WO2004063283A1 - Photofunctional materials - Google Patents

Photofunctional materials Download PDF

Info

Publication number
WO2004063283A1
WO2004063283A1 PCT/JP2004/000267 JP2004000267W WO2004063283A1 WO 2004063283 A1 WO2004063283 A1 WO 2004063283A1 JP 2004000267 W JP2004000267 W JP 2004000267W WO 2004063283 A1 WO2004063283 A1 WO 2004063283A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
substituted
dyes
sensitizing dye
Prior art date
Application number
PCT/JP2004/000267
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Yagi
Motonori Ando
Ryuichiro Kurata
Original Assignee
Toyo Ink Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg. Co., Ltd. filed Critical Toyo Ink Mfg. Co., Ltd.
Priority to JP2005508016A priority Critical patent/JP4341621B2/en
Publication of WO2004063283A1 publication Critical patent/WO2004063283A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3826Acyclic unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3839Polyphosphonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4015Esters of acyclic unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/409Compounds containing the structure P(=X)-X-acyl, P(=X) -X-heteroatom, P(=X)-X-CN (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/5537Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom the heteroring containing the structure -C(=O)-N-C(=O)- (both carbon atoms belong to the heteroring)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • C07F9/5728Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/60Quinoline or hydrogenated quinoline ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/64Acridine or hydrogenated acridine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/65031Five-membered rings having the nitrogen atoms in the positions 1 and 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/650952Six-membered rings having the nitrogen atoms in the positions 1 and 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/6512Six-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07F9/653Five-membered rings
    • C07F9/65324Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07F9/6533Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6536Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and sulfur atoms with or without oxygen atoms, as the only ring hetero atoms
    • C07F9/6539Five-membered rings
    • C07F9/6541Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6536Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and sulfur atoms with or without oxygen atoms, as the only ring hetero atoms
    • C07F9/6544Six-membered rings
    • C07F9/6547Six-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6552Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6552Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring
    • C07F9/65522Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms
    • C07F9/655345Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms the sulfur atom being part of a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms
    • C07F9/655345Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms the sulfur atom being part of a five-membered ring
    • C07F9/655354Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms the sulfur atom being part of a five-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an optical functional material.
  • This optical functional material can be used as a photoelectric conversion material, a light emitting material or a light absorbing material. Furthermore, the present invention relates to a sensitizing dye for photoelectric conversion, a photoelectric conversion material, a photoelectric conversion electrode, and a photoelectric conversion cell using the same, using the optical functional material.
  • single crystal silicon solar cells polycrystalline silicon solar cells, amorphous silicon solar cells, compound solar cells such as telluride power domium and indium copper selenide are in practical use or are subject to research and development.
  • amorphous silicon solar cells compound solar cells such as telluride power domium and indium copper selenide are in practical use or are subject to research and development.
  • problems such as high manufacturing cost, difficulty in securing raw materials, and long energy payback time.
  • many solar cells using organic materials for increasing the area and cost have been proposed so far, but they have problems such as low conversion efficiency and poor durability.
  • This is a so-called dye-sensitized solar cell in which a dye is fixed to the surface of a porous titanium oxide thin film, and more specifically, a titanium oxide porous thin layer spectrally sensitized by a ruthenium complex dye is used as a working electrode
  • a dye-sensitized photoelectric conversion cell comprising an electrolyte layer mainly composed of iodine and a counter electrode.
  • the first advantage of this method is that it can provide an inexpensive photoelectric conversion device because it uses an inexpensive oxide semiconductor such as titanium oxide, and the second advantage is the ruthenium complex dye used. Since they have wide absorption in the visible light range, they have relatively high conversion efficiency.
  • non-ruthenium complex dyes include phenylxanthene dyes, phthalocyanine dyes, coumarin dyes, cyanine dyes, porphyrin dyes, azo dyes and the like. These organic dyes are expected to have high photoelectric conversion efficiency because they have a large absorption coefficient and a large degree of freedom in molecular design compared to ruthenium complexes.
  • organic sensitizing dyes because the light absorbing region of the dye is narrow and the charge injection to titanium oxide is inefficient.
  • a sensitizing dye having a substituted acrylic acid site has been developed as a sensitizing dye characterized by its adsorption end with titanium oxide, and it has been shown that it has a relatively high conversion efficiency.
  • the advantage of this sensitizing dye is that the charge injection efficiency from the sensitizing dye to an inorganic semiconductor such as titanium oxide is improved by combining the dye skeleton with a substituted acrylic acid site.
  • the adsorptive power of the sulfoxyl group is weak.
  • the present invention relates to an optical functional material having a vinyl phosphonic acid group.
  • an optical functional material having a chemical structure represented by the following general formula (1) is preferably used.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic residue
  • M 1 and M 2 each independently represent a hydrogen atom
  • R 1 and R 2 , R 1 and X, and R 2 and X respectively represent They may be combined with each other to form a ring
  • X and R 2 may be interchanged.
  • Another present invention relates to a sensitizing dye for photoelectric conversion, which comprises the optical functional material according to the present invention.
  • Still another invention of the present invention relates to a photoelectric conversion material comprising: an inorganic semiconductor; and the sensitizing dye for photoelectric conversion according to the invention connected to the inorganic semiconductor.
  • Yet another aspect of the present invention relates to a photoelectric conversion electrode including a transparent electrode, and the photoelectric conversion material according to the present invention laminated on the transparent electrode.
  • Still another present invention relates to a photoelectric conversion cell including the photoelectric conversion electrode according to the present invention, an electrolyte layer, and a conductive counter electrode.
  • FIG. 1 is a cross-sectional view schematically showing a test sample in an example as an example of a photoelectric conversion cell.
  • FIG. 2 represents a proton NMR spectrum.
  • the upper part shows the ethyl ester form of compound (3 0), and the lower part shows compound (3 0) obtained by hydrolyzing it.
  • FIG. 3 shows the IV characteristics of the photoelectric conversion cell using the compound (73).
  • FIG. 4 shows an IPCE spectrum of a photoelectric conversion cell using a compound (7 3).
  • the optical function material of the present invention is characterized by having a vinyl phosphonic acid group. That is, the optical functional material of the present invention is not particularly limited as long as it has a vinylphosphonic acid group, but in particular, a compound having a chemical structure represented by the following general formula (1) is preferable .
  • X represents a monovalent organic residue
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic residue
  • M 1 and M 2 each independently represent a hydrogen atom
  • R 1 and R 2 , R 1 and X, and R 2 and X are And each may combine with each other to form a ring
  • X and R 2 may be interchanged.
  • the photofunctional material is a new sensitizing effect, heat generation effect, coloring effect, color fading effect, luminous effect, phase change effect, photoelectric conversion effect, photo-optical effect, photocatalytic effect, by absorbing light. It means a material that exhibits functions such as light modulation effect, optical recording effect, and radical generation effect, or conversely, materials having a light emitting function by receiving these effects.
  • the optical functional material is, for example, a photoelectric conversion material, a light emitting material, an optical recording material, an image forming material, a photochromic material, an elector luminescence material, a photoconductive material, a dichroic material, a radical generating material, an acid generating material, a base generating Materials, phosphorescent materials, nonlinear optical materials, second harmonic generation materials, third harmonic generation materials, photosensitive materials, light absorbing materials, near infrared absorbing materials, photochemical hole burning materials, light sensing materials, optical materials Widely used as king materials, sensitizing materials for photochemical treatment, optical phase change recording materials, photosintered recording materials, photomagnetic recording materials, dyes for photodynamic therapy, sensitizing dyes for photoelectric conversion, etc. Can be.
  • an optical functional material having a vinyl phosphonic acid group particularly having a chemical structure of the general formula (1)
  • this optical functional material As a typical application form, it may be referred to as a sensitizing dye for photoelectric conversion or simply as a sensitizing dye, but the broad application described above is not denied.
  • the functions required for the sensitizing dye for photoelectric conversion include that the dye has a wide absorption region and that charges can be efficiently injected into an inorganic semiconductor such as titanium oxide.
  • an organic residue which widens the absorption region to X in the above general formula (1) In order to widen the absorption region, X is preferably an electron donating organic residue, and an organic residue having an amino group or the like can exhibit a high effect.
  • the sensitizing dye In order to inject charges efficiently, the sensitizing dye needs an phanka group to be adsorbed on the surface of the inorganic semiconductor, but since the photofunctional material of the present invention has a phosphonic acid group, it can be used as a sensitizing dye If you meet this condition.
  • the phosphonic acid group has a stronger adsorptive ability to an inorganic semiconductor such as titanium oxide than a carboxylic acid group, so that the detachment of the dye is less likely to occur, and therefore, it is expected to prolong the life of the device. it can.
  • one phosphorus atom has two acidic groups (-OM 1 and - ⁇ _M 2), by each of the addition effect and chelating effect, it is possible to exert a strong adsorption effect.
  • the adsorption rate at the time of adsorbing the dye to the inorganic semiconductor electrode at the time of element production becomes faster, and there is also an advantage that the manufacturing time can be shortened.
  • a strong chemical bond is generated between the anchor and the inorganic semiconductor surface, and the electron clouds overlap with each other effectively, so that rapid electron transfer from the sensitizing dye to the inorganic semiconductor surface can be expected.
  • the solubility in water, ethanol, etc. is also improved, and it becomes possible to use these solvents with a small environmental load as adsorption solvents, and these become pots as dye solutions. It is expected that it will lead to a long life, which in turn will lead to the effect of lowering the manufacturing cost.
  • a substituent can be introduced at the position of R 1 .
  • the biphenyl phosphonic acid group becomes stronger and the charge transfer in the molecule becomes more efficient. This is very effective in that charge injection from the sensitizing dye to the inorganic semiconductor such as titanium oxide can be performed more efficiently.
  • the vinyl phosphonic acid group has a chemical structure that makes it possible, for the first time, to place an electron withdrawing group in the vicinity of the phosphonic acid while connecting the 7T electron conjugated structure of the chromophoric moiety to the bonding position of the phosphonic acid.
  • an electron withdrawing group can not be introduced in the vicinity, and charge injection is more efficient than vinyl phosphonic acid group. Poor efficiency and low photoelectric conversion efficiency.
  • a vinylphosphonic acid structure for example, a chemical structure represented by the general formula (1)
  • a sensitizing dye having one anchored group can be realized.
  • X in the general formula (1) represents a monovalent organic residue.
  • the organic residue as referred to herein is not particularly limited. For example, it may be substituted (that is, substituted or unsubstituted) monovalent aromatic hydrocarbon residue, substituted or unsubstituted Monovalent heterocyclic residue, substituted or unsubstituted monovalent aliphatic unsaturated hydrocarbon residue, substituted or unsubstituted monovalent amine And substituted or unsubstituted monovalent organometallic complex residues.
  • the aromatic ring of the aromatic hydrocarbon residue is not particularly limited, and examples thereof include benzene, naphthalene, anthracene, naphthacene, pyrene, phenanthrene, indene, azulene, perylene, fluorene, biphenyl and terphenyl.
  • the heterocycle of the heterocycle residue is not particularly limited.
  • heterocycles may be quaternized and may have a counter ion.
  • the counter ion in this case is not particularly limited, and may be a general anion. Examples include halogen ions, perchlorate ions, boron tetrafluoride ions, phosphorus hexafluoride ions, ⁇ oxide ions, methanesulfonic acid ions, toluenesulfonic acid ions. When it does not have a counter ion, it may be neutralized with an acidic group such as an intramolecular or intermolecular carpoxyl group.
  • the heterocyclic ring includes dye skeletons used for dyes and pigments.
  • dye skeletons used for dyes and pigments.
  • the dye skeleton to be used for example, azo dyes, quinacridone dyes, diketopyrrole dyes, squarylium dyes, cyanine dyes, cyanine dyes, merocyanine dyes, trifenylmethane dyes, xanthene dyes, porphyrin dyes Dyes, chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, and naphthalene dyes are listed.
  • the aliphatic unsaturated hydrocarbon residue is not particularly limited, and examples thereof include a vinyl group, a 1,3-butadienyl group and a 1,3,5-hexatrienyl group, and the like.
  • the sum of saturated bonds is preferably in the range of 1 to 20.
  • the amino group is not particularly limited, and examples thereof include an amino group, a mono- or dialkylamino group, a mono- or diarylamino group and the like, and specific examples thereof include N-methylamino group, N-acetylamino group, N, N- Cetylamino group, N, N-diisopropylamino group, N, N- dibutylamino group, N- benzylamino group, N, N- dibenzylamino group, N- phenylamino group, N, N- diphenylamino group, N, N- bis (m —Tolyl) amino group, N, N-bis (p-tolyl) amino group, N, N-bis (p-biphenylyl) amino group.
  • the organometallic complex of the organometallic complex residue is not particularly limited, and examples thereof include ferrocene, ruthenocene, titanocene, zirconocene, phthalocyanine, naphthenic cyanine, porphyrin and ruthenium bipyridyl complex.
  • the substituent is not particularly limited, and, for example, an alkyl group, a aryl group, a heterocyclic group, an alkoxyl group, an acyl group, an aryloxy group, an alkylthio group, an arylthio group, a substituted or unsubstituted amino group, a substituted group Or an unsubstituted amido group, an alkoxyalkyl group, an alkoxyalkyl group, an aryloxy carbonyl group, an aromaticoxy group, a sulfoxy group, a sulfo group, a phosphonic acid group, a cyano group, an isosyano group, a thiosyanate group, an isothiocyanate group, A nitro group, a nitrosyl group, a halogen atom, and a hydroxyl group are mentioned.
  • alkyl group a C1-C30 substituted or unsubstituted linear, branched, and cyclic hydrocarbon group is mentioned.
  • aryl group examples include the above-mentioned aromatic ring of the aromatic hydrocarbon residue, and these aryl groups may further have a substituent.
  • the heterocyclic group includes the heterocyclic ring of the aforementioned heterocyclic residue. These heterocyclic groups may further have a substituent.
  • alkoxyl group include alkoxyl groups having 1 to 20 carbon atoms, such as methoxy, ethoxy, propoxy, butoxy, tert-butoxy, alkoxy and tert-alkoxy.
  • Examples of the asyl group include an alkylcarponyl group and an arylcarponyl group, and specific examples thereof include an acyl group having a carbon number of 1 to 20, such as an acetyl group, a propionyl group, a benzoyl group and a toluoyl group.
  • aryloxy group examples include aryloxy groups having 6 to 20 carbon atoms, such as phenyloxy, 4-tert-butylphenoxy, 1-naphthyloxy, 2-naphthyloxy, and 9-anthryloxy groups.
  • alkylthio group examples include alkylthio groups having 1 to 20 carbon atoms, such as a methylthio group, a phenylthio group, a tert-butylthio group, a hexylthio group, and an octylthio group.
  • arylthio group examples include arylthio groups having 6 to 20 carbon atoms, such as phenylthio group, 2-methylphenylthio group, 41-tert-peptylphenylthio group and the like.
  • Examples of the substituted or unsubstituted amino group include the aforementioned monovalent amino group which may have a substituent.
  • amido group an amido group, an alkyl amido group, an aromatic amido group is mentioned, for example.
  • alkoxyalkyl group examples include alkoxyalkyl groups having 1 to 20 carbon atoms such as methoxymethyl group, ethoxymethyl group and isopropoxymethyl group.
  • alkyloxycarponyl group examples include alkoxycarbonyl group having 1 to 20 carbon atoms, such as methoxycarbonyl group, ethoxycarpyl group, ter t-butoxycarponyl group and the like.
  • aryloxy carbonyl group there can be mentioned an alkoxycarboxyl group having 5 to 30 carbon atoms such as a phenyloxy carponyl group and a naphthyloxy carponyl group.
  • the acidic group such as a dynamic propoxy group, a phosphonic acid group or a sulfo group may form a metal salt or an ammonium salt.
  • substituents bonded to X described above may be the same or different from each other, and the substituents may be bonded to each other to form a ring. Furthermore, X and X, and a substituent linked to X may be linked to R 1 and R 2 described later to form a ring.
  • X is a monovalent organic residue having a substituted or unsubstituted amino group, and examples thereof include a dialkylaminophenyl group, a dialkylamino phenyl group and a dialkylaminostyryl group. Can be mentioned. Furthermore, in order to have high photoelectric conversion efficiency, X is a monovalent organic residue having a substituted or unsubstituted amino group, and has a long conjugated chain, and the conjugated chain has a rigid skeleton. Some are more preferable.
  • the light absorbing region of the dye is broadened by having a long conjugated chain, and an electron donating substitution such as an amino group is made to the vinyl phosphonic acid group which is a charge injection site to the inorganic semiconductor. This is because intramolecular charge transfer from the donor site to the partial position of the acceptor can efficiently occur by binding to a rigid unit having a group.
  • R 1 and R 2 independently represents a hydrogen atom or a monovalent organic residue.
  • the organic residue as referred to herein is not particularly limited.
  • the same organic residue as the above X substituted or unsubstituted alicyclic hydrocarbon residue, substituted or unsubstituted chain hydrocarbon residue Groups, hydroxyl groups, electron withdrawing groups.
  • the cyclic hydrocarbon of the substituted or unsubstituted cyclic hydrocarbon residue is, for example, a saturated cyclic hydrocarbon having 3 to 20 carbon atoms, such as cyclohexane, cyclopentane, etc., a cyclic hexene, cyclopentene Examples thereof include unsaturated cyclic hydrocarbons having 3 to 30 carbon atoms such as cyclohexene and cyclopentene.
  • Examples of the chain hydrocarbon group of the substituted or unsubstituted chain hydrocarbon residue include linear or branched alkyl groups having 1 to 30 carbon atoms, and these chain carbon hydrogen groups are not It may have a saturated bond.
  • the electron withdrawing group means a group having a Hammett's substituent constant of which value is larger than zero.
  • substituents are not particularly limited.
  • a cyano group, an amino group, a nitro group, an acyl group, an alkyloxy carponyl group, an aryloxy carbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a substituted or substituted group examples thereof include non-substituted amido group, perfluoroalkyl group, perfluoroalkylthio group, perfluoroalkylcarponyl group, substituted or unsubstituted sulfonamide group, 4-cyanophenyl group, and halogen atom.
  • the ⁇ value described in Chem. Rev. 91, 165-195, 1991 is 0. There are bigger ones.
  • an acyl group an alkyloxy carponyl group, an aryloxy carponyl group, and a substituted or unsubstituted amido group, exemplified as a substituent in the organic residue represented by X
  • substituent in the organic residue represented by X examples thereof include the same as the substituted silyl group, alkyloxy carponyl group, aryloxy carponyl group, substituted or unsubstituted amido group.
  • alkylsulfonyl group examples include a mesyl group, a methylsulfonyl group, a propylsulfonyl group and the like.
  • arylsulfonyl group examples include benzenesulfonyl group, toluenesulfonyl group and the like.
  • perfluoroalkyl group examples include a trifluoromethyl group and a pentafluoroethyl group.
  • the perfluoroalkylthio group includes a trifluoromethylthio group, a pentafluorothiolthio group and the like.
  • perfluoroalkylcarbonyl group examples include a trifluoroacetyl group and a penfluorofluorethyl carponyl group.
  • Examples of the substituted or unsubstituted sulfonamide group include sulfonamide group, dimethylaminosulfonyl group, getylaminosulfonyl group, and diphenylaminosulfone. And the like.
  • RR 2 described above may be bonded to each other to form a ring, or RR 2 may be bonded to X to form a ring.
  • R 1 and Z or R 2 have a substituent, those substituents may form a bond with each other, and the substituent may be bonded to a substituent of or X or It may form a ring.
  • R 1 is preferably an electron-suction bow I-like group. This is because the electron withdrawing group is bonded to the vinyl phosphonic acid group which is an inorganic semiconductor adsorption site and the charge injection site, and thus the biphenyl phosphonic acid group becomes a stronger electron axepeption group. . This enables efficient charge injection to the inorganic semiconductor.
  • R 1 is more preferably a cyano group. This is because the cyano group is a strong electron withdrawing group and has high stability.
  • M 1 and M 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted silyl group, or a cation.
  • alkyl group refers to a linear, branched or cyclic hydrocarbon group having 1 to 20 carbon atoms, and these hydrocarbon groups may have an unsaturated bond.
  • alkyl groups preferable ones include a methyl group, a methyl group, an isopropyl group, a t-butyl group, a benzyl group and the like.
  • aryl group examples include aromatic hydrocarbon residues among the organic residues represented by the above X, furan, thiophen, pyrrolyl, oxazolyl, isooxazole, thiazole, isothiazolyl, imidazole and pyrazole And heteroaromatic ring groups such as furazan, pyridine, pyridazine, pyrimidine, pyrazine, indole, benzofuran, benzothiophene, quinoline, carbazole, acridine, xanthene, phenothiazine, phenoxazine and the like. Of these aryl groups, preferred are phenyl and tolyl.
  • silyl groups include alkyl silyl groups and aryl silyl groups. Examples thereof include: .trimethylsilyl group, triethylsilyl group and trifenylsilyl group.
  • alkyl group, aryl group and silyl group may be optionally substituted by one or more substituents, and examples of the substituent include the same as the substituents to X described above.
  • the cation is not particularly limited as long as it forms a salt with phosphonic acid, and examples thereof include metal ions such as lithium, sodium, potassium, magnesium and calcium, tetraptyalmonium, There are quaternary ammonium ions such as pyridinium and imidazolium.
  • M 1 and M 2 are preferably a hydrogen atom or a quaternary ammonium salt, but even if MM 2 is other than these, It can be used without problems.
  • M 1 and M 2 may be in the form of a phosphonic acid ester such as an alkyl group or a silyl group, and when a phosphonic acid ester is adsorbed to an inorganic semiconductor, an appropriate catalyst or the like may be used. It can also be adsorbed while being hydrolyzed in the system.
  • the compound represented by the general formula (1) has a double bond, and thus can take structural isomers such as cis form and trans form, but the steric structure is not particularly limited, and any of them is for example, for photoelectric conversion It can be used favorably as a sensitizing dye. That is, in the formula (1), X and R 2 may be interchanged. For example, in the relationship between R 1 and R 2 , arbitrary geometric isomers can be selected in either cis or trans.
  • the compounds represented by the general formula (1) can be synthesized, for example, by a method as shown in the following scheme (1).
  • ethanol tetrahydrofuran and the like can be used, but it is not particularly limited thereto.
  • Organic Reactions Volume 15, Chapter 2, 196 7 (19 7 8
  • the solvents described in (Annual Reprint) may be used. If the reaction does not proceed well, it may be effective to use the reaction without using a solvent.
  • the reaction temperature is usually room temperature, but may be heated for reaction as required.
  • the reaction may be difficult to progress.
  • a methyl group may be substituted for the hydrogen atom in MM 2.
  • the desired compound can be obtained by introducing and reacting an ethyl group or the like, and hydrolyzing the obtained compound.
  • representative examples of compounds that can be used as the optical functional material of the present invention will be shown, but the present invention is not limited to these.
  • the sensitizing dye for photoelectric conversion according to the present invention includes one or more of the above-described optical functional materials according to the present invention, and the photofunctional material having a vinyl phosphonic acid group such as the general formula (1) has a cover
  • One or more other light functional materials that is, having no vinyl phosphonic acid group
  • the sensitizing dyes represented by the general formula (1) or the like may be used alone or in combination of two or more, and may be used in combination with one or more other sensitizing dyes.
  • the blending ratio of the sensitizing dye for photoelectric conversion according to the present invention in combination with other sensitizing dyes there is no particular limitation. It is preferable to use 0.1 to 100 mol of a dye, and it is more preferable to use 0.1 to 10 mol.
  • sensitizing dyes include, for example, azo dyes, quinacridone dyes, diketopyrrolopyrrole dyes, squarylium dyes, cyanine dyes, merocyanine dyes, trifenylmethane dyes, xanthene dyes, porphyrin dyes Chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, naphtha port cyanine dyes, and derivatives thereof.
  • these sensitizing dyes have a functional group capable of being linked to the surface of the inorganic semiconductor in their structure. The reason is that the excited electrons of the photoexcited color can be rapidly transmitted to the conduction band of the inorganic semiconductor.
  • the functional group as mentioned herein include a sulfoxyl group, a hydroxy group, a hydroxamic acid group, a sulfonic acid group, a phosphonic acid group, and a phosphinic acid group, and the like.
  • the substituent is not limited to these, as long as it is a substituent having a role of rapidly transmitting excited electrons of the metal to the conduction band of the inorganic semiconductor.
  • a photoelectric conversion material, a photoelectric conversion electrode, and a photoelectric conversion cell according to the present invention obtained using the above-described sensitizing dye for photoelectric conversion according to the present invention will be described including materials other than the sensitizing dye.
  • the photoelectric conversion material in which the inorganic semiconductor is sensitized that is, the inorganic semiconductor and the increased number of linked inorganic semiconductors.
  • a photoelectric conversion material containing a dye is obtained.
  • linking means that the inorganic semiconductor and the sensitizing dye are chemically or physically bonded, and includes, for example, that both are bonded by adsorption.
  • each of a linking group, an anchor group, P and an attachment group is used as a term indicating a group having an equivalent function.
  • Inorganic semiconductors generally have a photoelectric conversion function for light in a part of the region, but by connecting a sensitizing dye to this surface, the photoelectric conversion to visible light and Z or near infrared light regions is possible. Conversion is possible.
  • a material of the inorganic semiconductor although an inorganic oxide is mainly used, it is not limited to this as long as it is an inorganic semiconductor having a photoelectric conversion function by linking sensitizing dyes.
  • silicon, germanium, a group III-V group semiconductor, a metal chalcogenide and the like can be mentioned.
  • the conduction band of the inorganic oxide be present at a position where it is easy to receive electrons from the photoexcitation order of the sensitizing dye.
  • titanium oxide, tin oxide, zinc oxide, niobium oxide and the like are particularly preferably used.
  • titanium oxide is particularly preferably used in terms of price and environmental hygiene.
  • These inorganic semiconductors may be used alone or in combination of two or more of them.
  • the above inorganic semiconductor is preferably made porous and used as an inorganic semiconductor porous body.
  • the inorganic semiconductor porous body has a large surface area by making it porous so that a large amount of sensitizing dye can be linked to its surface, and it can have highly efficient photoelectric conversion ability.
  • a method for making porous there is widely known a method in which inorganic oxide particles such as titanium oxide having a particle diameter of several nanometers to several tens of nanometers are sintered and then sintered. The method is not limited to this as long as it is a method of obtaining a large surface area by quality.
  • a photoelectric conversion electrode that is, a photoelectric conversion electrode including a transparent electrode and a photoelectric conversion material laminated on the transparent electrode is formed.
  • a transparent electrode is usually a conductive layer formed on the surface of a transparent substrate, that is, a conductive surface of a transparent substrate having a conductive surface.
  • the conductive surface (transparent electrode) to be used is not particularly limited as long as it is a conductive material which absorbs less light in the visible to near-infrared region of sunlight, but IT ⁇ (indium monotin oxide), tin oxide (fluorine Metal oxides with good conductivity such as zinc oxide, zinc oxide and the like are preferable. Since the sheet resistance (surface resistance) of the substrate (transparent substrate having a conductive surface) is preferably as low as possible, specifically, 20 ⁇ ⁇ ⁇ ( ⁇ / sq.) Or less, the conductive layer is preferably It is preferable to have a thickness corresponding to that.
  • the transparent substrate to be used is not particularly limited as long as it is a material that absorbs less light in the visible to near infrared region of sunlight.
  • Glass base materials such as quartz, plain glass, glass 7, lead glass, etc .; polyethylene terephthalate, polyethylene naphthalate, polyimid, polyester, polyethylene, polycarbonate, polyvinyl peptate, polypropylene, tetraacetyl cellulose, syndioxide
  • resin base materials such as tic polystyrene, polyphenyl rusulfide, polyarylate, polysulfone, polyester sulfone, polyether imide, cyclic polyolefin, brominated fenoxy, chlorinated pinyl and the like can be used.
  • a method of laminating a photoelectric conversion material on the conductive surface of a transparent base material having a conductive surface for example, after applying inorganic oxide particles pasted on the conductive surface, it is dried or sintered to obtain an inorganic oxide semiconductor porous material.
  • an inorganic oxide semiconductor porous material By forming a body and immersing it in a solution in which the sensitizing dye is dissolved, per each transparent substrate, to utilize the affinity between the porous surface of the inorganic oxide semiconductor and the anchor group of the sensitizing dye to increase
  • a method of binding a dye to its porous surface can be mentioned as a general method, it is not limited to this method.
  • the inorganic oxide particles may be dispersed in water or an appropriate organic solvent in order to pasteurize the inorganic oxide particles. It is important to prepare a paste with good dispersibility to be laminated as a homogeneous, large surface area inorganic porous material, so if necessary, an acid such as nitrate, acetylacetone, polyethylene glycol, Triton X-1 0 0 And the like are preferably mixed with the paste component and made into a paste using a paint shaker or the like.
  • an acid such as nitrate, acetylacetone, polyethylene glycol, Triton X-1 0 0 And the like are preferably mixed with the paste component and made into a paste using a paint shaker or the like.
  • a coating method by spin coating As a method of applying the paste to the conductive surface of the transparent substrate, a coating method by spin coating, a screen printing method, a coating method using a squeegee, a dipping method, a spraying method, a coating method, etc. are used. .
  • the applied inorganic oxide paste is dried or fired to remove volatile components in the paste, thereby forming an inorganic oxide semiconductor porous body on the conductive surface of the transparent substrate.
  • a condition of drying or baking for example, a method of giving thermal energy of about 30 minutes to 1 hour at a temperature of 40.degree. To 500.degree. C., for example, is generally used.
  • an alcohol solvent such as ethanol and benzyl alcohol as a solvent
  • a nitrile solvent such as acetoditril and propiolodiuril
  • Halogen solvents such as benzene in the mouth
  • ether solvents such as jetyl ether and tetrahydrofuran
  • ester solvents such as ethyl acetate and butyl acetate
  • ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone
  • Carbonate solvents such as jetyl carbonate and propylene carbonate
  • Hydrocarbon solvents such as hexane, octane, benzene and toluene; dimethylformamide, dimethylacetoamide, dimethylsulfoxide, 1,
  • the conditions for immersing the inorganic semiconductor porous body in the solution in which the sensitizing dye is dissolved are not particularly limited, and may be suitably set so as to obtain desired photoelectric conversion efficiency. It is preferable that the temperature be about room temperature to about 80 ° C.
  • the film thickness of the inorganic semiconductor porous body formed on the conductive surface of the transparent substrate is desirably about 0.5 to 20 m. If the film thickness is less than this range, effective conversion efficiency may not be obtained. On the other hand, if the film thickness is thicker than this range, As a result, it becomes difficult to form a film, for example, peeling occurs, and the distance between the surface layer of the inorganic semiconductor porous body and the conductive surface becomes long, so that the generated charges can not be effectively transmitted to the conductive surface. Conversion efficiency may be difficult to obtain. 3. Photoelectric conversion cell
  • a photoelectric conversion cell that is, a photoelectric conversion cell including a photoelectric conversion electrode, an electrolyte layer, and a conductive counter electrode by combining the photoelectric counter electrode obtained as described above with the conductive counter electrode through the electrolyte layer.
  • the electrolyte layer preferably comprises an electrolyte, a medium, and an additive.
  • electrolyte 1 2 and L i I as iodide
  • iodide example, N a I, KI, C s I, M g I 2, C a I 2, C u I, tetraalkyl ammonium Niu Muyo one iodide
  • organic molten salt compound refers to an ion pair compound consisting of an organic cation and an inorganic or organic anion and having a melting point of room temperature or less.
  • examples of aromatic cations include N-methyl-N'-ethylimidazolium cation, N-methyl-N, -n-propylimidazolium cation, N —Methyl—N′—n—Hexylimidazolium cation and other N-alkyl N′-alkyldiimidazolium cations; N—Hexyl pyridinium cation, N—Butyl pyridinium cation and other N-alkyl pyridinium And mu cations.
  • Aliphatic cations include aliphatic cations such as N, N, N-trimethyl-N-propyl ammonium cations and cyclic aliphatic cations such as N, N-methyl pyrrolidinium.
  • salt Halide ions such as fluoride ion, bromide ion and iodide ion, phosphorus hexafluoride ion, boron tetrafluoride ion, methane trifluoride fluoride, perchlorate ion, hypochlorite ion, chlorate ion, sulfuric acid Inorganic anions such as ion and phosphate ion; Amide such as bis (trifluoromethylsulfonyl) imide and imido type anions.
  • iodides, bromides and the like can be used alone or in combination of two or more.
  • an electrolyte obtained by mixing a combination of I 2 and an iodide, for example, I 2 and L i I, pyridinium iodide, or imidazolium iodide is preferably used, but is not limited thereto.
  • Preferred electrolyte concentration is 1 2 0 in the medium. 0 1-0.
  • a 5 M, iodides and Z or bromide and the like (in the case of more mixtures thereof) is 0. 1 to 1 5 M hereinafter It is.
  • the medium used for the electrolyte layer is preferably a compound that can exhibit good ion conductivity.
  • liquid media include ether compounds such as dioxan and jetyl ether; ethylene daryl dialkyl ethers, propylene daryl dialkyl ethers, polyethylene glycol dialkyl ethers, linear ethers such as polypropylene glycol dialkyl ethers; methanol, Alcohols such as ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc .; ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin etc.
  • Polyhydric alcohols Acetonitrile, Darutur rogetril, Metexia setonitri , Propionic nitrile, nitrile compounds such as benzonitrile, ethylene carbonate, forces one Poneto compounds such as propylene force one Poneto Heterocyclic compounds such as 3-methyl-2-oxazolidinone; non-proton polar substances such as dimethyl sulfoxide, sulfolane, water, etc. can be used. These may be used alone or in combination of two or more.
  • the liquid medium can also contain a polymer.
  • a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the liquid medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the liquid medium to form a solid medium.
  • Cul Cul, Cu SCN (these compounds are P-type semiconductors that do not require a liquid medium and act as electrolytes), etc., Nature, Volume 95, 583-5 8 5 pages (19.98.1 Oct. 08) (the disclosure of which is incorporated herein by reference).
  • Hole transport materials such as methoxyphenylamine) -9,9'-spiropifluorene can be used.
  • additives may be added to the electrolyte layer for the purpose of improving the durability and the electrical output of the photoelectric conversion cell.
  • inorganic salts such as magnesium iodide may be added for the purpose of improving durability
  • amines such as t_butylpyridine, 2-picoline, 2,6-lutidine, etc. for the purpose of improving output; deoxycholic acid, etc.
  • Monosaccharides such as glucose, darcosamine, glucuronic acid and their sugar alcohols; disaccharides such as maltose; linear oligosaccharides such as raffinose; cyclic oligosaccharides such as cyclodextrin; Hydrolyzed oligosaccharides can also be added.
  • the thickness of the electrolyte layer to be formed is not particularly limited, but it is preferable that the thickness be such that the conductive counter electrode is not in direct contact with the inorganic semiconductor layer to which the dye is adsorbed. Specifically, it is preferably about 0.1 to about L 00 m. (Conductive counter electrode)
  • the conductive counter electrode functions as the positive electrode of the photoelectric conversion cell.
  • conductive materials used for the counter electrode include metals (platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxides (ITO (indium-tin oxide), tin oxide (fluorine, etc.) Etc.), zinc oxide etc.), carbon etc. may be mentioned.
  • the film thickness of the counter electrode is not particularly limited, but is preferably 5 nm or more and 10 m or less.
  • a photoelectric conversion cell is formed by combining the photoelectric conversion electrode and the conductive counter electrode through the electrolyte layer. If necessary, seal around the photoelectric conversion cell to prevent leakage and volatilization of the electrolyte layer.
  • a thermoplastic resin, a photocurable resin, a glass frit or the like can be used as a sealing material.
  • the photoelectric conversion cell can be formed by connecting small-area photoelectric conversion cells as needed. For example, the electromotive voltage can be increased by combining photoelectric conversion cells in series.
  • P-Dimethylaminobenzenesaldehyde 10. 0. 0 g (67 mmo 1), 3.0 g (74 mmo 1) of ketomethyl phosphonate, piperidine 0. 1 g into ethanol of 200 m 1 After stirring for 5 hours at room temperature, the solvent was evaporated under reduced pressure to give an orange solid. The crude compound thus obtained was purified by silica gel column chromatography to obtain 1 5. 8 g of [1 -cyano-2-(4 -dimethylamino-phenyl) -vinyl]-jettyl Yield 7 6%).
  • FIG. 2 shows a proton NMR spectrum of the obtained compound (30).
  • the upper part shows the spectrum of the ethyl ester of compound (30), and the lower part shows the spectrum of compound (30) obtained by hydrolyzing it.
  • Synthesis Example 4 Synthesis Method of Compound (73)
  • reaction solution was slowly returned to room temperature and stirred for additional 2 hours, then a saturated aqueous solution of ammonium chloride was added to the reaction solution and stirred, and the organic layer in the reaction solution was extracted twice with 5 O ml of toluene.
  • Synthesis Example 5 Synthesis Method of Compound (74) A mixture of 10.0 g (72 mmol) of isophorone, 2.8 g (72 mmo 1) of jetyl cyanomethylphosphonate, and 0.77 g (1 Ommo 1) of ammonium acetate at 100 ° C. in a nitrogen stream. Stir for 5 hours. After completion of the reaction, the reaction solution is heated under reduced pressure to remove unreacted starting materials, and then subjected to silica gel chromatography, and [Sigano- (3,5,5-trimethyl-cyclohexyl--2-enylidene] is obtained. 13.4 g of a) -methyl] -gettyl phosphonate was obtained (yield 70%).
  • FIG. 1 showing a test sample of the photoelectric conversion cell. The description will be made with reference to.
  • a fluorine-doped tin oxide layer (transparent electrode layer) 31 and a glass substrate 51 were used.
  • Fluorine-doped tin oxide layer 32 attached glass substrate 52 (Asahi Glass Co., Ltd., type U— A conductive counter electrode was used in which a platinum layer (platinum electrode layer) 4 (150 nm thick) was laminated on the conductive layer 32 of TCTC) by sputtering. Preparation of titanium oxide paste
  • Titanium oxide (P25 manufactured by Nippon Aerosil Co., Ltd. P21 particle diameter 21 nm) 6 parts Water (adjusted to pH 2 by adding nitric acid) 14 parts acetylacetalone 0.6 part surfactant (ITN Corporation Tr iton X- 100) 0. 04
  • a 60 m thick mending tape is placed on the conductive surface of the transparent electrode (transparent electrode layer 31), and a 1 cm square tape is removed to make a mask, and a few drops of the above-mentioned acid titanium paste are made on the vacant part. After cooking, the excess paste was removed with a squeegee. After air drying, all the masks were removed, and firing was performed in an oven at 450 ° C. for 1 hour to obtain a titanium oxide electrode having a titanium oxide porous layer with an effective area of 1 cm 2 . Adsorption of sensitizing dyes
  • the sensitizing dye for photoelectric conversion is dissolved in ethanol or water (concentration: 0.6 mmo 1 / L), the insoluble matter is removed with a membrane filter if necessary, and the above-mentioned titanium oxide electrode is immersed in this dye solution, Or, if necessary, heat and leave it for several hours to several days. Immersion time was set up so that the conversion efficiency was maximized by actually creating cells to obtain the conversion efficiency.
  • the electrolyte solution of the following formulation was prepared.
  • a solvent methoxyacetonitrile was used.
  • test samples of the photoelectric conversion cell were assembled. That is, the above-mentioned transparent electrode (glass substrate 51 with fluorine-doped tin oxide layer 31) having the titanium oxide porous layer 1 adsorbed with the sensitizing dye for photoelectric conversion as described above, and fluorine-doped And a conductive counter electrode in which a platinum layer 4 is laminated on a conductive layer of a glass substrate 52 with a tin oxide layer 32 and a spacer 61, 62 made of resin film (Mitsui 'Dupont Polychemical' HIMIRAN 'film ( The electrolyte solution was injected into the gap to form an electrolyte solution layer 2.
  • Conductors 71 and 72 for measuring conversion efficiency were fixed to the glass substrates 51 and 52, respectively. Measurement method of conversion efficiency
  • a combination of an ORI EL Solar Shimley Yuichi (# 8116) and an air mass filter is adjusted to a light quantity of 10 OmW / cm 2 with a actinometer to form a measurement light source, and the test sample of the photoelectric conversion cell is irradiated with light.
  • I-V curve characteristics were measured using an EKO Seiki-made I-V power butler (MP 160).
  • the conversion efficiency 7? was calculated according to the following equation using Vo c (open circuit voltage value), I sc (short circuit current value), and ff (fill factor value) obtained from the I 1 V curve characteristic measurement.
  • Compounds (A) to (D) in Table 4 are compounds having the following structures, respectively:
  • (A) is a ruthenium complex dye
  • compounds (B) and (C) are the compounds described in WO 02Z1 1213 pamphlet (in the structural formula, the substituent of N described by N ⁇ represents a methyl group).
  • (D) is p-dimethylamino benzene phosphonic acid.
  • Example 4 to 6 and Comparative Examples 2 to 4 and 8 to 10 the substrate after dye adsorption was further immersed in a predetermined aqueous solution to determine the presence or absence of dye detachment and the photoelectric conversion efficiency.
  • Example 1 1 1. 7 E t OH Example 2 4 2. 3 ", E t OH Example 3 30 3.2, ⁇ E t OH Example 4 30 3.2 2 ⁇ 5 AE t OH Example 5 30 3. 1 ⁇ 7 AE t OH
  • the diffuse reflectance spectrum of the substrate was measured before cell assembly. Those with no decrease in absorbance by the given aqueous solution treatment were evaluated as A, those with a slight decrease were evaluated as B, and those with a decrease were evaluated as C.
  • the current-voltage characteristics of the photoelectric conversion cell of Example 8 using the compound (7 3) are shown in FIG. 3, and the IPCE spectrum of the photoelectric conversion cell of the same Example 8 is shown in FIG. The wavelength dependence of the rate of conversion to the child is shown respectively.
  • the present invention uses a specific chemical structure, that is, a vinyl phosphonic acid group as an adsorption terminal to an inorganic semiconductor, and according to the present invention, a sensitizing dye having this vinyl phosphonic acid group
  • a good photoelectric conversion cell can be formed by connecting the organic semiconductor to the surface of the inorganic semiconductor laminated on the transparent conductive substrate.
  • This sensitizing dye can exhibit a stronger adsorptive power than a dye having a carboxylic acid end by having a vinyl phosphonic acid group, so it is stable with high photoelectric conversion efficiency and strong adsorptive power with the interface of the inorganic semiconductor. It can be expected to function as a sensitizing dye for photoelectric conversion.

Abstract

Photofunctional materials having vinylphosphonic acid groups, preferably photofunctional materials having chemical structures represented by the general formula (1): (1) (wherein X is a monovalent organic residue; R1 and R2 are each independently hydrogen or a monovalent organic residue; M1 and M2 are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted silyl, or a cation; R1 and R2, R1 and X, or R2 and X may be united to form a ring; and X and R2 may be replaced with each other). The photofunctional materials are favorably usable as sensitizing dyes for dye-sensitized photoelectric conversion cells and can attain high photoelectric conversion efficiency and strong adsorption to the interface of an inorganic semiconductor.

Description

明 細 書 光機能材料 技術分野  Optical Function Materials Technology Field
本発明は、 光機能材料に関する。 この光機能材料は、 光電変換材料、 光発光材 料または光吸収材料などに使用できる。 さらに、 本発明は、 この光機能材料を用 いた光電変換用増感色素、 光電変換材料、 光電変換電極、 およびこれを用いた光 電変換セルに関する。 背景技術  The present invention relates to an optical functional material. This optical functional material can be used as a photoelectric conversion material, a light emitting material or a light absorbing material. Furthermore, the present invention relates to a sensitizing dye for photoelectric conversion, a photoelectric conversion material, a photoelectric conversion electrode, and a photoelectric conversion cell using the same, using the optical functional material. Background art
太陽光発電については、 単結晶シリコン太陽電池、 多結晶シリコン太陽電池、 アモルファスシリコン太陽電池、 テルル化力ドミゥムゃセレン化インジウム銅な どの化合物太陽電池が実用化、 もしくは研究開発対象となっているが、 これらを 普及させる上で製造コストが高い、 原材料確保が困難である、 エネルギーペイバ ックタイムが長い等の問題点を克服する必要がある。 一方、 大面積化や低価格を 指向した有機材料を用いた太陽電池もこれまでに多く提案されているが、 変換効 率が低く、 耐久性も悪いという問題があった。  Regarding photovoltaic power generation, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, compound solar cells such as telluride power domium and indium copper selenide are in practical use or are subject to research and development. In order to disseminate these, it is necessary to overcome problems such as high manufacturing cost, difficulty in securing raw materials, and long energy payback time. On the other hand, many solar cells using organic materials for increasing the area and cost have been proposed so far, but they have problems such as low conversion efficiency and poor durability.
こうした状況の中で、 色素によって増感された半導体微多孔質体を用いた光電 変換電極および光電変換セル、 ならびにこれを作成するための材料および製造技 術が開示された (Nature, 3 5 3巻、 7 3 7〜 7 4 0頁、 1 9 9 1年;米国特許 Under these circumstances, photoelectric conversion electrodes and photoelectric conversion cells using semiconductor microporous materials sensitized by dyes, and materials and manufacturing techniques for producing the same have been disclosed (Nature, 35 3 Volume, pp. 7 3 7 to 7 4 0, 1 9 9 1; US Patent
4 9 2 7 7 2 1号明細書参照)。 これは、多孔性の酸化チタン薄膜の表面に色素を 固定した、 いわゆる色素増感型太陽電池であり、 詳しくは、 ルテニウム錯体色素 によつて分光増感された酸化チタン多孔質薄層を作用電極とし、 ヨウ素を主体と する電解質層および対電極から成る色素増感型の光電変換セルである。 この方式 の第一の利点は、 酸化チタン等の安価な酸化物半導体を用いるため、 安価な光電 変換素子を提供できる点にあり、 第二の利点は、 用いられるルテニウム錯体色素 が可視光域に幅広く吸収を有していることから、 比較的高い変換効率が得られる 点にある。 4 9 2 7 2 1)). This is a so-called dye-sensitized solar cell in which a dye is fixed to the surface of a porous titanium oxide thin film, and more specifically, a titanium oxide porous thin layer spectrally sensitized by a ruthenium complex dye is used as a working electrode It is a dye-sensitized photoelectric conversion cell comprising an electrolyte layer mainly composed of iodine and a counter electrode. The first advantage of this method is that it can provide an inexpensive photoelectric conversion device because it uses an inexpensive oxide semiconductor such as titanium oxide, and the second advantage is the ruthenium complex dye used. Since they have wide absorption in the visible light range, they have relatively high conversion efficiency.
さらに最近では、 色素増感型太陽電池における増感色素として、 非ルテニウム 錯体色素の研究が盛んに行なわれている。 その例としてはフエニルキサンテン系 色素、 フタロシアニン系色素、 クマリン系色素、 シァニン系色素、 ポルフィリン 系色素、 ァゾ系色素等が挙げられる。 これらの有機色素は、 ルテニウム錯体に比 ベて吸光係数が大きく、 分子設計の自由度も大きいため、 高い光電変換効率が期 待されている。 しかしながら、 色素の光吸収領域が狭い、 酸化チタンへの電荷の 注入が非効率的である等の理由から、 良好な有機増感色素はなかった。  More recently, research on non-ruthenium complex dyes has been actively conducted as sensitizing dyes in dye-sensitized solar cells. Examples thereof include phenylxanthene dyes, phthalocyanine dyes, coumarin dyes, cyanine dyes, porphyrin dyes, azo dyes and the like. These organic dyes are expected to have high photoelectric conversion efficiency because they have a large absorption coefficient and a large degree of freedom in molecular design compared to ruthenium complexes. However, there are no good organic sensitizing dyes because the light absorbing region of the dye is narrow and the charge injection to titanium oxide is inefficient.
これらの問題を解決するため、 酸化チタンとの吸着末端に特徴をもたせた増感 色素として、 置換アクリル酸部位を持つ増感色素が開発され、 比較的高い変換効 率を有することが示されている(特開 2002 - 164089号公報、 WO 02 /1 1213号パンフレツト参照)。 この増感色素の優位な点は、色素骨格と置換 ァクリル酸部位を結合させることで、 増感色素から酸化チタン等の無機半導体へ の電荷注入効率を向上させたことにある。 し力、しながら、 酸化チタン表面への吸 着基として力ルポキシル基を用いた場合には、 力ルポキシル基の吸着力が弱いた め、 たとえば、 電解液に少量の水が混入した場合に、 PHによって酸化チタン表 面から色素が離脱し、 電池の寿命が低下する可能性が指摘されている (Inorganic Chemistry, 36卷、 5937〜 5946頁、 1997年; Inorganic Chemistry^ 3 9卷、 4542〜4547頁、 2000年)。  In order to solve these problems, a sensitizing dye having a substituted acrylic acid site has been developed as a sensitizing dye characterized by its adsorption end with titanium oxide, and it has been shown that it has a relatively high conversion efficiency. (Refer to JP 2002-164089, WO 02/1 1213 pamphlet). The advantage of this sensitizing dye is that the charge injection efficiency from the sensitizing dye to an inorganic semiconductor such as titanium oxide is improved by combining the dye skeleton with a substituted acrylic acid site. In the case where a sulfoxyl group is used as an adsorptive group to the surface of titanium oxide, the adsorptive power of the sulfoxyl group is weak. For example, when a small amount of water is mixed in the electrolyte, It is pointed out that PH may cause the detachment of the pigment from the titanium oxide surface and the battery life may be reduced (Inorganic Chemistry, 36, 5937-5946, 1997; Inorganic Chemistry ^ 9, 4542-4547. P., 2000).
そこで、 色素増感型太陽電池の色素として、 高い光電変換効率を有し、 かつ、 安定性の高い材料の開発が望まれていた。 発明の開示  Therefore, development of a material having high photoelectric conversion efficiency and high stability has been desired as a dye for dye-sensitized solar cells. Disclosure of the invention
本発明は、 ビニルホスホン酸基を有する光機能材料に関する。 たとえば、 下記 一般式 (1) で示される化学構造を有する光機能材料が好ましく用いられる。
Figure imgf000005_0001
The present invention relates to an optical functional material having a vinyl phosphonic acid group. For example, an optical functional material having a chemical structure represented by the following general formula (1) is preferably used.
Figure imgf000005_0001
( 1 )  (1)
(式中、 Xは 1価の有機残基を表し、 R1および R2はそれぞれ独立に、 水素原子 または 1価の有機残基を表し、 M1および M2はそれぞれ独立に、 水素原子、 置換 または非置換のアルキル基、 置換または非置換のァリール基、 置換または非置換 のシリル基、 あるいは陽イオンを表す。 R 1と R 2、 R1と X、 および R2と Xは、 それぞれ、互いに結合して環を形成していてもよい。 さらに、 Xと R2は入れ替わ つていてもよい。) (Wherein, X represents a monovalent organic residue, R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic residue, and M 1 and M 2 each independently represent a hydrogen atom, Represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted silyl group, or a cation R 1 and R 2 , R 1 and X, and R 2 and X respectively represent They may be combined with each other to form a ring Furthermore, X and R 2 may be interchanged.)
別の本発明は、 上記本発明に係る光機能材料を含む光電変換用増感色素に関す る。  Another present invention relates to a sensitizing dye for photoelectric conversion, which comprises the optical functional material according to the present invention.
さらに別の本発明は、 無機半導体と、 この無機半導体に連結された上記本発明 に係る光電変換用増感色素とを含む光電変換材料に関する。  Still another invention of the present invention relates to a photoelectric conversion material comprising: an inorganic semiconductor; and the sensitizing dye for photoelectric conversion according to the invention connected to the inorganic semiconductor.
さらに別の本発明は、 透明電極と、 この透明電極上に積層された上記本発明に 係る光電変換材料とを含む光電変換電極に関する。  Yet another aspect of the present invention relates to a photoelectric conversion electrode including a transparent electrode, and the photoelectric conversion material according to the present invention laminated on the transparent electrode.
さらに別の本発明は、 上記本発明に係る光電変換電極と、 電解質層と、 導電性 対極とを含む光電変換セルに関する。 図面の簡単な説明  Still another present invention relates to a photoelectric conversion cell including the photoelectric conversion electrode according to the present invention, an electrolyte layer, and a conductive counter electrode. Brief description of the drawings
図 1は、 光電変換セルの一例として、 実施例における試験サンプルを模式的に 示した断面図である。  FIG. 1 is a cross-sectional view schematically showing a test sample in an example as an example of a photoelectric conversion cell.
図 2は、 プロトン NMRスペクトルを表す。 上段は化合物 (3 0 ) のェチルェ ステル体、 下段はそれを加水分解した化合物 (3 0 ) を表す。  FIG. 2 represents a proton NMR spectrum. The upper part shows the ethyl ester form of compound (3 0), and the lower part shows compound (3 0) obtained by hydrolyzing it.
図 3は、 化合物 (7 3 ) を用いた光電変換セルの I—V特性を表す。  FIG. 3 shows the IV characteristics of the photoelectric conversion cell using the compound (73).
図 4は、 化合物 (7 3 ) を用いた光電変換セルの I P C Eスペクトルを表す。 発明を実施するための最良の形態 FIG. 4 shows an IPCE spectrum of a photoelectric conversion cell using a compound (7 3). BEST MODE FOR CARRYING OUT THE INVENTION
本発明の光機能材料は、 ビニルホスホン酸基を有することをその特徴とする。 すなわち、 本発明の光機能材料は、 ビニルホスホン酸基を有するものであれば何 ら制限はされないが、 特に、 下記一般式 ( 1 ) で表される化学構造を有する化合 物であることが好ましい。  The optical function material of the present invention is characterized by having a vinyl phosphonic acid group. That is, the optical functional material of the present invention is not particularly limited as long as it has a vinylphosphonic acid group, but in particular, a compound having a chemical structure represented by the following general formula (1) is preferable .
Figure imgf000006_0001
Figure imgf000006_0001
( 1 )  (1)
(式中、 Xは 1価の有機残基を表し、 R1および R2はそれぞれ独立に、 水素原子 または 1価の有機残基を表し、 M1および M2はそれぞれ独立に、 水素原子、 置換 または非置換のアルキル基、 置換または非置換のァリ一ル基、 置換または非置換 のシリル基、 あるいは陽イオンを表す。 R 1と R 2、 R1と X、 および R2と Xは、 それぞれ、互いに結合して環を形成していてもよい。 さらに、 Xと R2は入れ替わ つていてもよい。) (Wherein, X represents a monovalent organic residue, R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic residue, and M 1 and M 2 each independently represent a hydrogen atom, Represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted silyl group, or a cation R 1 and R 2 , R 1 and X, and R 2 and X are And each may combine with each other to form a ring Furthermore, X and R 2 may be interchanged.)
本発明において、光機能材料とは、光を吸収することによって新たに増感効果、 発熱効果、 発色効果、 退色効果、 蓄光効果、 相変化効果、 光電変換効果、 光磁気 効効果、 光触媒効果、 光変調効果、 光記録効果、 ラジカル発生効果等の機能を発現 する材料、あるいは逆にこれらの効果を受けて発光機能を有する材料を意味する。 この光機能材料は、 たとえば、 光電変換材料、 発光材料、 光記録材料、 画像形成 材料、 フォトクロミック材料、 エレクト口ルミネッセンス材料、 光導電材料、 二 色性材料、 ラジカル発生材料、 酸発生材料、 塩基発生材料、 蓄光材料、 非線形光 学材料、 第 2高調波発生材料、 第 3高調波発生材料、 感光材料、 光吸収材料、 近 赤外吸収材料、 フォトケミカルホールバーニング材料、 光センシング材料、 光マ 一キング材料、 光化学治療用増感材料、 光相変化記録材料、 光焼結記録材料、 光 磁気記録材料、 光線力学療法用色素、 および光電変換用増感色素等に、 幅広く用 いることができる。 In the present invention, the photofunctional material is a new sensitizing effect, heat generation effect, coloring effect, color fading effect, luminous effect, phase change effect, photoelectric conversion effect, photo-optical effect, photocatalytic effect, by absorbing light. It means a material that exhibits functions such as light modulation effect, optical recording effect, and radical generation effect, or conversely, materials having a light emitting function by receiving these effects. The optical functional material is, for example, a photoelectric conversion material, a light emitting material, an optical recording material, an image forming material, a photochromic material, an elector luminescence material, a photoconductive material, a dichroic material, a radical generating material, an acid generating material, a base generating Materials, phosphorescent materials, nonlinear optical materials, second harmonic generation materials, third harmonic generation materials, photosensitive materials, light absorbing materials, near infrared absorbing materials, photochemical hole burning materials, light sensing materials, optical materials Widely used as king materials, sensitizing materials for photochemical treatment, optical phase change recording materials, photosintered recording materials, photomagnetic recording materials, dyes for photodynamic therapy, sensitizing dyes for photoelectric conversion, etc. Can be.
以下に、 ビニルホスホン酸基を有する、 特に一般式 (1 ) の化学構造を有する 光機能材料を、 主として光電変換用増感色素として用いる場合について説明する ため、 本明細書においてはこの光機能材料を、 その代表的な適用形態として、 光 電変換用増感色素あるいは単に増感色素と呼称する場合があるが、 上記の幅広い 応用を否定するものではない。  In the following, in order to describe the case where an optical functional material having a vinyl phosphonic acid group, particularly having a chemical structure of the general formula (1), is mainly used as a sensitizing dye for photoelectric conversion, in the present specification, this optical functional material As a typical application form, it may be referred to as a sensitizing dye for photoelectric conversion or simply as a sensitizing dye, but the broad application described above is not denied.
光電変換用増感色素に必要な機能としては、 色素が広い吸収領域を有すること と、 酸化チタン等の無機半導体に効率よく電荷を注入できることが挙げられる。 色素の吸収領域を広くするためには、 上記一般式 (1 ) の Xに吸収領域を広くす るような有機残基を導入することが好ましい。 この吸収領域の広域化のために、 Xは電子供与性の有機残基であることが好ましく、 ァミノ基等有する有機残基が 高い効果を発揮することができる。  The functions required for the sensitizing dye for photoelectric conversion include that the dye has a wide absorption region and that charges can be efficiently injected into an inorganic semiconductor such as titanium oxide. In order to widen the absorption region of the dye, it is preferable to introduce an organic residue which widens the absorption region to X in the above general formula (1). In order to widen the absorption region, X is preferably an electron donating organic residue, and an organic residue having an amino group or the like can exhibit a high effect.
電荷を効率よく注入させるためには、 増感色素には無機半導体表面に吸着する ァンカ一基が必要であるが、本発明の光機能材料は、ホスホン酸基を有するため、 増感色素として用いた場合にこの条件を満足する。 ホスホン酸基は、 カルボン酸 基に比べ、 酸化チタンのような無機半導体に対して、 より強い吸着能を有してい るため、色素の脱離が起こりにくく、したがって、素子の長寿命化が期待できる。 特に、 一個のリン原子が 2個の酸性基 (—OM1と—〇M2) を有するので、 各々 の加算効果とキレート効果により、 強い吸着効果を発揮することができる。 さら に、 より強い吸着能を有していることで、 素子作成時に無機半導体電極に色素を 吸着させる時の吸着速度も早くなり、製造時間の短縮ができるという利点もある。 上記アンカ一 ¾と無機半導体表面との間には強い化学結合が生じ、 お互いの電 子雲が有効に重なり合うことから、 増感色素から無機半導体表面への迅速な電子 移動が期待できる。 加えて、 ホスホン酸基を有することにより、 水やエタノール 等への溶解性も良好となるため、 吸着用溶剤として、 これらの環境負荷の小さな 溶剤を用いることが可能となり、 これが色素溶液としてのポットライフが長いこ とに結びつき、 ひいては製造コストを低く押さえる効果に結びつくことが期待で さる。 In order to inject charges efficiently, the sensitizing dye needs an phanka group to be adsorbed on the surface of the inorganic semiconductor, but since the photofunctional material of the present invention has a phosphonic acid group, it can be used as a sensitizing dye If you meet this condition. The phosphonic acid group has a stronger adsorptive ability to an inorganic semiconductor such as titanium oxide than a carboxylic acid group, so that the detachment of the dye is less likely to occur, and therefore, it is expected to prolong the life of the device. it can. In particular, since one phosphorus atom has two acidic groups (-OM 1 and -〇_M 2), by each of the addition effect and chelating effect, it is possible to exert a strong adsorption effect. Furthermore, by having a stronger adsorption ability, the adsorption rate at the time of adsorbing the dye to the inorganic semiconductor electrode at the time of element production becomes faster, and there is also an advantage that the manufacturing time can be shortened. A strong chemical bond is generated between the anchor and the inorganic semiconductor surface, and the electron clouds overlap with each other effectively, so that rapid electron transfer from the sensitizing dye to the inorganic semiconductor surface can be expected. In addition, by having a phosphonic acid group, the solubility in water, ethanol, etc. is also improved, and it becomes possible to use these solvents with a small environmental load as adsorption solvents, and these become pots as dye solutions. It is expected that it will lead to a long life, which in turn will lead to the effect of lowering the manufacturing cost. Saru.
光電変換用増感色素のクロモファー部位で光吸収して生じた励起電子を、 増感 色素が吸着する無機半導体の伝導帯へ有効に注入し、 高い光電変換効率を有する 素子を得るためには、 増感色素の吸着部位 (アンカ一基) 周辺が強い電子吸引性 を有していることが必要である。 さらに、 クロモファーの t電子共役がアンカー 基にまで繋がっていないと、 増感色素内で生じた励起電子をアンカ一基へ有効に 伝えることができない。  In order to effectively inject excited electrons generated by light absorption at the chromophore site of the sensitizing dye for photoelectric conversion into the conduction band of the inorganic semiconductor to which the sensitizing dye is adsorbed, and to obtain a device having high photoelectric conversion efficiency, It is necessary for the periphery of the adsorption site (one anchor group) of the sensitizing dye to have strong electron withdrawing property. Furthermore, if the chromofer's t-electron conjugation is not linked to the anchor group, excited electrons generated in the sensitizing dye can not be effectively transmitted to one anchor group.
たとえば、 一般式(1 ) の構造では、その R1の位置に置換基を導入することが できる。 R1に電子吸引性の置換基を導入すると、 ビエルホスホン酸基がより強い 電子ァクセプ夕一になり、 分子内での電荷の移動がより効率的になる。 これは、 増感色素から酸化チタン等の無機半導体への電荷の注入をより効率的に行うこと ができる点で、 非常に効果的である。 For example, in the structure of general formula (1), a substituent can be introduced at the position of R 1 . When an electron-withdrawing substituent is introduced into R 1 , the biphenyl phosphonic acid group becomes stronger and the charge transfer in the molecule becomes more efficient. This is very effective in that charge injection from the sensitizing dye to the inorganic semiconductor such as titanium oxide can be performed more efficiently.
つまり、 ビニルホスホン酸基は、 ホスホン酸の結合位置までクロモファー部位 の 7T電子共役構造を繋げつつ、 ホスホン酸近傍に電子吸引基を配置することを初 めて可能とする化学構造を有している。 これに対して、 たとえば、 ベンゼンホス ホン酸基のような芳香環に直接結合したホスホン酸構造では、 近傍に電子吸引性 基を導入することができないため、 ビニルホスホン酸基に比べて、 電荷の注入効 率が悪く、 光電変換効率も低い。  That is, the vinyl phosphonic acid group has a chemical structure that makes it possible, for the first time, to place an electron withdrawing group in the vicinity of the phosphonic acid while connecting the 7T electron conjugated structure of the chromophoric moiety to the bonding position of the phosphonic acid. . On the other hand, for example, in the case of a phosphonic acid structure directly bonded to an aromatic ring such as benzene phosphinic acid group, an electron withdrawing group can not be introduced in the vicinity, and charge injection is more efficient than vinyl phosphonic acid group. Poor efficiency and low photoelectric conversion efficiency.
このように、 本発明によれば、 ビニルホスホン酸構造、 たとえば一般式 (1 ) に表されるような化学構造をとることにより、 初めて、 無機半導体に対する強い 吸着能と強い電子ァクセプター性とを両立させたアンカ一基を有する増感色素を 実現できるのである。  Thus, according to the present invention, by taking a vinylphosphonic acid structure, for example, a chemical structure represented by the general formula (1), it is possible, for the first time, to achieve both the strong adsorption ability to an inorganic semiconductor and the strong electron acceptor property. A sensitizing dye having one anchored group can be realized.
次に、 一般式 (1 ) 中の各官能基の説明をする。  Next, each functional group in General formula (1) is demonstrated.
一般式 (1 ) 中の Xは、 1価の有機残基を表す。 ここでいう有機残基は、 特に 制限はないが、 たとえば、 置換基を有していてもよい (つまり置換または非置換 の) 一価の芳香族炭ィ匕水素残基、 置換または非置換の一価の複素環残基、 置換ま たは非置換の一価の脂肪族不飽和炭化水素残基、 置換または非置換の一価のアミ ノ基、 置換または非置換の一価の有機金属錯体残基が挙げられる。 X in the general formula (1) represents a monovalent organic residue. The organic residue as referred to herein is not particularly limited. For example, it may be substituted (that is, substituted or unsubstituted) monovalent aromatic hydrocarbon residue, substituted or unsubstituted Monovalent heterocyclic residue, substituted or unsubstituted monovalent aliphatic unsaturated hydrocarbon residue, substituted or unsubstituted monovalent amine And substituted or unsubstituted monovalent organometallic complex residues.
芳香族炭化水素残基の芳香環としては、 特に制限はないが、 たとえば、 ベンゼ ン、 ナフタレン、 アントラセン、 ナフ夕セン、 ピレン、 フエナンスレン、 インデ ン、 ァズレン、ペリレン、 フルオレン、 ビフエニル、ターフェニルが挙げられる。 複素環残基の複素環としては、 特に制限はないが、 たとえば、 フラン、 チオフ ェン、 ピロ一ル、 ォキサゾール、 イソォキサゾール、 チアゾール、 イソチアゾ一 ル、 イミダゾール、 ピラゾール、 フラザン、 ピリジン、 ピリダジン、 ピリミジン、 ピラジン、 インドール、 ベンゾフラン、 ベンゾチォフェン、 キノリン、 カルバゾ —ル、ァクリジン、キサンテン、 フエノチアジン、 フエノキサジン、 ピロリジン、 ピロリン、 イミダゾリン、 イミダゾリジン、 ピぺリジン、 ピぺラジン、 モルホリ ン、 キヌクリジン、 ピラン、 テトラヒドロピラン、 ジォキサン、 テトラヒドロフ ラン、 テトラヒドロチォフェンが挙げられる。  The aromatic ring of the aromatic hydrocarbon residue is not particularly limited, and examples thereof include benzene, naphthalene, anthracene, naphthacene, pyrene, phenanthrene, indene, azulene, perylene, fluorene, biphenyl and terphenyl. Be The heterocycle of the heterocycle residue is not particularly limited. For example, furan, thiophen, pyrrolyl, oxazole, isoxazole, thiazol, isothiazolyl, imidazole, pyrazole, frazan, pyridine, pyridazine, pyrimidine, Pyrazine, indole, benzofuran, benzothiophene, quinoline, carbazole, acridine, xanthene, phenothiazine, phenoxazine, pyrrolidine, pyrroline, imidazoline, imidazolidine, piperidine, piperazine, morpholine, quinuclidine, pyran, tetrahydropyran, dihydroxyne And tetrahydrofuran and tetrahydrothiophen.
これらの複素環は 4級化されていてもよく、 対イオンを有していてもよい。 こ の場合の対イオンは、 特に制限はなく、 一般的な陰イオンでよい。 例としては、 ハロゲンイオン、 過塩素酸イオン、 テトラフッ化ホウ素イオン、 へキサフッ化リ ンイオン、 τ酸化物イオン、 メタンスルホン酸イオン、 トルエンスルホン酸ィォ ンが挙げられる。 対イオンを有さない場合は、 分子内または分子間のカルポキシ ル基等の酸性基で中和されていてもよい。  These heterocycles may be quaternized and may have a counter ion. The counter ion in this case is not particularly limited, and may be a general anion. Examples include halogen ions, perchlorate ions, boron tetrafluoride ions, phosphorus hexafluoride ions, τ oxide ions, methanesulfonic acid ions, toluenesulfonic acid ions. When it does not have a counter ion, it may be neutralized with an acidic group such as an intramolecular or intermolecular carpoxyl group.
さらに複素環としては、 染料や顔料に用いられる色素骨格 含む。 用いられる 色素骨格としては、 たとえば、 ァゾ系色素、 キナクリドン系色素、 ジケトピロ口 ピロ一ル系色素、スクヮリリウム系色素、シァニン系色素、メロシアニン系色素、 トリフエニルメタン系色素、 キサンテン系色素、 ポルフィリン系色素、 クロロフ ィル系色素、 ルテニウム錯体系色素、 インジゴ系色素、 ペリレン系色素、 ジォキ サジン系色素、 アントラキノン系色素、 フタロシアニン系色素、 ナフ夕ロシア二 ン系色素が挙げられる。  Further, the heterocyclic ring includes dye skeletons used for dyes and pigments. As the dye skeleton to be used, for example, azo dyes, quinacridone dyes, diketopyrrole dyes, squarylium dyes, cyanine dyes, cyanine dyes, merocyanine dyes, trifenylmethane dyes, xanthene dyes, porphyrin dyes Dyes, chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, and naphthalene dyes are listed.
脂肪族不飽和炭化水素残基としては、特に制限はないが、たとえば、ビニル基、 1 , 3—ブ夕ジェニル基、 1, 3 , 5—へキサトリェニル基が挙げられ、 その不 飽和結合の総和は 1〜 2 0の範囲であることが好ましい。 The aliphatic unsaturated hydrocarbon residue is not particularly limited, and examples thereof include a vinyl group, a 1,3-butadienyl group and a 1,3,5-hexatrienyl group, and the like. The sum of saturated bonds is preferably in the range of 1 to 20.
アミノ基としては、 特に制限はないが、 アミノ基、 モノまたはジアルキルアミ ノ基、 モノまたはジァリールアミノ基等が挙げられ、 具体的にはたとえば、 N— メチルァミノ基、 N—ェチルァミノ基、 N, N—ジェチルァミノ基、 N, N—ジ イソプロピルアミノ基、 N, N—ジブチルァミノ基、 N—ベンジルァミノ基、 N, N—ジベンジルァミノ基、 N—フエニルァミノ基、 N, N—ジフエニルァミノ基、 N, N—ビス (m—トリル) アミノ基、 N, N—ビス (p—トリル) アミノ基、 N, N—ビス (p—ビフエ二リル) ァミノ基が挙げられる。  The amino group is not particularly limited, and examples thereof include an amino group, a mono- or dialkylamino group, a mono- or diarylamino group and the like, and specific examples thereof include N-methylamino group, N-acetylamino group, N, N- Cetylamino group, N, N-diisopropylamino group, N, N- dibutylamino group, N- benzylamino group, N, N- dibenzylamino group, N- phenylamino group, N, N- diphenylamino group, N, N- bis (m —Tolyl) amino group, N, N-bis (p-tolyl) amino group, N, N-bis (p-biphenylyl) amino group.
有機金属錯体残基の有機金属錯体としては、 特に制限はないが、 たとえば、 フ エロセン、 ルテノセン、 チタノセン、 ジルコノセン、 フタロシアニン、 ナフ夕口 シァニン、 ポルフィリン、 ルテニウムビピリジル錯体が挙げられる。  The organometallic complex of the organometallic complex residue is not particularly limited, and examples thereof include ferrocene, ruthenocene, titanocene, zirconocene, phthalocyanine, naphthenic cyanine, porphyrin and ruthenium bipyridyl complex.
以上述べた、 一般式 (1 ) の Xで表される有機残基としての芳香族炭化水素残 基、 複素環残基、 脂肪族不飽和炭化水素残基、 アミノ基、 および有機金属錯体残 基は、 前述のように、 1以上の置換基を有してもよい。 この置換基としては、 特 に制限はないが、 たとえば、 アルキル基、 ァリール基、 複素環基、 アルコキシル 基、 ァシル基、 ァリールォキシ基、 アルキルチオ基、 ァリールチオ基、 置換また は非置換のアミノ基、 置換または非置換のアミド基、 アルコキシアルキル基、 ァ ルキルォキシカルポニル基、 ァリールォキシカルポニル基、 力ルポキシル基、 ス ルホ基、 ホスホン酸基、 シァノ基、 イソシァノ基、 チオシァネート基、 イソチォ シァネート基、 ニトロ基、 ニトロシル基、 ハロゲン原子、 ヒドロキシル基が挙げ られる。  The aromatic hydrocarbon residue, the heterocyclic residue, the aliphatic unsaturated hydrocarbon residue, the amino group, and the organometallic complex residue as the organic residue represented by X in the general formula (1) described above As mentioned above, may have one or more substituents. The substituent is not particularly limited, and, for example, an alkyl group, a aryl group, a heterocyclic group, an alkoxyl group, an acyl group, an aryloxy group, an alkylthio group, an arylthio group, a substituted or unsubstituted amino group, a substituted group Or an unsubstituted amido group, an alkoxyalkyl group, an alkoxyalkyl group, an aryloxy carbonyl group, an aromaticoxy group, a sulfoxy group, a sulfo group, a phosphonic acid group, a cyano group, an isosyano group, a thiosyanate group, an isothiocyanate group, A nitro group, a nitrosyl group, a halogen atom, and a hydroxyl group are mentioned.
アルキル基としては、 炭素数 1〜3 0の置換または非置換の直鎖状、 分岐鎖状 および環状の炭化水素基が挙げられる。  As an alkyl group, a C1-C30 substituted or unsubstituted linear, branched, and cyclic hydrocarbon group is mentioned.
ァリール基としては、 前述の芳香族炭化水素残基の芳香環が挙げられ、 これら のァリ一ル基は、 さらに置換基を有していてもよい。  Examples of the aryl group include the above-mentioned aromatic ring of the aromatic hydrocarbon residue, and these aryl groups may further have a substituent.
複素環基としては、 前述の複素環残基の複素環が挙げられる。 これらの複素環 基は、 さらに置換基を有していてもよい。 アルコキシル基としては、 メトキシ基、 エトキシ基、 プロポキシ基、 ブトキシ 基、 t e r t—ブトキシ基、 ォクチルォキシ基、 t e r t—ォクチルォキシ基等 の炭素数 1〜2 0のアルコキシル基が挙げられる。 The heterocyclic group includes the heterocyclic ring of the aforementioned heterocyclic residue. These heterocyclic groups may further have a substituent. Examples of the alkoxyl group include alkoxyl groups having 1 to 20 carbon atoms, such as methoxy, ethoxy, propoxy, butoxy, tert-butoxy, alkoxy and tert-alkoxy.
ァシル基としては、 アルキルカルポニル基、 および、 ァリ一ルカルポニル基が 挙げられ、 具体的にはたとえば、 ァセチル基、 プロピオニル基、 ベンゾィル基、 トルオイル基等の炭素数 1〜 2 0のァシル基が挙げられる。  Examples of the asyl group include an alkylcarponyl group and an arylcarponyl group, and specific examples thereof include an acyl group having a carbon number of 1 to 20, such as an acetyl group, a propionyl group, a benzoyl group and a toluoyl group. Be
ァリールォキシ基としては、 フエノキシ基、 4— t e r t—ブチルフエノキシ 基、 1—ナフチルォキシ基、 2—ナフチルォキシ基、 9一アンスリルォキシ基等 の炭素数 6〜 2 0のァリールォキシ基が挙げられる。  Examples of the aryloxy group include aryloxy groups having 6 to 20 carbon atoms, such as phenyloxy, 4-tert-butylphenoxy, 1-naphthyloxy, 2-naphthyloxy, and 9-anthryloxy groups.
アルキルチオ基としては、 メチルチオ基、 ェチルチオ基、 t e r t一プチルチ ォ基、 へキシルチオ基、 ォクチルチオ基等の炭素数 1〜2 0のアルキルチオ基が 挙げられる。  Examples of the alkylthio group include alkylthio groups having 1 to 20 carbon atoms, such as a methylthio group, a phenylthio group, a tert-butylthio group, a hexylthio group, and an octylthio group.
ァリールチオ基としては、 フエ二ルチオ基、 2—メチルフエ二ルチオ基、 4一 t e r t—プチルフエ二ルチオ基等の炭素数 6〜 2 0のァリ一ルチオ基が挙げら れる。  Examples of the arylthio group include arylthio groups having 6 to 20 carbon atoms, such as phenylthio group, 2-methylphenylthio group, 41-tert-peptylphenylthio group and the like.
置換または非置換のアミノ基としては、 置換基を有していてもよい前述の一価 のァミノ基が挙げられる。  Examples of the substituted or unsubstituted amino group include the aforementioned monovalent amino group which may have a substituent.
置換または非置換のアミド基としては、 たとえば、 アミド基、 アルキルアミド 基、 芳香族アミド基が挙げられる。  As a substituted or unsubstituted amido group, an amido group, an alkyl amido group, an aromatic amido group is mentioned, for example.
アルコキシアルキル基としては、 メトキシメチル基、 エトキシメチル基、 イソ プロポキシメチル基等の炭素数 1〜 2 0のアルコキシアルキル基が挙げられる。 アルキルォキシカルポニル基としては、 メトキシカルボニル基、 エトキシカル ポニル基、 t e r t—ブトキシカルポニル基等の炭素数 1〜2 0のアルコキシ力 ルポニル基が挙げられる。  Examples of the alkoxyalkyl group include alkoxyalkyl groups having 1 to 20 carbon atoms such as methoxymethyl group, ethoxymethyl group and isopropoxymethyl group. Examples of the alkyloxycarponyl group include alkoxycarbonyl group having 1 to 20 carbon atoms, such as methoxycarbonyl group, ethoxycarpyl group, ter t-butoxycarponyl group and the like.
ァリールォキシカルボニル基としては、 フエノキシカルポニル基、 ナフチルォ キシカルポニル基等の炭素数 5〜 3 0までのァリ一ルォキシカルボ二ル基が挙げ られる。 力ルポキシル基、 ホスホン酸基、 スルホ基等の酸性基は、 金属塩やアンモニゥ ム塩を形成していてもよい。 As the aryloxy carbonyl group, there can be mentioned an alkoxycarboxyl group having 5 to 30 carbon atoms such as a phenyloxy carponyl group and a naphthyloxy carponyl group. The acidic group such as a dynamic propoxy group, a phosphonic acid group or a sulfo group may form a metal salt or an ammonium salt.
上記の Xに結合する置換基が複数存在する場合には、 それらは互いに同一でも 異なっていてもよく、 また、 それらの置換基が互いに結合して環を形成していて もよい。 さらに、 Xや、 Xに結合する置換基は、 後述する R1や R2と結合して、 環を形成していてもよい。 When a plurality of substituents bonded to X described above are present, they may be the same or different from each other, and the substituents may be bonded to each other to form a ring. Furthermore, X and X, and a substituent linked to X may be linked to R 1 and R 2 described later to form a ring.
上記の Xのうち好ましいものは、 置換または非置換のアミノ基を有する一価の 有機残基であり、 例としては、 ジァリールァミノフエ二ル基、 ジアルキルアミノ フエニル基、 ジアルキルアミノスチリル基が挙げられる。 さらに、 高い光電変換 効率を有するためには、 Xが置換もしくは非置換のアミノ基を有する一価の有機 残基であって、 かつ、 長い共役鎖を有し、 その共役鎖がリジッドな骨格であるこ とがより好ましい。 これは、 長い共役鎖を有することで、 色素の光吸収領域が広 くなり、かつ、無機半導体への電荷注入部位であるビニルホスホン酸基に対して、 ァミノ基のような電子供与性の置換基を有するュニットがリジッドに結合するこ とで、 ドナー部位からァクセプタ一部位への分子内での電荷移動が効率的に生じ うるためである。  Among the above-mentioned X, preferred is a monovalent organic residue having a substituted or unsubstituted amino group, and examples thereof include a dialkylaminophenyl group, a dialkylamino phenyl group and a dialkylaminostyryl group. Can be mentioned. Furthermore, in order to have high photoelectric conversion efficiency, X is a monovalent organic residue having a substituted or unsubstituted amino group, and has a long conjugated chain, and the conjugated chain has a rigid skeleton. Some are more preferable. This is because the light absorbing region of the dye is broadened by having a long conjugated chain, and an electron donating substitution such as an amino group is made to the vinyl phosphonic acid group which is a charge injection site to the inorganic semiconductor. This is because intramolecular charge transfer from the donor site to the partial position of the acceptor can efficiently occur by binding to a rigid unit having a group.
次に、 一般式 ( 1 ) 中の 、 R2について説明する。 R1, R2は、 それぞれ独 立に、 水素原子または 1価の有機残基を表す。 Next, R 2 in the general formula (1) will be described. Each of R 1 and R 2 independently represents a hydrogen atom or a monovalent organic residue.
ここでいう有機残基は、 特に制限はないが、 たとえば、 上記 Xと同様の有機残 基や、 置換または非置換の脂環式炭化水素残基、 置換または非置換の鎖式炭化水 素残基、 ヒドロキシル基、 電子吸引基が挙げられる。  The organic residue as referred to herein is not particularly limited. For example, the same organic residue as the above X, substituted or unsubstituted alicyclic hydrocarbon residue, substituted or unsubstituted chain hydrocarbon residue Groups, hydroxyl groups, electron withdrawing groups.
置換または非置換の環式炭化水素残基の環式炭化水素としては、 たとえば、 シ クロへキサン、 シクロペンタン等の炭素数 3〜 2 0の飽和環式炭化水素や、 シク 口へキセン、 シクロペンテンシクロへキサジェン、 シクロペン夕ジェン等の炭素 数 3〜 3 0の不飽和環式炭化水素が挙げられる。  The cyclic hydrocarbon of the substituted or unsubstituted cyclic hydrocarbon residue is, for example, a saturated cyclic hydrocarbon having 3 to 20 carbon atoms, such as cyclohexane, cyclopentane, etc., a cyclic hexene, cyclopentene Examples thereof include unsaturated cyclic hydrocarbons having 3 to 30 carbon atoms such as cyclohexene and cyclopentene.
置換または非置換の鎖式炭化水素残基の鎖式炭化水素基としては、 炭素数 1〜 3 0の直鎖または分岐鎖のアルキル基が挙げられ、 これらの鎖式炭ィ匕水素基は不 飽和結合を有していてもよい。 Examples of the chain hydrocarbon group of the substituted or unsubstituted chain hydrocarbon residue include linear or branched alkyl groups having 1 to 30 carbon atoms, and these chain carbon hydrogen groups are not It may have a saturated bond.
電子吸引基とは、 ハメットの置換基定数ひが 0より大きい値を示す基を意味す る。 これらの置換基としては、 特に制限はないが、 たとえば、 シァノ基、 力ルポ キシル基、 ニトロ基、 ァシル基、 アルキルォキシカルポニル基、 ァリールォキシ カルボニル基、 アルキルスルホニル基、 ァリールスルホニル基、 置換または非置 換のアミド基、 ペルフルォロアルキル基、 ペルフルォロアルキルチオ基、 ペルフ ルォロアルキルカルポニル基、 置換または非置換のスルホンアミド基、 4ーシァ ノフエニル基、ハロゲン原子が挙げられる。また、その他の例としては、 Chem. Rev. 9 1巻、 1 6 5〜1 9 5頁、 1 9 9 1年 (その開示内容は引用によりここに援用 される。) 記載の σ値が 0より大きいものが挙げられる。  The electron withdrawing group means a group having a Hammett's substituent constant of which value is larger than zero. These substituents are not particularly limited. For example, a cyano group, an amino group, a nitro group, an acyl group, an alkyloxy carponyl group, an aryloxy carbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a substituted or substituted group Examples thereof include non-substituted amido group, perfluoroalkyl group, perfluoroalkylthio group, perfluoroalkylcarponyl group, substituted or unsubstituted sulfonamide group, 4-cyanophenyl group, and halogen atom. Further, as another example, the σ value described in Chem. Rev. 91, 165-195, 1991 (the disclosure of which is incorporated herein by reference) is 0. There are bigger ones.
上記の電子吸引性基のうち、 ァシル基、 アルキルォキシカルポニル基、 ァリ一 ルォキシカルポニル基、 置換または非置換のアミド基としては、 Xで表される有 機残基における置換基として例示されたァシル基、アルキルォキシカルポニル基、 ァリールォキシカルポニル基、 置換または非置換のアミド基と同様のものが挙げ ちれる。  Among the above-mentioned electron-withdrawing groups, as an acyl group, an alkyloxy carponyl group, an aryloxy carponyl group, and a substituted or unsubstituted amido group, exemplified as a substituent in the organic residue represented by X Examples thereof include the same as the substituted silyl group, alkyloxy carponyl group, aryloxy carponyl group, substituted or unsubstituted amido group.
アルキルスルホニル基としては、 メシル基、 ェチルスルホニル基、 プロピルス ルホニル基等が挙げられる。  Examples of the alkylsulfonyl group include a mesyl group, a methylsulfonyl group, a propylsulfonyl group and the like.
ァリールスルホニル基としては、 ベンゼンスルホニル基、 トルエンスルホニル 基等が挙げられる。  Examples of the arylsulfonyl group include benzenesulfonyl group, toluenesulfonyl group and the like.
ペルフルォロアルキル基としては、 トリフルォロメチル基、 ペンタフルォロェ チル基等が挙げられる。  Examples of the perfluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group.
ペルフルォロアルキルチオ基としては、 トリフルォロメチルチオ基、 ペンタフ ルォ口ェチルチオ基等が挙げられる。  The perfluoroalkylthio group includes a trifluoromethylthio group, a pentafluorothiolthio group and the like.
ペルフルォロアルキルカルボニル基としては、 トリフルォロアセチル基、 ペン 夕フルォロェチルカルポニル基等が挙げられる。  Examples of the perfluoroalkylcarbonyl group include a trifluoroacetyl group and a penfluorofluorethyl carponyl group.
置換または非置換のスルホンアミド基としては、 スルホンアミド基、 ジメチル アミノスルホニル基、 ジェチルアミノスルホニル基、 ジフエニルアミノスルホニ ル基等が挙げられる。 Examples of the substituted or unsubstituted sulfonamide group include sulfonamide group, dimethylaminosulfonyl group, getylaminosulfonyl group, and diphenylaminosulfone. And the like.
以上述べた R R2は、 互いに結合して環を形成していてもよいし、 R R2 が Xと結合して環を形成していてもよい。 ここで、 R1および Zまたは R2が置換 基を有する場合は、 それらの置換基同士が互いに結合を形成していてもよいし、 その置換基が と、 または Xの置換基と結合して環を形成していてもよい。 RR 2 described above may be bonded to each other to form a ring, or RR 2 may be bonded to X to form a ring. Here, when R 1 and Z or R 2 have a substituent, those substituents may form a bond with each other, and the substituent may be bonded to a substituent of or X or It may form a ring.
R1は、電子吸弓 I性基であることが好ましい。 これは、無機半導体吸着部位であ り、 かつ、 電荷注入部位であるビニルホスホン酸基に電子吸引基が結合している ことで、 ビエルホスホン酸基がより強い電子ァクセプ夕一基になるためである。 これにより、 無機半導体への効率的な電荷の注入が可能となる。 R 1 is preferably an electron-suction bow I-like group. This is because the electron withdrawing group is bonded to the vinyl phosphonic acid group which is an inorganic semiconductor adsorption site and the charge injection site, and thus the biphenyl phosphonic acid group becomes a stronger electron axepeption group. . This enables efficient charge injection to the inorganic semiconductor.
さらに R1は、電子吸引性基のなかでもシァノ基であることがより好ましい。 こ れは、 シァノ基が強い電子吸引性基であり、 安定性も高いためである。 Furthermore, among the electron-withdrawing groups, R 1 is more preferably a cyano group. This is because the cyano group is a strong electron withdrawing group and has high stability.
次に、 一般式 (1 ) 中の M M2について説明する。 Next, MM 2 in the general formula (1) will be described.
M1および M2は、それぞれ独立に、水素原子、置換または非置換のアルキル基、 置換または非置換のァリール基、 置換または非置換のシリル基、 または陽イオン を表す。 M 1 and M 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted silyl group, or a cation.
ここでいうアルキル基とは、 炭素数 1〜2 0の直鎖、 分岐鎖、 あるいは環式の 炭化水素基を表し、 これらの炭化水素基は、 不飽和結合を有していてもよい。 こ れらのアルキル基のうち、 好ましいものとしては、 メチル基、 ェチル基、 イソプ 口ピル基、 t—ブチル基、 ベンジル基等が挙げられる。  The term "alkyl group" as used herein refers to a linear, branched or cyclic hydrocarbon group having 1 to 20 carbon atoms, and these hydrocarbon groups may have an unsaturated bond. Among these alkyl groups, preferable ones include a methyl group, a methyl group, an isopropyl group, a t-butyl group, a benzyl group and the like.
ァリール基としては、 上記 Xで表される有機残基のうちの芳香族炭化水素残基 や、 フラン、 チォフェン、 ピロ一ル、 ォキサゾ一ル、 イソォキサゾール、 チアゾ ール、 イソチアゾ一ル、 イミダゾール、 ピラゾール、 フラザン、 ピリジン、 ピリ ダジン、 ピリミジン、 ピラジン、インドール、ベンゾフラン、ベンゾチォフェン、 キノリン、 カルバゾール、 ァクリジン、 キサンテン、 フエノチアジン、 フエノキ サジン等の複素芳香環基が挙げられる。 これらァリール基のうち好ましいものと しては、 フエニル基、 トリル基等が挙げられる。  Examples of the aryl group include aromatic hydrocarbon residues among the organic residues represented by the above X, furan, thiophen, pyrrolyl, oxazolyl, isooxazole, thiazole, isothiazolyl, imidazole and pyrazole And heteroaromatic ring groups such as furazan, pyridine, pyridazine, pyrimidine, pyrazine, indole, benzofuran, benzothiophene, quinoline, carbazole, acridine, xanthene, phenothiazine, phenoxazine and the like. Of these aryl groups, preferred are phenyl and tolyl.
シリル基としては、 アルキルシリル基、 ァリールシリル基等が挙げられ、 具体 的にはたとえば、. トリメチルシリル基、 トリェチルシリル基、 トリフエ二ルシリ ル基が挙げられる。 Examples of silyl groups include alkyl silyl groups and aryl silyl groups. Examples thereof include: .trimethylsilyl group, triethylsilyl group and trifenylsilyl group.
上記アルキル基、 ァリール基、 シリル基は、 任意に 1以上の置換基により置換 されていてもよく、 それらの置換基としては、 上述の Xへの置換基と同様のもの が挙げられる。  The alkyl group, aryl group and silyl group may be optionally substituted by one or more substituents, and examples of the substituent include the same as the substituents to X described above.
陽イオンとしては、 ホスホン酸と塩を形成する陽イオンであれば特に限定はさ れないが、 たとえば、 リチウム、 ナトリウム、 カリウム、 マグネシウム、 カルシ ゥム等の金属イオンや、 テトラプチルアンモニゥム、 ピリジニゥム、 イミダゾリ ゥム等の 4級アンモニゥムイオンが挙げられる。  The cation is not particularly limited as long as it forms a salt with phosphonic acid, and examples thereof include metal ions such as lithium, sodium, potassium, magnesium and calcium, tetraptyalmonium, There are quaternary ammonium ions such as pyridinium and imidazolium.
光電変換用増感色素を無機半導体に吸着させて使用する場合には、 M1, M2は 水素原子または 4級アンモニゥム塩であることが好ましいが、 M M2がこれら 以外であっても、 何ら問題なく使用することができる。 たとえば、 M1, M2がァ ルキル基ゃァリール基、シリル基等のホスホン酸エステルの形態であつてもよく、 ホスホン酸エステルを無機半導体に吸着させる場合には、 適当な触媒等を用いて 系中で加水分解をしながら吸着させることもできる。 When a sensitizing dye for photoelectric conversion is used by being adsorbed to an inorganic semiconductor, M 1 and M 2 are preferably a hydrogen atom or a quaternary ammonium salt, but even if MM 2 is other than these, It can be used without problems. For example, M 1 and M 2 may be in the form of a phosphonic acid ester such as an alkyl group or a silyl group, and when a phosphonic acid ester is adsorbed to an inorganic semiconductor, an appropriate catalyst or the like may be used. It can also be adsorbed while being hydrolyzed in the system.
一般式 (1 ) で表される化合物は、 二重結合を有するため、 シス体、 トランス 体などの構造異性体をとりうるが、 その立体構造は特に限定されず、 いずれも、 たとえば光電変換用増感色素として、 良好に使用することができる。 すなわち、 式(1 ) において、 Xと R2が入れ替わってもよく、 たとえば R1と R2の関係でみ れば、 シスでもトランスでも、 任意の幾何異性体を選択できる。 The compound represented by the general formula (1) has a double bond, and thus can take structural isomers such as cis form and trans form, but the steric structure is not particularly limited, and any of them is for example, for photoelectric conversion It can be used favorably as a sensitizing dye. That is, in the formula (1), X and R 2 may be interchanged. For example, in the relationship between R 1 and R 2 , arbitrary geometric isomers can be selected in either cis or trans.
一般式 (1 ) で表される化合物は、 たとえば、 以下のスキーム (1 ) に示すよ うな方法で合成することができる。  The compounds represented by the general formula (1) can be synthesized, for example, by a method as shown in the following scheme (1).
スキーム (1 ) Scheme (1)
Figure imgf000015_0001
スキーム (1 ) 中、 触媒としては、 ピぺリジン、 酢酸アンモニゥム等を用いる ことができるが、特にこれらに限定されず、たとえば、 Organic Reactions, 1 5巻、 第 2章、 1 9 6 7年(1 9 7 8年再版) (その開示内容は引用によりここに援用さ れる。) に記載の触媒を使用することができる。
Figure imgf000015_0001
In the scheme (1), as a catalyst, piperidine, ammonium acetate and the like can be used, but it is not particularly limited thereto. For example, Organic Reactions, Volume 15, Section 2, 196 7 ( The catalyst described in J.E., 1978, the disclosure of which is incorporated herein by reference, can be used.
スキーム (1 ) 中の溶媒としては、 エタノール、 テトラヒドロフラン等を用い ることができるが、特にこれらに限定されず、 Organic Reactions, 1 5巻、第 2章、 1 9 6 7年 (1 9 7 8年再版) (その開示内容は引用によりここに援用される。) に記載の溶媒を使用することができる。 反応が進行しにくい場合には、 溶媒を用 いず反応させることが有効な場合もある。  As a solvent in the scheme (1), ethanol, tetrahydrofuran and the like can be used, but it is not particularly limited thereto. Organic Reactions, Volume 15, Chapter 2, 196 7 (19 7 8 The solvents described in (Annual Reprint), the disclosure of which is incorporated herein by reference, may be used. If the reaction does not proceed well, it may be effective to use the reaction without using a solvent.
反応温度は、 通常、 室温でかまわないが、 必要に応じて加熱して反応させるこ ともできる。  The reaction temperature is usually room temperature, but may be heated for reaction as required.
M1と M2がともに水素原子である化合物を合成する場合は、 反応が進行しにく いことがあるので、 このような場合には、 M M2に、 水素原子のかわりに、 メ チル基、ェチル基等を導入して反応させ、得られた化合物を加水分解することで、 目的の化合物を得ることができる。 以下、本発明の光機能材料として用いることができる化合物の代表例を示すが、 本発明は、 何らこれらに限定されるものではない。 In the case where a compound in which M 1 and M 2 are both hydrogen atoms is synthesized, the reaction may be difficult to progress. In such a case, a methyl group may be substituted for the hydrogen atom in MM 2. The desired compound can be obtained by introducing and reacting an ethyl group or the like, and hydrolyzing the obtained compound. Hereinafter, representative examples of compounds that can be used as the optical functional material of the present invention will be shown, but the present invention is not limited to these.
まず、 下記一般式 ( 2 ) :  First, the following general formula (2):
Figure imgf000016_0001
Figure imgf000016_0001
( 2 )  (2)
で示される化合物例を表 1に示す。 表 1中、 M eはメチル基、 E tはェチル基、 1 P rはイソプロピル基、 P hはフエニル基、 DMAPh は 4 -ジメチルァミノフエ ニル基、 をそれぞれ表す。 また、 以下の表には、 各化合物の代表構造式として、 2重結合構造に起因するシス—トランス異性体の一部を示すが、 存在し得る幾何 異性体の全てが含まれている c Examples of compounds represented by are shown in Table 1. In Table 1, Me represents a methyl group, Et represents an ethyl group, 1 P r represents an isopropyl group, Ph represents a phenyl group, and DMAPh represents a 4-dimethylaminophenyl group. In addition, in the following table, as a representative structural formula of each compound, a part of cis-trans isomer resulting from a double bond structure is shown. C contains all of the isomers
(表 1 ) (table 1 )
:合物 R1 R2 R3 R4 M1 M2 : Compound R 1 R 2 R 3 R 4 M 1 M 2
1 CN H Me Me H H1 CN H Me Me H H
2 CN H Et Et H H
Figure imgf000017_0001
2 CN H Et Et HH
Figure imgf000017_0001
4 CN H Ph Ph H H 4 CN H Ph Ph H H
5 CN H p-tolyl p-tolyl H H5 CN H p-tolyl p-tolyl H H
6 CN H Me Me Et H6 CN H Me Me Et H
7 CN H Ph Ph Et H7 CN H Ph Ph Et H
8 CN H Me Me Et Et8 CN H Me Me Et Et
9 CN H Ph Ph Et Et9 CN H Ph Ph Et Et
1 0 CN H Me Me Si(CH3)3 Si(CH3)3 1 0 CN H Me Me Si (CH 3 ) 3 Si (CH 3 ) 3
1 1 CN H Ph Ph Si(CH3)3 Si(CH3)3 1 1 CN H Ph Ph Si (CH 3 ) 3 Si (CH 3 ) 3
1 2 CN H Me Me +N(C4H9)4 +N(C4H9)4 1 2 CN H Me Me + N (C 4 H 9 ) 4 + N (C 4 H 9 ) 4
1 3 CN H Ph Ph +N(C4H9)4 +N(C4H9)4 1 3 CN H Ph Ph + N (C 4 H 9 ) 4 + N (C 4 H 9 ) 4
1 4 CN H Me Me +N(C4H9)4 H1 4 CN H Me Me + N (C 4 H 9 ) 4 H
1 5 CN H Ph Ph +N(C4H9)4 H1 5 CN H Ph Ph + N (C 4 H 9 ) 4 H
1 6 CN H DMAPh DMAPh H H1 6 CN H DMAPh DMAPh H H
1 7 CN Me Me Me H H1 7 CN Me Me Me H H
1 8 CN CN Me Me H H1 8 CN CN Me Me H H
1 9 CN Ph Me Me H H1 9 CN Ph Me Me H H
2 0 COCH3 H Me Me H H2 0 COCH 3 H Me Me HH
2 1 COCH3 H Ph Ph H H2 1 COCH 3 H Ph Ph HH
2 2 S02Ph H Me Me H H2 2 S0 2 Ph H Me Me HH
2 3 S02Ph H Ph Ph H H 2 4 S02Me H Ph Ph H H2 3 S0 2 Ph H Ph Ph HH 2 4 S0 2 Me H Ph Ph HH
2 5 CONMe2 H Me Me H H2 5 CONMe 2 H Me Me HH
2 6 CONMe2 H Ph Ph H H2 6 CONMe 2 H Ph Ph HH
2 7 COCF3 H Ph Ph H H2 7 COCF 3 H Ph Ph HH
2 8 N02 H Ph Ph H H2 8 N0 2 H Ph Ph HH
2 9 Br H Ph Ph H H 次に、 下記一般式 (3 ) 2 9 Br H Ph Ph H H Next, the following general formula (3)
Figure imgf000018_0001
Figure imgf000018_0001
( 3 )  (3)
で示される化合物例を表 2に示す。 表 2中、 M e、 E t等の略語の意味は、 上記 表 1と同じである。 Examples of compounds represented by are shown in Table 2. The meanings of abbreviations such as Me and Et in Table 2 are the same as those in Table 1 above.
(表 2 ) (Table 2)
化合物 R1 R2 R3 R5 R6 M1 Compound R 1 R 2 R 3 R 5 R 6 M 1
3 0 CN H Me Me H H H H 3 1 CN H Ph Ph H H H H 3 2 CN H p-tolyl p-tolyl H H H H 3 3 CN H Ph Ph H H Et H 3 4 CN H Ph Ph H H Et Et 3 5 CN H Me Me H H Si(CH3)3 Si(CH3)3 3 6 CN H Me Me H H +N(C4H9)4 +N(C4H9)4 3 7 CN H Ph Ph H H +N(C4H9)4 +N(C4H9)4 3 8 CN H Ph Ph H H +N(C4H9)4 H 3 9 CN H DMAPh DMAPh H H H H 0 CN Me Me Me H H H H 1 CN CN Me Me H H H H 2 CN Ph Me Me H H H H 3 COCHs H Ph Ph H H H H 4 S02Ph H Ph Ph H H H H 5 CONMe2 H Me Me H H H H 6 S02Me H Ph Ph H H H H 7 CONMe2 H Ph Ph H H H H
Figure imgf000019_0001
3 0 CN H Me Me HHHH 3 1 CN H Ph Ph HHHH 3 2 CN H p-tolyl p-tolyl HHHH 3 3 CN H Ph Ph HH Et H 3 4 CN H Ph Ph HH Et Et 35 5 CN H Me Me HH Si (CH 3 ) 3 Si (CH 3 ) 3 3 6 CN H Me Me HH + N (C 4 H 9 ) 4 + N (C 4 H 9 ) 4 3 7 CN H Ph Ph H H + N (C 4 H) 9 ) 4 + N (C 4 H 9 ) 4 3 8 CN H Ph Ph HH + N (C 4 H 9 ) 4 H 3 9 CN H DMA Ph DMA H H HH 0 CN Me Me HHHH 1 CN CN Me Me HHHH 2 CN Ph Me Me HHHH 3 COCHs H Ph Ph HHHH 4 S0 2 Ph H Ph Ph HHHH 5 CONMe 2 H Me Me HHHH 6 S0 2 Me H Ph Ph HHHH 7 CONMe 2 H Ph Ph HHHH
Figure imgf000019_0001
9 N02 H Ph Ph H H H H 0 Br H Ph Ph H H H H 1 CN H Me Me CN H H H 2 CN H Ph Ph CN H H H 3 CN H Me Me H CN H H 4 CN H Ph Ph H CN H H さらに、上記一般式( 1 )で表される光機能材料のその他の例を、表 3に示す。 9 N0 2 H Ph Ph HHHH 0 Br H Ph H HHH 1 CN H Me Me CN HHH 2 CN H Ph Ph H H HH 3 CN H Me Me H CN HH 4 CN H Ph Ph H CN HH Furthermore, the above general formula (1 Other examples of the optical functional material represented by) are shown in Table 3.
(表 3) (Table 3)
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000020_0001
Figure imgf000021_0001
61 61
■9Ζ000請 zdf/ェ:) d £8 90請 OAV
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
■ 9 Ζ 000 z zdf /: :) d £ 8 90 O OAV
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
PZ  PZ
L9Z000/ 00ZdT/13d £8 90請 OAV
Figure imgf000027_0001
L9Z000 / 00ZdT / 13d £ 8 90 Bought OAV
Figure imgf000027_0001
ζΖ  moth
L9Z000/t00Zdr/lDd £8 90請 OAV
Figure imgf000028_0001
L9Z000 / t00Zdr / lDd £ 8 90 Bought OAV
Figure imgf000028_0001
 9 ships
L9Z000/ 00ZdT/13d £8 90請 OAV L9Z000 / 00ZdT / 13d £ 8 90 Bought OAV
Figure imgf000029_0001
Figure imgf000029_0001
LZ LZ
■9Ζ000請 Zdf/ェ:) d £8 90請 OAV
Figure imgf000030_0001
■ 9 Ζ 000 Z Zdf /: :) d £ 8 90 O OAV
Figure imgf000030_0001
83 83
■9Z000請 Zdf/ェ:) d £8 90請 OAV
Figure imgf000031_0001
■ 9 Z 000 Beg Zdf /: :) d £ 8 90 Beg OAV
Figure imgf000031_0001
6Z  6Z
L9Z000/ 00ZdT/13d £8 90請 OAV L9Z000 / 00ZdT / 13d £ 8 90 Bought OAV
Figure imgf000032_0001
Figure imgf000032_0001
οε  οε
L9Z000/ 00ZdT/13d £8 90請 OAV
Figure imgf000033_0001
■9Z000請 Zdf/ェ:) d £8 90請 OAV
Figure imgf000034_0001
L9Z000 / 00ZdT / 13d £ 8 90 Bought OAV
Figure imgf000033_0001
■ 9 Z 000 Beg Zdf /: :) d £ 8 90 Beg OAV
Figure imgf000034_0001
L9Z000/ 00ZdT/13d £8 90請 OAV
Figure imgf000035_0001
Figure imgf000036_0001
本発明に係る光電変換用増感色素は、 上記の本発明に係る光機能材料の 1種以 上を含むものであるが、 一般式 (1 ) 等の、 ビニルホスホン酸基を有する光機能 材料がカバーしきれない領域の太陽光吸収を補うために、 1種以上の他の (すな わち、 ビニルホスホン酸基を有していない) 光機能材料を併せて含むことができ る。 つまり、 一般式 (1 ) 等で表される増感色素を単独で、 または複数種を組み 合わせて用いるほか、 1種以上の他の増感色素と組み合わせて用いることができ る。 本発明に係る光電変換用増感色素を他の増感色素と組み合わせる場合の両者 の配合比は、 特に限定はされないが、 本発明に係る光電変換用増感色素 1モルに 対し、 他の増感色素を 0 . 0 1〜1 0 0モルとすることが好ましく、 0. 1〜1 0モルとすることがより好ましい。
L9Z000 / 00ZdT / 13d £ 8 90 Bought OAV
Figure imgf000035_0001
Figure imgf000036_0001
The sensitizing dye for photoelectric conversion according to the present invention includes one or more of the above-described optical functional materials according to the present invention, and the photofunctional material having a vinyl phosphonic acid group such as the general formula (1) has a cover One or more other light functional materials (that is, having no vinyl phosphonic acid group) can be included together to compensate for the sun absorption in the unsettled area. That is, the sensitizing dyes represented by the general formula (1) or the like may be used alone or in combination of two or more, and may be used in combination with one or more other sensitizing dyes. Although there is no particular limitation on the blending ratio of the sensitizing dye for photoelectric conversion according to the present invention in combination with other sensitizing dyes, there is no particular limitation. It is preferable to use 0.1 to 100 mol of a dye, and it is more preferable to use 0.1 to 10 mol.
他の増感色素としては、 たとえば、 ァゾ系色素、 キナクリドン系色素、 ジケト ピロロピロール系色素、 スクヮリリウム系色素、 シァニン系色素、 メロシアニン 系色素、 トリフエニルメタン系色素、 キサンテン系色素、 ポルフィリン系色素、 クロロフィル系色素、ルテニウム錯体系色素、インジゴ系色素、ペリレン系色素、 ジォキサジン系色素、 アントラキノン系色素、 フタロシアニン系色素、 ナフタ口 シァニン系色素、 およびそれらの誘導体が挙げられる。  Other sensitizing dyes include, for example, azo dyes, quinacridone dyes, diketopyrrolopyrrole dyes, squarylium dyes, cyanine dyes, merocyanine dyes, trifenylmethane dyes, xanthene dyes, porphyrin dyes Chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, naphtha port cyanine dyes, and derivatives thereof.
これらの増感色素は、 その構造中に、 無機半導体表面に連結することができる ような官能基を有していることが望ましい。 その理由としては、 光励起された色 素の励起電子を無機半導体の伝導帯に迅速に伝えることができることが挙げら れる。 ここでいう官能基としては、 力ルポキシル基、 ヒドロキシ基、 ヒドロキサ ム酸基、スルホン酸基、ホスホン酸基、およびホスフィン酸基等が挙げられるが、 無機半導体表面に増感色素を連結し、 色素の励起電子を無機半導体の伝導帯に迅 速に伝える役割を有する置換基であれば、 これらに限定はされない。 以下に、 上述の本発明に係る光電変換用増感色素を用いて得られる本発明に係 る光電変換材料、 光電変換電極、 および光電変換セルについて、 増感色素以外の 材料を含めて説明する。 It is desirable that these sensitizing dyes have a functional group capable of being linked to the surface of the inorganic semiconductor in their structure. The reason is that the excited electrons of the photoexcited color can be rapidly transmitted to the conduction band of the inorganic semiconductor. Be Examples of the functional group as mentioned herein include a sulfoxyl group, a hydroxy group, a hydroxamic acid group, a sulfonic acid group, a phosphonic acid group, and a phosphinic acid group, and the like. The substituent is not limited to these, as long as it is a substituent having a role of rapidly transmitting excited electrons of the metal to the conduction band of the inorganic semiconductor. Hereinafter, a photoelectric conversion material, a photoelectric conversion electrode, and a photoelectric conversion cell according to the present invention obtained using the above-described sensitizing dye for photoelectric conversion according to the present invention will be described including materials other than the sensitizing dye. .
1 . 光電変換材料 1. Photoelectric conversion material
上述の光電変換用増感色素を、 連結基を介して無機半導体表面に連結すること によって、 無機半導体が増感された光電変換材料、 すなわち、 無機半導体と、 こ の無機半導体に連結された増感色素とを含む光電変換材料が得られる。 ここで、 連結とは、 無機半導体と増感色素が化学的あるいは物理的に結合していることを 意味し、 たとえば両者が吸着により結合していることも含んでいる。 また、 本明 細書では、 連結基、 アンカー基、 P及着基は、 いずれも、 同等の機能を有する基を 表す語として用いられている。  By coupling the above-described sensitizing dye for photoelectric conversion to the surface of the inorganic semiconductor through the linking group, the photoelectric conversion material in which the inorganic semiconductor is sensitized, that is, the inorganic semiconductor and the increased number of linked inorganic semiconductors. A photoelectric conversion material containing a dye is obtained. Here, the term "linking" means that the inorganic semiconductor and the sensitizing dye are chemically or physically bonded, and includes, for example, that both are bonded by adsorption. Further, in the present specification, each of a linking group, an anchor group, P and an attachment group is used as a term indicating a group having an equivalent function.
(無機半導体)  (Inorganic semiconductor)
無機半導体は一般に、 一部の領域の光に対して光電変換機能を有しているが、 この表面に増感色素を連結することによって、 可視光および Zまたは近赤外光領 域までの光電変換が可能となる。 無機半導体の材質としては、 主に無機酸化物が 用いられるが、 増感色素を連結することによって光電変換機能を有する無機半導 体であれば、 これに限らない。  Inorganic semiconductors generally have a photoelectric conversion function for light in a part of the region, but by connecting a sensitizing dye to this surface, the photoelectric conversion to visible light and Z or near infrared light regions is possible. Conversion is possible. As a material of the inorganic semiconductor, although an inorganic oxide is mainly used, it is not limited to this as long as it is an inorganic semiconductor having a photoelectric conversion function by linking sensitizing dyes.
たとえば、無機酸化物ではない無機半導体としては、シリコン、ゲルマニウム、 III族 - V族系半導体、 金属カルコゲニド等が挙げられる。  For example, as an inorganic semiconductor which is not an inorganic oxide, silicon, germanium, a group III-V group semiconductor, a metal chalcogenide and the like can be mentioned.
無機酸化物半導体としては、 酸化チタン、 酸化スズ、 酸化タングステン、 酸化 亜鉛、 酸化インジウム、 酸化ニオブ、 酸化鉄、 酸化ニッケル、 酸ィヒコバルト、 酸 化ストロンチウム、 酸化タンタル、 酸化アンチモン、 酸化ランタノイド、 酸化ィ ットリウム、 酸化バナジウム等を挙げることができるが、 表面に増感色素を連結 することによって可視光および/または近赤外光領域までの光電変換が可能と なるものであれば、 これらに限定されない。 無機酸化物半導体の表面が増感色素 によって増感されるためには、 無機酸化物の伝導帯が増感色素の光励起順位から 電子を受け取りやすい位置に存在することが望ましい。 このため、 無機酸化物半 導体のなかでも、 酸化チタン、 酸化スズ、 酸化亜鉛、 酸化ニオブ等が特に好まし く用いられる。 さらに、 価格や環境衛生性等の点からは、 酸化チタンが特に好ま しく用いられる。 As an inorganic oxide semiconductor, titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, iron oxide, nickel oxide, cobalt oxide, cobalt oxide, strontium oxide, tantalum oxide, antimony oxide, lanthanide oxide, oxide oxide It is possible to cite thorium, vanadium oxide and the like, but it is not limited to these as long as photoelectric conversion to the visible light and / or near infrared light region becomes possible by connecting a sensitizing dye to the surface. In order for the surface of the inorganic oxide semiconductor to be sensitized by the sensitizing dye, it is desirable that the conduction band of the inorganic oxide be present at a position where it is easy to receive electrons from the photoexcitation order of the sensitizing dye. Thus, among the inorganic oxide semiconductors, titanium oxide, tin oxide, zinc oxide, niobium oxide and the like are particularly preferably used. Furthermore, titanium oxide is particularly preferably used in terms of price and environmental hygiene.
これらの無機半導体は、 上述したなかから一種を用いるほか、 複数種を選択し て組み合わせて用いることもできる。  These inorganic semiconductors may be used alone or in combination of two or more of them.
(無機半導体の多孔質化)  (Pore formation of inorganic semiconductor)
上記の無機半導体は、 多孔質化して、 無機半導体多孔質体として使用すること が好ましい。 無機半導体多孔質体は、 多量の増感色素をその表面に連結し、 高効 率な光電変換能力を有することができるように、 多孔質化による広い表面積を有 しているからである。 多孔質化の方法としては、 粒子径が数ナノメートルから数 十ナノメートルの、 酸化チタン等の無機酸化物粒子をべ一スト化した後に焼結す る方法が広く知られているが、 多孔質化して広い表面積が得られる方法であれば これに限られない。  The above inorganic semiconductor is preferably made porous and used as an inorganic semiconductor porous body. This is because the inorganic semiconductor porous body has a large surface area by making it porous so that a large amount of sensitizing dye can be linked to its surface, and it can have highly efficient photoelectric conversion ability. As a method for making porous, there is widely known a method in which inorganic oxide particles such as titanium oxide having a particle diameter of several nanometers to several tens of nanometers are sintered and then sintered. The method is not limited to this as long as it is a method of obtaining a large surface area by quality.
無機酸化物粒子のペースト化方法、 無機半導体多孔質体の好ましい膜厚および 無機半導体多孔質体表面への増感色素の連結方法等については、 後述する。  The method of forming inorganic oxide particles into paste, the preferable thickness of the inorganic semiconductor porous body, the method of connecting the sensitizing dye to the surface of the inorganic semiconductor porous body, and the like will be described later.
2 . 光電変換電極 2. Photoelectric conversion electrode
上記光電変換材料を透明電極上に積層することによって、 光電変換電極、 すな わち、 透明電極とこの透明電極上に積層された光電変換材料を含む光電変換電極 が形成される。 透明電極は、 通常、 透明基材の表面に形成される導電層であり、 つまり、 導電性表面を有する透明基材の導電面を意味する。  By laminating the photoelectric conversion material on a transparent electrode, a photoelectric conversion electrode, that is, a photoelectric conversion electrode including a transparent electrode and a photoelectric conversion material laminated on the transparent electrode is formed. A transparent electrode is usually a conductive layer formed on the surface of a transparent substrate, that is, a conductive surface of a transparent substrate having a conductive surface.
(導電性表面) 用いられる導電性表面 (透明電極) としては、 太陽光の可視から近赤外領域に 対して光吸収が少ない導電材料なら特に限定されないが、 I T〇 (インジウム一 スズ酸化物)、 酸化スズ (フッ素等がド一プされたものを含む)、 酸化亜鉛等の導 電性の良好な金属酸化物が好適である。 基板 (導電性表面を有する透明基材) の シート抵抗 (表面抵抗) はできるだけ低いほうが好ましく、 具体的には 2 0 Ωノ □ (Ω/sq.) 以下であることが好ましいので、 導電層はそれに応じた厚みを有し ていることが好ましい。 (Conductive surface) The conductive surface (transparent electrode) to be used is not particularly limited as long as it is a conductive material which absorbs less light in the visible to near-infrared region of sunlight, but IT〇 (indium monotin oxide), tin oxide (fluorine Metal oxides with good conductivity such as zinc oxide, zinc oxide and the like are preferable. Since the sheet resistance (surface resistance) of the substrate (transparent substrate having a conductive surface) is preferably as low as possible, specifically, 20 Ω · □ (Ω / sq.) Or less, the conductive layer is preferably It is preferable to have a thickness corresponding to that.
(透明基材)  (Transparent substrate)
用いられる透明基材としては、 太陽光の可視から近赤外領域に対して光吸収が 少ない材料であれば特に限定されない。 石英、 並ガラス、 Β Κ 7、 鉛ガラス等の ガラス基材;ポリエチレンテレフタレ一ト、 ポリエチレンナフタレート、 ポリイ ミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビエルプチラート、 ポリプロピレン、テトラァセチルセルロース、シンジォク夕チックポリスチレン、 ポリフエ二レンスルフイド、 ポリアリレート、 ポリスルフォン、 ポリエステルス ルフォン、 ポリエーテルイミド、 環状ポリオレフイン、 ブロム化フエノキシ、 塩 化ピニル等の樹脂基材等を用いることができる。  The transparent substrate to be used is not particularly limited as long as it is a material that absorbs less light in the visible to near infrared region of sunlight. Glass base materials such as quartz, plain glass, glass 7, lead glass, etc .; polyethylene terephthalate, polyethylene naphthalate, polyimid, polyester, polyethylene, polycarbonate, polyvinyl peptate, polypropylene, tetraacetyl cellulose, syndioxide For example, resin base materials such as tic polystyrene, polyphenyl rusulfide, polyarylate, polysulfone, polyester sulfone, polyether imide, cyclic polyolefin, brominated fenoxy, chlorinated pinyl and the like can be used.
(積層方法)  (Lamination method)
導電性表面を有する透明基材の導電面に光電変換材料を積層する方法として は、 たとえば、 導電面にペースト化した無機酸化物粒子を塗布後、 乾燥または焼 結させて無機酸化物半導体多孔質体を形成し、 これを透明基材ごと、 増感色素を 溶解させた溶液中に浸すことにより、 無機酸化物半導体の多孔質表面と増感色素 のアンカー基の親和性を利用して、 増感色素をその多孔質表面に結合させる方法 が、 一般的方法として挙げられるが、 この方法に限定されることはない。  As a method of laminating a photoelectric conversion material on the conductive surface of a transparent base material having a conductive surface, for example, after applying inorganic oxide particles pasted on the conductive surface, it is dried or sintered to obtain an inorganic oxide semiconductor porous material. By forming a body and immersing it in a solution in which the sensitizing dye is dissolved, per each transparent substrate, to utilize the affinity between the porous surface of the inorganic oxide semiconductor and the anchor group of the sensitizing dye to increase Although a method of binding a dye to its porous surface can be mentioned as a general method, it is not limited to this method.
無機酸ィヒ物粒子をべ一スト化させるには、 無機酸化物粒子を水または適当な有 機溶剤中に分散させればよい。 均質で表面積が大きい無機多孔質体として積層さ せるには、 分散性の良いペーストを調製することが大切なので、 必要に応じて、 硝酸ゃァセチルアセトン等の酸やポリエチレングリコール、 トリトン X— 1 0 0 等の分散剤をペースト成分に混合し、 ペイントシェーカー等を用いてペースト化 することが好ましい。 The inorganic oxide particles may be dispersed in water or an appropriate organic solvent in order to pasteurize the inorganic oxide particles. It is important to prepare a paste with good dispersibility to be laminated as a homogeneous, large surface area inorganic porous material, so if necessary, an acid such as nitrate, acetylacetone, polyethylene glycol, Triton X-1 0 0 And the like are preferably mixed with the paste component and made into a paste using a paint shaker or the like.
ペーストを透明基材の導電面に塗布する方法としては、 スピンコ一夕一による 塗布方法やスクリーン印刷法、 スキージを用いた塗布方法、 ディップ法、 吹き付 け法、 口一ラー法等が用いられる。 塗布された無機酸化物ペーストは、 乾燥また は焼成によりペースト中の揮発成分が除去されて、 透明基材の導電面上に、 無機 酸化物半導体多孔質体を形成する。 乾燥または焼成の条件としては、 たとえば 4 0 0〜 5 0 0 °Cの温度で 3 0分〜 1時間程度の熱エネルギーを与える方法が一 般的であるが、 透明基材の導電面に密着性を有し、 太陽光照射時に良好な起電力 が得られる乾燥または焼成方法である限り、 これに限定されることはない。 増感色素を溶解させた溶液を作るためには、 溶剤として、 エタノール、 ベンジ ルアルコールなどのアルコール系溶剤;ァセ卜二トリル、 プロピオ二卜リルなど の二トリル系溶剤;クロ口ホルム、 ジクロロメタン、 クロ口ベンゼン等のハロゲ ン系溶剤;ジェチルエーテル、 テトラヒドロフラン等のエーテル系溶剤;酢酸ェ チル、 酢酸ブチル等のエステル系溶剤;アセトン、 メチルェチルケトン、 シクロ へキサノン等のケトン系溶剤;炭酸ジェチル、 炭酸プロピレン等の炭酸エステル 系溶剤;へキサン、 オクタン、 ベンゼン、 トルエン等の炭化水素系溶剤;ジメチ ルホルムアミド、 ジメチルァセトアミド、 ジメチルスルホキシド、 1 , 3 -ジメチ ルイミダゾリノン、 Nメチルピロリドン、 水等を用いることができるが、 これら に限られない。 溶液の濃度は、 特に限定はされないが、 0 . 0 1〜1 0 mm o l /L程度であることが好ましい。  As a method of applying the paste to the conductive surface of the transparent substrate, a coating method by spin coating, a screen printing method, a coating method using a squeegee, a dipping method, a spraying method, a coating method, etc. are used. . The applied inorganic oxide paste is dried or fired to remove volatile components in the paste, thereby forming an inorganic oxide semiconductor porous body on the conductive surface of the transparent substrate. As a condition of drying or baking, for example, a method of giving thermal energy of about 30 minutes to 1 hour at a temperature of 40.degree. To 500.degree. C., for example, is generally used. It is not limited to this as long as it is a drying or baking method that has good properties and good electromotive force can be obtained when it is irradiated with sunlight. In order to make a solution in which the sensitizing dye is dissolved, an alcohol solvent such as ethanol and benzyl alcohol as a solvent; a nitrile solvent such as acetoditril and propiolodiuril; Halogen solvents such as benzene in the mouth; ether solvents such as jetyl ether and tetrahydrofuran; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone; Carbonate solvents such as jetyl carbonate and propylene carbonate; Hydrocarbon solvents such as hexane, octane, benzene and toluene; dimethylformamide, dimethylacetoamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methyl Pyrrolidone, water, etc. can be used, but only I can not. The concentration of the solution is preferably, but not limited to, about 0.01 to 10 mm o l / L.
増感色素を溶解させた溶液中への無機半導体多孔質体の浸漬条件は、 特に限定 はされず、 望ましい光電変換効率が得られるように適宜設定すればよいが、 一般 に、 1〜6 0時間程度、 室温〜 8 0 °C程度であることが好ましい。  The conditions for immersing the inorganic semiconductor porous body in the solution in which the sensitizing dye is dissolved are not particularly limited, and may be suitably set so as to obtain desired photoelectric conversion efficiency. It is preferable that the temperature be about room temperature to about 80 ° C.
透明基材の導電面上に形成される無機半導体多孔質体の膜厚は、 0 . 5〜2 0 0 m程度であることが望ましい。 膜厚がこの範囲未満であると、 有効な変換効 率が得られない恐れがある。 一方、 膜厚がこの範囲より厚い場合は、 成膜時に割 れゃ剥がれが生じるなど、 膜の作成が困難になるとともに、 無機半導体多孔質体 表層と導電面との距離が長くなるために発生電荷が導電面に有効に伝えられな くなつて、 良好な変換効率が得られにくくなる恐れがある。 3 . 光電変換セル The film thickness of the inorganic semiconductor porous body formed on the conductive surface of the transparent substrate is desirably about 0.5 to 20 m. If the film thickness is less than this range, effective conversion efficiency may not be obtained. On the other hand, if the film thickness is thicker than this range, As a result, it becomes difficult to form a film, for example, peeling occurs, and the distance between the surface layer of the inorganic semiconductor porous body and the conductive surface becomes long, so that the generated charges can not be effectively transmitted to the conductive surface. Conversion efficiency may be difficult to obtain. 3. Photoelectric conversion cell
以上のようにして得られる光電変換電極を、 電解質層を介して導電性対極を組 み合わせることによって光電変換セル、すなわち、光電変換電極と、電解質層と、 導電性対極とを含む光電変換セルを形成することができる。 電解質層は、電解質、媒体、および添加物を含んで構成されることが好ましい。 ここで、 電解質としては、 1 2とヨウ化物 (例として L i I、 N a I、 K I、 C s I、 M g I 2、 C a I 2、 C u I、 テトラアルキルアンモニゥムョ一ダイド、 ピ リジニゥムョーダイド、 イミダゾリウムョーダイド等) の混合物、 B r 2と臭化 物 (例として L i B r等) の混合物、 有機溶融塩化合物等を用いることができる が、 この限りではない。 ここでいう有機溶融塩化合物とは、 有機カチオンと無機 または有機ァニオンからなるイオン対化合物であって、 融点が室温以下であるも のを指す。 A photoelectric conversion cell, that is, a photoelectric conversion cell including a photoelectric conversion electrode, an electrolyte layer, and a conductive counter electrode by combining the photoelectric counter electrode obtained as described above with the conductive counter electrode through the electrolyte layer. Can be formed. The electrolyte layer preferably comprises an electrolyte, a medium, and an additive. Here, as the electrolyte, 1 2 and L i I as iodide (example, N a I, KI, C s I, M g I 2, C a I 2, C u I, tetraalkyl ammonium Niu Muyo one iodide A mixture of pyridin muidoide, imidazolium iodide and the like, a mixture of B r 2 and a bromide (eg, L i B r as an example), an organic molten salt compound, etc. Not as long. The term "organic molten salt compound" as used herein refers to an ion pair compound consisting of an organic cation and an inorganic or organic anion and having a melting point of room temperature or less.
具体的に有機溶融塩化合物を構成する有機カチオンとしては、 芳香族系カチォ ン類として、 たとえば、 N—メチルー N ' —ェチルイミダゾリウムカチオン、 N ーメチルー N, —n—プロピルイミダゾリウムカチオン、 N—メチル— N ' — n —へキシルイミダゾリゥムカチオン等の N—アルキル _ N ' 一アルキルィミダゾ リウムカチオン類; N—へキシルピリジニゥムカチオン、 N—ブチルピリジニゥ ムカチオン等の N—アルキルピリジニゥムカチオン類が挙げられる。 脂肪族カチ オン類として、 N, N, N—トリメチルー N—プロピルアンモニゥムカチオン等 の脂肪族系カチオン類、 N, N—メチルピロリジニゥム等の環状脂肪族カチオン 類が挙げられる。  Specifically, as the organic cation constituting the organic molten salt compound, examples of aromatic cations include N-methyl-N'-ethylimidazolium cation, N-methyl-N, -n-propylimidazolium cation, N —Methyl—N′—n—Hexylimidazolium cation and other N-alkyl N′-alkyldiimidazolium cations; N—Hexyl pyridinium cation, N—Butyl pyridinium cation and other N-alkyl pyridinium And mu cations. Aliphatic cations include aliphatic cations such as N, N, N-trimethyl-N-propyl ammonium cations and cyclic aliphatic cations such as N, N-methyl pyrrolidinium.
有機溶融塩化合物を構成する無機または有機ァニオンとしては、 たとえば、 塩 化物イオン、 臭化物イオン、 ヨウ化物イオン等のハロゲン化物イオン、 六フッ化 リンイオン、 四フッ化ホウ素イオン、 三フッ化メタンスルホン酸塩、 過塩素酸ィ オン、 次塩素酸イオン、 塩素酸イオン、 硫酸イオン、 リン酸イオン等の無機ァニ オン類; ビス (トリフロロメチルスルホニル) イミド等のアミド、 イミド系ァ二 オン類が挙げられる。 As an inorganic or organic anion which comprises an organic molten salt compound, For example, salt Halide ions such as fluoride ion, bromide ion and iodide ion, phosphorus hexafluoride ion, boron tetrafluoride ion, methane trifluoride fluoride, perchlorate ion, hypochlorite ion, chlorate ion, sulfuric acid Inorganic anions such as ion and phosphate ion; Amide such as bis (trifluoromethylsulfonyl) imide and imido type anions.
有機溶融塩のその他の例としては、 Inorganic Chemistry, 3 5巻、 1 1 6 8〜1 1 7 8頁、 1 9 9 6年 (その開示内容は引用によりここに援用される。) に記載 のものが挙げられる。  Other examples of the organic molten salt are described in Inorganic Chemistry, Vol. 35, pp. 1168 to pp. 179, the disclosure of which is incorporated herein by reference. The thing is mentioned.
以上に挙げたヨウ化物、 臭化物等は、 単独で、 または複数種を組み合わせて用 いることができる。 なかでも、 I 2とヨウ化物の組み合わせ、 たとえば I 2と L i I、 ピリジニゥムョ一ダイド、 またはイミダゾリウムョ一ダイド等を混合した電 解質が好ましく用いられるが、 これらに限定されることはない。 The above-mentioned iodides, bromides and the like can be used alone or in combination of two or more. Among them, an electrolyte obtained by mixing a combination of I 2 and an iodide, for example, I 2 and L i I, pyridinium iodide, or imidazolium iodide is preferably used, but is not limited thereto.
好ましい電解質濃度は、 媒体中に 1 2が 0 . 0 1〜0 . 5 Mであり、 ヨウ化物 および Zまたは臭化物等 (複数種の場合はそれらの混合物) が 0 . 1〜1 5 M以 下である。 Preferred electrolyte concentration is 1 2 0 in the medium. 0 1-0. A 5 M, iodides and Z or bromide and the like (in the case of more mixtures thereof) is 0. 1 to 1 5 M hereinafter It is.
電解質層に用いられる媒体は、 良好なイオン伝導性を発現できる化合物である ことが望ましい。 液状の媒体としては、 ジォキサン、 ジェチルェ一テルなどのェ 一テル化合物;エチレンダリコールジアルキルエーテル、 プロピレンダリコール ジアルキルェ一テル、 ポリエチレングリコールジアルキルエーテル、 ポリプロピ レングリコールジアルキルエーテルなどの鎖状エーテル類;メタノール、 ェタノ ール、 エチレングリコールモノアルキルエーテル、 プロピレングリコ一ルモノア ルキルエーテル、 ポリエチレングリコールモノアルキルェ一テル、 ポリプロピレ ングリコールモノアルキルエーテルなどのアルコール類;エチレングリコール、 プロピレングリコール、 ポリエチレングリコール、 ポリプロピレングリコール、 グリセリンなどの多価アルコール類;ァセトニトリル、 ダル夕ロジェトリル、 メ トキシァセトニトリル、 プロピオ二トリル、 ベンゾニトリルなどの二トリル化合 物;エチレンカーボネート、 プロピレン力一ポネートなどの力一ポネート化合 物; 3—メチルー 2—ォキサゾリジノンなどの複素環化合物;ジメチルスルホキ シド、 スルホランなど非プロトン極性物質、 水などを用いることができる。 これ らは単独で、 または複数種を組み合わせて用いられる。 The medium used for the electrolyte layer is preferably a compound that can exhibit good ion conductivity. Examples of liquid media include ether compounds such as dioxan and jetyl ether; ethylene daryl dialkyl ethers, propylene daryl dialkyl ethers, polyethylene glycol dialkyl ethers, linear ethers such as polypropylene glycol dialkyl ethers; methanol, Alcohols such as ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc .; ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin etc. Polyhydric alcohols; Acetonitrile, Darutur rogetril, Metexia setonitri , Propionic nitrile, nitrile compounds such as benzonitrile, ethylene carbonate, forces one Poneto compounds such as propylene force one Poneto Heterocyclic compounds such as 3-methyl-2-oxazolidinone; non-proton polar substances such as dimethyl sulfoxide, sulfolane, water, etc. can be used. These may be used alone or in combination of two or more.
固体状 (ゲル状を含む) の媒体を用いる目的で、 液状媒体にポリマ一を含ませ ることもできる。 この場合、 ポリアクリロニトリル、 ポリフッ化ビニリデン等の ポリマーを上記液状媒体中に添加したり、 エチレン性不飽和龛を有した多官能性 モノマーを上記液状媒体中で重合させたりして、 媒体を固体状にすることができ る。  In order to use a solid (including gel) medium, the liquid medium can also contain a polymer. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the liquid medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the liquid medium to form a solid medium. Can be
電解質層としてはこの他、 C u l、 C u S C N (これらの化合物は液状媒体を 必要としない P型半導体であり電解質として作用する。) 等や Nature, 3 9 5巻、 5 8 3〜5 8 5頁 (1 9 9 8年 1 0月 8日) (その開示内容は引用によりここに 援用される。) 記載の 2, 2 ', 7 , 7 ' -テトラキス (Ν, Ν -ジ - p -メトキシフエ ニルァミン) - 9, 9 ' -スピロピフルオレンのような正孔輸送材料を用いること ができる。  As the electrolyte layer, Cul, Cu SCN (these compounds are P-type semiconductors that do not require a liquid medium and act as electrolytes), etc., Nature, Volume 95, 583-5 8 5 pages (19.98.1 Oct. 08) (the disclosure of which is incorporated herein by reference). 2,2 ', 7,7'-tetrakis (Ν, Ν-di-p--) as described Hole transport materials such as methoxyphenylamine) -9,9'-spiropifluorene can be used.
電解質層には、 光電変換セルの耐久性や電気的出力を向上させることを目的と して各種添加物を加えることもできる。 たとえば、 耐久性向上を目的としてヨウ 化マグネシウム等の無機塩類を添加してもよいし、 出力向上を目的として t_プチ ルピリジン、 2-ピコリン、 2, 6-ルチジン等のアミン類;デォキシコール酸等のス テロイド類;グルコース、 ダルコサミン、 グルクロン酸等の単糖類およびそれら の糖アルコール類;マルトース等の二糖類;ラフィノース等の直鎖状オリゴ糖 類;シクロデキストリン等の環状オリゴ糖類;ラクトオリゴ糖等の加水分解オリ ゴ糖類、 を添加することもできる。  Various additives may be added to the electrolyte layer for the purpose of improving the durability and the electrical output of the photoelectric conversion cell. For example, inorganic salts such as magnesium iodide may be added for the purpose of improving durability, or amines such as t_butylpyridine, 2-picoline, 2,6-lutidine, etc. for the purpose of improving output; deoxycholic acid, etc. Monosaccharides such as glucose, darcosamine, glucuronic acid and their sugar alcohols; disaccharides such as maltose; linear oligosaccharides such as raffinose; cyclic oligosaccharides such as cyclodextrin; Hydrolyzed oligosaccharides can also be added.
これら添加剤と上述の増感色素を併用することで、 本発明の効果をより効果的 に引き出すことができる。  By combining these additives with the sensitizing dyes described above, the effects of the present invention can be more effectively elicited.
形成される電解質層の厚みは、 特に限定されないが、 導電性対極と色素の吸着 した無機半導体層とが直接接触しないような最小の厚みとすることが好ましい。 具体的には、 0 . 1〜: L 0 0 m程度であることが好ましい。 (導電性対極) The thickness of the electrolyte layer to be formed is not particularly limited, but it is preferable that the thickness be such that the conductive counter electrode is not in direct contact with the inorganic semiconductor layer to which the dye is adsorbed. Specifically, it is preferably about 0.1 to about L 00 m. (Conductive counter electrode)
導電性対極は、 光電変換セルの正極として機能するものである。 対極に用いら れる導電性の材料としては、金属(白金、金、 銀、銅、 アルミニウム、 ロジウム、 インジウム等)、 金属酸化物 (I TO (インジウム-スズ酸化物)、 酸化スズ (フ ッ素等がド一プされた物を含む)、 酸化亜鉛等)、 または炭素等が挙げられる。 対 極の膜厚は、特に制限はないが、 5 nm以上 1 0 m以下であることが好ましい。  The conductive counter electrode functions as the positive electrode of the photoelectric conversion cell. Examples of conductive materials used for the counter electrode include metals (platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxides (ITO (indium-tin oxide), tin oxide (fluorine, etc.) Etc.), zinc oxide etc.), carbon etc. may be mentioned. The film thickness of the counter electrode is not particularly limited, but is preferably 5 nm or more and 10 m or less.
(組み立て方)  (How to assemble)
上記光電変換電極と導電性対極を、 電解質層を介して組み合わせることによつ て、 光電変換セルを形成する。 必要に応じて、 電解質層の漏れや揮発を防ぐため に、光電変換セルの周囲に封止を行う。封止には、熱可塑性樹脂、光硬化性樹脂、 ガラスフリット等を封止材料として用いることができる。 光電変換セルは、 必要 に応じて、 小面積の光電変換セルを連結させて作ることができる。 たとえば、 光 電変換セルを直列に組み合わせることによって、 起電圧を高くすることができる。 実施例  A photoelectric conversion cell is formed by combining the photoelectric conversion electrode and the conductive counter electrode through the electrolyte layer. If necessary, seal around the photoelectric conversion cell to prevent leakage and volatilization of the electrolyte layer. For sealing, a thermoplastic resin, a photocurable resin, a glass frit or the like can be used as a sealing material. The photoelectric conversion cell can be formed by connecting small-area photoelectric conversion cells as needed. For example, the electromotive voltage can be increased by combining photoelectric conversion cells in series. Example
以下に、実施例を具体的に示すが、本発明はこれらに限定されるものではない。 はじめに、 実施例に先立って、 光電変-換用増感色素の合成例を述べる。 化合物 に付けられた括弧内の数字は、 上記表 1〜 3の化合物番号に対応する。 合成例 1 化合物 (1 ) の合成方法  Examples will be specifically described below, but the present invention is not limited thereto. First, prior to the examples, synthetic examples of sensitizing dyes for photoelectric conversion are described. The numbers in parentheses attached to the compounds correspond to the compound numbers in Tables 1 to 3 above. Synthesis Example 1 Synthesis Method of Compound (1)
2 0 0 m 1のエタノールに、 p -ジメチルァミノべンズアルデヒド 1 0 . O g ( 6 7 mm o 1 )、シァノメチルホスホン酸ジェチル 1 3. 1 g ( 7 4mmo 1 )、 ピぺリジン 0. l gを加え、 室温にて 5時間攪拌した後、 溶媒を減圧留去して、 オレンジ色の固体を得た。 得られたクルード状の化合物をシリカゲルカラムクロ マトグラフィ一にて精製し、 [ 1 -シァノ - 2 - ( 4 -ジメチルァミノ -フエ二 ル) -ビニル] -ホスホン酸ジェチル 1 5. 8 gを得た (収率 7 6 %)。  P-Dimethylaminobenzenesaldehyde 10. 0. 0 g (67 mmo 1), 3.0 g (74 mmo 1) of ketomethyl phosphonate, piperidine 0. 1 g into ethanol of 200 m 1 After stirring for 5 hours at room temperature, the solvent was evaporated under reduced pressure to give an orange solid. The crude compound thus obtained was purified by silica gel column chromatography to obtain 1 5. 8 g of [1 -cyano-2-(4 -dimethylamino-phenyl) -vinyl]-jettyl Yield 7 6%).
次に、 得られた [ 1 -シァノ - 2 - ( 4 -ジメチルァミノ -フエニル) -ビニ ル] -ホスホン酸ジェチル 10. 0 gをァセトニトリル中で加水分解し、 得られ た固体をアルコールから再結晶して、 [1 -シァノ - 2 - (4 -ジメチルァミノ -フエニル) -ビニル] -ホスホン酸 7. 9 gを得た (収率 91%)。 マススぺ クトル、 NMRスペクトル、 I Rスペクトル、 元素分析により、 化合物 (1) の 構造を確認した。 合成例 2 化合物 (4) の合成方法 Next, the obtained [1-Siano-2-(4-Dimethylamino-phenyl)-Bini 10.0 g of jetyl] -phosphonate is hydrolysed in acetone and the solid obtained is recrystallised from an alcohol [1-siano-2- (4-dimethylamino-phenyl) -vinyl] -phosphonate 7. 9 g obtained (yield 91%). The structure of compound (1) was confirmed by mass spectrum, NMR spectrum, IR spectrum, and elemental analysis. Synthesis Example 2 Synthesis Method of Compound (4)
合成例 (1) において p—ジメチルァミノべンズアルデヒドの替わりに、 P - ジフエ二ルァミノべンズアルデヒドを用いた以外は、 合成例 (1) と同様の操作 を行い、 化合物 (4) を全収率 54%で得た。 マススペクトル、 NMRスぺクト ル、 I Rスペクトル、 元素分析により、 化合物 (4) の構造を確認した。 合成例 3 化合物 (30) の合成方法  The same procedure as in Synthesis Example (1) is repeated except that P-Diphenylaminobensaldehyde is used in place of p-Dimethylaminobensaldehyde in Synthesis Example (1) to obtain the total yield of Compound (4). Obtained at 54%. The structure of compound (4) was confirmed by mass spectrum, NMR spectrum, IR spectrum, and elemental analysis. Synthesis Example 3 Synthesis Method of Compound (30)
合成例 (1) において p—ジメチルァミノべンズアルデヒドの替わりに p -ジ メチルァミノシンナムアルデヒドを用いた以外は、 合成例 (1) と同様の操作を 行い、 化合物 (30) を全収率 60%で得た。 マススペクトル、 NMRスぺクト ル、 I Rスペクトル、 元素分析により、 化合物 (30) の構造を確認した。  The same procedure as in Synthesis Example (1) was carried out except using p-dimethylamino cinnamaldehyde in place of p-dimethylaminobenzaldehyde in Synthesis Example (1), to give compound (30) in a total yield of 60 Obtained in%. The structure of compound (30) was confirmed by mass spectrum, NMR spectrum, IR spectrum, and elemental analysis.
図 2に、 得られた化合物 (30) のプロトン NMRスペクトルを示す。 上段は 化合物(30) のェチルエステル体の、下段はそれを加水分解した化合物 (30) のスぺクトルをそれぞれ表す。 合成例 4 化合物 (73) の合成方法  FIG. 2 shows a proton NMR spectrum of the obtained compound (30). The upper part shows the spectrum of the ethyl ester of compound (30), and the lower part shows the spectrum of compound (30) obtained by hydrolyzing it. Synthesis Example 4 Synthesis Method of Compound (73)
4—ブロモベンシルブロミド 25. 0 g (l O Ommo l) と亜リン酸トリエ チル 19. 9 g (12 Ommo 1) を乾燥窒素下、 100°Cで加熱攪拌した。 約 4時間の反応後、 容器を減圧してさらに 120°Cで 1時間攪拌し、 未反応の亜リ ン酸トリエチルを除き、 30. 6 g (収率 100%) の (4—ブロモベンジル) —ホスホン酸ジェチルを得た。 得られた (4_ブロモベンジル) 一ホスホン酸ジェチル 12. 3 g (40mm o l) と、 4—ジフエニルァミノべンズアルデヒド 10. 9g (4 Ommo 1 ) と、 乾燥ジメチルホルムアミド (dry DMF) 150mlを 300mlのフラス コに入れ、窒素気流下で溶解攪拌した。ここに t—ブトキシカリウム 9. 0 g (8 Ommo 1 ) の DMF (100ml) 懸濁液をゆっくりと滴下した。 これを終夜 で攪拌した後、 得られた反応液に水をゆっくり滴下し、 析出した結晶をろ過乾燥 して、 {4一 [2— (4—ブロモーフエニル) 一ビニル] 一フエ二ル} —ジフエ二 ルァミン 16. 0 gを得た (収率 94%)。 25. 0 g (l O Ommol) of 4-bromobenzyl bromide and 19.9 g (12 Ommo 1) of triethyl phosphite were heated and stirred at 100 ° C under dry nitrogen. After the reaction for about 4 hours, the vessel is decompressed and stirred at 120 ° C. for 1 hour to remove unreacted triethyl phosphite and to obtain 30.6 g (yield 100%) of (4-bromobenzyl) Obtained jetyl phosphonate. 12.3 g (40 mmol) of the obtained jetty (4_bromobenzyl) monophosphonate, 10.9 g (4 Ommo 1) of 4-diphenylaminobenzaldehyde, and 300 ml of 150 ml of dry dimethylformamide (dry DMF) It was placed in a flask and dissolved and stirred under a stream of nitrogen. A suspension of 9.0 g (8 Ommo 1) of t-butoxide potassium in DMF (100 ml) was slowly added dropwise here. After stirring this overnight, water is slowly added dropwise to the resulting reaction solution, and the precipitated crystals are filtered and dried to give {41- (4-bromo-phenyl) -vinyl] -phenyl} -diphenyl. Ruamine 16.Og was obtained (yield 94%).
乾燥テトラヒドロフラン (dry THF) 5 Oml中に、 得られた {4一 [2— (4—ブロモ—フエニル) —ビニル] —フエ二ル} —ジフエニルァミン 9. 0 g (2 lmmo 1) を入れ、 窒素気流下、 氷塩 (ice-salt) 浴 (— 15°C) で冷却し た。 ここに、 n—ブチルリチウムのペンタン溶液 (2. 59M) 9. 4mlをゆ つくりと滴下し、 そのまま 1時間攪拌した後、 さらに、 THFに溶解した N—ホ ルミルピペリジン 2. 75 g (24mmo 1) を滴下した。 反応液をゆっくりと 室温に戻してさらに 2時間攪拌したのち、 反応液に飽和塩ィ匕アンモニゥム水溶液 を加えて攪拌し、 反応液中の有機層をトルエン 5 Omlで 2回抽出した。  Put the obtained {4 [2 — (4-bromo-phenyl)-vinyl]-phenyl}-diphenylamine 9. 0 g (2 lmmo 1) into 5 O ml of dry tetrahydrofuran (dry THF), and then add nitrogen. It was cooled in an ice-salt bath (-15 ° C) under air flow. 9.4 ml of n-butyllithium in pentane (2.59 M) was slowly added dropwise, and after stirring for 1 hour, N-holeyl piperidine dissolved in THF was further added to 2.75 g (24 mmo 1). ) Was dropped. The reaction solution was slowly returned to room temperature and stirred for additional 2 hours, then a saturated aqueous solution of ammonium chloride was added to the reaction solution and stirred, and the organic layer in the reaction solution was extracted twice with 5 O ml of toluene.
得られた有機層を飽和食塩水と水でよく洗い、 MgS〇4で乾燥後、 溶媒をェ バポレートし、 シリカゲルカラムクロマトグラフィーで精製 (溶離液トルエン) して、 4— [2— (4—ジフエニルァミノ—フエニル) 一ビエル] 一べンズアル デヒド 3. 2 g (収率 40%) を得た。 Wash the resulting organic layer with saturated brine and water, dried over MgS_〇 4, solvent market shares Baporeto and purified (eluent toluene) by silica gel column chromatography to give 4- [2- (4- Diphenylamino-phenyl) Biel] 3.2 g (yield 40%) of monobenzylaldehyde was obtained.
得られた 4— [2— (4ージフエニルァミノ—フエニル) 一ビエル] 一べンズ アルデヒドを上記合成例 1における P -ジメチルァミノべンズアルデヒドの替わ りに用い、その他の操作は合成例 1と同様に行って、化合物(73)を収率 85% で得た。マススぺクトル、 NMRスぺクトル、 I Rスぺクトル、元素分析により、 化合物 (73) の構造を確認した。 合成例 5 化合物 (74) の合成方法 イソホロン 10. 0g (72mmo l)、 シァノメチルホスホン酸ジェチル 1 2. 8 g (72mmo 1)、 酢酸アンモニゥム 0. 77 g (1 Ommo 1) を混 合して、 窒素気流下で 100°Cにて 5時間攪拌した。 反応終了後、 反応液を減圧 下加熱して未反応の原料を取り除いた後、 シリ力ゲル力ラムクロマトグラフィー を行い、 [シァノ - (3,5,5 - トリメチル -シクロへキス - 2 -ェニリデン) - メチル] -ホスホン酸ジェチル 13. 4g得た (収率 70%)。 The obtained 4- [2- (4-diphenylamino-phenyl) monobiphenyl] one benzaldehyde is used in place of P-dimethylaminobenzaldehyde in the above-mentioned Synthesis Example 1, and the other operation is Synthesis Example 1 The same procedure was carried out as in to give compound (73) in a yield of 85%. The structure of compound (73) was confirmed by mass spectrum, NMR spectrum, IR spectrum, and elemental analysis. Synthesis Example 5 Synthesis Method of Compound (74) A mixture of 10.0 g (72 mmol) of isophorone, 2.8 g (72 mmo 1) of jetyl cyanomethylphosphonate, and 0.77 g (1 Ommo 1) of ammonium acetate at 100 ° C. in a nitrogen stream. Stir for 5 hours. After completion of the reaction, the reaction solution is heated under reduced pressure to remove unreacted starting materials, and then subjected to silica gel chromatography, and [Sigano- (3,5,5-trimethyl-cyclohexyl--2-enylidene] is obtained. 13.4 g of a) -methyl] -gettyl phosphonate was obtained (yield 70%).
次に、 DMF 10 Om 1中に、 得られた [シァノ - ( 3 , 5 , 5 - トリメチル-シ クロへキス - 2 -ェニリデン) -メチル] -ホスホン酸ジェチル 10. Og (3 7mmo 1) と 4 -ジフエニルァミノべンズアルデヒド 10. 2g (37mmo 1)、 ピぺリジン 0.3mlを加え、 窒素気流下で 80°Cにて 7時間攪拌した。 反 応液に 1N塩酸 10 Omlとクロ口ホルム 10 Omlを加え、 有機層を分離した 後、 硫酸マグネシウムにて乾燥した。 硫酸マグネシウムをろ別後、 ろ液からクロ 口ホルムを留去し、 得られたオイルをシリカゲルカラムクロマトグラフィーによ り精製して、 (シァノ - {3 - [2 - (4 -ジフエニルァミノ -フエニル) -ビ ニル] - 5,5 -ジメチル-シクロへキス - 2 -ェニリデン } -メチル) -ホスホ ン酸ジェチル 8. 3gを得た (収率 40%)。  Then, in DMF 10 Om 1, obtained [Syano- (3,5,5-trimethyl-CycloHex-2-ylidene) -methyl] -phosphonate jetyl 10. Og (37 mmo 1) and 10.2 g (37 mmo 1) of 4-diphenylaminobenzaldehyde and 0.3 ml of piperidine were added, and the mixture was stirred at 80 ° C. for 7 hours under a nitrogen stream. To the reaction solution were added 10 O ml of 1 N hydrochloric acid and 10 O ml of chloroform, and the organic layer was separated and then dried over magnesium sulfate. After magnesium sulfate is removed by filtration, the chloroform is removed from the filtrate, and the obtained oil is purified by silica gel column chromatography to obtain (cyano- {3- [2- (4-diphenylamino-phenyl)]. 8 g of 3-vinyl] -5,5-dimethyl-cyclohexan-2-ethylidene} -methyl) -phosphate was obtained (yield 40%).
次に、 得られた (シァノ - {3 - [2 - (4 -ジフエニルァミノ -フエニル) -ビニル] - 5,5 -ジメチル-シクロへキス - 2 -ェニリデン } -メチル) -ホ スホン酸ジェチル 5. Og (9. Ommo 1) をァセトニトリル中で加水分解し、 (シァノ - {3 - [2 - (4 -ジフエニルァミノ -フエニル) -ビニル] - 5, 5 -ジメチル-シクロへキス - 2 -ェニリデン } -メチル) -ホスホン酸を 4. Og得た (収率 90%)。 これをエタノール-水から再結晶すると、 純粋な化合 物 (74) が 3. 5 g得られた。 マススペクトル、 NMRスペクトル、 I Rスぺ クトル、 元素分析により、 化合物 (74) の構造を確認した。 合成例 6 化合物 (82) の合成方法  Next, the obtained (Syano- {3- [2- (4-diphenylamino-phenyl) -vinyl] -5,5-dimethyl-cyclohex-2-ylidene} -methyl) -dimethyl phosphonate 5 Hydrolysis of Og (9. Ommo 1) in acetonitrile is carried out to give (Syano- {3- [2- (4-Diphenylamino-phenyl) -vinyl] -5,5-dimethyl-cyclohex-2-enylidene}- 4. Og of methyl) -phosphonic acid was obtained (yield 90%). This was recrystallized from ethanol-water to give 3.5 g of pure compound (74). The structure of compound (74) was confirmed by mass spectrum, NMR spectrum, I R spectrum, and elemental analysis. Synthesis Example 6 Synthesis Method of Compound (82)
4一ブロモベンシルブロミド 25. 0 g (10 Ommo 1 ) と亜リン酸トリエ チル 19. 9 g (12 Ommo 1) を乾燥窒素下、 100°Cで加熱攪拌した。 約 4時間の反応後、 容器を減圧してさらに 120°Cで 1時間攪拌し、 未反応の亜リ ン酸トリエチルを除いて、 30. 6 g (収率 100 %) で (4—ブロモベンジル) —ホスホン酸ジェチルを得た。 4 1-bromobenzyl bromide 25. 0 g (10 Ommo 1) and trie phosphite Chill 19.9 g (12 Ommo 1) was heated and stirred at 100 ° C. under dry nitrogen. After the reaction for about 4 hours, the vessel is decompressed and stirred at 120 ° C. for 1 hour, and the unreacted triethyl phosphite is removed to obtain 34.6 g (100% yield) of (4-bromobenzyl). )-Obtained a jetyl phosphonate.
得られた (4—ブロモベンジル) 一ホスホン酸ジェチル 12. 3 g (4 Omm o 1) と、 4_ {ビス— [4— (1, 1, 2, 2, ーテトラメチループ口ピル) —フエニル] 一アミノ} —ベンズアルデヒド 18. 8 g (4 Ommo 1 ) と、 乾 燥 DMF 150mlを 300mlのフラスコに入れ、窒素気流下で溶解攪拌した。 ここに t—ブトキシカリウム 9. 0 g (8 Ommo 1 ) の DMF (100ml) 懸濁液をゆっくりと滴下し、 これを終夜で攪拌し、 得られた反応液に水をゆつく り滴下した。 析出した結晶をろ過乾燥し、 {4— [2— (4—ブロモ—フエニル) 一ビエル] —フエ二ル} —ビス一 [4一 (1, 1, 2, 2, 一テトラメチループ 口ピル) —フエニル] —ァミン 24. 4gを得た (収率 98%)。  12.3 g (4 Omm o 1) of the obtained jetyl (4-bromobenzyl) monophosphonate and 4_ {bis- [4- (1, 1, 2, 2-tetramethyloop mouth pill)-phenyl] Monoamino} -benzaldehyde 1.88 g (4 Ommo 1) and 150 ml of dry DMF were placed in a 300 ml flask and dissolved and stirred under a nitrogen stream. A suspension of 9.0 g (8 Ommo 1) of t-butoxide potassium in DMF (100 ml) was slowly added dropwise thereto, and this was stirred overnight, and water was dripped into the resulting reaction solution. The precipitated crystals are filtered and dried, {4- [2- (4-bromo-phenyl)] biphenyl] -ferro}}-bis- [1- (1,1,2,2,1-tetramethyloop) pill ) -Phenyl] -amine 24. 4 g was obtained (yield 98%).
得られた {4一 [2— (4—ブロモーフエニル) ービニル] 一フエ二ル} —ビ スー [4— (1, 1, 2, 2, —テトラメチル—プロピル) —フエニル] —アミ ン 7. 8 g (12. 5mmo l)、 2—チォフェンポロン酸 2. 4 g (18. 8m mo l)、 フッ化カリウム 2. 4 g (41mmo l)、 トリスージベンジリデンァ セトンパラジウム 7 Omg、 およびトリスー t—ブチルホスフィン 8 Omgを乾 燥 THF 10 Omlに溶解し、 窒素気流下、 室温にて 3時間攪拌した。 反応液に トルエン 10 Omlを加えて攪拌後、不溶物をろ過し、ろ液をエバポレートした。 得られた固体をアルコール トルエンにて再結晶し、 ビス— [4— (1, 1, 2, 2, ーテトラメチループ口ピル) 一フエニル] 一 {4- [2- (4ーチォフェン —2—ィルーフエニル) 一ビニル] 一フエ二ル} —ァミン 6. 3 g (収率 80%) を得た。  Obtained {4 [2 — (4-bromo-phenyl)-vinyl] 1-phenyl}-bis [4-(1, 1, 2, 2, 2-tetramethyl-propyl)-phenyl]-amine 7. 8 g (12.5 mmol), 2.4 g (18. 8 m mol) of 2-thiophenpolonic acid, 2.4 g (41 mmol) of potassium fluoride, tris-dibenzylideneacetate 7O mg, and tris-t- The butyl phosphine 8 Omg was dissolved in dry THF 10 Oml, and stirred at room temperature for 3 hours under nitrogen stream. To the reaction solution was added 10O ml of toluene and the mixture was stirred, then the insolubles were filtered off and the filtrate was evaporated. The resulting solid is recrystallized with alcohol toluene to give bis- [4- (1,1,2,2-tetramethyloop pill) monophenyl] one {4- [2- (4-thiophen-2] Obtained 6.3 g (80% yield) of 1) vinyl 1) vinyl 1) 1).
次に、 得られたビス— [4一 (1, 1, 2, 2, —テトラメチループ口ピル) —フエニル] 一 {4— [2- (4—チォフェン— 2—ィル—フエニル) —ビニル] —フエ二ル} —ァミン 2. 3 g (3. 7mmo 1) を乾燥 THF 4 Om 1に溶解 し、 窒素気流下で一 78 °Cに冷却し、 ここに n—プチルリチウムのペンタン溶液 (1. 6M) 2. 4mlをゆっくりと滴下した。 そのまま 1時間攙拌後、 DMF 0. 8 gを滴下し、 攪拌 1時間を行なった。 反応液をゆっくりと室温に戻し、 さ らに 2時間攪拌したのち、反応液に飽和塩化アンモニゥム水溶液を加えて攪拌し、 反応液中の有機層をトルエン 50 m 1で 2回抽出した。 Next, the obtained bis- [41- (1,1,2,2-tetramethyloop oral pill) -phenyl] 1- {4- (2- (4-thiophen-2-yl-phenyl)-) Dissolve vinyl] —phenyl} — amine 2.3g (3.7 mmo 1) in dry THF 4 Om 1 The reaction mixture was cooled to 78 ° C. under a nitrogen stream, and 2. 4 ml of a pentane solution (1.6 M) of n-butyllithium was slowly dropped here. After stirring as it was for 1 hour, 0.8 g of DMF was added dropwise, and stirring was carried out for 1 hour. The reaction solution was slowly returned to room temperature, and after stirring for 2 hours, a saturated aqueous ammonium chloride solution was added to the reaction solution and stirred, and the organic layer in the reaction solution was extracted twice with 50 ml of toluene.
得られた有機層を飽和食塩水と水でよく洗い、 MgS〇4で乾燥後、 溶媒をェ バポレートして、シリカゲル力ラムクロマトグラフィ一で精製(溶離液トルェン) し、 5_ {4- [2- (4一 {ビス一 [4— (1, 1, 2, 2, 一テトラメチル —プロピル) 一フエニル] 一アミノ} 一フエニル) ービニル] —フエ二ル} —チ ォフェン一 2—力ルポアルデヒド 1. 2 g (収率 50%) を得た。 Wash the resulting organic layer with saturated brine and water, dried over MgS_〇 4, solvent market shares Baporeto was purified by silica gel force ram chromatography i (eluent Toruen), 5_ {4- [2- (4 {{bis 1 [4-(1, 1, 2, 1 tetramethyl-propyl) 1 phenyl] 1 amino} 1 phenyl)-vinyl]-phenyl}-thiophen 1 2-power lupaldehyde 1 Obtained 2 g (50% yield).
得られた 5— {4— [2- (4- {ビス一 [4— (1, 1, 2, 2, —テトラ メチル—プロピル) —フエニル] 一アミノ} —フエニル) 一ビエル] 一フエ二ル} —チォフェン— 2—カルポアルデヒドを合成例 1における p -ジメチルァミノべ ンズアルデヒドの替わりに用い、 その他の操作は合成例 1と同様に行い、 化合物 (82) を収率 65%で得た。 マススペクトル、 NMRスペクトル、 I Rスぺク トル、 元素分析により、 化合物 (82) の構造を確認した。 次に、 光電変換用増感色素の評価方法として、 増感色素を用いて光電変換セル を組み立て、 光電変換セルの変換効率を測定する方法について、 光電変換セルの 試験サンプルを表した図 1を参照しつつ説明する。  The obtained 5- [4- (2- (4- {bis- [4- (1,1,2,2-tetra-methyl-propyl) -phenyl] -amino] -phenyl) -biphenyl] mono-bi-2- is obtained A compound of the formula (82) was obtained in a yield of 65%, except that p-dimethylaminobenzaldehyde was used in place of p-dimethylaminobenzaldehyde in Synthesis Example 1 and other procedures were performed in the same manner as in Synthesis Example 1. The structure of compound (82) was confirmed by mass spectrum, NMR spectrum, IR spectrum, and elemental analysis. Next, as a method of evaluating a sensitizing dye for photoelectric conversion, a method of assembling a photoelectric conversion cell using a sensitizing dye and measuring the conversion efficiency of the photoelectric conversion cell is shown in FIG. 1 showing a test sample of the photoelectric conversion cell. The description will be made with reference to.
フッ素ドープ型酸化スズ層 (透明電極層) 31付ガラス基板 51 (旭ガラス社 製、 タイプ U— TCO) を使用した。 導電性対極 A fluorine-doped tin oxide layer (transparent electrode layer) 31 and a glass substrate 51 (manufactured by Asahi Glass Co., Ltd., type U-TCO) were used. Conductive counter electrode
フッ素ドープ型酸化スズ層 32付ガラス基板 52 (旭ガラス社製、 タイプ U— TC〇)の導電層 32上に、スパッタリング法により白金層(白金電極層) 4 (厚 み 150 nm) を積層した導電性対極を用いた。 酸化チタンペーストの調製 Fluorine-doped tin oxide layer 32 attached glass substrate 52 (Asahi Glass Co., Ltd., type U— A conductive counter electrode was used in which a platinum layer (platinum electrode layer) 4 (150 nm thick) was laminated on the conductive layer 32 of TCTC) by sputtering. Preparation of titanium oxide paste
下記の処方でジルコ二アビ一ズと混合し、 ペイントシェーカーを用いて分散し て酸ィ匕チタンペーストを得た (「部」 は重量部をあらわす)。  The following formulation was mixed with zircon acid and dispersed using a paint shaker to obtain an acid titanium paste ("parts" represent parts by weight).
酸化チタン (日本ァエロジル社製 P25 粒子径 21 nm) 6 部 水 (硝酸添加で p H 2に調整) 14 部 ァセチルアセトン 0. 6 部 界面活性剤 ( I CN社製 Tr i t on X— 100) 0. 04 部 Titanium oxide (P25 manufactured by Nippon Aerosil Co., Ltd. P21 particle diameter 21 nm) 6 parts Water (adjusted to pH 2 by adding nitric acid) 14 parts acetylacetalone 0.6 part surfactant (ITN Corporation Tr iton X- 100) 0. 04
PEG - #500, 000 0. 3 部 酸化チタン多孔質層の作成 PEG-# 500, 000 0.3 part Preparation of titanium oxide porous layer
透明電極の導電面 (透明電極層 31) に厚さ 60 mのメンディングテ一プを 張り、 1 cm角のテープを除去することでマスクを作り、 空いた部分に上記酸ィ匕 チタンペーストを数滴たらした後に、 スキージで余分なペーストを除去した。 風 乾後、 全てのマスクを除去し、 450°Cのオーブンで 1時間焼成して、 有効面積 1 c m2の酸化チタン多孔質層を有する酸化チタン電極を得た。 増感色素の吸着 A 60 m thick mending tape is placed on the conductive surface of the transparent electrode (transparent electrode layer 31), and a 1 cm square tape is removed to make a mask, and a few drops of the above-mentioned acid titanium paste are made on the vacant part. After cooking, the excess paste was removed with a squeegee. After air drying, all the masks were removed, and firing was performed in an oven at 450 ° C. for 1 hour to obtain a titanium oxide electrode having a titanium oxide porous layer with an effective area of 1 cm 2 . Adsorption of sensitizing dyes
光電変換用増感色素をエタノールまたは水に溶解 (濃度 0. 6mmo 1/L) し、 必要に応じてメンブランフィルターで不溶分を除去し、 この色素溶液に上記 酸化チタン電極を浸し、 室温で、 または必要に応じて加熱して、 数時間から数日 の間これを放置した。 浸漬時間は、 実際にセルを作成して変換効率を求め、 その 変換効率が最大となるように設定した。  The sensitizing dye for photoelectric conversion is dissolved in ethanol or water (concentration: 0.6 mmo 1 / L), the insoluble matter is removed with a membrane filter if necessary, and the above-mentioned titanium oxide electrode is immersed in this dye solution, Or, if necessary, heat and leave it for several hours to several days. Immersion time was set up so that the conversion efficiency was maximized by actually creating cells to obtain the conversion efficiency.
着色した電極表面を、 溶解に使用した溶剤およびアルコールで洗浄した後、 4 - t -ブチルピリジンの 2mo 1 %アルコール溶液に 30分浸した後、 乾燥させ て、 増感色素の吸着した酸化チタン多孔質層 1を有する光電変換電極を得た。 After washing the colored electrode surface with the solvent and alcohol used for dissolution, soak in a 2 mo 1% alcohol solution of 4-t-butylpyridine for 30 minutes and then drying it. Thus, a photoelectric conversion electrode having the titanium oxide porous layer 1 to which the sensitizing dye is adsorbed was obtained.
下記処方の電解質溶液を調製した。 溶媒にはメトキシァセトニトリルを用いた。 The electrolyte solution of the following formulation was prepared. As a solvent, methoxyacetonitrile was used.
L i I 0. 1M  L i I 0.1 M
I 2 0. 05MI 2 0. 05 M
4 - t -ブチルピリジン 0. 5M 4-t-Butylpyridine 0.5 M
1 -プロピル- 2, 3 -ジメチルイミダゾリゥムョージド 0. 6M 光電変換セルの組み立て  Assembling of 1-Propyl-2, 3 -Dimethylimidazolium Mudide 0.6M Photoelectric Conversion Cell
図 1に示すように、 光電変換セルの試験サンプルを組み立てた。 すなわち、 上 記のようにして光電変換用増感色素を吸着させた酸化チタン多孔質層 1が形成 された上記透明電極 (フッ素ドープ型酸化スズ層 31付ガラス基板 51) と、 フ ッ素ドープ型酸化スズ層 32付ガラス基板 52の導電層上に白金層 4が積層さ れた導電性対極とを、 樹脂フィルム製スぺ一サー 61, 62 (三井'デュポンポ リケミカル社製 「ハイミラン」 フィルム (25 m厚)) を挟んで固定し、 その 空隙に上記電解質溶液を注入して電解質溶液層 2を形成した。 ガラス基板 51, 52には、 それぞれ変換効率測定用の導線 71, 72を固定した。 変換効率の測定方法  As shown in FIG. 1, test samples of the photoelectric conversion cell were assembled. That is, the above-mentioned transparent electrode (glass substrate 51 with fluorine-doped tin oxide layer 31) having the titanium oxide porous layer 1 adsorbed with the sensitizing dye for photoelectric conversion as described above, and fluorine-doped And a conductive counter electrode in which a platinum layer 4 is laminated on a conductive layer of a glass substrate 52 with a tin oxide layer 32 and a spacer 61, 62 made of resin film (Mitsui 'Dupont Polychemical' HIMIRAN 'film ( The electrolyte solution was injected into the gap to form an electrolyte solution layer 2. Conductors 71 and 72 for measuring conversion efficiency were fixed to the glass substrates 51 and 52, respectively. Measurement method of conversion efficiency
OR I EL社製ソーラーシユミレー夕一 (#8116) をエアマスフィルター と組み合わせ、 光量計で 10 OmW/cm2の光量に調整して測定用光源とし、 光電変換セルの試験サンプルに光照射をしながら、 英弘精機社製 I - V力一ブト レーサー(MP 160)を使用して I - Vカーブ特性を測定した。変換効率 7?は、 I 一 Vカーブ特性測定から得られた Vo c (開放電圧値)、 I s c (短絡電流値)、 f f (フィルファクター値) を用いて下記式により算出した。 ( ) Vo c (V) X I s c (mA) X f f X 100 100 (mW/cm2) X 1 (cm2) 実施例 1〜 13および比較例 1〜; I 2 A combination of an ORI EL Solar Shimley Yuichi (# 8116) and an air mass filter is adjusted to a light quantity of 10 OmW / cm 2 with a actinometer to form a measurement light source, and the test sample of the photoelectric conversion cell is irradiated with light. While, I-V curve characteristics were measured using an EKO Seiki-made I-V power butler (MP 160). The conversion efficiency 7? Was calculated according to the following equation using Vo c (open circuit voltage value), I sc (short circuit current value), and ff (fill factor value) obtained from the I 1 V curve characteristic measurement. () Vo c (V) XI sc (mA) X ff X 100 100 (mW / cm 2 ) X 1 (cm 2 ) Examples 1 to 13 and Comparative Examples 1 to I 2
実施例 1〜 13および比較例 1〜 12として、 それぞれ、 下記表 4に示す増感 色素を用い、 各増感色素の濃度が 0. 6mmo 1となるようにエタノール (E t OH) 溶液を調製して、 上記のようにして酸化チタン多孔質層に増感色素を吸着 させ、 光電変換セルを組み立てた。 ただし、 実施例 7、 比較例 5、 および比較例 1 1では、 色素の吸着用溶剤として水を用いた。 さらに、 実施例 9では、 上記の 電解質溶液のかわりに、 2重量%のグルコースを添加した電解質溶液を用いた。 表 4の化合物 (A) 〜 (D) は、 それぞれ下記の構造を有する化合物であり、 As Examples 1 to 13 and Comparative Examples 1 to 12, respectively, using sensitizing dyes shown in Table 4 below, an ethanol (EtOH) solution was prepared so that the concentration of each sensitizing dye would be 0.6 mm. Then, the sensitizing dye was adsorbed to the titanium oxide porous layer as described above, and a photoelectric conversion cell was assembled. However, in Example 7, Comparative Example 5 and Comparative Example 11, water was used as a dye adsorption solvent. Further, in Example 9, an electrolyte solution to which 2% by weight of glucose was added was used instead of the above-mentioned electrolyte solution. Compounds (A) to (D) in Table 4 are compounds having the following structures, respectively:
(A) はルテニウム錯体色素、 化合物 (B) と (C) は WO 02Z1 1213号 パンフレットに記載の化合物であり (構造式中、 N<で記載された Nの置換基は メチル基を表す。)、 (D) は p—ジメチルァミノベンゼンホスホン酸である。 (A) is a ruthenium complex dye, and compounds (B) and (C) are the compounds described in WO 02Z1 1213 pamphlet (in the structural formula, the substituent of N described by N <represents a methyl group). , (D) is p-dimethylamino benzene phosphonic acid.
Figure imgf000052_0001
Figure imgf000052_0001
(B)
Figure imgf000052_0002
Figure imgf000053_0001
(B)
Figure imgf000052_0002
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0002
実施例 12および 13における 2種の増感色素の配合比 (モル比) は、 それぞ れ、 化合物 (Α):化合物 (30) =10 : 1、 化合物 (Α):化合物 (73) = 5 : 1であった。 The compounding ratio (molar ratio) of the two sensitizing dyes in Examples 12 and 13 is as follows: Compound (Α): Compound (30) = 10: 1, Compound (Α): Compound (73) = 5 : It was 1.
実施例 4〜 6、 比較例 2〜4および 8〜10では、 さらに、 色素吸着後の基板 を所定の Ρ Ηの水溶液に浸漬して、 色素の脱離の有無および光電変換効率を測定 した。  In Examples 4 to 6 and Comparative Examples 2 to 4 and 8 to 10, the substrate after dye adsorption was further immersed in a predetermined aqueous solution to determine the presence or absence of dye detachment and the photoelectric conversion efficiency.
得られた結果を、 表 4にまとめて示す。  The obtained results are summarized in Table 4.
(表 4) (Table 4)
変換効率 7? 所定の pH水溶 スぺクト  Conversion efficiency 7? Specified pH aqueous solution
化合物 吸着溶剤  Compound adsorption solvent
(%) 液処理 ル変化 *  (%) Liquid treatment change *
実施例 1 1 1. 7 E t OH 実施例 2 4 2. 3 "、、 E t OH 実施例 3 30 3. 2 、、ゝ E t OH 実施例 4 30 3. 2 ρΗ5 A E t OH 実施例 5 30 3. 1 ρΗ7 A E t OH
Figure imgf000054_0001
Example 1 1 1. 7 E t OH Example 2 4 2. 3 ", E t OH Example 3 30 3.2, ゝ E t OH Example 4 30 3.2 2 Η 5 AE t OH Example 5 30 3. 1 Η 7 AE t OH
Figure imgf000054_0001
*セル組み立て前に、 基板の拡散反射スぺクトルを測定した。 所定の水溶液処理 による吸光度の減少がないものは A、 やや減少するものは B、 減少があるものは Cと評価した。 図 3に、化合物(7 3 )を用いた実施例 8の光電変換セルの電流一電圧特性を、 図 4に、 同じ実施例 8の光電変換セルの I P C Eスペクトル (入射フオトンが電 子に変換される割合の波長依存性) を、 それぞれ示す。 以上述べてきたように、 本発明は、 無機半導体への吸着末端として特定の化学 構造、 すなわちビニルホスホン酸基を用いるものであり、 本発明によれば、 この ビニルホスホン酸基を有する増感色素を、 透明導電性基板上に積層させた無機半 導体表面に連結させることにより、良好な光電変換セルを作成することができる。 この増感色素は、 ビニルホスホン酸基を有することにより、 カルボン酸末端を持 つ色素よりも強い吸着力を発揮できるため、 高い光電変換効率および無機半導体 界面との強い吸着力を有する、 安定な光電変換用増感色素として機能することが 期待できる。 また、 吸着溶媒として水を使用しても、 有機溶剤を使用した場合と 同等の性能が発揮できるため、 非常に環境負荷の低い増感色素である。 さらに、 この増感色素とその他の増感色素を組み合わせることにより、 各々の色素を単独 で用いるよりも、 太陽光に対して幅広い波長領域で光電変換機能を発現でき、 高 効率な光電変換材料、光電変換電極および光電変換セルを作成することができる。 本願の開示は、 2 0 0 3年 1月 1 6日に出願された特願 2 0 0 3 - 0 0 8 5 1 9号に記載の主題と関連しており、 それらの開示内容は引用によりここに援用さ れる。 * The diffuse reflectance spectrum of the substrate was measured before cell assembly. Those with no decrease in absorbance by the given aqueous solution treatment were evaluated as A, those with a slight decrease were evaluated as B, and those with a decrease were evaluated as C. The current-voltage characteristics of the photoelectric conversion cell of Example 8 using the compound (7 3) are shown in FIG. 3, and the IPCE spectrum of the photoelectric conversion cell of the same Example 8 is shown in FIG. The wavelength dependence of the rate of conversion to the child is shown respectively. As described above, the present invention uses a specific chemical structure, that is, a vinyl phosphonic acid group as an adsorption terminal to an inorganic semiconductor, and according to the present invention, a sensitizing dye having this vinyl phosphonic acid group A good photoelectric conversion cell can be formed by connecting the organic semiconductor to the surface of the inorganic semiconductor laminated on the transparent conductive substrate. This sensitizing dye can exhibit a stronger adsorptive power than a dye having a carboxylic acid end by having a vinyl phosphonic acid group, so it is stable with high photoelectric conversion efficiency and strong adsorptive power with the interface of the inorganic semiconductor. It can be expected to function as a sensitizing dye for photoelectric conversion. In addition, even if water is used as an adsorption solvent, it can exhibit the same performance as when using an organic solvent, so it is a sensitizing dye with extremely low environmental impact. Furthermore, by combining this sensitizing dye with other sensitizing dyes, it is possible to express the photoelectric conversion function in a wide wavelength range to sunlight, and to use a highly efficient photoelectric conversion material, rather than using each dye alone. A photoelectric conversion electrode and a photoelectric conversion cell can be created. The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2 0 0 3 0 0 5 5 1 9 filed on Jan. 16, 2003, the disclosure contents of which are incorporated by reference. It is incorporated here.
既に述べられたもの以外に、本発明の新規かつ有利な特徴から外れることなく、 上記の実施形態に様々な修正や変更を加えてもよいことに注意すべきである。 従 つて、 そのような全ての修正や変更は、 添付の請求の範囲に含まれることが意図 されている。  It should be noted that various modifications and alterations may be made to the above embodiments without departing from the novel and advantageous features of the present invention other than those already described. Accordingly, all such modifications and changes are intended to be included within the scope of the appended claims.

Claims

請 求 の 範 囲 The scope of the claims
1 . ピニルホスホン酸基を有する光機能材料。 1. Optical functional material having a pinyl phosphonic acid group.
2 . 下記一般式 ( 1 ) で示される請求項 1記載の光機能材料。  2. The optical functional material according to claim 1, which is represented by the following general formula (1).
Figure imgf000056_0001
Figure imgf000056_0001
( 1 )  (1)
(式中、 Xは 1価の有機残基を表し、 R1および R2はそれぞれ独立に、 水素原子 または 1価の有機残基を表し、 M1および M2はそれぞれ独立に、 水素原子、 置換 または非置換のアルキル基、 置換または非置換のァリ一ル基、 置換または非置換 のシリル基、 あるいは陽イオンを表す。 R 1と R 2、 R1と X、 および R2と Xは、 それぞれ、互いに結合して環を形成していてもよい。 さらに、 Xと R2は入れ替わ つていてもよい。) (Wherein, X represents a monovalent organic residue, R 1 and R 2 each independently represent a hydrogen atom or a monovalent organic residue, and M 1 and M 2 each independently represent a hydrogen atom, Represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted silyl group, or a cation R 1 and R 2 , R 1 and X, and R 2 and X are And each may combine with each other to form a ring Furthermore, X and R 2 may be interchanged.)
3 . R1および R 2のうちの少なくとも一方が電子吸引性基である請求項 2記 載の光機能材料。 3. The light functional material according to claim 2, wherein at least one of R 1 and R 2 is an electron withdrawing group.
4. R 1および R 2のうちの少なくとも一方がシァノ基である請求項 3記載の 光機能材料。 4. The light functional material according to claim 3, wherein at least one of R 1 and R 2 is a cyano group.
5 . Xが、 置換または非置換のアミノ基を含む 1価の有機残基である請求項 2〜 4のいずれか 1項記載の光機能材料。  5. The optical function material according to any one of claims 2 to 4, wherein X is a monovalent organic residue containing a substituted or unsubstituted amino group.
6 . 請求項 1〜 5のいずれか 1項記載の光機能材料を含む光電変換用増感色 素。  6. A sensitizing dye for photoelectric conversion, comprising the optical functional material according to any one of claims 1 to 5.
7 . 請求項 1〜 5のいずれか 1項記載の光機能材料以外の光機能材料をさら に含む請求項 6記載の光電変換用増感色素。  7. The sensitizing dye for photoelectric conversion according to claim 6, further comprising an optical functional material other than the optical functional material according to any one of claims 1 to 5.
8 . 無機半導体と、 前記無機半導体に連結された請求項 6または 7記載の光 電変換用増感色素とを含む光電変換材料。 8. A photoelectric conversion material comprising: an inorganic semiconductor; and the sensitizing dye for photoelectric conversion according to claim 6 linked to the inorganic semiconductor.
9. 透明電極と、 前記透明電極上に積層された請求項 8記載の光電変換材料 とを含む光電変換電極。 9. A photoelectric conversion electrode comprising: a transparent electrode; and the photoelectric conversion material according to claim 8 stacked on the transparent electrode.
10. 請求項 9記載の光電変換電極と、 電解質層と、 導電性対極とを含む光電 変換セル。  10. A photoelectric conversion cell comprising the photoelectric conversion electrode according to claim 9, an electrolyte layer, and a conductive counter electrode.
PCT/JP2004/000267 2003-01-16 2004-01-16 Photofunctional materials WO2004063283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005508016A JP4341621B2 (en) 2003-01-16 2004-01-16 Optical functional materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-008519 2003-01-16
JP2003008519 2003-01-16

Publications (1)

Publication Number Publication Date
WO2004063283A1 true WO2004063283A1 (en) 2004-07-29

Family

ID=32709164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000267 WO2004063283A1 (en) 2003-01-16 2004-01-16 Photofunctional materials

Country Status (3)

Country Link
JP (1) JP4341621B2 (en)
TW (1) TWI318638B (en)
WO (1) WO2004063283A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120939A1 (en) * 2005-05-13 2006-11-16 Agc Seimi Chemical Co., Ltd. Novel amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
JP2008044852A (en) * 2006-08-10 2008-02-28 Tokyo Institute Of Technology Organophosphorus compound having cyclopentene skeleton and method for producing the same
WO2008056567A1 (en) * 2006-11-07 2008-05-15 Agc Seimi Chemical Co., Ltd. Novel amino group-containing aromatic compound, and sensitizing dye for photoelectric conversion, containing the aromatic compound
WO2013008889A1 (en) * 2011-07-14 2013-01-17 積水化学工業株式会社 Material for photoelectric conversion element, manufacturing method for photoelectric conversion element, and photoelectric conversion element
WO2013008951A1 (en) * 2011-07-13 2013-01-17 National Institute For Materials Science Organic dye, dye-sensitized metal oxide semiconductor electrode and dye-sensitized solar cell
JP2013030466A (en) * 2011-06-23 2013-02-07 Konica Minolta Business Technologies Inc Photoelectric conversion element, method for manufacturing the same, and solar cell
JP2013239384A (en) * 2012-05-16 2013-11-28 Konica Minolta Inc Photoelectric conversion element
JP2014053263A (en) * 2012-09-10 2014-03-20 Toyota Central R&D Labs Inc Dye-sensitized solar battery, dye-sensitized solar battery module and method of manufacturing organic dye
JPWO2013129605A1 (en) * 2012-03-01 2015-07-30 関東天然瓦斯開発株式会社 Complete organic dye compound having non-planar structure for dye-sensitized photoelectric conversion element, and photoelectric conversion element using the same
WO2021010425A1 (en) 2019-07-16 2021-01-21 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
EP3839994A1 (en) 2019-11-28 2021-06-23 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
US11286233B2 (en) * 2017-05-09 2022-03-29 Ambient Photonics, Inc. Stilbene derivatives for the treatment of CNS and other disorders
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
WO2023175466A1 (en) 2022-03-18 2023-09-21 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and solar cell module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455753B2 (en) * 2005-01-14 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Solar cell and semiconductor device, and manufacturing method thereof
CA2655192A1 (en) * 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911841A2 (en) * 1997-10-23 1999-04-28 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectrochemical cell
EP1176618A1 (en) * 2000-07-25 2002-01-30 Fuji Photo Film Co., Ltd. Metal complex dye, photoelectric conversion device and photoelectric cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911841A2 (en) * 1997-10-23 1999-04-28 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photoelectrochemical cell
EP1176618A1 (en) * 2000-07-25 2002-01-30 Fuji Photo Film Co., Ltd. Metal complex dye, photoelectric conversion device and photoelectric cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086807B2 (en) * 2005-05-13 2012-11-28 Agcセイミケミカル株式会社 Novel amino group-containing heterocyclic derivative and sensitizing dye for photoelectric conversion containing the heterocyclic derivative
WO2006120939A1 (en) * 2005-05-13 2006-11-16 Agc Seimi Chemical Co., Ltd. Novel amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
US8044219B2 (en) 2005-05-13 2011-10-25 Agc Seimi Chemical., Ltd. Amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
JP2008044852A (en) * 2006-08-10 2008-02-28 Tokyo Institute Of Technology Organophosphorus compound having cyclopentene skeleton and method for producing the same
JP5280853B2 (en) * 2006-11-07 2013-09-04 Agcセイミケミカル株式会社 Novel amino group-containing aromatic compound and sensitizing dye for photoelectric conversion containing the aromatic compound
WO2008056567A1 (en) * 2006-11-07 2008-05-15 Agc Seimi Chemical Co., Ltd. Novel amino group-containing aromatic compound, and sensitizing dye for photoelectric conversion, containing the aromatic compound
JP2013030466A (en) * 2011-06-23 2013-02-07 Konica Minolta Business Technologies Inc Photoelectric conversion element, method for manufacturing the same, and solar cell
WO2013008951A1 (en) * 2011-07-13 2013-01-17 National Institute For Materials Science Organic dye, dye-sensitized metal oxide semiconductor electrode and dye-sensitized solar cell
JP5369238B2 (en) * 2011-07-14 2013-12-18 積水化学工業株式会社 Material for photoelectric conversion element, method for producing photoelectric conversion element, and photoelectric conversion element
WO2013008889A1 (en) * 2011-07-14 2013-01-17 積水化学工業株式会社 Material for photoelectric conversion element, manufacturing method for photoelectric conversion element, and photoelectric conversion element
JPWO2013129605A1 (en) * 2012-03-01 2015-07-30 関東天然瓦斯開発株式会社 Complete organic dye compound having non-planar structure for dye-sensitized photoelectric conversion element, and photoelectric conversion element using the same
JP2013239384A (en) * 2012-05-16 2013-11-28 Konica Minolta Inc Photoelectric conversion element
JP2014053263A (en) * 2012-09-10 2014-03-20 Toyota Central R&D Labs Inc Dye-sensitized solar battery, dye-sensitized solar battery module and method of manufacturing organic dye
US11286233B2 (en) * 2017-05-09 2022-03-29 Ambient Photonics, Inc. Stilbene derivatives for the treatment of CNS and other disorders
WO2021010425A1 (en) 2019-07-16 2021-01-21 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
EP3839994A1 (en) 2019-11-28 2021-06-23 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
WO2023175466A1 (en) 2022-03-18 2023-09-21 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and solar cell module

Also Published As

Publication number Publication date
JPWO2004063283A1 (en) 2006-05-18
TW200422379A (en) 2004-11-01
TWI318638B (en) 2009-12-21
JP4341621B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
CN102138249B (en) Photoelectric element
JP5925541B2 (en) Metal complex dye for photoelectric conversion element, photoelectric conversion element, dye-sensitized solar cell, dye-adsorbing composition liquid for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
JP4341621B2 (en) Optical functional materials
WO2007119525A1 (en) Organic compound, semiconductor thin film electrode using the same, photoelectric transducer, and photoelectrochemical solar cell
JP2010529226A (en) Novel organic dye and method for producing the same
JP4423857B2 (en) Optical functional materials
WO2012060346A1 (en) Photoelectric element, process for producing photoelectric element, and photosensitizer
JPWO2010016612A1 (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP4442105B2 (en) Optical functional materials
JP2007246885A (en) Photo functional material
JP5972849B2 (en) Metal complex, metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar cell
JP4230228B2 (en) Dye-sensitized photoelectric conversion element
JP4591667B2 (en) Optical functional materials
JP2014172835A (en) Optically functional material and sensitizing dye for photoelectric conversion
TW201604245A (en) Photoelectric conversion element, dye-sensitized solar cell, metal-complex pigment, pigment solution, and terpyridine compound or esterified terpyridine compound
JP2008226505A (en) Phenanthrothiophene based compound, its usage, and its manufacturing method
JP2011026389A (en) Optically functional material
JP2014209606A (en) Photoelectric conversion element, dye-sensitized solar cell, dye adsorption solution containing metal complex pigment, and process of manufacturing photoelectric conversion element
JP5913223B2 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution and dye-adsorbing electrode
JP2007131767A (en) Optically functional material
JP2011057937A (en) DONOR-ACCEPTOR TYPE PIGMENT HAVING TWISTED pi CONJUGATION PART, AND DYE-SENSITIZED TYPE SOLAR CELL USING THE SAME
JP2004292743A (en) Optical functional material
JP5401193B2 (en) Dye for photoelectric conversion element and photoelectric conversion element
JP5740984B2 (en) Optical functional materials
JP2012131906A (en) Dye and dye sensitized solar cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508016

Country of ref document: JP

122 Ep: pct application non-entry in european phase