JP4442105B2 - Optical functional materials - Google Patents

Optical functional materials Download PDF

Info

Publication number
JP4442105B2
JP4442105B2 JP2003090144A JP2003090144A JP4442105B2 JP 4442105 B2 JP4442105 B2 JP 4442105B2 JP 2003090144 A JP2003090144 A JP 2003090144A JP 2003090144 A JP2003090144 A JP 2003090144A JP 4442105 B2 JP4442105 B2 JP 4442105B2
Authority
JP
Japan
Prior art keywords
ring
general formula
photoelectric conversion
sensitizing dye
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003090144A
Other languages
Japanese (ja)
Other versions
JP2004292744A (en
Inventor
弾生 八木
宗徳 安藤
隆一郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2003090144A priority Critical patent/JP4442105B2/en
Publication of JP2004292744A publication Critical patent/JP2004292744A/en
Application granted granted Critical
Publication of JP4442105B2 publication Critical patent/JP4442105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、光電変換用増感色素、これを用いた光電変換材料、光電変換電極、およびこれを用いた光電変換セルに関する。
【0002】
【従来の技術】
太陽光発電は単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、テルル化カドミウムやセレン化インジウム銅などの化合物太陽電池が実用化、もしくは研究開発対象となっているが、普及させる上で製造コスト、原材料確保、エネルギーペイバックタイムが長い等の問題点を克服する必要がある。一方、大面積化や低価格を指向した有機材料を用いた太陽電池もこれまでに多く提案されているが変換効率が低く、耐久性も悪いという問題があった。
【0003】
こうした状況の中で、色素によって増感された半導体微多孔質体を用いた光電変換電極および光電変換セル、ならびにこれを作成するための材料および製造技術が開示された(非特許文献1および特許文献1参照)。開示された電池は、ルテニウム錯体色素によって分光増感された酸化チタン多孔質薄層を作用電極としヨウ素を主体とする電解質層および対電極から成る色素増感型の光電変換セルである。この方式の第一の利点は酸化チタン等の安価な酸化物半導体を用いるため、安価な光電変換素子を提供できる点であり、第二の利点は用いられるルテニウム錯体色素が可視光域に幅広く吸収を有していることから比較的高い変換効率が得られる点である。
【0004】
このような色素増感型の光電変換セルの問題点のひとつとして、色素の原料にルテニウムを用いていることが挙げられる。ルテニウムはクラーク数が0.01ppmと白金やパラジウムに匹敵する量しか地球に現存せず、大量に使われると枯渇が免れない。さらにルテニウム錯体色素の価格も高価な物となり、光電変換セルの大量普及の妨げとなる。このため脱ルテニウム系の増感色素の研究が近年盛んとなってきている。たとえば特開平10‐92477号公報にはルテニウムを原料としない増感色素が開示されている(特許文献2参照)。
【0005】
最近、色素増感型太陽電池における増感色素として、非ルテニウム錯体色素の研究が盛んに行なわれている。その例としてはフェニルキサンテン系色素、フタロシアニン系色素、クマリン系色素、シアニン形色素、ポルフィリン系色素、アゾ系色素等があげられる。これらの有機色素はルテニウム錯体に比較して吸光係数が大きく、分子設計の自由度も大きいため、高い光電変換効率が期待されている。しかしながら、色素の光吸収領域がせまかったり、酸化チタンへの電荷の注入が非効率的である等の理由から、良い有機増感色素はなかった。
【0006】
これらの問題を解決するため、酸化チタンとの吸着末端に特徴をもたせた増感色素として、置換アクリル酸部位を持つ増感色素が比較的高い変換効率を有することが開示されている(特許文献3、4参照)。これらの増感色素に特徴的な点はアクリル酸末端のカルボン酸基が結合する炭素原子が同時にシアノ基を代表とする電子吸引性置換基を有することによりアクリル酸末端の電子吸引効果を増大させている点にある。増感色素は末端のカルボン酸基で酸化チタン等の無機酸化物多孔質半導体表面に結着し、増感色素が光吸収することによって生じた励起電子をカルボン酸基を通して無機酸化物側へ注入しているが、この部位の電子吸引効果が強くなることによって電子注入効果が促進され、ひいては高い変換効率を実現している。代表的な例はクマリン骨格とシアノ基を有するアクリル酸末端とを組み合わせた増感色素で、5%以上の高い変換効率を実現している(非特許文献2参照)。
【0007】
しかしクマリン骨格等のような比較的小さな骨格単体での基本的な吸収波長領域は可視光領域の中で比較的短波長側に寄っているため、この骨格を基に長波長化を図ろうとすれば長鎖の二重結合部位などを導入することになる。長鎖の二重結合部位は活性酸素等に酸化されやすい等、耐久性の弱い性質を有している。シアニン系色素等も長鎖二重結合部位を有し、耐久性の弱い色素の一例である。一方、フタロシアニン系色素などの様に元々の吸収波長領域が長波長領域にある色素は分子量が大きくなりがちでかつ、クロモファーを形成するπ電子平面骨格同士のスタッキング特性による会合力が強く、染色溶剤への溶解性が悪い、会合のし易さ等が原因で増感色素同士で光吸収を阻害し合うため変換効率が低い等、増感色素としての利用しにくさを有していた。
【0008】
長鎖二重結合部位等のように耐久性の弱い部位の導入にたよらず、耐久性の強い骨格構造を有し、溶解性も良好で、かつ、2種類以上の吸収を有した増感色素の安定な組み合わせ方が可能であり、ひいては安価で高い変換効率特性を有した光電変換セルを提供できる増感色素が求められていた。
【0009】
【非特許文献1】
Nature(第353巻、第737〜740頁、1991年)
【非特許文献2】
Chem.commun.,(6),569−570(2001)
【特許文献1】
米国特許4927721号明細書
【特許文献2】
特開平10‐92477号公報
【特許文献3】
特開2002−164089号公報
【特許文献4】
WO02/11213号パンフレット
【0010】
【発明が解決しようとする課題】
本発明の目的は耐久性の強い骨格構造を有し、溶解性も良好な増感色素としてひいてはは安価で高い変換効率性能を有する色素増感型光電変換セル用の増感色素を提供することである。
さらにはこの増感色素を無機半導体多孔質体表面に連結させた光電変換材料、および光電変換材料を電導性表面を有する透明基材の電導面に積層して成る光電変換電極、および光電変換電極を電解質層を介して導電性対極を組み合わせて成る光電変換セルを提供することである。
【0011】
【課題を解決するための手段】
本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、特定の増感色素を透明導電性基板上に積層させた無機半導体表面に連結させ、良好な光電変換セルを作成することに成功し、本発明に至った。
すなわち、本発明は、下記一般式(1)化合物からなる光電変換用増感色素に関する。
一般式(1)
【0012】
【化4】

Figure 0004442105
【0013】
(一般式(1)中、環Aおよび環Bは、それぞれ独立に6員の芳香族環を表す。
Dは、CR12を表し、
1およびR2はそれぞれ独立にアルキル基を表す。
更に、環Aまたは環Bは、少なくとも1つの下記一般式(3’)で示されるビニル基で置換される。さらに、環Aまたは環Bは、直接結合もしくはp-フェニレン基を介して、少なくとも1つのN,N−ジフェニルアミノ基で置換される。)
一般式(3’)
【化19】
Figure 0004442105
(式中、Wはカルボン酸基、ホスホン酸基から選ばれる酸性置換基を表し、
Xはシアノ基を表し、
Yは水素原子を表す。
【0024】
また、本発明は、一般式(1)または下記一般式(2)表される化合物以外の増感色素を含んでなる上記増感色素に関する。
一般式(2)
【化20】
Figure 0004442105
(一般式(2)中、環A、環B、環A'および環B'は、それぞれ独立に6員の芳香族環を表す。
D'は、炭素原子を表す。
更に、環A、環B、環A'または環B'は、少なくとも1つの下記一般式(3’)で示されるビニル基で置換される。さらに環A、環B、環A'または環B'は、直接結合もしくはp-フェニレン基を介して、少なくとも1つのN,N−ジフェニルアミノ基で置換される。)
一般式(3’)
【化21】
Figure 0004442105
(式中、Wはカルボン酸基、ホスホン酸基から選ばれる酸性置換基を表し、
Xはシアノ基を表し、
Yは水素原子を表す。)
【0025】
また、本発明は、上記増感色素と、無機半導体多孔質体とを連結させてなる光電変換材料に関する。
【0026】
また、本発明は、上記光電変換材料を透明電極に積層させてなる光電変換電極に関する。
【0027】
また、本発明は、上記光電変換電極、電解質層、および導電性対極を含んでなる光電変換セルに関する。
【0028】
【発明の実施の形態】
以下、詳細にわたって本発明を説明する。
【0029】
本発明において光機能材料とは光を吸収することによって新たに増感効果、発熱効果、発色効果、退色効果、蓄光効果、相変化効果、光電変換効果、光磁気効果、光触媒効果、光変調効果、光記録効果、ラジカル発生効果等の機能を発現する材料、あるいは逆にこれらの効果を受けて発光機能を有する材料のことをさす。当該光機能材料は、例として光電変換材料、発光材料、光記録材料、画像形成材料、フォトクロミック材料、エレクトロルミネッセンス材料、光導電材料、二色性材料、ラジカル発生材料、酸発生材料、塩基発生材料、蓄光材料、非線形光学材料、第2高調波発生材料、第3高調波発生材料、感光材料、光吸収材料、近赤外吸収材料、フォトケミカルホールバーニング材料、光センシング材料、光マーキング材料、光化学治療用増感材料、光相変化記録材料、光焼結記録材料、光磁気記録材料、光線力学療法用色素および光電変換用増感色素等に幅広く用いることができる。
【0030】
本発明においては一般式(1)表される化合物を光電変換用増感色素として用いるので、この材料を主として光電変換用増感色素あるいは増感色素、色素などとして呼称する。
【0031】
本発明の増感色素は、フルオレン骨格的な部分構造を有した増感色素であり、一般式(1)表される化合物からなる増感色素である。この骨格構造は、少なくとも2つの独立した芳香環又は複素環の間に、平面5員環構造が一般式(1)様に縮合した構造を有し、これら芳香環又は複素環同士が同一平面に固定化され、かつ、平面5員環構造で芳香環又は複素環と結合していない位置(一般式(1)においてはD位置)に色素会合の防止や、色素の溶解性向上を目的とした置換基を導入できるところに特徴をもつ。フルオレンの一般的な定義は式中D位置が例えばCH2であり、2つの芳香環がフェニル環である物であるが、これを当該一般式の様に増感色素に適した形に発展させたものを、ここではフルオレン骨格的な構造等と呼称する。2つの独立した芳香環又は複素環を平面に配置できるので、たとえば一方の環に電子供与性を付与させもう一方の環に電子吸引性を付与させる等のドナー−アクセプター構造を設計しやすい上、D位置は骨格の中央部に位置するため、導入した置換基による会合防止や可溶性向上の効果を発現させやすい。これらの点から増感色素設計に適した骨格構造であると言うことができる。
【0032】
一般式(1)に示す骨格構造のπ電子平面がπ−πスタッキング特性を強く持つので、一般式(1)中のDに結合する有機残基R1およびR2の全てが水素であった場合、物理的に遮蔽するのに有効な置換基がなくなり、骨格同士の会合が起こりやすい。これが原因となり、色素増感太陽電池の製造工程おいては、無機酸化物半導体電極への染色工程で染色溶剤にこの増感色素を溶解させることが困難となる上、析出などもおこりやすくなる。さらに、染色時にも無機酸化物多孔質体への吸着状態でも色素会合したままの吸着となるので、一分子あたりの増感能力が低下する。一般式(1)中、Dに結合する当該有機残基R1およびR2としてアルキル基等の水素ではない有機残基を有する場合、これらの持つ可溶性基としての効果、極性基としての効果等により染色用溶液への溶解性等を向上させることができる。又、Dが炭素原子ある場合、当該有機残基としてアルキル基等の水素ではない置換基を有する場合、これらの置換基は必ず骨格平面からはみ出す方向に大きく張り出すので、骨格同士の会合の防止にさらに効果的である。この置換基位置が骨格の中央付近であるので会合防止効果は非常に大きい。当該有機残基R1およびR2が全て水素の場合、水素のファンデルワールス半径は小さく、また水素とD中の炭素原子の結合距離も短い上に極性基としての効果も弱いので、十分な会合防止効果や溶媒への溶解効果は得られない。さらにこの場合、水素は反応性が高いので耐久性の安定な色素設計としても、アルキル基等の水素ではない置換基であることが望ましい
【0033】
一般式(1)骨格構造は、たとえば環A、環Bがベンゼン環等の場合、比較的コンパクトなπ電子平面でありながら、クマリン色素骨格等より多いπ共役系が平面構造上に存在し、かつその構造の中心的な位置に会合防止性の置換基を導入できるので、これらより良好な色素設計が可能である。前記の場合、環Aと環Bは平面構造上でπ電子共役的な関係にありながら、共役は一つの直接単結合のみを通じて行われるので、それぞれの環構造は独立性をも有している。それぞれ独立的に、一方の環に電子供与性の置換基を持たせ、他方の環に電子吸引性の置換基を持たせるなどを行うことで、分子内電子遷移性の強い構造を実現できる。電子吸引性のπ電子系と電子供与性のπ電子系がひとつの直接単結合のみを通じて共役するには、単結合を境に2つのπ電子平面が同一面に強制的に配置されることが必要でこれが実現でき、かつ同時に会合防止置換基や可溶性置換基を分子骨格中央部に導入できるのは本発明のような構造をとることによって初めて実現できる。これにより良好な変換効率を有する増感色素となる。
【0034】
一般式(2)中のD’ は炭素原子ある。
増感色素が一般式(2)構造をとった場合、D’ を介して交わる2平面(平面の一方は環Aを含み、一方は環A'を含む)は2つのπ電子平面が垂直に交わる構造になるのでπ−πスタッキングによって面方向に複数の分子間が重なる様な増感色素同士の会合は起こりにくい。
【0035】
一般式(2)に類似の骨格構造は色素増感太陽電池の固体電解質(ホール輸送材)の化合物として用いられた例はある(Nature,395,p.583(1998年)が、増感色素としての例は無かった。化学構造の類似性を起因としてこの増感色素はこの固体電解質との間での電子の受け渡しが容易でかつ安定な電池を作成できる等のことが期待できる。
【0036】
一般式(2)構造の増感色素は環Aを含む骨格構造のπ電子平面と環A’を含む骨格構造のπ電子平面が同一構造であっても本発明の増感色素に該当するが、さらにそれぞれの平面骨格構造を違えることにより、各々が有する吸収帯を2種類に違えて分子設計することもできる。
この場合、一つの分子構造に幅広波長範囲で光吸収能をもたらすことができる。さらに、製造工程においても、染色溶液に溶解後、増感色素を無機酸化物半導体多孔質体を有する電極に吸着させる電極の製造工程で、2種類の吸収帯の比を常に一定にすることが可能であるので、別々の2種類の色素を吸着させる製造方法より優れている。
【0037】
一般式(2)構造で、吸収帯を2種類に違える分子設計としては、環A含む骨格と環A’を含む骨格のπ電子共役の長さを違えることが手法の一つである。これには例えば環を構成する員数を変えたりすることが挙げられる。又、垂直に交わるそれぞれの骨格に導入する置換基や芳香族環あるいは複素環の種類を違えることで環Aを含む骨格平面の光吸収と、環A’ を含む骨格平面の光吸収の差を、溶液状態の長波長末端の比較で30nm以上の差があるようにすることが第二の手法である。この場合、本発明では、環Aを含む骨格平面だけの増感色素と環A’ を含む骨格平面だけの増感色素をそれぞれモデル的に合成し、各々の溶液状態の吸収を参考とすることができる。この場合、各々の増感色素の溶液状態の吸収長波長末端の比較が30nm以上であれば本発明の2種類の吸収帯を1分子中に有した増感色素に該当する。また、一般式(2)で環Aを含む骨格平面と環A' を含む骨格平面が異なる増感色素を合成し、その吸収スペクトルが2種類の吸収帯を有し、この2種類の吸収帯が光学的分析手法等や計算化学手法等、解析方法により明らかに各々の平面骨格に帰属可能な場合も本発明の増感色素に該当する。
【0039】
次に、一般式(1)及び一般式(2)の構造について説明する。
【0040】
一般式(1)又は一般式(2)中の環A、環B、環A’、環B’はそれぞれ独立に員の芳香族環表す。
これらには芳香族炭化水素の芳香環が挙げられる。
【0041】
芳香族炭化水素の芳香環としてはベンゼン挙げられる。
【0043】
上記の芳香族炭化水素の芳香環は、少なくとも1つの下記一般式(3’)で示されるビニル基で置換される。さらに、上記の芳香族炭化水素の芳香環は、直接結合もしくはフェニレン基を介して、少なくとも1つのN,N−ジフェニルアミノ基で置換される。
一般式(3’)
【化22】
Figure 0004442105
(式中、Wはカルボン酸基、ホスホン酸基から選ばれる酸性置換基表し、
Xはシアノ基表し、
Yは水素原子を表す。
【0044】
本発明におけるアルキル基としては、置換基を有しても良い炭素数1〜30の直鎖、分岐及び環状の炭化水素基が挙げられ、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基といった炭素数1〜30のアルキル基があげられる。
【0056】
一般式(1)中のDは、CR12 表し、R1およびR2はそれぞれ独立にアルキル基を表す。アルキル基については前述の通りである。
一般式(2)中のD' は炭素原子ある。
【0058】
次に、一般式(1)又は一般式(2)酸性置換基について説明する。酸性置換基は増感色素の構造中で無機酸化物多孔質半導体表面に連結することができる置換基として存在する。光励起された色素の励起電子は無機酸化物多孔質半導体の電導帯にこの酸性置換基を通じて電子注入を行うことができる。酸性置換基は具体的には、カルボン酸基、ホスホン酸基のいずれかである。
【0064】
一般式(3)の部分構造をとることによって初めて酸性置換基は最も近傍に電子吸引基を有しながら、かつ酸性置換基近傍まで色素クロモファーであるπ電子共役平面骨格からのπ電子共役を繋げることができる。この構造により、色素クロモファーが光吸収することによって生じた励起電子をπ電子共役系を通って酸性置換基へ伝え、さらに電子吸引基の存在により励起電子を酸性置換基近傍に局在化させ、さらには酸性置換基を介して、これが吸着する無機酸化物半導体多孔質表面に有効に電子注入することが可能となり、ひいては高い光電変換効率を有する光電変換セルの作成が可能となる。
【0065】
以下、表1に、本発明の光電変換用増感色素として用いることができる化合物の代表例を示すが、本発明は、なんらこれらに限定されるものではない(表1中、Phはフェニル基を表す。)。さらに、本明細書では化合物の代表構造式として2重結合構造に起因するシス−トランス異性体の一部を示すが、これは存在し得る同異性体の全てを含んでいる。
表1
【0066】
【表1】
Figure 0004442105
【0079】
ところで、本発明において用いられる光電変換用増感色素は、一般式(1)表される増感色素がカバーしきれない領域の太陽光吸収を補うために他の増感色素と組み合わせて用いる事ができる。ここにおいて他の増感色素としてはアゾ系色素、キナクリドン系色素、ジケトピロロピロール系色素、スクワリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、クロロフィル系色素、ルテニウム錯体系色素、インジゴ系色素、ペリレン系色素、ジオキサジン系色素、アントラキノン系色素、フタロシアニン系色素、ナフタロシアニン系色素等、およびその誘導体等が挙げられる。
【0080】
以下、本発明で使用される光電変換用増感色素以外の材料について説明する。好ましい材料の種類、量比等について具体的に述べるが必ずしもこれに限定されるものではない。
【0081】
(無機酸化物)
本発明において用いられる光電変換用増感色素は連結基を介して無機半導体多孔質体表面に連結することによって無機半導体多孔質体が増感された光電変換材料を形成する。無機半導体は一般的に一部の領域の光に対して光電変換機能を有しているが、この表面が増感色素を連結することによって可視光および/又は近赤外光領域までの光電変換が可能となる。無機半導体多孔質体の材質としては主に無機酸化物が用いられるが、増感色素を連結することによって光電変換機能を有する無機半導体多孔質体ならこれに限らない。無機半導体としてはシリコン、ゲルマニウム、III族‐V族系半導体、金属カルコゲニド等が挙げられる。本発明で用いられる無機酸化物半導体多孔質体としては、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、酸化鉄、酸化ニッケル、酸化コバルト、酸化ストロンチウム、酸化タンタル、酸化アンチモン、酸化ランタノイド、酸化イットリウム、酸化バナジウム等の多孔質体を挙げることができるが、これらの表面が増感色素を連結することによって可視光および/又は近赤外光領域までの光電変換が可能となるものであればこれに限らない。無機酸化物半導体多孔質体表面が増感色素によって増感されるためには無機酸化物の電導帯が増感色素の光励起順位から電子を受け取りやすい位置に存在することが望ましい。このため前記無機酸化物半導体多孔質体の中でも酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ等が特に用いられる。さらに、価格や環境衛生性等の点から、酸化チタンが特に用いられる。本発明においては前記無機酸化物半導体多孔質体から一種又は複数の種類を選択して組み合わせることができる。
【0082】
(無機酸化物の多孔質化)
無機半導体多孔質体は多量の増感色素をその表面に連結し、ひいては高率な光電変換能力を有する目的で、多孔質化することにより広い表面積を有している。多孔質化の方法としては、粒子径が数から数十ナノメートルの酸化チタン等の無機酸化物粒子をペースト化した後に焼結する方法が広く知られているが、多孔質化して広い表面積を得る方法であればこれに限らない。
【0083】
(光電変換電極)
本発明において用いられる光電変換材料は電導性表面を有する透明基材の電導面に積層することによって光電変換電極を形成する。
【0084】
(電導性表面)
用いられる電導性表面としては、太陽光の可視から近赤外領域に対して光吸収が少ない導電材料なら特に限定されないが、ITO(インジウム−スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛等の電導性の良好な金属酸化物が好適である。
【0085】
(透明基材)
用いられる透明基材としては太陽光の可視から近赤外領域に対して光り吸収が少ない材料であれば特に限定されない。石英、並ガラス、BK7、鉛ガラス等のガラス基材、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビニルブチラート、ポリプロピレン、テトラアセチルセルロース、シンジオクタチックポリスチレン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフォン、ポリエステルスルフォン、ポリエーテルイミド、環状ポリオレフィン、ブロム化フェノキシ、塩化ビニール等の樹脂基材等を用いることができる。
【0086】
(積層方法)
本発明において用いられる光電変換材料を電導性表面を有する透明基材の電導面に積層する方法としては、電導面にペースト化した無機酸化物粒子を塗布後乾燥又は焼結させて無機酸化物半導体多孔質体を形成し、これを透明基材ごと増感色素を溶解させた溶液中に浸すことにより無機多孔質表面と増感色素の連結器の親和性を利用して増感色素を無機多孔質表面に結合させる方法が一般的であるが、この方法に限定されない。無機酸化物粒子をペースト化させるためには無機酸化物粒子を水又は適当な有機溶剤中に分散させる。均質で表面積が大きい無機多孔質表面として積層させるには分散性の良いペーストにすることが大切なので、必要に応じて、硝酸やアセチルアセトン等の酸やポリエチレングリコール、トリトンX−100等の分散剤をペースト成分に混合し、ペイントシェーカー等を用いてペースト化する。ペーストを透明基材の電導面に塗布する方法としてはスピンコーターによる塗布方法やスクリーン印刷法、スキージーを用いた塗布方法、ディップ法、吹き付け法、ローラー法等が用いられる。塗布された無機酸化物ペーストは乾燥又は焼成後ペースト中の揮発成分が除去され透明基材の電導面上に無機酸化物半導体多孔質体を形成する。乾燥又は焼成の条件としてはたとえば400℃から500℃の温度で30分〜1時間程度の熱エネルギーを与える方法が一般的であるが、透明基材の電導面に密着性を有し、太陽光照射時に良好な起電力が得られる乾燥又は焼成方法であるならこれに限らない。
増感色素を溶解させた溶液を作るためには、溶剤としてエタノールベンジルアルコールなどのアルコール系溶剤、アセトニトリル、プロピオニトリルなどのニトリル系溶剤、クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、酢酸エチル、サクサンブチル等のエステル系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤、ヘキサン、オクタン、ベンゼン、トルエン等の炭水化物系位溶剤、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチルイミダゾリノン、Nメチルピロリドン、水等を用いることができるがこれに限らない。
透明基材の電導面上に形成される無機酸化物半導体多孔質体の膜厚は0.5μm以上200μm以下であることが望ましい。膜厚がこの範囲未満である場合有効な変換効率が得られない。又膜厚がこの範囲より厚い場合成膜時に割れや剥がれが生じる等作成が困難になる反面、無機酸化物半導体多孔質体表層と電導面との距離が増えるために発生電荷が電導面に有効に伝えられなくなるので、良好な変換効率を得にくくなる。
【0087】
(光電変換セル)
本発明において用いられる光電変換電極は、電解質層を介して導電性対極を組み合わせることによって光電変換セルを形成する。
【0088】
(電解質層)
本発明で用いられる電解質層は電解質、媒体、および添加物から構成されることが好ましい。本発明の電解質はI2とヨウ化物(例としてLiI、NaI、KI、CsI、MgI2、CaI2、CuI、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等)の混合物、Br2と臭化物(例としてLiBr等)の混合物、Inorg. Chem. 1996,35,1168-1178に記載の溶融塩等を用いることができるがこの限りではない。この中でもI2とヨウ化物の組み合わせとしてLiI、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等を混合した電解質が本発明では好ましいがこの組み合わせ方に限らない。
好ましい電解質濃度は媒体中I2が0.01M以上0.5M以下でありヨウ化物の混合物が0.1M以上15M以下である。
【0089】
本発明で電解質層に用いられる媒体は、良好なイオン電導性を発現できる化合物であることが望ましい。溶液状の媒体としては、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3‐メチル‐2‐オキサゾリジノンなどの複素環化合物、ジメチルスルホキシド、スルホランなど非プロトン極性物質、水などを用いることができる。
【0090】
又、固体状(ゲル状を含む)の媒体を用いる目的で、ポリマーを含ませることもできる。この場合、ポリアクリロニトリル、ポリフッ化ビニリデン等のポリマーを前記溶液状媒体中に添加したり、エチレン性不飽和基を有した多官能性モノマーを前記溶液状媒体中で重合させて媒体を固体状にする。
電解質層としてはこの他、CuI、CuSCN媒体を必要としない電解質および、Nature,Vol.395, 8 Oct. 1998,p583-585記載の2,2',7,7'‐テトラキス(N,N‐ジ‐p‐メトキシフェニルアミン)9,9'‐スピロビフルオレンのような正孔輸送材料を用いることができる。
本発明に用いられる電解質層には光電変換セルの電気的出力を向上させたり、耐久性を向上させる働きをする添加物を添加することができる。電気的出力を向上させる添加物として4‐t‐ブチルピリジンや、2‐ピコリン、2,6‐ルチジン等が挙げられる。耐久性を向上させる添加物としてMgI等が挙げられる。
【0091】
(導電性対極)
本発明で用いられる電導性対極は光電変換セルの正極として機能するものである。具体的に対極に用いる導電性の材料としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、金属酸化物(ITO(インジウム‐スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛)、または炭素等が挙げられる。対極の膜厚は、特に制限はないが、5nm以上10μm以下であることが好ましい。
【0092】
(組み立て方)
前記の光電変換電極と導電性対極を電解質層を介して組み合わせることによって光電変換セルを形成する。必要に応じて電解質層の漏れや揮発を防ぐために、光電変換セルの周囲に封止を行う。封止には熱可塑性樹脂、光硬化性樹脂、ガラスフリット等を封止材料として用いることができる。光電変換セルは必要に応じて小面積の光電変換セルを連結させて作る。光電変換セルを直列に組み合わせることによって起電圧を高くすることができる。
【0093】
【実施例】
以下に実施例を具体的に示すが本発明は以下に限定されるものではない。
(実施例1)
・化合物(1)の合成
下式により化合物(1)の合成を行った。式中のアルデヒド誘導体は、フルオレンを臭素化エチルでエチル化した後、2つのフェニル部位をそれぞれ臭素化した後、一方の臭素化部位をトリフェニルアミンボロン酸と鈴木カップリングさせ、もう一方の臭素化部位をn−ブチルリチウム、DMFでホルミル化することにより合成した。マススペクトル、NMRスペクトル、IRスペクトルにより、化合物(1)の構造を確認した。
【0094】
【化8】
Figure 0004442105
【0095】
化合物(1)
【化9】
Figure 0004442105
【0096】
・増感色素のエタノールへの溶解性確認試験
増感色素の溶解性を下記の方法で試験した。
エタノール10mlに増感色素10mgを添加し、振とうしながら溶解性を肉眼で確認した。得られた結果に下記の分類を行った。
1分以内で溶解 ◎
5分以内で溶解 ○
30分以内で溶解 △
30分たっても不溶分が残る ×
【0097】
・光電変換電極の光暴露保存安定性試験
後述する増感色素の吸着の方法で光電変換電極を作成し、これを蛍光灯下3000luxの条件で3日間照射して光暴露保存安定性を調べた。光電変換電極の色素濃度をマクベス濃度計で測定し、光暴露前後で濃度比較をして光電変換電極に吸着した色素の光暴露に対する保存安定性を調べた。
濃度低下率が10%未満 ◎
濃度低下率が25%未満 ○
濃度低下率が50%未満 △
濃度低下率が50%以上 ×
【0098】
光電変換用色素の評価について説明する。
・透明電極
フッ素ドープ酸化スズ層付ガラス基板(旭ガラス社製 タイプU−TCO)を使用した。
【0099】
・酸化チタンペーストの調整
下記処方でジルコニアビーズと混合し、ペイントシェーカーを用いて分散して酸化チタンペーストを得た。
酸化チタン(日本アエロジル社製 P25 粒子径 21nm) 6 重量部
水(硝酸添加でpH2に調整した物) 14 重量部
アセチルアセトン 0.6重量部
界面活性剤(ICN社製 Triton X−100) 0.04重量部
PEG‐#500,000 0.3重量部
【0100】
・酸化チタン多孔質層の作成
透明電極の電導面に厚さ60μmのメンディングテープを張り、1cm角のテープを除去することでマスクを作り、空いた部分にペーストを数的垂らした後にスキージーで余分なペーストを除去した。風乾後全てのマスクを除去し、450℃のオーブンで1時間焼成することで有効面積1cm2の酸化チタン多孔質層を有した酸化チタン電極を得た。
【0101】
・増感色素の吸着
増感色素をアルコール、アセトン、酢酸エチル、ジメチルホルムアミド、Nメチルピロリドン等の溶剤に溶解し、必要に応じてメンブランフィルターで不溶分を除去し、この色素溶液に酸化チタン電極を浸し、室温又は必要に応じて加熱し数時間から数日の間これを放置する。着色した電極表面を使用溶剤およびアルコールで洗浄した後、4‐t‐ブチルピリジンの2mol%溶液に30分浸した後乾燥させることで増感色素の吸着した光電変換電極を得た。
【0102】
・電解質溶液の調整
下記処方で電解質溶液を得た。
溶媒 メトキシアセトニトリル
LiI 0.1M
2 0.05M
4‐t‐ブチルピリジン 0.5M
1‐プロピル‐2,3‐ジメチルイミダゾリウムヨージド 0.6M
【0103】
・光電変換セルの組み立て
図1の様に光電変換セルの試験サンプルを組み立てた。
導電性対極にはフッ素ドープ酸化スズ層付ガラス基板(旭ガラス社製 タイプU−TCO)の導電層上にスパッタリング法により150nmの白金層を積層した物を用いた。
樹脂フィルム製スペーサーとしては、三井・デュポンポリケミカル社製「ハイミラン」フィルムの25μm厚の物を用いた。
【0104】
・変換効率の測定方法
ORIEL社製ソーラーシュミレーター(#8116)をエアマスフィルターとを組み合わせ、光量計で100mW/cm2 の光量に調整して測定用光源とし、光電変換セルの試験サンプルに光照射をしながら英弘精機社製I‐Vカーブトレーサー(MP160)を使用してI‐Vカーブ特性を測定した。変換効率ηは、I‐Vカーブ特性測定から得られたVoc(開放電圧値)、Isc(短絡電流値)、ff(フィルファクター値)を用いて下式により算出した。
【0105】
【式1】
Figure 0004442105
【0106】
(実施例2〜
実施例1と同様の方法で化合物(2)〜()を合成し、実施例1と同様に増感色素の評価を行った。
アニン系色素、ナフタロシアニン系色素等、およびその誘導体等が挙げられる。
【0107】
化合物(2)
【化10】
Figure 0004442105
【0108】
化合物(3)
【化11】
Figure 0004442105
【0109】
化合物(4)
【化12】
Figure 0004442105
【0111】
比較例
一般式(1)のR1、R2 部位が全て水素である部分構造式を含む増感色素例として比較化合物を合成し、実施例1と同様に増感色素の評価を行った。
【0112】
(比較例1)
比較化合物(104) (化合物(3)に対する比較化合物 )
【化14】
Figure 0004442105
【0113】
比較化合物(105) (化合物(4)に対する比較化合物 )
【化15】
Figure 0004442105
【0114】
(結果)
実施例と比較例の結果を表(2)にまとめた。
【0115】
【表2】
Figure 0004442105
【0116】
【発明の効果】
本発明において一般式(1)増感色素を用い、枯渇性のない材料でかつ高い光電変換効率を有する光電変換セルを提供することができた。さらには太陽光に対して幅広い波長領域で光電変換機能を発現でき、かつエタノール等の環境負荷の小さな溶剤に対して溶解性が高く生産性の良い増感色素を提供できた。
ひいては高効率で量産性のある光電変換材料、光電変換電極および光電変換セルを作成することができた。
【図面の簡単な説明】
【図1】図1は、光電変換セル試験サンプルを表す。
【図2】図2は、化合物(1)を吸着させた酸化チタン電極を拡散反射法で測定したスペクトルおよびエタノール溶液中のスペクトルである。
【図3】図3は、化合物(1)を吸着させた酸化チタン電極を用いた光電変換セルの電流電圧曲線である。
【符号の説明】
1.酸化チタン多孔質層(光電変換用増感色素が吸着済)
2.電解質溶液層
3.透明電極層(フッ素ドープ型酸化スズ)
4.Pt電極層
5.ガラス基盤
6.樹脂フィルム製スペーサー
7.変換効率測定用導線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensitizing dye for photoelectric conversion, a photoelectric conversion material using the same, a photoelectric conversion electrode, and a photoelectric conversion cell using the same.
[0002]
[Prior art]
For solar power generation, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium copper selenide have been put into practical use or are subject to research and development. It is necessary to overcome problems such as manufacturing cost, securing raw materials, and long energy payback time. On the other hand, many solar cells using organic materials aimed at increasing the area and cost have been proposed, but there is a problem that conversion efficiency is low and durability is poor.
[0003]
Under such circumstances, a photoelectric conversion electrode and a photoelectric conversion cell using a semiconductor microporous material sensitized with a dye, and a material and a manufacturing technique for producing the photoelectric conversion electrode have been disclosed (Non-patent Document 1 and Patents). Reference 1). The disclosed battery is a dye-sensitized photoelectric conversion cell comprising a titanium oxide porous thin layer spectrally sensitized with a ruthenium complex dye, an electrolyte layer mainly composed of iodine, and a counter electrode. The first advantage of this method is that an inexpensive oxide semiconductor such as titanium oxide is used, so that an inexpensive photoelectric conversion element can be provided. The second advantage is that the ruthenium complex dye used is widely absorbed in the visible light range. Therefore, relatively high conversion efficiency can be obtained.
[0004]
One of the problems of such a dye-sensitized photoelectric conversion cell is that ruthenium is used as a raw material for the dye. Ruthenium has a Clarke number of 0.01 ppm, which is comparable to platinum and palladium, and is only present on the earth. Furthermore, the price of the ruthenium complex dye becomes expensive, which hinders mass diffusion of photoelectric conversion cells. For this reason, research on a deruthenium-based sensitizing dye has been actively conducted in recent years. For example, JP-A-10-92477 discloses a sensitizing dye that does not use ruthenium as a raw material (see Patent Document 2).
[0005]
Recently, non-ruthenium complex dyes have been actively studied as sensitizing dyes in dye-sensitized solar cells. Examples thereof include phenylxanthene dyes, phthalocyanine dyes, coumarin dyes, cyanine dyes, porphyrin dyes, azo dyes, and the like. These organic dyes are expected to have high photoelectric conversion efficiency because they have a large extinction coefficient and a large degree of freedom in molecular design as compared with ruthenium complexes. However, there are no good organic sensitizing dyes because the light absorption region of the dye is clogged or charge injection into titanium oxide is inefficient.
[0006]
In order to solve these problems, it has been disclosed that a sensitizing dye having a substituted acrylic acid moiety has a relatively high conversion efficiency as a sensitizing dye characterized by an adsorption terminal with titanium oxide (Patent Document). 3 and 4). A characteristic feature of these sensitizing dyes is that the carbon atom to which the carboxylic acid group at the end of acrylic acid is bonded simultaneously has an electron-withdrawing substituent typified by a cyano group, thereby increasing the electron withdrawing effect at the end of acrylic acid. There is in point. The sensitizing dye is bonded to the surface of inorganic oxide porous semiconductors such as titanium oxide at the terminal carboxylic acid group, and excited electrons generated by light absorption of the sensitizing dye are injected into the inorganic oxide side through the carboxylic acid group. However, the electron-injecting effect is promoted by strengthening the electron-withdrawing effect at this site, and as a result, high conversion efficiency is realized. A typical example is a sensitizing dye in which a coumarin skeleton and an acrylic acid terminal having a cyano group are combined to achieve a high conversion efficiency of 5% or more (see Non-Patent Document 2).
[0007]
However, since the basic absorption wavelength region of a relatively small skeleton such as a coumarin skeleton is closer to the shorter wavelength side in the visible light region, it is attempted to increase the wavelength based on this skeleton. For example, a long double bond site is introduced. Long-chain double bond sites have weak durability properties such as being easily oxidized to active oxygen. A cyanine dye or the like is also an example of a dye having a long-chain double bond site and weak durability. On the other hand, a dye having an original absorption wavelength region in a long wavelength region such as a phthalocyanine dye tends to have a large molecular weight and has a strong associative force due to stacking characteristics of π-electron plane skeletons forming chromophore, and is a dye solvent. It was difficult to use as a sensitizing dye, such as low conversion efficiency because light absorption was inhibited between sensitizing dyes due to poor solubility in water and ease of association.
[0008]
A sensitizing dye having a highly durable skeletal structure, good solubility, and absorption of two or more types, regardless of the introduction of weakly durable sites such as long-chain double bond sites Thus, there has been a demand for a sensitizing dye that can provide a photoelectric conversion cell that is inexpensive and has high conversion efficiency characteristics.
[0009]
[Non-Patent Document 1]
Nature (Vol. 353, 737-740, 1991)
[Non-Patent Document 2]
Chem. Commun., (6), 569-570 (2001).
[Patent Document 1]
US Pat. No. 4,927,721
[Patent Document 2]
Japanese Patent Laid-Open No. 10-92477
[Patent Document 3]
JP 2002-164089 A
[Patent Document 4]
WO02 / 11213 pamphlet
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a sensitizing dye for a dye-sensitized photoelectric conversion cell having a highly durable skeleton structure and a good solubility as a sensitizing dye, and thus inexpensive and having high conversion efficiency performance. It is.
Furthermore, a photoelectric conversion material in which this sensitizing dye is connected to the surface of the inorganic semiconductor porous body, a photoelectric conversion electrode formed by laminating the photoelectric conversion material on the conductive surface of a transparent substrate having a conductive surface, and a photoelectric conversion electrode Is to provide a photoelectric conversion cell in which a conductive counter electrode is combined through an electrolyte layer.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor is to connect a specific sensitizing dye to an inorganic semiconductor surface laminated on a transparent conductive substrate to produce a good photoelectric conversion cell. The present invention has been achieved successfully.
That is, the present invention provides the following general formula (1)ofThe present invention relates to a sensitizing dye for photoelectric conversion comprising a compound.
General formula (1)
[0012]
[Formula 4]
Figure 0004442105
[0013]
(In General Formula (1), Ring A and Ring B each independently represent a 6-membered aromatic ring.
D is CR1R2Represents
R1And R2Each independently represents an alkyl group.
Further, ring A or ring B is substituted with at least one vinyl group represented by the following general formula (3 '). Furthermore, ring A or ring B is substituted with at least one N, N-diphenylamino group via a direct bond or a p-phenylene group. )
Formula (3 ')
Embedded image
Figure 0004442105
(Wherein, W represents an acidic substituent selected from a carboxylic acid group and a phosphonic acid group,
X represents a cyano group,
Y represents a hydrogen atom.)
[0024]
In addition, the present invention provides a general formula (1) orfollowingGeneral formula (2)soexpressedOther than compoundsThe present invention relates to the above sensitizing dye comprising the sensitizing dye.
General formula (2)
Embedded image
Figure 0004442105
(In General Formula (2), Ring A, Ring B, Ring A ′ and Ring B ′ each independently represent a 6-membered aromatic ring.
D ′ represents a carbon atom.
Further, ring A, ring B, ring A ′ or ring B ′ is substituted with at least one vinyl group represented by the following general formula (3 ′). Further, ring A, ring B, ring A ′ or ring B ′ is substituted with at least one N, N-diphenylamino group via a direct bond or a p-phenylene group. )
General formula (3 ')
Embedded image
Figure 0004442105
(Wherein, W represents an acidic substituent selected from a carboxylic acid group and a phosphonic acid group,
X represents a cyano group,
Y represents a hydrogen atom. )
[0025]
Moreover, this invention relates to the photoelectric conversion material formed by connecting the said sensitizing dye and an inorganic semiconductor porous body.
[0026]
Moreover, this invention relates to the photoelectric conversion electrode formed by laminating | stacking the said photoelectric conversion material on a transparent electrode.
[0027]
The present invention also relates to a photoelectric conversion cell comprising the photoelectric conversion electrode, an electrolyte layer, and a conductive counter electrode.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0029]
In the present invention, the optical functional material newly absorbs light to newly enhance a sensitizing effect, heat generation effect, coloring effect, fading effect, phosphorescent effect, phase change effect, photoelectric conversion effect, photomagnetic effect, photocatalytic effect, and light modulation effect. In addition, it refers to a material that exhibits functions such as an optical recording effect and a radical generation effect, or conversely, a material having a light emitting function that receives these effects. Examples of the photofunctional material include a photoelectric conversion material, a light emitting material, an optical recording material, an image forming material, a photochromic material, an electroluminescent material, a photoconductive material, a dichroic material, a radical generating material, an acid generating material, and a base generating material. , Phosphorescent material, nonlinear optical material, second harmonic generation material, third harmonic generation material, photosensitive material, light absorption material, near infrared absorption material, photochemical hole burning material, optical sensing material, optical marking material, photochemistry It can be widely used for therapeutic sensitizing materials, optical phase change recording materials, photosintered recording materials, magneto-optical recording materials, photodynamic therapy dyes, photoelectric conversion sensitizing dyes, and the like.
[0030]
In the present invention, the general formula (1)soSince the compound represented is used as a sensitizing dye for photoelectric conversion, this material is mainly referred to as a sensitizing dye for photoelectric conversion or a sensitizing dye or a dye.
[0031]
The sensitizing dye of the present invention is a sensitizing dye having a fluorene skeleton-like partial structure, and is represented by the general formula (1)soIt is a sensitizing dye comprising the compound represented. This skeletal structure has a planar 5-membered ring structure represented by the general formula (1) between at least two independent aromatic rings or heterocyclic rings.ofThe aromatic rings or the heterocycles are fixed on the same plane, and are not bonded to the aromatic ring or the heterocycle in the planar 5-membered ring structure (in the general formula (1)) Is characterized in that substituents can be introduced at the D position for the purpose of preventing dye association and improving the solubility of the dye. The general definition of fluorene is a compound in which the D position is, for example, CH2 and the two aromatic rings are phenyl rings, and this has been developed into a form suitable for a sensitizing dye as in the general formula. Here, this is called a fluorene skeleton structure or the like. Since two independent aromatic rings or heterocyclic rings can be arranged in a plane, it is easy to design a donor-acceptor structure such as imparting electron donating properties to one ring and imparting electron attracting properties to the other ring. Since the D position is located at the center of the skeleton, it is easy to exhibit the effect of preventing association and improving solubility by the introduced substituent. From these points, it can be said that it is a skeleton structure suitable for sensitizing dye design.
[0032]
Since the π electron plane of the skeleton structure represented by the general formula (1) has strong π-π stacking characteristics, the organic residue R bonded to D in the general formula (1)1And R2When all of these are hydrogen, there are no substituents effective for physical shielding, and skeletons are likely to associate with each other. For this reason, in the production process of the dye-sensitized solar cell, it is difficult to dissolve the sensitizing dye in the dyeing solvent in the dyeing process of the inorganic oxide semiconductor electrode, and precipitation is likely to occur. Furthermore, since the dye is adsorbed while being dye-associated in both the dyeing state and the adsorbed state on the inorganic oxide porous material, the sensitizing ability per molecule is lowered. In the general formula (1), the organic residue R bonded to D1And R2In the case of having an organic residue that is not hydrogen, such as an alkyl group, the solubility as a dyeing solution can be improved by the effect as a soluble group, the effect as a polar group, and the like. D is a carbon atomsoIn some cases, when the organic residue has a non-hydrogen substituent such as an alkyl group, these substituents always protrude greatly in the direction of protruding from the skeleton plane, which is more effective in preventing the association between skeletons. . Since this substituent position is near the center of the skeleton, the effect of preventing association is very large. The organic residue R1And R2Is all hydrogen, the van der Waals radius of hydrogen is small, and hydrogen and carbon atoms in DWhenIn addition, since the bond distance is short and the effect as a polar group is weak, a sufficient anti-association effect and a dissolution effect in a solvent cannot be obtained. Furthermore, in this case, since hydrogen is highly reactive, it is desirable that the substituent is a non-hydrogen substituent such as an alkyl group, even when designing a durable and stable dye..
[0033]
General formula (1)ofFor example, when the ring A and the ring B are benzene rings, the skeleton structure is a relatively compact π electron plane, but more π conjugated systems than the coumarin dye skeleton exist on the planar structure, and the center of the structure Since an anti-association substituent can be introduced at an appropriate position, a better dye design is possible. In the above case, the ring A and the ring B have a π-electron conjugate relationship on the planar structure, but conjugation is performed through only one direct single bond, so that each ring structure also has independence. . Independently, by providing an electron-donating substituent in one ring and an electron-withdrawing substituent in the other ring, a structure with strong intramolecular electron transition can be realized. In order for an electron-withdrawing π-electron system and an electron-donating π-electron system to be conjugated through only one direct single bond, two π-electron planes may be forcibly arranged on the same plane with the single bond as a boundary. This can be realized if necessary, and at the same time, an anti-association substituent or a soluble substituent can be introduced into the central part of the molecular skeleton only by taking the structure of the present invention. Thereby, it becomes a sensitizing dye having good conversion efficiency.
[0034]
D ′ in the general formula (2) is a carbon atom.sois there.
Sensitizing dye is represented by the general formula (2)ofIn the case of the structure, two planes intersecting via D ′ (one of the planes includes ring A and one includes ring A ′) has a structure in which two π electron planes intersect perpendicularly, so π-π stacking As a result, the sensitizing dyes are less likely to associate with each other such that a plurality of molecules overlap in the plane direction.
[0035]
There is an example in which a skeleton structure similar to the general formula (2) is used as a compound of a solid electrolyte (hole transport material) of a dye-sensitized solar cell (Nature, 395, p. 583 (1998)). Because of the similarity in chemical structure, it can be expected that this sensitizing dye can easily transfer electrons to and from this solid electrolyte and can form a stable battery.
[0036]
General formula (2)ofThe sensitizing dye having the structure corresponds to the sensitizing dye of the present invention even if the π electron plane of the skeleton structure including the ring A and the π electron plane of the skeleton structure including the ring A ′ are the same structure. By changing the skeletal structure, it is possible to design a molecule with two different absorption bands.
In this case, light absorption ability can be provided in a wide wavelength range in one molecular structure. Furthermore, in the manufacturing process, after dissolving in the dyeing solution, the ratio of the two types of absorption bands can always be constant in the manufacturing process of the electrode where the sensitizing dye is adsorbed to the electrode having the inorganic oxide semiconductor porous body. Since it is possible, it is superior to the production method in which two different types of dyes are adsorbed.
[0037]
General formula (2)ofAs a molecular design in which the structure has two different absorption bands, one of the methods is to change the length of π-electron conjugation between the skeleton including ring A and the skeleton including ring A ′. This includes, for example, changing the number of members constituting the ring. In addition, the difference between the light absorption of the skeleton plane including ring A and the light absorption of the skeleton plane including ring A ′ by changing the types of substituents, aromatic rings or heterocycles introduced into the vertically intersecting skeletons. The second method is to make a difference of 30 nm or more in the comparison of the long wavelength ends in the solution state. In this case, in the present invention, a sensitizing dye having only a skeleton plane including ring A and a sensitizing dye having only a skeleton plane including ring A ′ are synthesized in a model manner, and the absorption in each solution state is referred to. Can do. In this case, if the comparison of the absorption long wavelength end of each sensitizing dye in the solution state is 30 nm or more, it corresponds to the sensitizing dye having two kinds of absorption bands of the present invention in one molecule. Further, a sensitizing dye having a different skeleton plane including ring A and skeleton plane including ring A ′ in the general formula (2) is synthesized, and the absorption spectrum has two types of absorption bands. However, the case where it can be clearly assigned to each planar skeleton by an analysis method such as an optical analysis method or a computational chemistry method also falls under the sensitizing dye of the present invention.
[0039]
Next, the structure of General formula (1) and General formula (2) is demonstrated.
[0040]
In general formula (1) or general formula (2), ring A, ring B, ring A ′ and ring B ′ are each independently6Member aromatic ringTheTo express.
These include aromatic hydrocarbon aromatic ringsetcIs mentioned.
[0041]
As aromatic rings of aromatic hydrocarbons,benzeneButCan be mentioned.
[0043]
Aromatic rings of the above aromatic hydrocarbonsIs substituted with at least one vinyl group represented by the following general formula (3 ′). Furthermore, the aromatic ring of the above aromatic hydrocarbon is substituted with at least one N, N-diphenylamino group through a direct bond or a phenylene group.)
General formula (3 ')
Embedded image
Figure 0004442105
Where W isSelected from carboxylic acid group and phosphonic acid groupAcidic substituentsTheRepresent,
X is a cyano groupTheRepresent,
Y is a hydrogen atomRepresents.)
[0044]
In the present inventionExamples of the alkyl group include linear, branched and cyclic hydrocarbon groups having 1 to 30 carbon atoms which may have a substituent, such as a methyl group, an ethyl group, a propyl group, a butyl group, a sec-butyl group, Examples thereof include alkyl groups having 1 to 30 carbon atoms such as tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group and stearyl group.
[0056]
D in the general formula (1) is CR1R2 TheR1And R2Each independentlyAlkyl groupRepresents. Alkyl groupIs as described above.
D ′ in the general formula (2) is a carbon atom.sois there.
[0058]
Next, general formula (1) or general formula (2)ofThe acidic substituent will be described. The acidic substituent exists as a substituent that can be linked to the surface of the inorganic oxide porous semiconductor in the structure of the sensitizing dye. Excited electrons of the photoexcited dye can be injected into the conduction band of the inorganic oxide porous semiconductor through this acidic substituent. Specific examples of the acidic substituent include a carboxylic acid group and a phosphonic acid group.EitherThe
[0064]
General formula (3'Only when the acidic substituent has the electron withdrawing group in the nearest vicinity, it is possible to connect π electron conjugation from the π electron conjugate plane skeleton that is a dye chromophore to the vicinity of the acidic substituent. With this structure, the excited electrons generated by light absorption by the dye chromophore are transmitted to the acidic substituent through the π-electron conjugated system, and the excited electrons are localized in the vicinity of the acidic substituent due to the presence of the electron withdrawing group. Furthermore, it becomes possible to effectively inject electrons through the acidic substituent to the surface of the porous inorganic oxide semiconductor to which it adsorbs, and as a result, a photoelectric conversion cell having high photoelectric conversion efficiency can be produced.
[0065]
Hereinafter, representative examples of compounds that can be used as the sensitizing dye for photoelectric conversion of the present invention are shown in Table 1, but the present invention is not limited to these (in Table 1, Ph is a phenyl group). Represents.) Furthermore, in this specification, some of the cis-trans isomers resulting from the double bond structure are shown as representative structural formulas of the compounds, and this includes all of the possible isoisomers.
Table 1
[0066]
[Table 1]
Figure 0004442105
[0079]
By the way, the sensitizing dye for photoelectric conversion used in the present invention has the general formula (1).soIt can be used in combination with other sensitizing dyes in order to compensate for sunlight absorption in a region where the sensitizing dyes represented cannot be covered. Other sensitizing dyes here include azo dyes, quinacridone dyes, diketopyrrolopyrrole dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples thereof include chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, and derivatives thereof.
[0080]
Hereinafter, materials other than the sensitizing dye for photoelectric conversion used in the present invention will be described. Although the kind of material, the quantity ratio, etc. are specifically described, it is not necessarily limited to this.
[0081]
(Inorganic oxide)
The photoelectric conversion sensitizing dye used in the present invention forms a photoelectric conversion material in which the inorganic semiconductor porous body is sensitized by connecting to the surface of the inorganic semiconductor porous body through a linking group. Inorganic semiconductors generally have a photoelectric conversion function for light in a part of the region, but this surface is connected to a sensitizing dye to photoelectric conversion to the visible light and / or near infrared light region. Is possible. As the material of the inorganic semiconductor porous body, an inorganic oxide is mainly used, but the inorganic semiconductor porous body having a photoelectric conversion function by connecting a sensitizing dye is not limited thereto. Examples of inorganic semiconductors include silicon, germanium, III-V group semiconductors, and metal chalcogenides. Examples of the inorganic oxide semiconductor porous material used in the present invention include titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, iron oxide, nickel oxide, cobalt oxide, strontium oxide, tantalum oxide, and antimony oxide. , Lanthanoid oxides, yttrium oxides, vanadium oxides, and the like, but these surfaces can be combined with a sensitizing dye to enable visible and / or near-infrared photoelectric conversion. If it becomes, it will not be restricted to this. In order for the surface of the inorganic oxide semiconductor porous body to be sensitized by the sensitizing dye, it is desirable that the conduction band of the inorganic oxide be present at a position where electrons are easily received from the photoexcitation order of the sensitizing dye. For this reason, titanium oxide, tin oxide, zinc oxide, niobium oxide, etc. are particularly used among the inorganic oxide semiconductor porous bodies. Further, titanium oxide is particularly used from the viewpoint of price and environmental hygiene. In the present invention, one or more kinds can be selected and combined from the inorganic oxide semiconductor porous body.
[0082]
(Porous inorganic oxide)
The inorganic semiconductor porous body has a large surface area by making it porous for the purpose of connecting a large amount of a sensitizing dye to the surface and thus having a high rate of photoelectric conversion ability. As a porous method, a method of sintering inorganic oxide particles such as titanium oxide having a particle diameter of several to several tens of nanometers and then sintering the paste is widely known. If it is a method to obtain, it will not be restricted to this.
[0083]
(Photoelectric conversion electrode)
The photoelectric conversion material used in this invention forms a photoelectric conversion electrode by laminating | stacking on the conductive surface of the transparent base material which has an electroconductive surface.
[0084]
(Conductive surface)
The conductive surface used is not particularly limited as long as it is a conductive material that absorbs less light from the visible to the near infrared region of sunlight, but ITO (indium-tin oxide) or tin oxide (fluorine or the like is doped) Metal oxides having good electrical conductivity such as zinc oxide are preferable.
[0085]
(Transparent substrate)
The transparent substrate to be used is not particularly limited as long as it is a material that absorbs less light in the visible to near infrared region of sunlight. Glass substrates such as quartz, ordinary glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetylcellulose, syndioctane polystyrene, polyphenylene sulfide, polyarylate Resin base materials such as polysulfone, polyester sulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride can be used.
[0086]
(Lamination method)
As a method of laminating the photoelectric conversion material used in the present invention on the conductive surface of a transparent substrate having a conductive surface, the inorganic oxide semiconductor is coated with inorganic oxide particles pasted on the conductive surface and then dried or sintered. A porous body is formed and immersed in a solution in which the sensitizing dye is dissolved together with the transparent base material, so that the sensitizing dye is made porous by utilizing the affinity between the inorganic porous surface and the sensitizing dye coupler. A method of bonding to a material surface is common, but is not limited to this method. In order to paste the inorganic oxide particles, the inorganic oxide particles are dispersed in water or a suitable organic solvent. Since it is important to make a paste with good dispersibility in order to laminate as an inorganic porous surface with a uniform and large surface area, an acid such as nitric acid or acetylacetone, or a dispersant such as polyethylene glycol or Triton X-100 is used as necessary. Mix into paste components and paste using a paint shaker or the like. As a method for applying the paste to the conductive surface of the transparent substrate, an application method using a spin coater, a screen printing method, an application method using a squeegee, a dipping method, a spraying method, a roller method, or the like is used. After the applied inorganic oxide paste is dried or baked, volatile components in the paste are removed, and an inorganic oxide semiconductor porous body is formed on the conductive surface of the transparent substrate. As a drying or firing condition, for example, a method of applying a thermal energy of about 30 minutes to 1 hour at a temperature of 400 ° C. to 500 ° C. is generally used. If it is the drying or baking method which can obtain a favorable electromotive force at the time of irradiation, it will not be restricted to this.
In order to make a solution in which a sensitizing dye is dissolved, alcohol solvents such as ethanolbenzyl alcohol, nitrile solvents such as acetonitrile and propionitrile, halogen solvents such as chloroform, dichloromethane and chlorobenzene, diethyl ether, Ether solvents such as tetrahydrofuran, ester solvents such as ethyl acetate and succinbutyl, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, carbonate solvents such as diethyl carbonate and propylene carbonate, hexane, octane, benzene and toluene A carbohydrate-based solvent, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water and the like can be used, but are not limited thereto.
The thickness of the inorganic oxide semiconductor porous body formed on the conductive surface of the transparent substrate is desirably 0.5 μm or more and 200 μm or less. When the film thickness is less than this range, effective conversion efficiency cannot be obtained. If the film thickness is thicker than this range, it may be difficult to create such as cracking or peeling during film formation, but the distance between the surface of the inorganic oxide semiconductor porous body and the conductive surface increases, so the generated charge is effective on the conductive surface. Therefore, it becomes difficult to obtain good conversion efficiency.
[0087]
(Photoelectric conversion cell)
The photoelectric conversion electrode used in the present invention forms a photoelectric conversion cell by combining a conductive counter electrode through an electrolyte layer.
[0088]
(Electrolyte layer)
The electrolyte layer used in the present invention is preferably composed of an electrolyte, a medium, and an additive. The electrolyte of the present invention is I2And iodide (for example, LiI, NaI, KI, CsI, MgI2, CaI2, CuI, tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc.), Br2Mixtures of bromide and bromide (for example, LiBr, etc.), molten salts described in Inorg. Chem. 1996, 35, 1168-1178, etc. can be used, but not limited thereto. I among them2In the present invention, an electrolyte in which LiI, pyridinium iodide, imidazolium iodide, or the like is mixed as a combination of iodine and iodide is preferable, but not limited to this combination.
The preferred electrolyte concentration is I2Is not less than 0.01M and not more than 0.5M, and the mixture of iodides is not less than 0.1M and not more than 15M.
[0089]
The medium used for the electrolyte layer in the present invention is desirably a compound that can exhibit good ionic conductivity. Solution media include ether compounds such as dioxane and diethyl ether, chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether, methanol, ethanol, and ethylene glycol monoalkyl. Alcohols such as ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin, acetonitrile, glutarodinitrile, Methoxyacetonitrile, propioni Lil, nitrile compounds such as benzonitrile, ethylene carbonate, carbonate compounds such as propylene carbonate, 3-methyl-2-oxazolidinone heterocyclic compounds such as dimethyl sulfoxide, can be used aprotic polar substances such as sulfolane, water, and the like.
[0090]
In addition, a polymer can be included for the purpose of using a solid (including gel) medium. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium to make the medium solid. To do.
As the electrolyte layer, an electrolyte that does not require a CuI or CuSCN medium, and 2,2 ′, 7,7′-tetrakis (N, N—) described in Nature, Vol. 395, 8 Oct. 1998, p583-585. Hole transport materials such as di-p-methoxyphenylamine) 9,9'-spirobifluorene can be used.
The electrolyte layer used in the present invention may contain an additive that functions to improve the electrical output of the photoelectric conversion cell or improve the durability. Examples of additives that improve electrical output include 4-t-butylpyridine, 2-picoline, and 2,6-lutidine. MgI etc. are mentioned as an additive which improves durability.
[0091]
(Conductive counter electrode)
The conductive counter electrode used in the present invention functions as a positive electrode of the photoelectric conversion cell. Specific examples of conductive materials used for the counter electrode include metals (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxides (ITO (indium-tin oxide), tin oxide (fluorine, etc.)). Including doped substances), zinc oxide), or carbon. The thickness of the counter electrode is not particularly limited, but is preferably 5 nm or more and 10 μm or less.
[0092]
(How to assemble)
A photoelectric conversion cell is formed by combining the photoelectric conversion electrode and the conductive counter electrode through an electrolyte layer. In order to prevent leakage and volatilization of the electrolyte layer as necessary, sealing is performed around the photoelectric conversion cell. For sealing, a thermoplastic resin, a photocurable resin, glass frit, or the like can be used as a sealing material. The photoelectric conversion cell is made by connecting small-area photoelectric conversion cells as necessary. The electromotive voltage can be increased by combining the photoelectric conversion cells in series.
[0093]
【Example】
Examples will be specifically shown below, but the present invention is not limited to the following examples.
(Example 1)
-Synthesis of compound (1)
Compound (1) was synthesized according to the following formula. The aldehyde derivative in the formula is obtained by ethylating fluorene with ethyl bromide, then brominating two phenyl sites, and then coupling one brominated site with triphenylamine boronic acid and Suzuki. The synthesis site was synthesized by formylation with n-butyllithium and DMF. The structure of the compound (1) was confirmed by mass spectrum, NMR spectrum and IR spectrum.
[0094]
[Chemical 8]
Figure 0004442105
[0095]
Compound (1)
[Chemical 9]
Figure 0004442105
[0096]
・ Test of solubility of sensitizing dye in ethanol
The solubility of the sensitizing dye was tested by the following method.
10 mg of sensitizing dye was added to 10 ml of ethanol, and the solubility was confirmed with the naked eye while shaking. The obtained results were classified as follows.
Dissolves within 1 minute ◎
Dissolves within 5 minutes ○
Dissolves within 30 minutes
Insoluble matter remains even after 30 minutes ×
[0097]
・ Light exposure storage stability test of photoelectric conversion electrode
A photoelectric conversion electrode was prepared by the method of adsorption of a sensitizing dye described later, and this was irradiated for 3 days under the condition of 3000 lux under a fluorescent lamp, and the light exposure storage stability was examined. The dye density | concentration of the photoelectric conversion electrode was measured with the Macbeth densitometer, and the storage stability with respect to the light exposure of the pigment | dye adsorbed on the photoelectric conversion electrode was investigated by comparing the density | concentration before and after light exposure.
Concentration reduction rate is less than 10% ◎
Concentration reduction rate is less than 25% ○
Concentration reduction rate is less than 50%
Concentration reduction rate is 50% or more ×
[0098]
The evaluation of the photoelectric conversion dye will be described.
・ Transparent electrode
A glass substrate with a fluorine-doped tin oxide layer (type U-TCO manufactured by Asahi Glass Co., Ltd.) was used.
[0099]
・ Titanium oxide paste adjustment
It was mixed with zirconia beads in the following formulation and dispersed using a paint shaker to obtain a titanium oxide paste.
Titanium oxide (Nippon Aerosil P25 particle size 21 nm) 6 parts by weight
Water (thing adjusted to pH 2 by adding nitric acid) 14 parts by weight
0.6 parts by weight of acetylacetone
Surfactant (Triton X-100 manufactured by ICN) 0.04 parts by weight
PEG- # 500,000 0.3 parts by weight
[0100]
・ Creation of titanium oxide porous layer
A 60 μm-thick mending tape was applied to the conductive surface of the transparent electrode, a mask was made by removing the 1 cm square tape, the paste was dropped several times on the vacant part, and then excess paste was removed with a squeegee. After air drying, all masks are removed and the effective area is 1cm by baking in an oven at 450 ° C for 1 hour.2A titanium oxide electrode having a titanium oxide porous layer was obtained.
[0101]
・ Adsorption of sensitizing dye
Dissolve the sensitizing dye in a solvent such as alcohol, acetone, ethyl acetate, dimethylformamide, N-methylpyrrolidone, remove the insoluble matter with a membrane filter if necessary, and immerse the titanium oxide electrode in this dye solution at room temperature or as required. Depending on the heating, leave it for several hours to several days. The colored electrode surface was washed with the solvent and alcohol used, then immersed in a 2 mol% solution of 4-t-butylpyridine for 30 minutes and then dried to obtain a photoelectric conversion electrode on which the sensitizing dye was adsorbed.
[0102]
・ Preparation of electrolyte solution
An electrolyte solution was obtained according to the following formulation.
Solvent Methoxyacetonitrile
LiI 0.1M
I2                                                  0.05M
4-t-butylpyridine 0.5M
1-propyl-2,3-dimethylimidazolium iodide 0.6M
[0103]
・ Assembly of photoelectric conversion cell
A test sample of a photoelectric conversion cell was assembled as shown in FIG.
As the conductive counter electrode, a glass substrate with a fluorine-doped tin oxide layer (type U-TCO manufactured by Asahi Glass Co., Ltd.) on which a platinum layer of 150 nm was laminated by a sputtering method was used.
As the resin film spacer, a 25 μm thick “High Milan” film made by Mitsui DuPont Polychemical Co., Ltd. was used.
[0104]
・ Method of measuring conversion efficiency
Combined solar simulator (# 8116) manufactured by ORIEL with air mass filter, 100mW / cm with light meter2The IV curve characteristics were measured using an IV curve tracer (MP160) manufactured by Eihiro Seiki Co., Ltd. while irradiating the test sample of the photoelectric conversion cell with light. The conversion efficiency η was calculated by the following equation using Voc (open circuit voltage value), Isc (short circuit current value), and ff (fill factor value) obtained from the IV curve characteristic measurement.
[0105]
[Formula 1]
Figure 0004442105
[0106]
(Example 24)
In the same manner as in Example 1, the compounds (2) to (4) And sensitizing dyes were evaluated in the same manner as in Example 1.
Anine-based dyes, naphthalocyanine-based dyes, and the like, and derivatives thereof are exemplified.
[0107]
Compound (2)
Embedded image
Figure 0004442105
[0108]
Compound (3)
Embedded image
Figure 0004442105
[0109]
Compound (4)
Embedded image
Figure 0004442105
[0111]
Comparative example
R in the general formula (1)1, R2A comparative compound was synthesized as an example of a sensitizing dye containing a partial structural formula in which all the sites are hydrogen, and the sensitizing dye was evaluated in the same manner as in Example 1.
[0112]
(Comparative Example 1)
Comparative Compound (104) (Comparative Compound for Compound (3))
Embedded image
Figure 0004442105
[0113]
Comparative Compound (105) (Comparative Compound for Compound (4))
Embedded image
Figure 0004442105
[0114]
(result)
The results of Examples and Comparative Examples are summarized in Table (2).
[0115]
[Table 2]
Figure 0004442105
[0116]
【The invention's effect】
In the present invention, the general formula (1)ofA photoelectric conversion cell using a sensitizing dye and having a high photoelectric conversion efficiency and a non-depleting material could be provided. Furthermore, it was possible to provide a sensitizing dye that can exhibit a photoelectric conversion function in a wide wavelength region with respect to sunlight and that is highly soluble in a solvent with a low environmental load such as ethanol and has high productivity.
As a result, a highly efficient and mass-produced photoelectric conversion material, photoelectric conversion electrode, and photoelectric conversion cell could be produced.
[Brief description of the drawings]
FIG. 1 represents a photoelectric conversion cell test sample.
FIG. 2 shows a spectrum of a titanium oxide electrode on which compound (1) is adsorbed, measured by a diffuse reflection method, and a spectrum in an ethanol solution.
FIG. 3 is a current-voltage curve of a photoelectric conversion cell using a titanium oxide electrode on which compound (1) is adsorbed.
[Explanation of symbols]
1. Titanium oxide porous layer (photosensitive sensitizing dye already adsorbed)
2. Electrolyte solution layer
3. Transparent electrode layer (fluorine-doped tin oxide)
4). Pt electrode layer
5. Glass substrate
6). Resin film spacer
7). Conversion efficiency measurement lead

Claims (5)

下記一般式(1)化合物からなる光電変換用増感色素。
一般式(1)
Figure 0004442105
(一般式(1)中、環Aおよび環Bは、それぞれ独立に6員の芳香族環を表す。
Dは、CR12を表し、
1およびR2はそれぞれ独立にアルキル基を表す。
更に、環Aまたは環Bは、少なくとも1つの下記一般式(3’)で示されるビニル基で置換される。さらに、環Aまたは環Bは、直接結合もしくはp-フェニレン基を介して、少なくとも1つのN,N−ジフェニルアミノ基で置換される。)
一般式(3’)
Figure 0004442105
(式中、Wはカルボン酸基、ホスホン酸基から選ばれる酸性置換基を表し、
Xはシアノ基を表し、
Yは水素原子を表す。
A sensitizing dye for photoelectric conversion comprising a compound of the following general formula (1).
General formula (1)
Figure 0004442105
(In General Formula (1), Ring A and Ring B each independently represent a 6-membered aromatic ring.
D represents CR 1 R 2 ,
R 1 and R 2 each independently represents an alkyl group.
Further, ring A or ring B is substituted with at least one vinyl group represented by the following general formula (3 ′). Furthermore, ring A or ring B is substituted with at least one N, N-diphenylamino group via a direct bond or a p-phenylene group. )
General formula (3 ')
Figure 0004442105
(Wherein, W represents an acidic substituent selected from a carboxylic acid group and a phosphonic acid group,
X represents a cyano group,
Y represents a hydrogen atom. )
さらに、一般式(1)または下記一般式(2)で表される化合物以外の増感色素を含んでなる請求項1記載の増感色素。
一般式(2)
Figure 0004442105
(一般式(2)中、環A、環B、環A'および環B'は、それぞれ独立に6員の芳香族環を表す。
D'は、炭素原子を表す。
更に、環A、環B、環A'または環B'は、少なくとも1つの下記一般式(3’)で示されるビニル基で置換される。さらに環A、環B、環A'または環B'は、直接結合もしくはp-フェニレン基を介して、少なくとも1つのN,N−ジフェニルアミノ基で置換される。)
一般式(3’)
Figure 0004442105
(式中、Wはカルボン酸基、ホスホン酸基から選ばれる酸性置換基を表し、
Xはシアノ基を表し、
Yは水素原子を表す。)
Moreover, the general formula (1) or the following general formula (2) comprising a sensitizing dye other than the compounds represented by claim 1 sensitizing dye described.
General formula (2)
Figure 0004442105
(In General Formula (2), Ring A, Ring B, Ring A ′ and Ring B ′ each independently represent a 6-membered aromatic ring.
D ′ represents a carbon atom.
Further, ring A, ring B, ring A ′ or ring B ′ is substituted with at least one vinyl group represented by the following general formula (3 ′). Further, ring A, ring B, ring A ′ or ring B ′ is substituted with at least one N, N-diphenylamino group via a direct bond or a p-phenylene group. )
General formula (3 ')
Figure 0004442105
(Wherein, W represents an acidic substituent selected from a carboxylic acid group and a phosphonic acid group,
X represents a cyano group,
Y represents a hydrogen atom. )
請求項1または2記載の増感色素と、無機半導体多孔質体とを連結させてなる光電変換材料。A photoelectric conversion material obtained by linking the sensitizing dye according to claim 1 or 2 and an inorganic semiconductor porous body. 請求項3記載の光電変換材料を透明電極に積層させてなる光電変換電極。A photoelectric conversion electrode obtained by laminating the photoelectric conversion material according to claim 3 on a transparent electrode. 請求項4記載の光電変換電極、電解質層、および導電性対極を含んでなる光電変換セル。A photoelectric conversion cell comprising the photoelectric conversion electrode according to claim 4, an electrolyte layer, and a conductive counter electrode.
JP2003090144A 2003-03-28 2003-03-28 Optical functional materials Expired - Fee Related JP4442105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090144A JP4442105B2 (en) 2003-03-28 2003-03-28 Optical functional materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090144A JP4442105B2 (en) 2003-03-28 2003-03-28 Optical functional materials

Publications (2)

Publication Number Publication Date
JP2004292744A JP2004292744A (en) 2004-10-21
JP4442105B2 true JP4442105B2 (en) 2010-03-31

Family

ID=33403837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090144A Expired - Fee Related JP4442105B2 (en) 2003-03-28 2003-03-28 Optical functional materials

Country Status (1)

Country Link
JP (1) JP4442105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775807A (en) * 2011-05-09 2012-11-14 台湾永光化学工业股份有限公司 Dye compound, solar cell using the same, and dye solution

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591131B2 (en) 2005-03-11 2010-12-01 ソニー株式会社 Dye-sensitized photoelectric conversion element, manufacturing method thereof, electronic device, manufacturing method thereof, and electronic apparatus
GB2432717A (en) 2005-11-25 2007-05-30 Seiko Epson Corp Metal oxide electrochemical cell
GB2432719A (en) * 2005-11-25 2007-05-30 Seiko Epson Corp Electrochemical cell using metal oxide dispersion
US7973172B2 (en) 2006-03-31 2011-07-05 National Institute Of Advanced Industrial Science And Technology Organic compound, semiconductor film electrode employing the organic compound, photoelectric conversion element employing the organic compound, and photoelectrochemical solar cell employing the organic compound
CA2655192A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP5424441B2 (en) * 2008-02-06 2014-02-26 国立大学法人 千葉大学 Organic dyes and organic semiconductor electronics elements
JP5206092B2 (en) * 2008-04-25 2013-06-12 コニカミノルタビジネステクノロジーズ株式会社 Photoelectric conversion element and solar cell
JP5347329B2 (en) * 2008-05-15 2013-11-20 コニカミノルタ株式会社 Photoelectric conversion element and solar cell
JP5493465B2 (en) * 2009-05-20 2014-05-14 コニカミノルタ株式会社 Organic thin film solar cell
JP5418172B2 (en) * 2009-11-24 2014-02-19 コニカミノルタ株式会社 Photoelectric conversion element and solar cell
WO2013121835A1 (en) * 2012-02-15 2013-08-22 日本電気株式会社 Spirobifluorene derivative, dye for photoelectric conversion elements, semiconductor electrode using same, photoelectric conversion element, and photoelectrochemical cell
WO2022244429A1 (en) * 2021-05-18 2022-11-24 パナソニックIpマネジメント株式会社 Nonlinear light absorption material, recording medium, method for recording information, and method for reading information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775807A (en) * 2011-05-09 2012-11-14 台湾永光化学工业股份有限公司 Dye compound, solar cell using the same, and dye solution

Also Published As

Publication number Publication date
JP2004292744A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP1628356B1 (en) Dye-sensitized photoelectric conversion device
JP4423857B2 (en) Optical functional materials
JP5925541B2 (en) Metal complex dye for photoelectric conversion element, photoelectric conversion element, dye-sensitized solar cell, dye-adsorbing composition liquid for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
EP1296403A1 (en) Dye-sensitized photoelectric transducer
JP2010529226A (en) Novel organic dye and method for producing the same
JP4287655B2 (en) Dye-sensitized photoelectric conversion element
JP4442105B2 (en) Optical functional materials
JP2000323190A (en) Electrolyte composition, photoelectric transfer element and photo-electrochemical battery
JP4341621B2 (en) Optical functional materials
EP2748264A1 (en) Asymmetric cyanine dyes for photovoltaic applications
JP5630156B2 (en) Indanone derivatives and their use as colorants for dye-sensitized solar cells
Liang et al. New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells
JP2004227825A (en) Dye-sensitized photoelectric conversion element
JP4274306B2 (en) Dye-sensitized photoelectric conversion element
JP2007246885A (en) Photo functional material
JP4230228B2 (en) Dye-sensitized photoelectric conversion element
JP4591667B2 (en) Optical functional materials
JP2014172835A (en) Optically functional material and sensitizing dye for photoelectric conversion
JP2011026389A (en) Optically functional material
JP2008226505A (en) Phenanthrothiophene based compound, its usage, and its manufacturing method
JP2004292743A (en) Optical functional material
JP4314782B2 (en) Sensitizing dye for photoelectric conversion and use thereof
JP5233318B2 (en) Photoelectric conversion element and solar cell
JP2007131767A (en) Optically functional material
JP2007227279A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Ref document number: 4442105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees