環状連結基とが組み合わさった構造などが挙げられる。
Examples of the divalent aromatic heterocyclic group include a thienylene group and a thienothienylene group, each of which may have a substituent, preferably a 2,5-thienylene group and a 2,5-thienothienylene group.
Examples of the divalent aromatic hydrocarbon group include a phenylene group, a naphthylene group, an anthrylene group, and a phenanthrylene group, each of which may have a substituent. Examples of the group having a structure in which a divalent aromatic hydrocarbon group is directly connected include a biphenylene group and a terphenylene group.
Examples of the divalent unsaturated hydrocarbon group include “—CH═CH—”, “—CH═CH—CH═CH—”, “—CH═CH—CH═CH—CH═CH—”, “—CH═ A conjugated chain linking group such as “CH—C≡C—” or a cyclic linking group having an unsaturated bond such as 1-cyclohexene-1,2-ylene and 1-cyclopentene-1,2-ylene, and the chain linking group And a structure in which a cyclic linking group is combined.

式(1)で表される本発明の末端アミノ基含有芳香族化合物は、色素増感型光電変換電池に使用される光電変換用増感色素として好適である。
地上に到達する太陽放射スペクトルは、地球を取り巻く上層大気によって、散乱あるいは吸収され約300〜3000nmに分布が見られる。ここで色素増感型光電変換電池では半導体電極電位および電解質の酸化還元電位等の影響から、太陽光を電気エネルギーへ変換できる吸収波長領域は300〜1200nmの範囲が有効と考えられている。さらに太陽光の放射照度は主に可視領域で大きく、可視領域である400〜800nmのエネルギーは太陽光エネルギー全体の55%に相当する。
したがって、可視領域において広い吸収帯を持つ色素を色素増感型光電変換電池用の光電変換用増感色素として用いることで、太陽光エネルギーを効率よく利用することが可能となる。
The terminal amino group-containing aromatic compound of the present invention represented by the formula (1) is suitable as a sensitizing dye for photoelectric conversion used in a dye-sensitized photoelectric conversion battery.
The solar radiation spectrum reaching the ground is scattered or absorbed by the upper atmosphere surrounding the earth, and a distribution is seen at about 300 to 3000 nm. Here, in the dye-sensitized photoelectric conversion battery, it is considered that the absorption wavelength region in which sunlight can be converted into electric energy is effective in the range of 300 to 1200 nm due to the influence of the semiconductor electrode potential and the oxidation-reduction potential of the electrolyte. Furthermore, the irradiance of sunlight is large mainly in the visible region, and the energy in the visible region of 400 to 800 nm corresponds to 55% of the total solar energy.
Therefore, solar energy can be efficiently used by using a dye having a wide absorption band in the visible region as a sensitizing dye for photoelectric conversion for a dye-sensitized photoelectric conversion battery.

さらに、色素増感型太陽電池の性能に大きく関わるのは色素の最高占有軌道(以降HOMOと略す)および最低非占有軌道(以降LUMOと略す)のエネルギー準位である。色素のHOMOのエネルギー準位(一電子酸化電位)は電解質中の電子輸送剤の酸化還元電位より低いエネルギー準位であることが要求され、また色素のLUMOのエネルギー準位(一電子還元電位)は半導体のコンダクションバンドよりも高いことが要求される。最適なエネルギー準位は色素と影響のある個々の部材との兼ね合いが大きいため、それぞれ個々の色素との適切なエネルギー差が必要と考えられている(アシュラフル イスラム(Ashraful Islam),杉原秀樹,荒川 秀則、「効率の良いナノ結晶チタニア太陽電池のためのルテニウムポリピリジル光増感剤の分子デザイン(Molecular Design of ruthenium(II)polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cell)」、Journal of Photochemistry and Photobiology A:Chemistry参照)。Further, the energy level of the highest occupied orbit (hereinafter abbreviated as HOMO) and the lowest unoccupied orbit (hereinafter abbreviated as LUMO) of the dye greatly affects the performance of the dye-sensitized solar cell. The HOMO energy level (one-electron oxidation potential) of the dye is required to be lower than the redox potential of the electron transfer agent in the electrolyte, and the LUMO energy level (one-electron reduction potential) of the dye. Is required to be higher than a semiconductor conduction band. Since the optimal energy level has a large balance between the pigment and the individual components that are affected, it is considered that an appropriate energy difference from each pigment is necessary (Ashraful Islam, Hideki Sugihara, Hidenori Arakawa, "molecular design of ruthenium polypyridyl photosensitizers for good nanocrystalline titania solar cell efficiency (molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO 2 solar cell) ", Journal of Photochemistry and Photobiology A: See Chemistry).

本来HOMOやLUMO等のエネルギー準位は骨格に大きく依存し、エネルギー準位を最適な位置にチューニングするには骨格を変更するか、π共役系を伸ばしたり短くしたりすることで対応をすることになる。一般的にπ共役系を長くするとHOMOエネルギー準位は上昇し、LUMOエネルギー準位は下降することが知られている。しかし、色素のHOMOやLUMOのエネルギー準位を共役系の長さを伸縮するだけではエネルギー準位を最適な位置にチューニングするには限界がある。
これらを満足する色素の構造設計をする方法として、式(1)で表される化合物にフッ素原子を適切な位置に適切な個数導入することを提案できる。これによりHOMOやLUMO等のエネルギー準位をチューニングすることができる。これらの化合物は色素増感型光電変換電池用の増感色素として好適である。
Originally, energy levels such as HOMO and LUMO greatly depend on the skeleton. To tune the energy level to the optimum position, change the skeleton or extend or shorten the π-conjugated system. become. In general, it is known that when the π-conjugated system is lengthened, the HOMO energy level increases and the LUMO energy level decreases. However, there is a limit to tuning the energy level to an optimum position only by expanding or contracting the HOMO or LUMO energy level of the dye by the length of the conjugated system.
As a method for designing the structure of a dye satisfying these requirements, it can be proposed to introduce an appropriate number of fluorine atoms into an appropriate position in the compound represented by the formula (1). Thereby, energy levels such as HOMO and LUMO can be tuned. These compounds are suitable as sensitizing dyes for dye-sensitized photoelectric conversion batteries.

式(1)中のXおよびYは、置換基を有していても良い芳香族炭化水素基が好ましい。芳香族炭化水素基としては、末端のアミノ基からアンカー基まで共役が可能なフェニレン基、ナフチレン基もしくはアンスリレン基が好ましく、1,4−フェニレン基が特に好ましい。XおよびYとして特に好ましいのはフッ素原子で置換された1,4−フェニレン基である。さらに好ましくは1または2個のフッ素原子で1,4−フェニレン基を置換している場合である。XおよびYとしてこれらの基が好ましい理由としては、合成するための出発物質の入手がしやすいことが挙げられる。また、フッ素原子をXおよびYの芳香族炭化水素基に導入することで、色素のHOMOエネルギー準位およびLUMOエネルギー準位を変化させる効果が有り、フッ素原子の置換位置や置換数を適切に選ぶことでHOMOおよびLUMOエネルギー準位の調節ができる。HOMOおよびLUMOエネルギー準位は電気化学的測定法の一つであるサイクリックボルタンメトリー(以下「CV」と略す)測定をすることで簡易的に知ることができる。物質のHOMOエネルギー準位はほぼ一電子酸化電位に相当し、LUMOエネルギー準位はほぼ一電子還元電位に相当する。式(1)で表される化合物にフッ素原子を、適切な位置に適切な個数導入することで、一電子酸化電位および一電子還元電位の値がシフトするため最適な値に調整することが可能となる。   X and Y in the formula (1) are preferably aromatic hydrocarbon groups which may have a substituent. As the aromatic hydrocarbon group, a phenylene group, a naphthylene group or an anthrylene group capable of conjugating from a terminal amino group to an anchor group is preferable, and a 1,4-phenylene group is particularly preferable. Particularly preferred as X and Y is a 1,4-phenylene group substituted with a fluorine atom. More preferably, the 1,4-phenylene group is substituted with 1 or 2 fluorine atoms. The reason why these groups are preferable as X and Y is that the starting materials for synthesis are easily available. In addition, by introducing fluorine atoms into X and Y aromatic hydrocarbon groups, there is an effect of changing the HOMO energy level and LUMO energy level of the dye, and the fluorine atom substitution position and the number of substitutions are appropriately selected. Thus, the HOMO and LUMO energy levels can be adjusted. The HOMO and LUMO energy levels can be easily known by performing cyclic voltammetry (hereinafter abbreviated as “CV”), which is one of electrochemical measurement methods. The HOMO energy level of the substance corresponds approximately to the one-electron oxidation potential, and the LUMO energy level approximately corresponds to the one-electron reduction potential. By introducing an appropriate number of fluorine atoms into the compound represented by the formula (1) at an appropriate position, the value of the one-electron oxidation potential and the one-electron reduction potential can be shifted to an optimum value. It becomes.

式(1)中のZは、それぞれ置換基を有していても良いフェニレン基、チエニレン基、チエノチエニレン基のような環基や下記のような環基と共役鎖状連結基とが組み合わさった構造等が好適である。下記の構造において、Yと結合する側にYと記載してある。また(Fn)は1つ以上のフッ素原子が置換していても良いことを意味する。それぞれの環基は置換基を有していても良いが、好ましくは水素原子やフッ素原子があげられる。Zとしてこれらの基が好ましい理由としては、吸収領域を広げたり吸収極大を調整することが容易な上、原料が入手しやすく合成が容易であるからである。
Z in the formula (1) is a combination of a ring group such as a phenylene group, a thienylene group, and a thienothienylene group that may have a substituent, or a ring group such as the following and a conjugated chain linking group. A structure or the like is preferable. In the following structure, Y is written on the side bonded to Y. (Fn) means that one or more fluorine atoms may be substituted. Each ring group may have a substituent, but preferably a hydrogen atom or a fluorine atom. The reason why these groups are preferable as Z is that it is easy to expand the absorption region and adjust the absorption maximum, and the raw materials are easily available and synthesis is easy.

次に式(1)中のR1、R2、R4およびR5について説明する。
1、R2、R4およびR5は、それぞれ独立して、水素原子または置換基を有していてもよい1価の有機残基である。ここで、R1およびR2は共同して環を形成してもよい。また、R1および/またはR2は、Xと共同して環を形成してもよい。
Next, R 1 , R 2 , R 4 and R 5 in the formula (1) will be described.
R 1 , R 2 , R 4 and R 5 are each independently a monovalent organic residue optionally having a hydrogen atom or a substituent. Here, R 1 and R 2 may jointly form a ring. R 1 and / or R 2 may form a ring together with X.

1、R2、R4およびR5の1価の有機残基としては、具体的には、それぞれ置換基を有していても良い脂肪族炭化水素基、芳香族炭化水素基もしくは芳香族複素環基、またはハロゲン原子、シアノ基、イソシアノ基、チオシアネート基、イソチオシアネート基、ニトロ基、ヒドロキシ基、メルカプト基、アミノ基、アミド基、あるいは下記式(2)で表される基が挙げられる。

式(2)において、A1およびA2は、それぞれ独立して、O、NHまたはSである。Bは、カルボニル基、チオカルボニル基、スルフィニル基またはスルホニル基である。oおよびpは、それぞれ独立して0または1である。R6は、水素原子、それぞれ置換基を有していても良い1価の脂肪族炭化水素基、芳香族炭化水素基もしくは芳香族複素環基、またはハロゲン原子、シアノ基、イソシアノ基、チオシアネート基、イソチオシアネート基、ニトロ基、ヒドロキシ基、メルカプト基、アミノ基もしくはアミド基である。
Specific examples of the monovalent organic residue represented by R 1 , R 2 , R 4 and R 5 include an aliphatic hydrocarbon group, an aromatic hydrocarbon group or an aromatic group each optionally having a substituent. Examples include a heterocyclic group, a halogen atom, a cyano group, an isocyano group, a thiocyanate group, an isothiocyanate group, a nitro group, a hydroxy group, a mercapto group, an amino group, an amide group, or a group represented by the following formula (2). .

In Formula (2), A 1 and A 2 are each independently O, NH, or S. B is a carbonyl group, a thiocarbonyl group, a sulfinyl group or a sulfonyl group. o and p are each independently 0 or 1. R 6 represents a hydrogen atom, a monovalent aliphatic hydrocarbon group, an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, or a halogen atom, a cyano group, an isocyano group or a thiocyanate group. , Isothiocyanate group, nitro group, hydroxy group, mercapto group, amino group or amide group.

ここで、1価の脂肪族炭化水素基は、炭素数1〜40の1価の脂肪族炭化水素基を意味し、直鎖構造、分岐を有する構造または環状構造のいずれであってもよく、不飽和結合を有していてもよい。また、1価の脂肪族炭化水素基は、置換基を有していてもよく、一つ以上の炭素原子が酸素原子、硫黄原子または窒素原子に置換されていてもよい。1価の脂肪族炭化水素基の具体例としては、それぞれ炭素数1〜30のアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基などが挙げられる。   Here, the monovalent aliphatic hydrocarbon group means a monovalent aliphatic hydrocarbon group having 1 to 40 carbon atoms, and may be any of a linear structure, a branched structure, or a cyclic structure, It may have an unsaturated bond. The monovalent aliphatic hydrocarbon group may have a substituent, and one or more carbon atoms may be substituted with an oxygen atom, a sulfur atom, or a nitrogen atom. Specific examples of the monovalent aliphatic hydrocarbon group include an alkyl group having 1 to 30 carbon atoms, an alkenyl group, an alkynyl group, a cycloalkyl group, and an alkoxy group.

1価の脂肪族炭化水素基として、より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、1−ペンチル基、1−ヘキシル基、1−ヘプチル基、1−オクチル基、2−エチル−1−ヘキシル基といった炭素数1〜8のアルキル基;1−プロペニル基、イソプロペニル基、アリル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、2−メチル−1−プロペニル基、2−メチル−2−プロペニル基といった炭素数2〜4のアルケニル基;エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−メチル−3−プロピニル基といった炭素数2〜4のアルキニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデカニル基といった炭素数3〜10の飽和シクロアルキル基;2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基といった炭素数3〜7の不飽和シクロアルキル基が挙げられる。   More specifically, as the monovalent aliphatic hydrocarbon group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, 1- An alkyl group having 1 to 8 carbon atoms such as a pentyl group, 1-hexyl group, 1-heptyl group, 1-octyl group, 2-ethyl-1-hexyl group; 1-propenyl group, isopropenyl group, allyl group, 1- C2-C4 alkenyl group such as butenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group; ethynyl group, 1-propynyl group, 2- C2-C4 alkynyl group such as propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-methyl-3-propynyl group; cyclopropyl group, cyclobutyl , A cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecanyl group, a saturated cycloalkyl group having 3 to 10 carbon atoms; a 2-cyclopenten-1-yl group, a 2-cyclohexen-1-yl group, etc. Examples thereof include unsaturated cycloalkyl groups having 3 to 7 carbon atoms.

1価の芳香族炭化水素基としては、1価の単環構造もしくは縮合環構造の芳香族炭化水素基、または1価の環集合芳香族炭化水素基が挙げられる。具体的には、フェニル基、ナフチル基、アンスリル基、フェナントリル基、トリフェニル基、ピレニル基等が挙げられる。また、1価の芳香族炭化水素基は、酸素原子、硫黄原子または窒素原子を介して、式(1)の骨格部分と結合するものであっても良く、このようなものとしては、具体的には、フェノキシ基、ナフチルオキシ基などが挙げられる。   Examples of the monovalent aromatic hydrocarbon group include an aromatic hydrocarbon group having a monovalent monocyclic structure or a condensed ring structure, or a monovalent ring assembly aromatic hydrocarbon group. Specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a triphenyl group, and a pyrenyl group. Further, the monovalent aromatic hydrocarbon group may be bonded to the skeleton portion of the formula (1) through an oxygen atom, a sulfur atom, or a nitrogen atom. Examples thereof include a phenoxy group and a naphthyloxy group.

好ましい1価の芳香族炭化水素基は、フェニル基、o−トリル基、m−トリル基、p−トリル基、o−アニソイル基、m−アニソイル基、p−アニソイル基、1−ナフチル基、2−ナフチル基、9−フェナントリル基等の炭素数6〜14の1価の芳香族炭化水素基が挙げられる。   Preferred monovalent aromatic hydrocarbon groups are a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, an o-anisoyyl group, an m-anisoyyl group, a p-anisoyyl group, a 1-naphthyl group, 2 -Monovalent aromatic hydrocarbon groups having 6 to 14 carbon atoms such as naphthyl group and 9-phenanthryl group.

1価の芳香族複素環基としては、1価の単環構造もしくは縮合環構造の芳香族複素環基、または1価の環集合芳香族複素環基が挙げられる。具体的には、2−フリル基、3−フリル基、2−チエニル基、3−チエニル基、2−セレニル基、3−セレニル基、1−ピローリル基、2−ピローリル基、3−ピローリル基、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、2−キノキサリル基、2−ベンゾフリル基、2−ベンゾチエニル基、2−チエノチエニル基、3−チエノチエニル基、2−セレノセレニル基、3−セレノセレニル基、2−チアゾイル基、2−チアゾチアゾイル基などが挙げられる。   Examples of the monovalent aromatic heterocyclic group include an aromatic heterocyclic group having a monovalent monocyclic structure or a condensed ring structure, and a monovalent ring assembly aromatic heterocyclic group. Specifically, 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 2-selenyl group, 3-selenyl group, 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 2-quinoxalyl group, 2-benzofuryl group, 2-benzothienyl group, 2-thienothienyl group, 3-thienothienyl group, 2-selenoselenyl group, 3-selenoselenyl group, 2-thiazoyl group, 2-thiazothiazoyl group Etc.

好ましい1価の芳香族複素環基としては、2−チエニル基、2―セレニル基、2−ベンゾチエニル基、2−ベンゾセレニル基、2−チエノチエニル基、2−セレノセレニル基、2−ジチエニル基といった炭素数4〜12の芳香族複素環基が挙げられる。   Preferred monovalent aromatic heterocyclic groups include carbon numbers such as 2-thienyl group, 2-selenyl group, 2-benzothienyl group, 2-benzoselenyl group, 2-thienothienyl group, 2-selenoselenyl group, and 2-dithienyl group. Examples include 4 to 12 aromatic heterocyclic groups.

1およびR2が共同して環状構造をなす脂肪族炭化水素基としては、2価の連結基が挙げられる。2価の連結基としては、好ましくはテトラメチレン基、ペンタメチレン基、ヘキサメチレン基といった、炭素数4〜6の飽和アルキレン基などが挙げられる。たとえば、ペンタメチレン基の場合、R1およびR2と、式(1)のアミン部分の窒素原子によって形成される環が、ピペリジン環を形成することになる。Examples of the aliphatic hydrocarbon group in which R 1 and R 2 jointly form a cyclic structure include a divalent linking group. Preferred examples of the divalent linking group include saturated alkylene groups having 4 to 6 carbon atoms such as a tetramethylene group, a pentamethylene group, and a hexamethylene group. For example, in the case of a pentamethylene group, the ring formed by R 1 and R 2 and the nitrogen atom of the amine moiety of formula (1) forms a piperidine ring.

また、たとえばR1およびR2が共同して環状構造をなす脂肪族炭化水素基がペンタメチレン基であって、炭素原子が酸素原子に置換されている場合、R1およびR2と、式(1)のアミン部分の窒素原子によって形成される環が、モルホリン環などを形成することになる。For example, when the aliphatic hydrocarbon group in which R 1 and R 2 jointly form a cyclic structure is a pentamethylene group, and the carbon atom is substituted with an oxygen atom, R 1 and R 2 and the formula ( The ring formed by the nitrogen atom of the amine moiety of 1) forms a morpholine ring or the like.

1およびR2が共同して環状構造をなす芳香族炭化水素基としては、単環構造もしくは縮合環構造の芳香族炭化水素基よりなる2価の連結基、または環集合芳香族炭化水素基よりなる2価の連結基が挙げられる。このような2価の連結基としては、具体的には2,2’−ビフェニレン基、−Ph−S−Ph−基、4,5−フェナンスリレン基等が挙げられ、好ましくは2,2’−ビフェニレン基が挙げられる。Examples of the aromatic hydrocarbon group in which R 1 and R 2 jointly form a cyclic structure include a divalent linking group consisting of an aromatic hydrocarbon group having a monocyclic structure or a condensed ring structure, or a ring assembly aromatic hydrocarbon group And a divalent linking group. Specific examples of such a divalent linking group include a 2,2′-biphenylene group, a —Ph—S—Ph— group, a 4,5-phenanthrylene group, and the like, preferably 2,2′- Biphenylene group is mentioned.

1およびR2が共同して環状構造をなす芳香族複素環基としては、単環構造もしくは縮合環構造の芳香族複素環基よりなる2価の連結基、または環集合芳香族複素環基よりなる2価の連結基が挙げられる。このような2価の連結基としては、具体的には3,3’−ビチエニレン基等があげられる。Examples of the aromatic heterocyclic group in which R 1 and R 2 jointly form a cyclic structure include a divalent linking group composed of an aromatic heterocyclic group having a monocyclic structure or a condensed ring structure, or a ring assembly aromatic heterocyclic group And a divalent linking group. Specific examples of such a divalent linking group include a 3,3′-bithienylene group.

1およびR2としては、合成の容易性などから、炭素数1〜4のアルキル基および炭素数6〜14の1価の芳香族炭化水素基が好ましく、炭素数1〜4のアルキル基が特に好ましい。As R 1 and R 2 , an alkyl group having 1 to 4 carbon atoms and a monovalent aromatic hydrocarbon group having 6 to 14 carbon atoms are preferable, and an alkyl group having 1 to 4 carbon atoms is preferable. Particularly preferred.

4およびR5としては、水素原子、ハロゲン原子または炭素数1〜20の1価の有機残基であることが好ましい。ここで、1価の有機残基は置換されていることが好ましい。R4およびR5は、特に水素原子または電子求引性基が好ましい。R 4 and R 5 are preferably a hydrogen atom, a halogen atom, or a monovalent organic residue having 1 to 20 carbon atoms. Here, the monovalent organic residue is preferably substituted. R 4 and R 5 are particularly preferably a hydrogen atom or an electron withdrawing group.

ここでいう電子求引性基とは、ハメットの置換基定数σが0より大きい値を示す基を意味する。R4およびR5の電子求引性基の具体例としては、シアノ基、カルボキシル基、アシル基、ホルミル基、アリールオキシカルボニル基、アルキルオキシカルボニル基、アルキルスルホニル基、アリールスルホニル基、アルキルスルフィニル基、アリールスルフィニル基、ニトロ基、ペルフルオロアルキル基等を挙げることができる。但し、電子求引性基はこれらに限定されない。The term “electron-withdrawing group” as used herein means a group having a Hammett's substituent constant σ greater than zero. Specific examples of the electron withdrawing group of R 4 and R 5 include cyano group, carboxyl group, acyl group, formyl group, aryloxycarbonyl group, alkyloxycarbonyl group, alkylsulfonyl group, arylsulfonyl group, alkylsulfinyl group. , Arylsulfinyl group, nitro group, perfluoroalkyl group and the like. However, the electron withdrawing group is not limited to these.

アシル基としてはアセチル基、プロピオニル基、ピバロイル基、アクリロイル基、メタクリロイル基、ベンゾイル基、トルオイル基、シンナモイル基等が挙げられる。   Examples of the acyl group include an acetyl group, a propionyl group, a pivaloyl group, an acryloyl group, a methacryloyl group, a benzoyl group, a toluoyl group, and a cinnamoyl group.

アリールオキシカルボニル基としては、フェノキシカルボニル基、ナフチルオキシカルボニル基、4−フルオロフェニルオキシカルボニル基等が挙げられる。   Examples of the aryloxycarbonyl group include a phenoxycarbonyl group, a naphthyloxycarbonyl group, and a 4-fluorophenyloxycarbonyl group.

アルキルスルホニル基としては、メシル基、エチルスルホニル基、プロピルスルホニル基、トリフルオロスルホニル基、ノナフルオロ−t−ブチルスルホニル基等が挙げられる。   Examples of the alkylsulfonyl group include a mesyl group, an ethylsulfonyl group, a propylsulfonyl group, a trifluorosulfonyl group, and a nonafluoro-t-butylsulfonyl group.

アリールスルホニル基としては、ベンゼンスルホニル基、トルエンスルホニル基等が挙げられる。   Examples of the arylsulfonyl group include a benzenesulfonyl group and a toluenesulfonyl group.

アルキルスルフィニル基としては、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基等が挙げられる。   Examples of the alkylsulfinyl group include a methylsulfinyl group, an ethylsulfinyl group, and a propylsulfinyl group.

アリールスルフィニル基としては、フェニルスルフィニル基、トルイルスルフィニル基等が挙げられる。   Examples of the arylsulfinyl group include a phenylsulfinyl group and a toluylsulfinyl group.

ペルフルオロアルキル基とは、炭素原子に置換した水素原子がすべてフッ素置換されたアルキル基であり、炭素原子の数は1〜20が好ましい。ペルフルオロアルキル基には、酸素原子や硫黄原子が挿入されていてもよい。   The perfluoroalkyl group is an alkyl group in which all hydrogen atoms substituted on carbon atoms are fluorine-substituted, and the number of carbon atoms is preferably 1-20. An oxygen atom or a sulfur atom may be inserted into the perfluoroalkyl group.

これらの中でも、R4としては、合成の容易さや電子求引性の強さからシアノ基が好ましい。また、R5としては、水素原子またはシアノ基が好ましい。Among these, as R 4 , a cyano group is preferable in view of ease of synthesis and electron withdrawing strength. R 5 is preferably a hydrogen atom or a cyano group.

3は、半導体特性を示す無機多孔質物質と連結し得るアンカー基である。このような半導体特性を示す無機多孔質物質としては、具体的には、酸化チタン、酸化スズ、酸化亜鉛等の半導体特性を示す無機酸化物を多孔質化した粒子が使用される。したがって、アンカー基はこれら多孔質化した無機酸化物粒子と連結し得る基を広く含む。このようなアンカー基は、好ましくは、カルボキシル基、リン酸基、スルホン酸基等である。これらの中でも、多孔質化した無機酸化物粒子と連結しやすいため、カルボキシル基が特に好ましい。
なお、前記カルボキシル基、スルホン酸基およびリン酸基等は、溶解性を高めることなどの目的のため、陽イオンと結合して塩を形成していてもよい。塩を形成し得る陽イオンとしては、アンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオンが挙げられる。アンモニウムイオンとしては、テトラメチルアンモニウムイオン等に代表されるテトラアルキルアンモニウムイオンが挙げられる。アルカリ金属イオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオン、などが挙げられる。アルカリ土類金属イオンとしては、マグネシウムイオン、カルシウムイオンなどが挙げられる。
R 3 is an anchor group that can be linked to an inorganic porous material exhibiting semiconductor properties. As the inorganic porous material exhibiting such semiconductor characteristics, specifically, particles in which inorganic oxides exhibiting semiconductor characteristics such as titanium oxide, tin oxide, and zinc oxide are made porous are used. Therefore, the anchor group widely includes groups that can be connected to the porous inorganic oxide particles. Such an anchor group is preferably a carboxyl group, a phosphoric acid group, a sulfonic acid group or the like. Among these, a carboxyl group is particularly preferable because it can be easily connected to porous inorganic oxide particles.
In addition, the said carboxyl group, a sulfonic acid group, a phosphoric acid group, etc. may combine with a cation and form the salt for the purpose of improving solubility. Examples of the cation capable of forming a salt include ammonium ion, alkali metal ion, and alkaline earth metal ion. Examples of ammonium ions include tetraalkylammonium ions typified by tetramethylammonium ions. Examples of the alkali metal ion include sodium ion, potassium ion, lithium ion, and the like. Examples of alkaline earth metal ions include magnesium ions and calcium ions.

式(1)中のmは1〜3の整数である。合成の容易さや化合物の安定性からmは1が好ましい。   M in Formula (1) is an integer of 1-3. M is preferably 1 in view of ease of synthesis and stability of the compound.

式(1)中のnは0または1の整数である。0の場合はZが存在せず、R5と結合する炭素原子とYが直結することを意味する。合成の容易さからは0が好ましく、共役系の伸長の観点からは1が好ましい。N in Formula (1) is an integer of 0 or 1. In the case of 0, it means that Z does not exist, and Y is directly connected to the carbon atom bonded to R 5 . 0 is preferable from the viewpoint of ease of synthesis, and 1 is preferable from the viewpoint of elongation of the conjugated system.

式(1)で表される本発明の末端にアミノ基を含有する芳香族化合物の具体例を以下に示す。但し、これらは、例示を目的とするものであり、本発明の末端にアミノ基を含有する芳香族化合物はこれに限定されない。   Specific examples of the aromatic compound containing an amino group at the terminal of the present invention represented by the formula (1) are shown below. However, these are for illustrative purposes, and the aromatic compound containing an amino group at the end of the present invention is not limited thereto.

以下、式(1)で表される本発明の末端にアミノ基を含有する芳香族化合物の具体例を以下に示す。但し、これらは、例示を目的とするものであり、本発明の末端にアミノ基を含有する芳香族化合物はこれに限定されない。
便宜上、式(1)のX、YおよびZの環基については、以下の様に省略して記載する。なお、環基の向きは、式(1)にそのまま当てはめた向きである。例えば、Xの場合は、左側がR12に結合する窒素原子に結合し、右側が(CH=CH)mで表される基の炭素原子に結合することとなる。
また、構造式において、Fnと記載されている場合は、環基が1つ以上のフッ素原子で置換されていることを意味する。
Hereinafter, specific examples of the aromatic compound containing an amino group at the terminal of the present invention represented by the formula (1) are shown below. However, these are for illustrative purposes, and the aromatic compound containing an amino group at the end of the present invention is not limited thereto.
For convenience, the X, Y, and Z ring groups of formula (1) are omitted and described as follows. The direction of the ring group is the same as that applied to the formula (1). For example, in the case of X, the left side is bonded to the nitrogen atom bonded to R 1 R 2 , and the right side is bonded to the carbon atom of the group represented by (CH═CH) m .
In the structural formula, when Fn is described, it means that the cyclic group is substituted with one or more fluorine atoms.

また、下記の表で記載された化合物の骨格構造として、各表の前に構造式を記載した。   Moreover, structural formula was described before each table | surface as a skeleton structure of the compound described by the following table | surface.










本発明の光電変換用増感色素は、式(1)で表される末端にアミノ基を含有する芳香族化合物からなることを特徴とする。すなわち、本発明の式(1)で表される末端にアミノ基を有する芳香族化合物を光電変換用増感色素として用いたものが、本発明の光電変換用増感色素である。
本発明の光電変換用増感色素は、式(1)で表される末端にアミノ基を含有する芳香族化合物ではカバーしきれない領域の太陽光吸収を補うために、他の光増感色素をさらに含んでもよい。
このような目的で使用される他の増感色素としては、例えば、シアニン色素、メロシアニン色素、マーキュロクロム色素、キサンテン系色素、ポルフィリン色素、フタロシアニン色素、アゾ系色素、クマリン系色素、等が挙げられる。また、ルテニウム錯体色素などの金属錯体系の色素も、本発明の他の増感色素として使用することができる。
The sensitizing dye for photoelectric conversion of the present invention is characterized by comprising an aromatic compound containing an amino group at the terminal represented by the formula (1). That is, the sensitizing dye for photoelectric conversion of the present invention is the one using an aromatic compound having an amino group at the terminal represented by the formula (1) of the present invention as a sensitizing dye for photoelectric conversion.
The sensitizing dye for photoelectric conversion of the present invention is another photosensitizing dye in order to compensate for sunlight absorption in a region that cannot be covered by an aromatic compound containing an amino group at the terminal represented by the formula (1). May further be included.
Examples of other sensitizing dyes used for such purposes include cyanine dyes, merocyanine dyes, mercurochrome dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, azo dyes, and coumarin dyes. Metal complex dyes such as ruthenium complex dyes can also be used as other sensitizing dyes of the present invention.

本発明の光電変換材料は、上記した本発明の光電変換用増感色素と、半導体特性を示す無機多孔質物質とをアンカー基を介して連結することで形成される。光電変換材料を形成する際に用いる無機多孔質物質としては、例えば、酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ、酸化インジウム、酸化タングステン、酸化タンタル等が挙げられる。これらは、2つ以上の無機化合物を組み合わせて用いても構わない。この中でも、好適なものとしては、酸化チタン、酸化スズなどが挙げられ、特に酸化チタンが好ましい。   The photoelectric conversion material of the present invention is formed by connecting the above-described sensitizing dye for photoelectric conversion of the present invention and an inorganic porous material exhibiting semiconductor characteristics via an anchor group. Examples of the inorganic porous material used when forming the photoelectric conversion material include titanium oxide, tin oxide, zinc oxide, niobium oxide, indium oxide, tungsten oxide, and tantalum oxide. These may be used in combination of two or more inorganic compounds. Among these, preferable examples include titanium oxide and tin oxide, and titanium oxide is particularly preferable.

本発明の光電変換電極は、上記の手順で得られた本発明の光電変換材料を透明電極に積層することで形成される。ここで、透明電極は、透明基材に透明導電膜を形成することなどで得ることができる。この透明基材としては、ガラス基板、樹脂基板などが挙げられる。ガラスとしては、石英ガラス、ソーダライムガラス、ホウケイ素ガラス、鉛ガラス、などが挙げられる。樹脂基板としては、ポリエチレンテレフタレート、ポリエチレンナフタレートなどが挙げられる。
透明基材の表面に、導電膜を形成する方法としては、酸化インジウムと酸化スズからなる金属酸化物(ITO)等を基材表面に蒸着などの方法により製膜する方法や、酸化スズにフッ素をドープして製膜する方法等が挙げられる。
The photoelectric conversion electrode of the present invention is formed by laminating the photoelectric conversion material of the present invention obtained by the above procedure on a transparent electrode. Here, the transparent electrode can be obtained by forming a transparent conductive film on a transparent substrate. Examples of the transparent base material include a glass substrate and a resin substrate. Examples of the glass include quartz glass, soda lime glass, borosilicon glass, and lead glass. Examples of the resin substrate include polyethylene terephthalate and polyethylene naphthalate.
As a method of forming a conductive film on the surface of a transparent substrate, a method of forming a metal oxide (ITO) composed of indium oxide and tin oxide on the surface of the substrate by vapor deposition or the like, or fluorine on tin oxide The method etc. which form a film | membrane by doping is mentioned.

本発明の光電変換電極は、上記の手順で得られた本発明の光電変換材料を透明電極に積層することで形成される。ここで、透明電極、および透明電極上に光電変換材料を積層する方法については、例えば、透明電極上に本発明の光電変換材料を積層する方法としては、無機多孔質物質の層を透明電極上に作製し、ここに増感色素を吸着させる方法などが挙げられる。無機多孔質物質の層を透明電極上に作製するには、無機多孔質物質を適当な溶剤や高分子、さらには適当な添加物を加えて分散させ、ペースト状にしたものを透明電極上に塗布した後、乾燥または焼結する方法が挙げられる。なお、無機多孔質物質のペーストは市販品を用いても良い。分散させる溶剤は、水、アルコール系溶剤、アミン系溶剤、ケトン系溶剤、炭化水素系溶剤の溶媒などが挙げられる。塗布方法としては、スピンコート法、スクリーン印刷法、ディップ法、スキージーを用いた方法などが挙げられる。無機多孔質物質のペーストを塗布した基板の乾燥や焼成の温度としては、下限としては溶剤が除去できる温度であり、上限としては基板の溶解などが生じない温度であるが、無機多孔質物質と透明電極との密着性の向上が得られる温度であることが好ましい。
増感色素の吸着方法としては、増感色素を適当な溶剤に溶解または分散し、この溶液または分散液に上記の無機多孔質物質の層が作製された電極基板を浸漬する方法が挙げられる。増感色素を溶解または分散する溶剤としては、水、アルコール系溶剤、アミン系溶剤、ケトン系溶剤、炭化水素系溶剤の溶媒などが挙げられ、アルコールが好ましく、特にエタノールが好ましい。
The photoelectric conversion electrode of the present invention is formed by laminating the photoelectric conversion material of the present invention obtained by the above procedure on a transparent electrode. Here, regarding the method of laminating the photoelectric conversion material on the transparent electrode and the transparent electrode, for example, as the method of laminating the photoelectric conversion material of the present invention on the transparent electrode, the layer of the inorganic porous material is disposed on the transparent electrode. And a method of adsorbing a sensitizing dye here. In order to produce a layer of an inorganic porous material on a transparent electrode, the inorganic porous material is dispersed by adding an appropriate solvent, polymer, or appropriate additive, and a paste is formed on the transparent electrode. The method of drying or sintering after apply | coating is mentioned. A commercially available product may be used as the paste of the inorganic porous material. Examples of the solvent to be dispersed include water, alcohol solvents, amine solvents, ketone solvents, and hydrocarbon solvents. Examples of the coating method include a spin coating method, a screen printing method, a dipping method, and a method using a squeegee. As the drying and baking temperature of the substrate coated with the inorganic porous material paste, the lower limit is a temperature at which the solvent can be removed, and the upper limit is a temperature at which dissolution of the substrate does not occur. It is preferable that the temperature is such that improved adhesion to the transparent electrode can be obtained.
Examples of the method for adsorbing the sensitizing dye include a method in which the sensitizing dye is dissolved or dispersed in an appropriate solvent, and the electrode substrate on which the layer of the inorganic porous material is formed is immersed in this solution or dispersion. Examples of the solvent for dissolving or dispersing the sensitizing dye include water, alcohol solvents, amine solvents, ketone solvents, hydrocarbon solvents and the like. Alcohols are preferable, and ethanol is particularly preferable.

本発明の光電変換電池は、上記した光電変換電極を電解質層を介して導電性対極を組み合わせることによって形成される。
光電変換電池に用いられる電解質層は、電解質、媒体、および添加物から構成されることが好ましい。これらの構成要素については、例えば、電解質としては、溶剤に酸化還元対を添加した液体電解質や、高分子ゲル電解質、固体電解質などが挙げられる。液体電解質の溶剤としては、ニトリル系溶剤、カーボネート系溶剤、グリコール系溶剤、水等が挙げられ、特にアセトニトリルおよびメトキシアセトニトリルが好ましい。酸化還元対としては、ハロゲンの酸化還元対が挙げられ、特にヨウ素の酸化還元対が好ましい。ヨウ素の酸化還元対は、ヨウ素とヨウ化物イオンの組合せで得ることができる。ヨウ化物イオンの原料としては、例えばヨウ化金属塩や、4級アンモニウム塩などが挙げられ、特にヨウ化リチウム等が挙げられる。なお同様にして臭素など他のハロゲン化合物においても酸化還元対を得ることができる。
The photoelectric conversion battery of the present invention is formed by combining the above-described photoelectric conversion electrode with a conductive counter electrode via an electrolyte layer.
The electrolyte layer used for the photoelectric conversion battery is preferably composed of an electrolyte, a medium, and an additive. Regarding these constituent elements, for example, examples of the electrolyte include a liquid electrolyte obtained by adding a redox pair to a solvent, a polymer gel electrolyte, and a solid electrolyte. Examples of the liquid electrolyte solvent include nitrile solvents, carbonate solvents, glycol solvents, water, and the like, and acetonitrile and methoxyacetonitrile are particularly preferable. Examples of the redox pair include a halogen redox pair, and an iodine redox pair is particularly preferable. The redox couple of iodine can be obtained by a combination of iodine and iodide ions. Examples of the raw material for iodide ions include metal iodide salts and quaternary ammonium salts, and particularly lithium iodide and the like. Similarly, redox couples can be obtained for other halogen compounds such as bromine.

導電性対極としては、白金、ロジウム、ルテニウム、インジウム等の金属を蒸着した金属電極、カーボン電極、導電性ポリマー電極、またはこれらの複合電極などが挙げられる。   Examples of the conductive counter electrode include a metal electrode deposited with a metal such as platinum, rhodium, ruthenium, and indium, a carbon electrode, a conductive polymer electrode, or a composite electrode thereof.

電池の組み立ては、上記透明電極と対極を、積層した光電変換材料を挟むようにスペーサ−などを介して配置し、その間に電解質を充填することにより得られる。電解液の漏洩などを防ぐために、光電変換素子の周囲を封止しても良い。封止材としては、ポリマー系の接着剤などが挙げられる。   The assembly of the battery is obtained by arranging the transparent electrode and the counter electrode through a spacer or the like so as to sandwich the laminated photoelectric conversion material and filling the electrolyte therebetween. In order to prevent leakage of the electrolytic solution, the periphery of the photoelectric conversion element may be sealed. Examples of the sealing material include polymer adhesives.

なお、本発明の光電変換用増感色素とあわせて「共吸着剤」などと呼ばれる化合物を用いることもできる。共吸着剤は、増感色素と共に無機多孔質物質に吸着させることで、光電変換効率を高めるものである。
なお、本発明の光電変換用増感色素は、半導体特性を示す無機多孔質物質とアンカー基を介して連結しているが、この「連結」は上記の「吸着」とほぼ同義である。
In addition, a compound called “co-adsorbent” or the like can be used together with the sensitizing dye for photoelectric conversion of the present invention. The co-adsorbent increases the photoelectric conversion efficiency by adsorbing to the inorganic porous material together with the sensitizing dye.
The sensitizing dye for photoelectric conversion of the present invention is connected to an inorganic porous material exhibiting semiconductor characteristics via an anchor group, and this “connection” is almost synonymous with the above “adsorption”.

共吸着剤の例としては、カルボキシル基やスルホン酸基を有するステロイド化合物、特にコール酸誘導体(コール酸、デオキシコール酸、ケノデオキシコール酸、タウロケノデオキシコール酸、リソコール酸、ウルソデオキシコール酸、デヒドロコール酸)、およびその金属塩や、アミン類(ピリジン、4−t−ブチルピリジン、ポリビニルピリジン等)、4級アンモニウム塩(テトラブチルアンモニウムヨージド、テトラヘキシルアンモニウムヨージド等)などが挙げられる。共吸着剤としては、コール酸誘導体が好ましく、特にデオキシコール酸が好ましい。   Examples of coadsorbents include steroid compounds having carboxyl groups and sulfonic acid groups, especially cholic acid derivatives (cholic acid, deoxycholic acid, chenodeoxycholic acid, taurochenodeoxycholic acid, lysocholic acid, ursodeoxycholic acid, dehydrocholic acid) And metal salts thereof, amines (pyridine, 4-t-butylpyridine, polyvinylpyridine, etc.), quaternary ammonium salts (tetrabutylammonium iodide, tetrahexylammonium iodide, etc.), and the like. As the coadsorbent, cholic acid derivatives are preferable, and deoxycholic acid is particularly preferable.

上記の共吸着剤の用い方としては、無機多孔質物質へ色素を吸着(連結)させた後に添加することや、電解質層へ添加すること、などが挙げられるが、増感色素と共に無機多孔質物質に吸着(連結)するのであれば、これに限られない。使用量は色素によっても異なるが10mM〜60mM程度添加することで高い光電変換効率が期待できる。   Examples of how to use the co-adsorbent include adding after adsorbing (linking) the dye to the inorganic porous material, adding to the electrolyte layer, and the like. It is not limited to this as long as it is adsorbed (linked) to a substance. Although the amount used varies depending on the dye, high photoelectric conversion efficiency can be expected by adding about 10 mM to 60 mM.

以下、実施例に基づき本発明を具体的に説明する。但し、本発明は、これらの実施例に限定されない。また、以下において、式(A)で表される化合物を化合物(A)と記し、他の式で表される化合物も同様に記す。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to these examples. Hereinafter, the compound represented by the formula (A) is referred to as a compound (A), and the compounds represented by other formulas are also described in the same manner.

(実施例1)化合物(A)の合成
Example 1 Synthesis of Compound (A)

化合物(A−1)の合成
冷却管、温度計、磁気回転子を付した500mLの四ツ口フラスコに、p−フルオロベンズアルデヒド(和光純薬工業株式会社製)7gとジ(nーブチル)アミン(和光純薬工業株式会社製)19gおよび炭酸カリウム(和光純薬工業株式会社製)34gと溶媒として無水ジメチルホルムアミド(和光純薬工業株式会社製)150mLを仕込み、窒素気流下、80℃で10時間加熱攪拌させた。冷却後、固形物をろ別し、溶媒等を留去して濃縮したところ生成物9.3gを得た。1H−NMR測定により、該生成物が化合物(A−1)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) δ0.97(t,J=7.4Hz,−CH3,6H),1.31−1.43(m,−CH2−,4H),1.54−1.64(m,−CH2−,4H),3.34(t,J=7.8Hz,N−CH2−,4H),6.68(d,J=9.0Hz,ベンゼン環水素,2H),7.69(m,ベンゼン環水素,2H),9.68(d,−C(=O)−H,1H)
Synthesis of Compound (A-1) In a 500 mL four-necked flask equipped with a cooling tube, thermometer, and magnetic rotor, 7 g of p-fluorobenzaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) and di (n-butyl) amine ( 19 g of Wako Pure Chemical Industries, Ltd.) and 34 g of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) and 150 mL of anhydrous dimethylformamide (Wako Pure Chemical Industries, Ltd.) as a solvent were charged, and at 80 ° C. for 10 hours under a nitrogen stream. The mixture was heated and stirred. After cooling, the solid was filtered off, and the solvent was distilled off and concentrated to obtain 9.3 g of product. It was confirmed by 1 H-NMR measurement that the product was compound (A-1) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) δ 0.97 (t, J = 7.4 Hz, —CH 3 , 6H), 1.31-1.43 (m, —CH 2 —, 4H), 1 .54-1.64 (m, -CH 2 -, 4H), 3.34 (t, J = 7.8Hz, N-CH 2 -, 4H), 6.68 (d, J = 9.0Hz, Benzene ring hydrogen, 2H), 7.69 (m, benzene ring hydrogen, 2H), 9.68 (d, -C (= O) -H, 1H)

化合物(A−2)の合成
冷却管、温度計、磁気回転子を付した500mLの四ツ口フラスコに、4−ブロモ−2−フルオロベンジルブロミド(和光純薬工業株式会社製)53.81g、亜リン酸トリエチル(関東化学株式会社製)36.77g、アセトニトリル(和光純薬工業株式会社製)200mLを加え、窒素気流下で9時間加熱還流させた。冷却後、溶媒等を留去し生成物66.36gを得た。1H−NMR測定により、該生成物が化合物(A−2)であることを確認した。なお、下記式において「Et」はエチル基を表す。

1H−NMR(300MHz,CDCl3;TMS) δ1.29(m,−CH3,6H),3.14(m,Ar−CH2−P,2H),4.06(m,−O−CH2−,4H),7.26(m,ベンゼン環水素,3H)
Synthesis of Compound (A-2) In a 500 mL four-necked flask equipped with a cooling tube, a thermometer, and a magnetic rotor, 53.81 g of 4-bromo-2-fluorobenzyl bromide (manufactured by Wako Pure Chemical Industries, Ltd.), 36.77 g of triethyl phosphite (manufactured by Kanto Chemical Co., Inc.) and 200 mL of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the mixture was heated to reflux for 9 hours under a nitrogen stream. After cooling, the solvent and the like were distilled off to obtain 66.36 g of a product. 1 H-NMR measurement confirmed that the product was compound (A-2). In the following formula, “Et” represents an ethyl group.

1 H-NMR (300 MHz, CDCl 3 ; TMS) δ 1.29 (m, —CH 3 , 6H), 3.14 (m, Ar—CH 2 —P, 2H), 4.06 (m, —O—) CH 2 -, 4H), 7.26 (m, benzene ring hydrogen, 3H)

化合物(A−3)の合成
冷却管、温度計、磁気回転子、滴下ロートを付した300mLの四ツ口フラスコに、上記手順で得られた化合物(A−1)4.00gと化合物(A−2)5.85gを脱水したテトラヒドロフラン(和光純薬工業株式会社製)120mLに入れ、次にtert−ブトキシカリウム(和光純薬工業株式会社製)2.90gと18−クラウン−6(関東化学株式会社製)0.63gを2回に分けて加えて、室温で180分間攪拌させた。
反応終了後、1規定塩酸を加えて反応を止めた後、有機相を水洗した。分離後乾燥し、減圧下で溶媒を留去し濃縮した後、シリカゲルクロマトグラフィーにて分離・精製を行い生成物6.02gを得た。1H−NMR測定により、該生成物が化合物(A−3)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) δ0.96(t,J=7.2Hz,−CH3,6H),1.30−1.42(m,−CH2−,4H),1.53−1.63(m,−CH2−,4H),3.29(t,J=7.5Hz,N−CH2−,4H),6.61(d,J=9.0Hz,ベンゼン環水素,2H),6.92(d,J=16.5Hz,オレフィン水素,1H),7.07(d,J=16.5Hz,オレフィン水素,1H),7.18−7.24(m,ベンゼン環水素,2H),7.37(d,J=8.7Hz,ベンゼン環水素,2H),7.43(t,J=8.3Hz,ベンゼン環水素,1H)
Synthesis of Compound (A-3) In a 300 mL four-necked flask equipped with a condenser, thermometer, magnetic rotor, and dropping funnel, 4.00 g of Compound (A-1) obtained in the above procedure and Compound (A -2) Put 5.85 g in 120 mL of dehydrated tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), then 2.90 g of tert-butoxy potassium (manufactured by Wako Pure Chemical Industries, Ltd.) and 18-crown-6 (Kanto Chemical) 0.63 g) was added in two portions and stirred at room temperature for 180 minutes.
After completion of the reaction, 1N hydrochloric acid was added to stop the reaction, and the organic phase was washed with water. After separation and drying, the solvent was distilled off under reduced pressure and concentrated, followed by separation and purification by silica gel chromatography to obtain 6.02 g of product. 1 H-NMR measurement confirmed that the product was compound (A-3).

1 H-NMR (300 MHz, CDCl 3 ; TMS) δ 0.96 (t, J = 7.2 Hz, —CH 3 , 6H), 1.30 to 1.42 (m, —CH 2 —, 4H), 1 .53-1.63 (m, -CH 2 -, 4H), 3.29 (t, J = 7.5Hz, N-CH 2 -, 4H), 6.61 (d, J = 9.0Hz, Benzene ring hydrogen, 2H), 6.92 (d, J = 16.5 Hz, olefin hydrogen, 1H), 7.07 (d, J = 16.5 Hz, olefin hydrogen, 1H), 7.18-7.24. (M, benzene ring hydrogen, 2H), 7.37 (d, J = 8.7 Hz, benzene ring hydrogen, 2H), 7.43 (t, J = 8.3 Hz, benzene ring hydrogen, 1H)

化合物(A−4)の合成
冷却管、温度計、磁気回転子を付した100mLの四ツ口フラスコに、上記手順で得られた化合物(A−3)6.00gと脱水テトラヒドロフラン(和光純薬工業株式会社製)75mLを加え、窒素気流下で−78℃まで冷却後、n−ブチルリチウム−ヘキサン溶液(関東化学株式会社製)(1.52mol/L)を11.7mL加えた。−78℃で15分間攪拌後、1−ホルミルピペリジン(東京化成工業株式会社製)2.35gを加えた。1時間攪拌後室温まで昇温し、1規定塩酸を加えて反応を止めた。有機相を分離して水洗した。乾燥後、減圧下で溶媒を留去濃縮した後、シリカゲルクロマトグラフィーにて分離・精製を行い生成物2.62gを得た。1H−NMR測定により、該生成物が化合物(A−4)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 0.97(t,J=7.4Hz,−CH3,6H),1.31−1.43(m,−CH2−,4H),1.54−1.64(m,−CH2−,4H),3.31(t,J=7.7Hz,N−CH2−,4H),6.63(d,J=9.0Hz,ベンゼン環水素,2H),7.03(d,J=16.2Hz,オレフィン水素,1H),7.25(d,J=16.5Hz,オレフィン水素,1H),7.42(d,J=9.0Hz,ベンゼン環水素,2H),7.51−7.75(m,ベンゼン環水素,3H),9.91(s,−CHO,1H)
Synthesis of Compound (A-4) In a 100 mL four-necked flask equipped with a cooling tube, a thermometer, and a magnetic rotor, 6.00 g of Compound (A-3) obtained by the above procedure and dehydrated tetrahydrofuran (Wako Pure Chemical Industries, Ltd.) 75 mL of Kogyo Co., Ltd. was added, and after cooling to −78 ° C. under a nitrogen stream, 11.7 mL of n-butyllithium-hexane solution (manufactured by Kanto Chemical Co., Inc.) (1.52 mol / L) was added. After stirring at −78 ° C. for 15 minutes, 2.35 g of 1-formylpiperidine (Tokyo Chemical Industry Co., Ltd.) was added. After stirring for 1 hour, the temperature was raised to room temperature, and 1N hydrochloric acid was added to stop the reaction. The organic phase was separated and washed with water. After drying, the solvent was distilled off under reduced pressure and concentrated, followed by separation and purification by silica gel chromatography to obtain 2.62 g of product. 1 H-NMR measurement confirmed that the product was compound (A-4).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.97 (t, J = 7.4 Hz, —CH 3 , 6H), 1.31-1.43 (m, —CH 2 —, 4H), 1 .54-1.64 (m, -CH 2 -, 4H), 3.31 (t, J = 7.7Hz, N-CH 2 -, 4H), 6.63 (d, J = 9.0Hz, Benzene ring hydrogen, 2H), 7.03 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.25 (d, J = 16.5 Hz, olefin hydrogen, 1H), 7.42 (d, J = 9.0 Hz, benzene ring hydrogen, 2H), 7.51 to 7.75 (m, benzene ring hydrogen, 3H), 9.91 (s, -CHO, 1H).

化合物(A−5)の合成
冷却管をつけたディーン・シュタルク分留器、温度計、磁気回転子を付した100mLの四ツ口フラスコに上記手順で得られた化合物(A−4)1.00gとシアノ酢酸tert−ブチル(東京化成工業株式会社製)1.67g、およびモルホリン(東京化成工業株式会社製)0.78gをトルエン60mLに入れて反応が終了するまで加熱還流させた。反応終了後室温まで冷却し、減圧下で溶媒と低沸点の反応物を留去・濃縮した後、シリカゲルクロマトグラフィーにて分離・精製を行い、生成物1.31gを得た。1H−NMR測定により、該生成物が化合物(A−5)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 0.97(t,J=7.4Hz,−CH3,6H),1.31−1.43(m,−CH2−,4H),1.56−1.62(m,−CH2−,−C(CH33,13H),3.31(t,J=7.5Hz,N−CH2−,4H),6.63(d,J=9.0Hz,ベンゼン環水素,2H),7.03(d,J=16.2Hz,オレフィン水素,1H),7.25(d,J=16.2Hz,オレフィン水素,1H),7.42(d,J=9.0Hz,ベンゼン環水素,2H),7.64−7.72(m,ベンゼン環水素,3H),8.08(s,(CN)C=CH,1H)
Synthesis of Compound (A-5) 1. Compound (A-4) obtained by the above procedure in a 100 mL four-necked flask equipped with a Dean-Stark fractionator equipped with a condenser, a thermometer, and a magnetic rotor. 00 g, 1.67 g of tert-butyl cyanoacetate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.78 g of morpholine (manufactured by Tokyo Chemical Industry Co., Ltd.) were placed in 60 mL of toluene and heated to reflux until the reaction was completed. After completion of the reaction, the reaction mixture was cooled to room temperature, and the solvent and the low boiling point reactant were distilled off and concentrated under reduced pressure, followed by separation and purification by silica gel chromatography to obtain 1.31 g of product. 1 H-NMR measurement confirmed that the product was compound (A-5).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.97 (t, J = 7.4 Hz, —CH 3 , 6H), 1.31-1.43 (m, —CH 2 —, 4H), 1 .56-1.62 (m, -CH 2 -, - C (CH 3) 3, 13H), 3.31 (t, J = 7.5Hz, N-CH 2 -, 4H), 6.63 ( d, J = 9.0 Hz, benzene ring hydrogen, 2H), 7.03 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.25 (d, J = 16.2 Hz, olefin hydrogen, 1H) 7.42 (d, J = 9.0 Hz, benzene ring hydrogen, 2H), 7.64-7.72 (m, benzene ring hydrogen, 3H), 8.08 (s, (CN) C = CH, 1H)

化合物(A)の合成
冷却管、温度計、磁気回転子を付した100mLの四ツ口フラスコに、上記手順で得られた化合物(A−5)1.30gと酢酸(和光純薬工業株式会社製)50mLを加え、さらに48%臭化水素酸を5.04g加えて室温で攪拌させた。反応終了後、イオン交換水30mL中にあけ、メチルtert−ブチルエーテル(ゴードー溶剤株式会社製)600mLにて2回抽出した。アンモニア水にて1回、水で2回洗浄し、減圧下で溶媒を留去濃縮して、生成物0.94gを得た。1H−NMR測定により、該生成物が、本発明の末端にアミノ基を含有する化合物(A)であることを確認した。
1H−NMR(300MHz,DMSO−d6) 0.92(t,J=7.2Hz,−CH3,6H),1.27−1.39(m,−CH2−,4H),1.47−1.56(m,−CH2−,4H),3.08−3.55(m,N−CH2−,4H),6.65(d,J=9.0Hz,ベンゼン環水素,2H),7.01(d,J=16.5Hz,オレフィン水素,1H),7.23(d,J=16.2Hz,オレフィン水素,1H),7.46(d,J=9.0Hz,ベンゼン環水素,2H),7.86−7.96(m,ベンゼン環水素,3H),8.28(s,(CN)C=CH,1H)
Synthesis of Compound (A) 1.30 g of Compound (A-5) obtained by the above procedure and acetic acid (Wako Pure Chemical Industries, Ltd.) were added to a 100 mL four-necked flask equipped with a cooling tube, a thermometer, and a magnetic rotor. 50 mL) was added, and 5.04 g of 48% hydrobromic acid was added and stirred at room temperature. After completion of the reaction, the reaction mixture was poured into 30 mL of ion exchange water and extracted twice with 600 mL of methyl tert-butyl ether (manufactured by Gordo Solvent Co., Ltd.). The extract was washed once with aqueous ammonia and twice with water, and the solvent was distilled off under reduced pressure and concentrated to obtain 0.94 g of the product. It was confirmed by 1 H-NMR measurement that the product was a compound (A) containing an amino group at the end of the present invention.
1 H-NMR (300 MHz, DMSO-d 6 ) 0.92 (t, J = 7.2 Hz, —CH 3 , 6H), 1.27-1.39 (m, —CH 2 —, 4H), 1 .47-1.56 (m, -CH 2 -, 4H), 3.08-3.55 (m, N-CH 2 -, 4H), 6.65 (d, J = 9.0Hz, benzene ring Hydrogen, 2H), 7.01 (d, J = 16.5 Hz, olefin hydrogen, 1H), 7.23 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.46 (d, J = 9 0.0 Hz, benzene ring hydrogen, 2H), 7.86-7.96 (m, benzene ring hydrogen, 3H), 8.28 (s, (CN) C = CH, 1H)

(実施例2)化合物(B)の合成
Example 2 Synthesis of Compound (B)

化合物(B−1)の合成
冷却管、温度計、磁気回転子を付した500mLの四ツ口フラスコに、3,4−ジフルオロベンズアルデヒド(東京化成工業株式会社製)7gとジ(nーブチル)アミン(和光純薬工業株式会社製)19gおよび炭酸カリウム(和光純薬工業株式会社製)34gと溶媒として無水ジメチルホルムアミド(和光純薬工業株式会社製)150mLを仕込み、窒素気流下、80℃で10時間加熱攪拌させた。冷却後、固形物をろ別し、溶媒等を留去して濃縮したところ生成物9.3gを得た。1H−NMR測定により、該生成物が化合物(B−1)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 0.92(t,J=7.2Hz,−CH3,6H),1.25−1.45(m,−CH2−,4H),1.50−1.65(m,−CH2−,4H),4.09(t,J=6.3Hz,N−CH2−,4H),6.77(t,J=8.7Hz,ベンゼン環水素,1H),7.40−7.55(m,ベンゼン環水素,2H),9.71(d,−C(=O)−H,J=2.1Hz,1H)
Synthesis of Compound (B-1) In a 500 mL four-necked flask equipped with a condenser, thermometer, and magnetic rotor, 7 g of 3,4-difluorobenzaldehyde (Tokyo Chemical Industry Co., Ltd.) and di (n-butyl) amine 19 g (manufactured by Wako Pure Chemical Industries, Ltd.) and 34 g of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) and 150 mL of anhydrous dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent were charged at 10 ° C. under a nitrogen stream at 80 ° C. The mixture was heated and stirred for an hour. After cooling, the solid was filtered off, and the solvent was distilled off and concentrated to obtain 9.3 g of product. It was confirmed by 1 H-NMR measurement that the product was compound (B-1) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.92 (t, J = 7.2 Hz, —CH 3 , 6H), 1.25 to 1.45 (m, —CH 2 —, 4H), 1 .50-1.65 (m, -CH 2 -, 4H), 4.09 (t, J = 6.3Hz, N-CH 2 -, 4H), 6.77 (t, J = 8.7Hz, Benzene ring hydrogen, 1H), 7.40-7.55 (m, benzene ring hydrogen, 2H), 9.71 (d, -C (= O) -H, J = 2.1 Hz, 1H)

化合物(B−2)の合成
上記した化合物(A−2)を合成する手順において、4−ブロモ−2−フルオロベンジルブロミドを、2,3−ジフルオロベンジルブロミド(アヅマックス株式会社製)に替えた以外は同様の手順を実施して生成物10.68gを得た。1H−NMR測定により、該生成物が化合物(B−2)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 1.28(t,J=7.2Hz,−CH3,6H),3.22(dd,J=1.2,21.6Hz,Ar−CH2−P(=O),2H),4.06(q,J=7.2Hz,−O−CH2−CH3,2H),4.09(q,J=7.2Hz,−O−CH2−CH3,2H),7.02−7.13(m,ベンゼン環水素,3H)
Synthesis of Compound (B-2) In the procedure for synthesizing Compound (A-2) described above, 4-bromo-2-fluorobenzyl bromide was replaced with 2,3-difluorobenzyl bromide (manufactured by AMAX Co.). Performed a similar procedure to give 10.68 g of product. It was confirmed by 1 H-NMR measurement that the product was compound (B-2) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 1.28 (t, J = 7.2 Hz, —CH 3 , 6H), 3.22 (dd, J = 1.2, 21.6 Hz, Ar—CH 2 -P (= O), 2H), 4.06 (q, J = 7.2 Hz, -O-CH 2 -CH 3 , 2H), 4.09 (q, J = 7.2 Hz, -O- CH 2 -CH 3, 2H), 7.02-7.13 (m, benzene ring hydrogen, 3H)

化合物(B)の合成
上記した化合物(A−3)を合成する手順において、化合物(A−1)および(A−2)を、上記手順で合成した化合物(B−1)および(B−2)に替えた以外は実施例1と同様の手順を実施して生成物0.53gを得た。1H−NMR測定により、該生成物が化合物(B)であることを確認した。
1H−NMR(300MHz,DMSO−d)0.88(t,J=7.4Hz,−CH3,6H),1.22−1.34(m,−CH2−,4H),1.42−1.52(m,−CH2−,4H),3.22(t,J=7.5Hz,N−CH2−,4H),6.93(t,J=8.6Hz,ベンゼン環水素,1H),7.16(d,J=16.2Hz,オレフィン水素,1H),7.33(d,J=8.4Hz,ベンゼン環水素,2H),7.48(d,J=16.2Hz,オレフィン水素,1H),7.74−7.81(m,ベンゼン環水素,1H),7.97−8.04(m,ベンゼン環水素,1H),8.28(s,(CN)C=CH,1H)
Synthesis of Compound (B) In the procedure for synthesizing the above compound (A-3), the compounds (A-1) and (A-2) were synthesized as the compounds (B-1) and (B-2) synthesized by the above procedure. ) Was carried out in the same manner as in Example 1 except that 0.53 g of the product was obtained. It was confirmed by 1 H-NMR measurement that the product was compound (B).
1 H-NMR (300 MHz, DMSO-d 6 ) 0.88 (t, J = 7.4 Hz, —CH 3 , 6H), 1.22-1.34 (m, —CH 2 —, 4H), 1 .42-1.52 (m, -CH 2 -, 4H), 3.22 (t, J = 7.5Hz, N-CH 2 -, 4H), 6.93 (t, J = 8.6Hz, Benzene ring hydrogen, 1H), 7.16 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.33 (d, J = 8.4 Hz, benzene ring hydrogen, 2H), 7.48 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.74-7.81 (m, benzene ring hydrogen, 1H), 7.97-8.04 (m, benzene ring hydrogen, 1H), 8.28 ( s, (CN) C = CH, 1H)

(実施例3)化合物(C)の合成
Example 3 Synthesis of Compound (C)

化合物(C−1)の合成
上記した化合物(A−2)を合成する手順において、4−ブロモ−2−フロオロベンジルブロミドを、3,5−ジフルオロベンジルブロミド(アヅマックス株式会社製)に替えた以外は同様の手順を実施して生成物1.26gを得た。1H−NMR測定により、該生成物が化合物(C−1)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 1.28(t,J=6.9Hz,−CH3,6H),3.12(d,J=21.9Hz,Ar−CH2−P(=O)<,2H),4.05(q,J=7.2Hz,−O−CH2−Me,2H),4.07(q,J=6.9Hz,−O−CH2−Me,2H),6.70(m,ベンゼン環水素,1H),6.84(m,ベンゼン環水素,2H)
Synthesis of Compound (C-1) In the procedure for synthesizing Compound (A-2) described above, 4-bromo-2-fluorobenzyl bromide was replaced with 3,5-difluorobenzyl bromide (manufactured by AMAX Co.). A similar procedure was performed except that 1.26 g of product was obtained. It was confirmed by 1 H-NMR measurement that the product was compound (C-1) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 1.28 (t, J = 6.9 Hz, —CH 3 , 6H), 3.12 (d, J = 21.9 Hz, Ar—CH 2 —P ( = O) <, 2H), 4.05 (q, J = 7.2Hz, -O-CH 2 -Me, 2H), 4.07 (q, J = 6.9Hz, -O-CH 2 -Me , 2H), 6.70 (m, benzene ring hydrogen, 1H), 6.84 (m, benzene ring hydrogen, 2H)

化合物(C−2)の合成
冷却管、温度計、磁気回転子、滴下ロートを付した500mLの四ツ口フラスコに、ジブロモヒダントイン(和光純薬工業株式会社製)56gと塩化メチレン(和光純薬工業株式会社製)200mLを加えた。滴下ロートに2−メチルチオフェン(和光純薬工業株式会社製)20gと塩化メチレン(和光純薬工業株式会社製)20mLをゆっくり加えた。滴下が終了してからさらに1時間攪拌後、アゾ系重合開始剤V−65(和光純薬工業株式会社製)を1g加えて加熱還流を3時間行った。冷却後浮遊している白色物をろ別し、ろ液を水洗した。乾燥後、溶媒を留去し生成物21gを得た。1H−NMR測定により、該生成物が化合物(C−2)(下記式)であることを確認した。

1H−NMR(CDCl3;TMS) 4.63(s,−CH2−Br,2H),6.8−7.0(m,チオフェン,2H)
Synthesis of Compound (C-2) In a 500 mL four-necked flask equipped with a cooling tube, thermometer, magnetic rotor, and dropping funnel, 56 g of dibromohydantoin (manufactured by Wako Pure Chemical Industries, Ltd.) and methylene chloride (Wako Pure Chemical Industries, Ltd.) 200 mL of Kogyo Co., Ltd. was added. To the dropping funnel, 20 g of 2-methylthiophene (manufactured by Wako Pure Chemical Industries, Ltd.) and 20 mL of methylene chloride (manufactured by Wako Pure Chemical Industries, Ltd.) were slowly added. After the completion of the dropping, the mixture was further stirred for 1 hour, 1 g of azo polymerization initiator V-65 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was heated to reflux for 3 hours. After cooling, the white substance floating was filtered off, and the filtrate was washed with water. After drying, the solvent was distilled off to obtain 21 g of product. 1 H-NMR measurement confirmed that the product was compound (C-2) (the following formula).

1 H-NMR (CDCl 3 ; TMS) 4.63 (s, —CH 2 —Br, 2H), 6.8-7.0 (m, thiophene, 2H)

化合物(C−3)の合成
冷却管、温度計、磁気回転子を付した500mLの四ツ口フラスコに、上記手順で得られた化合物(C−2)25.5g、亜リン酸トリエチル(関東化学株式会社製)16.5g、アセトニトリル(和光純薬工業株式会社製)200mLを加え、窒素気流下で3時間加熱還流させた。冷却後、溶媒等を留去し生成物29gを得た。1H−NMR測定により、該生成物が化合物(C−3)(下記式)であることを確認した。なお、下記式において「Et」はエチル基を表す。

1H−NMR(CDCl3;TMS) 1.13−1.37(m,−CH3,6H),3.27(d,J=20.7Hz,Th−CH2−P,2H),4.04−4.14(m,−CH2−,4H),6.8−7.0(m,チオフェン,2H)
Synthesis of Compound (C-3) Into a 500 mL four-necked flask equipped with a cooling tube, a thermometer, and a magnetic rotor, 25.5 g of the compound (C-2) obtained by the above procedure, triethyl phosphite (Kanto) 16.5 g of Chemical Co., Ltd.) and 200 mL of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the mixture was heated to reflux for 3 hours under a nitrogen stream. After cooling, the solvent and the like were distilled off to obtain 29 g of a product. 1 H-NMR measurement confirmed that the product was compound (C-3) (the following formula). In the following formula, “Et” represents an ethyl group.

1 H-NMR (CDCl 3 ; TMS) 1.13-1.37 (m, —CH 3 , 6H), 3.27 (d, J = 20.7 Hz, Th—CH 2 —P, 2H), 4 .04-4.14 (m, -CH 2 -, 4H), 6.8-7.0 (m, thiophene, 2H)

化合物(C−4)の合成
上記した化合物(A−3)を合成する手順において、化合物(A−2)を化合物(C−1)に変えた以外は実施例1と同様に合成を行い生成物4.94gを得た。1H−NMR測定により、該生成物が化合物(C−4)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 0.97(t,J=7.4Hz,−CH3,6H),1.31−1.43(m,−CH2−,4H),1.50−1.64(m,−CH2−,4H),3.31(t,J=7.7Hz,N−CH2−,4H),6.62(d,J=8.7Hz,ベンゼン環水素,2H),6.74(d,J=16.2Hz,オレフィン水素,1H),7.00(d,J=10.5Hz,ベンゼン環水素,2H),7.15(d,J=16.2Hz,オレフィン水素,1H),7.38(d,J=9.0Hz,ベンゼン環水素,2H),10.26(s,−CHO,1H)
Synthesis of Compound (C-4) In the procedure for synthesizing Compound (A-3) described above, synthesis was performed in the same manner as in Example 1 except that Compound (A-2) was changed to Compound (C-1). 4.94 g of product was obtained. It was confirmed by 1 H-NMR measurement that the product was compound (C-4) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.97 (t, J = 7.4 Hz, —CH 3 , 6H), 1.31-1.43 (m, —CH 2 —, 4H), 1 .50-1.64 (m, -CH 2 -, 4H), 3.31 (t, J = 7.7Hz, N-CH 2 -, 4H), 6.62 (d, J = 8.7Hz, Benzene ring hydrogen, 2H), 6.74 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.00 (d, J = 10.5 Hz, benzene ring hydrogen, 2H), 7.15 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.38 (d, J = 9.0 Hz, benzene ring hydrogen, 2H), 10.26 (s, -CHO, 1H)

化合物(C)の合成
上記した化合物(A−3)を合成する手順において、化合物(A−1)を化合物(C−4)に、化合物(A−2)を化合物(C−3)に変えた以外は実施例1と同様の手順を実施して生成物0.54gを得た。1H−NMR測定により、該生成物が化合物(C)であることを確認した。
1H−NMR(300MHz,DMSO−d6) 0.92(t,J=7.4Hz,−CH3,6H),1.29−1.36(m,−CH2−,4H),1.49−1.51(m,−CH2−,4H),3.00−3.58(m,N−CH2−,4H),6.64(d,J=9.0Hz,ベンゼン環水素,2H),6.90(d,J=16.2Hz,オレフィン水素,1H),7.08(d,J=16.5Hz,オレフィン水素,1H),7.33(d,J=18.6Hz,オレフィン水素,1H),7.34(d,J=10.8Hz,ベンゼン環水素,2H),7.39(d,J=8.7Hz,ベンゼン環水素,2H),7.55(d,J=2.7Hz,チオフェン環水素,1H),7.58(d,J=17.1Hz,オレフィン水素,1H),7.95(d,J=3.9Hz,チオフェン環水素,1H),8.47(s,(CN)C=CH,1H)
Synthesis of Compound (C) In the procedure for synthesizing Compound (A-3) described above, Compound (A-1) is changed to Compound (C-4), and Compound (A-2) is changed to Compound (C-3). Except for the above, the same procedure as in Example 1 was carried out to obtain 0.54 g of a product. 1 H-NMR measurement confirmed that the product was compound (C).
1 H-NMR (300 MHz, DMSO-d 6 ) 0.92 (t, J = 7.4 Hz, —CH 3 , 6H), 1.29-1.36 (m, —CH 2 —, 4H), 1 .49-1.51 (m, -CH 2 -, 4H), 3.00-3.58 (m, N-CH 2 -, 4H), 6.64 (d, J = 9.0Hz, benzene ring Hydrogen, 2H), 6.90 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.08 (d, J = 16.5 Hz, olefin hydrogen, 1H), 7.33 (d, J = 18 .6 Hz, olefin hydrogen, 1H), 7.34 (d, J = 10.8 Hz, benzene ring hydrogen, 2H), 7.39 (d, J = 8.7 Hz, benzene ring hydrogen, 2H), 7.55 (D, J = 2.7 Hz, thiophene ring hydrogen, 1H), 7.58 (d, J = 17.1 Hz, olefin hydrogen, 1H , 7.95 (d, J = 3.9Hz, thiophene ring hydrogen, 1H), 8.47 (s, (CN) C = CH, 1H)

(実施例4)化合物(D)の合成
Example 4 Synthesis of Compound (D)

化合物(D−1)の合成
上記した化合物(A−1)を合成する手順において、3,4−ジフルオロベンズアルデヒドを、3,4,5−トリフルオロベンズアルデヒド(シグマ アルドリッチ社製)に替えた以外は同様の手順を実施して生成物3.80gを得た。1H−NMR測定により、該生成物が化合物(D−1)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 0.88(t,J=7.2Hz,−CH3,6H),1.20−1.35(m,−CH2−,4H),1.40−1.55(m,−CH2−,4H),3.26(t,J=7.5Hz,N−CH2−,4H),7.30−7.35(m,ベンゼン環水素,2H),9.77(s,−C(=O)−H,1H
Synthesis of Compound (D-1) In the procedure for synthesizing Compound (A-1) described above, except that 3,4-difluorobenzaldehyde was changed to 3,4,5-trifluorobenzaldehyde (manufactured by Sigma-Aldrich). A similar procedure was performed to give 3.80 g of product. It was confirmed by 1 H-NMR measurement that the product was compound (D-1) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.88 (t, J = 7.2 Hz, —CH 3 , 6H), 1.20-1.35 (m, —CH 2 —, 4H), 1 .40-1.55 (m, -CH 2 -, 4H), 3.26 (t, J = 7.5Hz, N-CH 2 -, 4H), 7.30-7.35 (m, benzene ring Hydrogen, 2H), 9.77 (s, -C (= O) -H, 1H

化合物(D−2)の合成
上記した化合物(A−2)を合成する手順において、4−ブロモ−2−フルオロベンジルブロミドを4−ブロモベンジルブロミド(東京化成工業株式会社製)に替えた以外は同様の手順を実施して生成物32.18gを得た。1H−NMR測定により、該生成物が化合物(D−2)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 1.25(t,J=7.1Hz,−CH3,6H),3.09(d,J=21.6Hz,Ar−CH2−,2H),
3.97−4.07(m,O−CH2−,4H),7.17(d,ベンゼン環水素,2H),7.43(d,ベンゼン環水素,2H)
Synthesis of Compound (D-2) In the procedure for synthesizing Compound (A-2) described above, except that 4-bromo-2-fluorobenzyl bromide was changed to 4-bromobenzyl bromide (manufactured by Tokyo Chemical Industry Co., Ltd.). A similar procedure was performed to give 32.18 g of product. It was confirmed by 1 H-NMR measurement that the product was compound (D-2) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 1.25 (t, J = 7.1 Hz, —CH 3 , 6H), 3.09 (d, J = 21.6 Hz, Ar—CH 2 —, 2H ),
3.97-4.07 (m, O—CH 2 —, 4H), 7.17 (d, benzene ring hydrogen, 2H), 7.43 (d, benzene ring hydrogen, 2H)

化合物(D−3)の合成
上記した化合物(A−3)を合成する手順において、化合物(A−1)を化合物(D−1)に、化合物(A−2)を化合物(D−2)に変えた以外は実施例1と同様に合成を行い生成物4.95gを得た。1H−NMR測定により、該生成物が化合物(D−3)(下記式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 0.83−0.93(m,−CH3,6H),1.24−1.34(m,−CH2−,4H),1.36−1.47(m,−CH2−,4H),3.13(t,J=7.4Hz,N−CH2−,4H),7.01(d,J=10.5Hz,ベンゼン環水素,2H),7.01(d,J=15.9Hz,オレフィン水素,1H),7.10(d,J=16.2Hz,オレフィン水素,1H),7.62(d,J=8.4Hz,ベンゼン環水素,2H),7.87(d,J=8.4Hz,ベンゼン環水素,2H),9.99(s,−CHO,1H)
Synthesis of Compound (D-3) In the procedure for synthesizing Compound (A-3) described above, Compound (A-1) is converted to Compound (D-1), and Compound (A-2) is converted to Compound (D-2). The synthesis was carried out in the same manner as in Example 1 except that 4.95 g of the product was obtained. It was confirmed by 1 H-NMR measurement that the product was compound (D-3) (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.83 to 0.93 (m, —CH 3 , 6H), 1.24 to 1.34 (m, —CH 2 —, 4H), 1.36 -1.47 (m, -CH 2 -, 4H), 3.13 (t, J = 7.4Hz, N-CH 2 -, 4H), 7.01 (d, J = 10.5Hz, benzene ring Hydrogen, 2H), 7.01 (d, J = 15.9 Hz, olefin hydrogen, 1H), 7.10 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.62 (d, J = 8 .4 Hz, benzene ring hydrogen, 2H), 7.87 (d, J = 8.4 Hz, benzene ring hydrogen, 2H), 9.99 (s, -CHO, 1H)

化合物(D)の合成
上記した化合物(A−3)を合成する手順において、化合物(A−1)を化合物(D−3)に、化合物(A−2)を化合物(C−3)に変えた以外は実施例1と同様の手順を実施して生成物0.81gを得た。1H−NMR測定により、該生成物が化合物(D)であることを確認した。
1H−NMR(300MHz,DMSO−d6) 0.83(t,J=7.4Hz,−CH3,6H),1.21−1.36(m,−CH2−,8H),3.04−3.09(m,N−CH2−,4H),7.15−7.38(m,ベンゼン環水素,オレフィン水素,5H),7.46(d,J=3.9Hz,チオフェン環水素,1H),7.60(d,J=8.1Hz,ベンゼン環水素,2H),7.63(d,J=15.6Hz,オレフィン水素,1H),7.70(d,J=8.4Hz,ベンゼン環水素,2H),7.96(d,J=3.9Hz,チオフェン環水素,1H),8.47(s,(CN)C=CH,1H)
Synthesis of Compound (D) In the procedure for synthesizing Compound (A-3) described above, Compound (A-1) is changed to Compound (D-3), and Compound (A-2) is changed to Compound (C-3). Except for the above, the same procedure as in Example 1 was carried out to obtain 0.81 g of the product. 1 H-NMR measurement confirmed that the product was compound (D).
1 H-NMR (300 MHz, DMSO-d 6 ) 0.83 (t, J = 7.4 Hz, —CH 3 , 6H), 1.21-1.36 (m, —CH 2 —, 8H), 3 .04-3.09 (m, N—CH 2 —, 4H), 7.15-7.38 (m, benzene ring hydrogen, olefin hydrogen, 5H), 7.46 (d, J = 3.9 Hz, Thiophene ring hydrogen, 1H), 7.60 (d, J = 8.1 Hz, benzene ring hydrogen, 2H), 7.63 (d, J = 15.6 Hz, olefin hydrogen, 1H), 7.70 (d, J = 8.4 Hz, benzene ring hydrogen, 2H), 7.96 (d, J = 3.9 Hz, thiophene ring hydrogen, 1H), 8.47 (s, (CN) C = CH, 1H)

化合物(E)の合成

上記した化合物(A−3)を合成する手順において、化合物(A−1)はそのままで、化合物(A−2)を化合物(B−2)に変えた以外は実施例1と同様の手順を実施して生成物0.77gを得た。1H−NMR測定により、該生成物が化合物(E)(上式)であることを確認した。
1H−NMR(300MHz,DMSO-d6)0.92(t,J=7.4Hz,−CH3,6H),1.27−1.39(m,−CH2−,4H),1.47−1.52(m,−CH2−,4H),3.08−3.55(m,N−CH2−,4H),6.67(d,J=9.0Hz,ベンゼン環水素,2H),7.01(d,J=15.9Hz,オレフィン水素,1H),7.48(d,J=15.9Hz,オレフィン水素,1H),7.49(d,J=9.0Hz,ベンゼン環水素,2H),7.78(t,J=7.8Hz,ベンゼン環水素,1H),8.00(t,J=7.8Hz,ベンゼン環水素,1H),8.27(s,(CN)C=CH,1H)
Synthesis of compound (E)

In the procedure for synthesizing the compound (A-3), the same procedure as in Example 1 was performed, except that the compound (A-1) was left as it was and the compound (A-2) was changed to the compound (B-2). Implementation gave 0.77 g of product. 1 H-NMR measurement confirmed that the product was compound (E) (formula).
1 H-NMR (300 MHz, DMSO-d 6 ) 0.92 (t, J = 7.4 Hz, —CH 3 , 6H), 1.27-1.39 (m, —CH 2 —, 4H), 1 .47-1.52 (m, -CH 2 -, 4H), 3.08-3.55 (m, N-CH 2 -, 4H), 6.67 (d, J = 9.0Hz, benzene ring Hydrogen, 2H), 7.01 (d, J = 15.9 Hz, olefin hydrogen, 1H), 7.48 (d, J = 15.9 Hz, olefin hydrogen, 1H), 7.49 (d, J = 9 0.0 Hz, benzene ring hydrogen, 2H), 7.78 (t, J = 7.8 Hz, benzene ring hydrogen, 1H), 8.00 (t, J = 7.8 Hz, benzene ring hydrogen, 1H), 8. 27 (s, (CN) C = CH, 1H)

比較例1の合成

上記した化合物(A−3)を合成する手順において、化合物(A−1)はそのままで、化合物(A−2)を化合物(D−2)に変えた以外は実施例1と同様の手順を実施して生成物0.13gを得た。1H−NMR測定により、該生成物が比較例1の化合物(上式)であることを確認した。
1H−NMR(300MHz,CDCl3;TMS)0.96(t,J=7.2Hz,−CH3,6H),1.31−1.43(m,−CH2−,4H),1.54−1.64(m,−CH2−,4H),3.32(t,J=7.7Hz,N−CH2−,4H),6.69(d,J=8.1Hz,ベンゼン環水素,2H),6.89(d,J=16.2Hz,オレフィン水素,1H),7.29(d,J=16.2Hz,オレフィン水素,1H),7.42(d,J=8.7Hz,ベンゼン環水素,2H),7.59(d,J=9.0Hz,ベンゼン環水素,2H),7.99(d,J=8.4Hz,ベンゼン環水素,2H),8.23(s,(CN)C=CH,1H)
Synthesis of Comparative Example 1

In the procedure of synthesizing the compound (A-3), the same procedure as in Example 1 was performed except that the compound (A-1) was left as it was and the compound (A-2) was changed to the compound (D-2). Implementation gave 0.13 g of product. 1 H-NMR measurement confirmed that the product was the compound of Comparative Example 1 (formula above).
1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.96 (t, J = 7.2 Hz, —CH 3 , 6H), 1.31-1.43 (m, —CH 2 —, 4H), 1 .54-1.64 (m, -CH 2 -, 4H), 3.32 (t, J = 7.7Hz, N-CH 2 -, 4H), 6.69 (d, J = 8.1Hz, Benzene ring hydrogen, 2H), 6.89 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.29 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.42 (d, J = 8.7 Hz, benzene ring hydrogen, 2H), 7.59 (d, J = 9.0 Hz, benzene ring hydrogen, 2H), 7.99 (d, J = 8.4 Hz, benzene ring hydrogen, 2H), 8.23 (s, (CN) C = CH, 1H)

比較例2の合成

上記した化合物(A−3)を合成する手順において、化合物(A−2)を化合物(D−2)に変えた以外は実施例1と同様に合成を行い生成物4.95gを得た。1H−NMR測定により、該生成物が比較例2−1の化合物(下式)であることを確認した。

1H−NMR(300MHz,CDCl3;TMS) 0.85−0.96(m,−CH3,6H),1.26−1.38(m,−CH2−,4H),1.45−1.55(m,−CH2−,4H),2.49−2.51(m,N−CH2−,4H),6.62(d,J=8.7Hz,ベンゼン環水素,2H),6.88(d,J=16.5Hz,オレフィン水素,1H),7.13(d,J=16.2Hz,オレフィン水素,1H),7.38(d,J=8.4Hz,ベンゼン環水素,2H),7.46(d,J=8.7Hz,ベンゼン環水素,2H),7.50(d,J=8.7Hz,ベンゼン環水素,2H)
Synthesis of Comparative Example 2

In the procedure for synthesizing the compound (A-3), synthesis was performed in the same manner as in Example 1 except that the compound (A-2) was changed to the compound (D-2) to obtain 4.95 g of a product. 1 H-NMR measurement confirmed that the product was the compound of Comparative Example 2-1 (the following formula).

1 H-NMR (300 MHz, CDCl 3 ; TMS) 0.85 to 0.96 (m, —CH 3 , 6H), 1.26 to 1.38 (m, —CH 2 —, 4H), 1.45 -1.55 (m, -CH 2 -, 4H), 2.49-2.51 (m, N-CH 2 -, 4H), 6.62 (d, J = 8.7Hz, benzene ring hydrogen, 2H), 6.88 (d, J = 16.5 Hz, olefin hydrogen, 1H), 7.13 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.38 (d, J = 8.4 Hz). , Benzene ring hydrogen, 2H), 7.46 (d, J = 8.7 Hz, benzene ring hydrogen, 2H), 7.50 (d, J = 8.7 Hz, benzene ring hydrogen, 2H)

更に、上記した化合物(A−3)を合成する手順において、化合物(A−1)を比較例(2−1)に、化合物(A−2)を化合物(C−3)に変えた以外は実施例1と同様の手順を実施して生成物0.37gを得た。1H−NMR測定により、該生成物が比較例2の化合物(上式)であることを確認した。
1H−NMR(300MHz,DMSO−d) 0.92(t,J=7.4Hz,−CH3,6H),1.26−1.36(m,−CH2−,4H),1.46−1.56(m,−CH2−,4H),3.08−3.55(m,N−CH2−,4H),6.63(d,J=9.0Hz,ベンゼン環水素,2H),6.93(d,J=16.2Hz,オレフィン水素,1H),7.18(d,J=16.5Hz,オレフィン水素,1H),7.26(d,J=15.9Hz,オレフィン水素,1H),7.40(d,J=8.7Hz,ベンゼン環水素,2H),7.44(d,J=4.2Hz,チオフェン環水素,1H),7.53(d,J=8.1Hz,ベンゼン環水素,2H),7.57(d,J=15.0Hz,オレフィン水素,1H),7.63(d,J=8.4Hz,ベンゼン環水素,2H),7.94(d,J=4.2Hz,チオフェン環水素,1H),8.46(s,(CN)C=CH,1H)
Furthermore, in the procedure of synthesizing the compound (A-3) described above, except that the compound (A-1) was changed to the comparative example (2-1) and the compound (A-2) was changed to the compound (C-3). The same procedure as in Example 1 was performed to give 0.37 g of product. 1 H-NMR measurement confirmed that the product was the compound of Comparative Example 2 (formula).
1 H-NMR (300 MHz, DMSO-d 6 ) 0.92 (t, J = 7.4 Hz, —CH 3 , 6H), 1.26 to 1.36 (m, —CH 2 —, 4H), 1 .46-1.56 (m, -CH 2 -, 4H), 3.08-3.55 (m, N-CH 2 -, 4H), 6.63 (d, J = 9.0Hz, benzene ring Hydrogen, 2H), 6.93 (d, J = 16.2 Hz, olefin hydrogen, 1H), 7.18 (d, J = 16.5 Hz, olefin hydrogen, 1H), 7.26 (d, J = 15 .9 Hz, olefin hydrogen, 1H), 7.40 (d, J = 8.7 Hz, benzene ring hydrogen, 2H), 7.44 (d, J = 4.2 Hz, thiophene ring hydrogen, 1H), 7.53 (D, J = 8.1 Hz, benzene ring hydrogen, 2H), 7.57 (d, J = 15.0 Hz, olefin hydrogen, 1H , 7.63 (d, J = 8.4 Hz, benzene ring hydrogen, 2H), 7.94 (d, J = 4.2 Hz, thiophene ring hydrogen, 1H), 8.46 (s, (CN) C = CH, 1H)

(紫外可視吸収スペクトル)
実施例で合成した本発明の末端にアミノ基を含有する芳香族化合物である化合物(A)〜(E)、参考例の色素(Ru色素(Solaronix社製Ruthenium535 bis TBA))、および比較例1〜2の化合物をアセトニトリルを溶媒として調製した溶液を、石英セル(行路長1cm)に入れ、分光光度計(日本分光株式会社 紫外可視近赤外分光光度計 V−570)にて紫外可視吸収スペクトルの測定を行った。これらの結果を下記表に示す。
(UV-visible absorption spectrum)
Compounds (A) to (E), which are aromatic compounds containing an amino group at the terminal of the present invention, synthesized in Examples, dyes of reference examples (Ru dyes (Ruthenium 535 bis TBA manufactured by Solaronix)), and Comparative Example 1 A solution prepared by preparing a compound of ~ 2 using acetonitrile as a solvent is put in a quartz cell (path length: 1 cm), and an ultraviolet-visible absorption spectrum is obtained with a spectrophotometer (Nippon Bunko UV-Vis near-infrared spectrophotometer V-570). Was measured. These results are shown in the table below.

本発明の式(1)で表される化合物において、XおよびYの少なくとも一方が、一つ以上のフッ素原子で置換された2価の芳香族炭化水素基である化合物は紫外―可視吸収スペクトルに対して効果を発揮することがわかった。このことから、本発明のように、適切な位置に適切な数のフッ素基を導入することで、吸収極大波長およびモル吸光係数を最適なものにできるのではないかと考えられる。   In the compound represented by the formula (1) of the present invention, a compound in which at least one of X and Y is a divalent aromatic hydrocarbon group substituted with one or more fluorine atoms has an ultraviolet-visible absorption spectrum. It has been found that this is effective. From this, it is considered that the maximum absorption wavelength and the molar extinction coefficient can be optimized by introducing an appropriate number of fluorine groups at appropriate positions as in the present invention.

(CVの測定)
実施例で合成した本発明の末端にアミノ基を含有する芳香族である化合物(A)〜(D)、および比較例1〜2の化合物をそれぞれ支持電解液(0.1mol/Lのテトラ(n−ブチル)アンモニウムテトラフオロボレートーアセトニトリル溶液)に0.001moL/Lになるよう加えて測定溶液を調製した。作用電極、対極、参照電極としてそれぞれグラッシーカーボン、白金線、Ag/Ag+(0.01mol/L硝酸銀+0.1mol/Lテトラブチルアンモニウム過塩素酸塩−アセトニトリル溶液)を用いた。測定溶液として10mLをサンプリングし、10分間窒素バブリングをした後、電気化学測定装置(ECO CHEMIE社製PGSTAT12)を用いて2.00Vから−1.80Vの電位範囲を0.1V/sの挿引速度でCV測定を行った。基準物質をフェロセンとし、NHE(標準水素電極)へ補正を行って得られたデータの比較をした。結果を下記表に示す。
(Measurement of CV)
The compounds (A) to (D), which are aromatic compounds containing amino groups at the ends of the present invention synthesized in the Examples, and the compounds of Comparative Examples 1 and 2 were each added to the supporting electrolyte (0.1 mol / L tetra ( n-butyl) ammonium tetrafluoroborate-acetonitrile solution) was added to a concentration of 0.001 mol / L to prepare a measurement solution. Glassy carbon, platinum wire, and Ag / Ag + (0.01 mol / L silver nitrate + 0.1 mol / L tetrabutylammonium perchlorate-acetonitrile solution) were used as a working electrode, a counter electrode, and a reference electrode, respectively. 10 mL was sampled as a measurement solution, and after bubbling with nitrogen for 10 minutes, the potential range from 2.00 V to -1.80 V was inserted by 0.1 V / s using an electrochemical measurement device (PGSTAT12 manufactured by ECO CHEMIE). CV measurements were made at speed. The data obtained by correcting to NHE (standard hydrogen electrode) using ferrocene as a reference substance was compared. The results are shown in the table below.

本発明の式(1)で表される化合物は、フッ素原子を有しない比較例の化合物と比較して、色素の一電子酸化電位が酸化側に大きくシフトすることが分かった。この結果から、色素の適切な位置に適切な数のフッ素基を導入することで、電位の最適な位置へのチューニングが可能であることが示唆された。   It was found that the compound represented by the formula (1) of the present invention has a one-electron oxidation potential of the dye greatly shifted to the oxidation side as compared with the compound of the comparative example having no fluorine atom. From this result, it was suggested that the potential can be tuned to the optimum position by introducing an appropriate number of fluorine groups at an appropriate position of the dye.

(光電変換試験)
光電変換試験では、実施例で合成した本発明の末端にアミノ基を含有する芳香族化合物である化合物および参考例の色素を増感色素として用いて光電変換セルを作製し、光電変換効率を測定した。なお、光電変換試験は具体的には以下の手順で実施した。
(Photoelectric conversion test)
In the photoelectric conversion test, a photoelectric conversion cell was prepared using the compound which is an aromatic compound containing an amino group at the terminal of the present invention synthesized in the examples and the dye of the reference example as a sensitizing dye, and the photoelectric conversion efficiency was measured. did. In addition, the photoelectric conversion test was specifically implemented in the following procedures.

<光電変換試験:その1>
光電変換セル
図1は、本試験で使用した光電変換セルの試験サンプルの模式図である。
<Photoelectric conversion test: Part 1>
Photoelectric Conversion Cell FIG. 1 is a schematic diagram of a test sample of a photoelectric conversion cell used in this test.

透明電極
厚さ1.1mmのフッ素ドープ酸化スズ層(透明電極層)2付ガラス基板1(Solaronix社製)を使用した。
A glass substrate 1 with a fluorine-doped tin oxide layer (transparent electrode layer) 2 having a transparent electrode thickness of 1.1 mm (manufactured by Solaronix) was used.

酸化チタンペースト
市販品であるTitanium nanoxide HTSP(Solaronix社製)を使用した。
Titanium nanooxide HTSP (manufactured by Solaronix), which is a commercial product of titanium oxide paste, was used.

酸化チタン多孔質電極の作製
120メッシュのポリエステルシート(テトロン網)を使用し、スクリーン印刷法にて透明電極の電導面(透明電極層2の表面)へ酸化チタンペーストを塗布し、50℃、20分で乾燥後、450℃のオーブンで30分間焼成した。焼成後、オーブンの温度を80℃まで落として該温度を保持した。
Preparation of Titanium Oxide Porous Electrode Using a 120-mesh polyester sheet (Tetron network), a titanium oxide paste is applied to the conductive surface of the transparent electrode (the surface of the transparent electrode layer 2) by a screen printing method. After drying in minutes, it was baked in an oven at 450 ° C. for 30 minutes. After firing, the temperature of the oven was dropped to 80 ° C. and the temperature was maintained.

増感色素吸着
増感色素として本発明の末端にアミノ基を含有する芳香族化合物(A)、(E)および参考例の色素、比較例1を溶液濃度が4.0×10−3mol/Lとなるようにエタノールに溶解させた。該色素溶液(常温)中に、焼成後80℃を保持したままの酸化チタン多孔質電極を入れ、24時間浸した。その後、有効面積0.25cm2になるよう余分な酸化チタン多孔質層を削り取り、所望の酸化チタン多孔質層4を有した酸化チタン多孔質電極を得た。
As the sensitizing dye adsorbing sensitizing dye, the aromatic compounds (A) and (E) containing the amino group at the terminal of the present invention, the dye of Reference Example, and Comparative Example 1 having a solution concentration of 4.0 × 10 −3 mol / L was dissolved in ethanol. The titanium oxide porous electrode kept at 80 ° C. after firing was placed in the dye solution (normal temperature) and immersed for 24 hours. Then, the excess titanium oxide porous layer was scraped off so as to have an effective area of 0.25 cm 2 to obtain a titanium oxide porous electrode having a desired titanium oxide porous layer 4.

電解液
市販品である酸化還元電解液 Iodolyte PN 50(Solaronix社製)を使用した。
Electrolyte The commercially available redox electrolyte Iodolyte PN 50 (manufactured by Solaronix) was used.

フッ素ドープ酸化スズ層(透明電極層)2付ガラス基板1の導電層(透明電極層2)上にスパッタリング法にて白金層を積層して導電性対極(白金電極層3)を形成した。酸化チタン多孔質電極(酸化チタン多孔質層4)と導電性対極(白金電極層3)とのスペーサとしては、樹脂フィルム製のスペーサ6(SX−1170−60 サーモプラスト熱溶解封止シート(Solaronix社製厚さ60μm))を用いた。セル作製後、電解液5を注入、続いて封止し、光電変換セルの試験サンプルを完成させた。試験サンプルの導電性対極(白金電極層3)の端部、およびチタン多孔質電極を設けた側の透明電極の導電層(透明電極層2)の端部には、測定用の導線7を接合した。   A platinum layer was laminated by sputtering on the conductive layer (transparent electrode layer 2) of the glass substrate 1 with the fluorine-doped tin oxide layer (transparent electrode layer) 2 to form a conductive counter electrode (platinum electrode layer 3). As a spacer between the titanium oxide porous electrode (titanium oxide porous layer 4) and the conductive counter electrode (platinum electrode layer 3), a resin film spacer 6 (SX-1170-60 thermoplast heat melting sealing sheet (Solaronix) Company thickness 60 μm) was used. After the production of the cell, the electrolytic solution 5 was injected and subsequently sealed to complete a test sample of the photoelectric conversion cell. Conductive wires 7 for measurement are bonded to the end of the conductive counter electrode (platinum electrode layer 3) of the test sample and the end of the conductive layer (transparent electrode layer 2) of the transparent electrode on the side where the titanium porous electrode is provided. did.

変換効率の測定
測定用光源には、ソーラーシュミレータ(分光計器社製 OTENTO−SUN III)をエアマスフィルターとを組み合わせて、光量計で100mW/cm2の光量になるよう調節したものを用いた。I−Vカーブ特性の測定には、ポテンシオスタット(AUTOLAB製 PGSTAT12)を用いた。変換効率ηは、I−Vカーブ特性測定から得られたVoc(開放電圧値)、Jsc(短絡電流値)、ff(フィルファクター)を用いて下式により算出した。

光電変換効率の測定結果を[表12]に示す。
As a light source for measuring and measuring the conversion efficiency , a solar simulator (OTENTO-SUN III manufactured by Spectrometer Co., Ltd.) combined with an air mass filter was used to adjust the light amount to 100 mW / cm 2 with a light meter. A potentiostat (PGSTAT 12 manufactured by AUTOLAB) was used for measurement of the IV curve characteristics. The conversion efficiency η was calculated by the following equation using Voc (open circuit voltage value), Jsc (short circuit current value), and ff (fill factor) obtained from the IV curve characteristic measurement.

The measurement results of photoelectric conversion efficiency are shown in [Table 12].

<光電変換試験:その2>
上記光電変換セルの作製条件において、酸化チタンペースト、酸化チタン多孔質電極の作製、電解液、増感色素吸着、を以下のように変更した以外は同様にして光電変換セルを作製し、測定を行った。
酸化チタンペースト
触媒化成工業製の酸化チタンペーストを使用した。
酸化チタン多孔質電極の作製
90メッシュのポリエチレンシートを使用し、スクリーン印刷法(酸化チタン膜の厚さは4〜5μm程度)にて透明電極の電導面(透明電極層2の表面)へ酸化チタンペーストを塗布し、450℃のオーブンで30分間焼成した。焼成後、オーブンの温度を80℃まで落として該温度を保持した。
増感色素吸着
増感色素として、上記手順で合成した末端にアミノ基を含有する芳香族化合物(B)〜(D)、参考例の色素および比較例1〜2の化合物を使用し、溶液濃度が3.0×10−4mol/Lとなるようにエタノールに溶解させた。該色素溶液(40℃)中に、焼成後80℃を保持したままの酸化チタン多孔質電極を入れ、6時間浸した。その後、有効面積0.25cm2になるよう余分な酸化チタン多孔質層を削り取り、所望の酸化チタン多孔質層4を有した酸化チタン多孔質電極を得た。
電解液5の調製
下記処方で電解液5を得た。
溶媒をメトキシアセトニトリルとして、リチウムヨージドを0.1mol/L、ヨウ素を0.05mol/L、4−tert−ブチルピリジンを0.5mol/L、1−プロピル−2,3−ジメチルイミダゾリウムヨージドが0.6mol/Lになるように調製した。
スペーサ
スペーサとしては、樹脂フィルム製のスペーサ6(ハイミラン1702(三井・デュポンポリケミカル社製厚さ50μm)を用いた。
測定用光源には、ソーラーシュミレータ(分光計器社製 K−0206、光源SX−150C キセノンランプ150W)をエアマスフィルターとを組み合わせて、光量計で100mW/cm2の光量になるよう調節して測定用光源とした。試験サンプルに光照射しながらI−Vカーブ特性をポテンシオスタット(solatron1287)を用いて測定した。
光電変換効率の測定結果を[表13]に示す。
<Photoelectric conversion test: Part 2>
A photoelectric conversion cell was prepared and measured in the same manner except that the production conditions for the photoelectric conversion cell were changed as follows: titanium oxide paste, titanium oxide porous electrode production, electrolytic solution, and sensitizing dye adsorption. went.
Titanium oxide paste Titanium oxide paste manufactured by Catalyst Chemical Industry was used.
Production of porous titanium oxide electrode Using 90-mesh polyethylene sheet, titanium oxide is applied to the conductive surface of transparent electrode (surface of transparent electrode layer 2) by screen printing method (thickness of titanium oxide film is about 4-5μm). The paste was applied and baked in an oven at 450 ° C. for 30 minutes. After firing, the temperature of the oven was dropped to 80 ° C. and the temperature was maintained.
As the sensitizing dye adsorbing sensitizing dye, the aromatic compounds (B) to (D) containing amino groups at the ends synthesized by the above procedure, the dyes of Reference Examples and the compounds of Comparative Examples 1 and 2 were used, and the solution concentration Was dissolved in ethanol so as to be 3.0 × 10 −4 mol / L. In the dye solution (40 ° C.), the titanium oxide porous electrode kept at 80 ° C. after baking was put and immersed for 6 hours. Then, the excess titanium oxide porous layer was scraped off so as to have an effective area of 0.25 cm 2 to obtain a titanium oxide porous electrode having a desired titanium oxide porous layer 4.
Preparation of Electrolyte 5 Electrolyte 5 was obtained according to the following formulation.
Solvent is methoxyacetonitrile, lithium iodide is 0.1 mol / L, iodine is 0.05 mol / L, 4-tert-butylpyridine is 0.5 mol / L, 1-propyl-2,3-dimethylimidazolium iodide Was adjusted to 0.6 mol / L.
Spacer As the spacer, a resin film spacer 6 (Himiran 1702 (Mitsui-DuPont Polychemical Co., Ltd., thickness 50 μm)) was used.
As a measurement light source, a solar simulator (K-0206 manufactured by Spectrometer Co., Ltd., light source SX-150C xenon lamp 150W) is combined with an air mass filter, and adjusted to a light quantity of 100 mW / cm 2 with a photometer. A light source was used. While irradiating the test sample with light, the IV curve characteristics were measured using a potentiostat (solatron 1287).
The measurement results of photoelectric conversion efficiency are shown in [Table 13].

<光電変換試験:その3>
デオキシコール酸の添加
上記の<光電変換試験:その2>における上記光電変換セルの作製条件において、化合物(A)、参考例および比較例1化合物を使用し、溶液濃度が3.0×10−4mol/Lとなるようにエタノールに溶解させ、さらにデオキシコール酸20mMを添加した色素溶液を用いた以外は上記の<光電変換試験:その2>と同様にして光電変換セルを作製し、測定を行った。
デオキシコール酸を添加した本試験の場合についての光電変換効率の測定結果を[表14]に示す。
<Photoelectric conversion test: Part 3>
Addition of deoxycholic acid Compound (A), Reference Example, and Comparative Example 1 were used under the above-mentioned photoelectric conversion cell preparation conditions in <Photoelectric Conversion Test: Part 2>, and the solution concentration was 3.0 × 10 −. A photoelectric conversion cell was prepared and measured in the same manner as in the above <Photoelectric conversion test: Part 2> except that the dye solution was dissolved in ethanol to 4 mol / L and further 20 mM deoxycholic acid was added. Went.
The measurement results of the photoelectric conversion efficiency in the case of the present test to which deoxycholic acid was added are shown in [Table 14].

[表12]より化合物(A)および化合物(E)と比較例1を比較するとフッ素含有色素(化合物(A)および化合物(E))の方が良好な結果であり、参考例に近い値が得られた。また、[表13]より化合物(B)と比較例1、化合物(C)および化合物(D)と比較例2とをそれぞれ比較すると、実施例で合成した本発明の末端にアミノ基を含有する芳香族化合物は、フッ素原子を有しない比較例の化合物と比較して、高い光電変換効率を有することが分かった。また、光電変換効率に関わるファクターである短絡電流Jsc、開放電圧Voc、フィルファクターffが同等または向上した値を示した。以上述べたように、色素骨格の適切な位置に適切な数のフッ素基を導入することは、光電変換効率に関わるファクターを向上させる効果があると考えられ、結果的に光電変換効率の向上につながるのではないかと考えられる。
さらに、[表14]より共吸着剤であるデオキシコール酸を適量添加することで参考例を超える高い光電変換効率が得られたことから、適切な量の共吸着剤添加によりさらなる光電変換効率の向上が期待できることが示唆された。
When comparing compound (A) and compound (E) with Comparative Example 1 from [Table 12], the fluorine-containing dyes (compound (A) and compound (E)) show better results, and values close to those of the reference examples are obtained. Obtained. Moreover, when comparing the compound (B) with Comparative Example 1, the compound (C) and the compound (D) with Comparative Example 2 from [Table 13], an amino group is contained at the end of the present invention synthesized in the Examples. It was found that the aromatic compound has higher photoelectric conversion efficiency than the compound of the comparative example having no fluorine atom. Moreover, the short circuit current Jsc, the open circuit voltage Voc, and the fill factor ff, which are factors related to the photoelectric conversion efficiency, showed the same or improved values. As described above, introducing an appropriate number of fluorine groups at an appropriate position of the dye skeleton is thought to have an effect of improving factors relating to photoelectric conversion efficiency, and as a result, improving photoelectric conversion efficiency. It may be connected.
Furthermore, since high photoelectric conversion efficiency exceeding the reference example was obtained by adding an appropriate amount of deoxycholic acid as a coadsorbent from [Table 14], further photoelectric conversion efficiency could be improved by adding an appropriate amount of coadsorbent. It was suggested that improvement can be expected.

これらの結果から、本発明の末端にアミノ基を含有する芳香族化合物(1)のように、芳香族炭化水素基にフッ素原子を置換することで、非置換の化合物よりも高い光電変換効率を示すことがわかった。さらに、光電変換セルの増感色素として好適なものとされるRu色素の代わりに、本発明の化合物を用いても、遜色ない変換効率が得られることもわかった。また、フッ素原子を置換することにより、酸化還元電位の調整が可能であることから、実際に使用するセルの条件に合わせて所望の性能を得ることも可能であると考えられる。   From these results, as in the aromatic compound (1) containing an amino group at the terminal of the present invention, by substituting a fluorine atom for an aromatic hydrocarbon group, a higher photoelectric conversion efficiency than that of an unsubstituted compound can be obtained. I found out. Furthermore, it has been found that even if the compound of the present invention is used in place of the Ru dye, which is suitable as a sensitizing dye for a photoelectric conversion cell, conversion efficiency comparable to that can be obtained. Further, since the oxidation-reduction potential can be adjusted by substituting fluorine atoms, it is considered possible to obtain desired performance in accordance with the conditions of the cell actually used.

上記式(1)で表される本発明の末端にアミノ基を含有する芳香族化合物は、可視領域に広い吸収帯を有するため、特に色素増感型光電変換電池に使用される光電変換用増感色素として好適である。また、ここに挙げた用途だけでなく、非線形光学材料など、その作用を妨げない範囲で広い用途に適用可能である。   Since the aromatic compound containing an amino group at the end of the present invention represented by the above formula (1) has a wide absorption band in the visible region, it is an increase for photoelectric conversion particularly used in a dye-sensitized photoelectric conversion battery. Suitable as a sensitizing dye. In addition to the applications listed here, the present invention can be applied to a wide range of applications such as non-linear optical materials within a range that does not impede its action.

Claims (7)

下記式(1)で表される、末端にアミノ基を含有する芳香族化合物。

(上記式(1)において、R1 および2 、それぞれ独立して、炭素数1〜4のアルキル基である。
3は、カルボキシル基である。
4 は、シアノ基である。
5 は、水素原子である。
Xは、置換基を有していても良い1,4−フェニレン基である
Yは、置換基を有していても良い1,4−フェニレン基である
Zは、環基と共役鎖状連結基が組み合わさった下記の構造下記の構造において、Yと結合する側にYと記載してある。

ただし、Xからアンカー基R3までπ共役系を形成する構造である。
また、XおよびYの少なくとも一方は、1つ以上のフッ素原子で置換された1,4−フェニレン基である。
mは、1ある。
nは0または1の整数である。
上記式(1)中の二重結合は、シス−トランス異性体のいずれを生じさせるものであってもよい。)
An aromatic compound containing an amino group at the end, represented by the following formula (1).

(In the above formula (1), R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms .
R 3 is a carboxyl group.
R 4 is a cyano group.
R 5 is a hydrogen atom.
X is a 1,4-phenylene group which may have a substituent .
Y is a 1,4-phenylene group which may have a substituent .
Z is the following structure in which a cyclic group and a conjugated chain linking group are combined . In the following structure, Y is written on the side bonded to Y.

However, the structure forms a π-conjugated system from X to the anchor group R 3 .
At least one of X and Y is a 1,4-phenylene group substituted with one or more fluorine atoms.
m is 1.
n is an integer of 0 or 1.
The double bond in the above formula (1) may give rise to any of the cis-trans isomers. )
請求項1に記載の末端にアミノ基を含有する芳香族化合物からなることを特徴とする光電変換用増感色素。A sensitizing dye for photoelectric conversion, comprising an aromatic compound containing an amino group at the terminal according to claim 1. 請求項2に記載の光電変換用増感色素と、半導体特性を示す無機多孔質物質とを連結させてなる光電変換材料。A photoelectric conversion material obtained by linking the sensitizing dye for photoelectric conversion according to claim 2 and an inorganic porous material exhibiting semiconductor characteristics. 前記光電変換用増感色素とあわせて共吸着剤を用いることを特徴とする、請求項3に記載の光電変換材料。The photoelectric conversion material according to claim 3, wherein a co-adsorbent is used together with the sensitizing dye for photoelectric conversion. 半導体特性を示す無機多孔質物質は、無機酸化物で構成される請求項3または4に記載の光電変換材料。The photoelectric conversion material according to claim 3 or 4, wherein the inorganic porous material exhibiting semiconductor characteristics is composed of an inorganic oxide. 請求項3ないし5のいずれかに記載の光電変換材料を透明電極に積層してなる光電変換電極。A photoelectric conversion electrode obtained by laminating the photoelectric conversion material according to claim 3 on a transparent electrode. 請求項6に記載の光電変換電極、電解質層、および導電性対極を含んでなる光電変換電池。A photoelectric conversion battery comprising the photoelectric conversion electrode according to claim 6, an electrolyte layer, and a conductive counter electrode.
JP2008543032A 2006-11-07 2007-10-30 Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound Expired - Fee Related JP5280853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008543032A JP5280853B2 (en) 2006-11-07 2007-10-30 Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006301669 2006-11-07
JP2006301669 2006-11-07
JP2008543032A JP5280853B2 (en) 2006-11-07 2007-10-30 Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound
PCT/JP2007/071092 WO2008056567A1 (en) 2006-11-07 2007-10-30 Novel amino group-containing aromatic compound, and sensitizing dye for photoelectric conversion, containing the aromatic compound

Publications (2)

Publication Number Publication Date
JPWO2008056567A1 JPWO2008056567A1 (en) 2010-02-25
JP5280853B2 true JP5280853B2 (en) 2013-09-04

Family

ID=39364387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008543032A Expired - Fee Related JP5280853B2 (en) 2006-11-07 2007-10-30 Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound

Country Status (2)

Country Link
JP (1) JP5280853B2 (en)
WO (1) WO2008056567A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782220B2 (en) * 2009-06-24 2015-09-24 富士フイルム株式会社 Dye compound, photoelectric conversion element using the same, and dye-sensitized solar cell
JP5740984B2 (en) * 2010-07-09 2015-07-01 東洋インキScホールディングス株式会社 Optical functional materials
KR101874496B1 (en) * 2011-04-05 2018-07-04 가부시키가이샤 아데카 Novel compound and photoelectric conversion element
CN106459605A (en) * 2014-05-20 2017-02-22 株式会社艾迪科 Loading method, loaded body and photoelectric conversion element
CA3031889A1 (en) * 2016-08-09 2018-02-15 University Of Durham Synthetic retinoids (in cell modulation)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063283A1 (en) * 2003-01-16 2004-07-29 Toyo Ink Mfg. Co., Ltd. Photofunctional materials
JP2005097561A (en) * 2003-08-27 2005-04-14 Toyo Ink Mfg Co Ltd Optical functional material
WO2006120939A1 (en) * 2005-05-13 2006-11-16 Agc Seimi Chemical Co., Ltd. Novel amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
JP2007131767A (en) * 2005-11-11 2007-05-31 Toyo Ink Mfg Co Ltd Optically functional material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063283A1 (en) * 2003-01-16 2004-07-29 Toyo Ink Mfg. Co., Ltd. Photofunctional materials
JP2005097561A (en) * 2003-08-27 2005-04-14 Toyo Ink Mfg Co Ltd Optical functional material
WO2006120939A1 (en) * 2005-05-13 2006-11-16 Agc Seimi Chemical Co., Ltd. Novel amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
JP2007131767A (en) * 2005-11-11 2007-05-31 Toyo Ink Mfg Co Ltd Optically functional material

Also Published As

Publication number Publication date
JPWO2008056567A1 (en) 2010-02-25
WO2008056567A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP5086807B2 (en) Novel amino group-containing heterocyclic derivative and sensitizing dye for photoelectric conversion containing the heterocyclic derivative
JP4925224B2 (en) Organic compound and semiconductor thin film electrode, photoelectric conversion element and photoelectrochemical solar cell using the same
KR101823719B1 (en) Naphtalene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors
JP4841248B2 (en) Dye-sensitized photoelectric conversion element
Yang et al. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer
Hua et al. Bulky dendritic triarylamine-based organic dyes for efficient co-adsorbent-free dye-sensitized solar cells
WO2010104117A1 (en) Dye-sensitized solar cell, photoelectric conversion element, and dye for use in the solar cell and the element
JP6278504B2 (en) Novel compound and photoelectric conversion element using the same
Qian et al. Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells
JP2009269987A (en) Novel compound, photoelectric transducer and solar cell
KR20080077765A (en) A noble ru-type sensitizers and method for preparing of it
JP5280853B2 (en) Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound
Liu et al. Tuning band structures of dyes for dye-sensitized solar cells: Effect of different π-bridges on the performance of cells
KR20100136931A (en) Novel organic dye and preparation thereof
Onicha et al. Carbazole donor and carbazole or bithiophene bridged sensitizers for dye-sensitized solar cells
JP5347329B2 (en) Photoelectric conversion element and solar cell
KR20110086272A (en) New triphenylamine derivatives and dye-sensitized solar cell comprising the same
KR100996236B1 (en) A NOBLE Ru-TYPE SENSITIZERS AND METHOD FOR PREPARING OF IT
KR20160064644A (en) Novel compounds, method of preparation thereof and organic solar cell comprising the same
KR20080103683A (en) Novel julolidine-based dye and preparation thereof
Joseph et al. Output current enhancement of hexylthiophene functionalized D–π-extended–A triphenylamine in dye sensitized solar cells
JP2013199536A (en) Polymethine dye precursor, squarylium dye including skeleton of the precursor, and dye-sensitized solar cell and photoelectric conversion element using the same
KR101465454B1 (en) Photosensitizer for photovoltaic cell, and photovoltaic cell including same
KR20100128096A (en) Novel ruthenium-based dye and preparation thereof
JP2010168511A (en) New compound, photoelectric transducer, and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees