KR101657455B1 - Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells - Google Patents

Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells Download PDF

Info

Publication number
KR101657455B1
KR101657455B1 KR1020150174000A KR20150174000A KR101657455B1 KR 101657455 B1 KR101657455 B1 KR 101657455B1 KR 1020150174000 A KR1020150174000 A KR 1020150174000A KR 20150174000 A KR20150174000 A KR 20150174000A KR 101657455 B1 KR101657455 B1 KR 101657455B1
Authority
KR
South Korea
Prior art keywords
sgt
organic semiconductor
och
synthesis
sensitized
Prior art date
Application number
KR1020150174000A
Other languages
Korean (ko)
Other versions
KR20160002609A (en
Inventor
김환규
강민수
박준호
최인택
육춘원
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020150174000A priority Critical patent/KR101657455B1/en
Publication of KR20160002609A publication Critical patent/KR20160002609A/en
Application granted granted Critical
Publication of KR101657455B1 publication Critical patent/KR101657455B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • H01L51/0069
    • H01L51/0071
    • H01L51/4213
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 정공수송능력을 갖는 p-형 유기반도체 화합물, 그의 고체형 염료감응 및 유/무기 혼성 태양전지용 전해질로서의 용도, 및 그를 포함하는 고체형 염료감응 및 유/무기 혼성 태양전지에 관한 것이다.The present invention relates to a p-type organic semiconductor compound having a hole transporting ability, its use as a solid-type dye-sensitized and electrolyte for organic / inorganic hybrid solar cells, and solid-state dye-sensitized and organic / inorganic hybrid solar cells containing the same.

Description

정공수송능력을 갖는 p-형 유기반도체 화합물, 그의 고체형 염료감응 및 유/무기 혼성 태양전지용 전해질로서의 용도 및 그를 포함하는 고체형 염료감응 및 유/무기 혼성 태양전지{Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells}TECHNICAL FIELD [0001] The present invention relates to a p-type organic semiconductor compound having a hole transporting ability, a use thereof as an electrolyte for a solid type dye-sensitized and organic / inorganic hybrid solar cell, and a solid type dye-sensitized and organic / Dye-sensitized and Organic / Inorganic Hybrid Solar Cells}

본 발명은 정공수송능력을 갖는 p-형 유기반도체 화합물, 그의 고체형 염료감응 및 유/무기 혼성 태양전지용 전해질로서의 용도, 및 그를 포함하는 고체형 염료감응 및 유/무기 혼성 태양전지에 관한 것이다.The present invention relates to a p-type organic semiconductor compound having a hole transporting ability, its use as a solid-type dye-sensitized and electrolyte for organic / inorganic hybrid solar cells, and solid-state dye-sensitized and organic / inorganic hybrid solar cells containing the same.

루테늄계 착화합물을 염료로서 사용한 염료감응 태양전지는 10%를 상회하는 에너지변환 효율을 나타냄으로써 학계의 주목을 받았으나 소자의 장기안정성이 떨어지는 문제점으로 인하여 상용화에 어려움을 겪고 있는 실정이다. The dye-sensitized solar cell using a ruthenium-based complex as a dye has attracted considerable attention from academia due to its energy conversion efficiency exceeding 10%, but it has been difficult to commercialize the dye-sensitized solar cell because of its low long-term stability.

일반적으로 염료감응 태양전지는 두 개의 전극(photo electrode와 counter electrode), 반도체 나노 입자(주로 이산화티타늄), 염료 그리고 액체 전해질로 구성되어 있으며 표면에 염료분자가 화학적으로 흡착된 n-형 나노입자 반도체 산화물 전극에 태양 빛(가시광선)이 흡수되면 염료분자가 전자-홀 쌍을 생성하고, 상기 전자는 반도체 산화물의 전도띠로 주입되어 나노입자간 계면을 통하여 투명 전도성 막으로 전달되어 전류를 발생시키며, 상기 홀은 산화-환원 전해질에 의해 전자를 받아 다시 환원되는 전자의 순환 메카니즘에 의해 작동된다. In general, dye-sensitized solar cells are composed of two electrodes (photo and counter electrodes), semiconductor nanoparticles (mainly titanium dioxide), dyes and liquid electrolytes, and n-type nanoparticle semiconductors When sunlight (visible light) is absorbed into the oxide electrode, the dye molecule generates an electron-hole pair. The electrons are injected into the conductive band of the semiconductor oxide and transferred to the transparent conductive film through the interface between the nanoparticles, The holes are operated by a circulation mechanism of electrons that are received and reduced again by the redox electrolyte.

이중 액체 전해질 구성 요소 부분이 소자의 장기 안정성과 아주 밀접하게 관련되어 있다. 요오드가 포함된 용액상태의 휘발성 전해액은 에너지 변환효율 측면에서는 우수한 장점을 가지고 있지만, 사용기간 동안 전해액이 누출 또는 휘발되게 되면 소자의 안정성에 치명적인 문제를 일으킬 수 있다는 단점도 함께 가지고 있다. 특히 전해액의 요오드 성분은 장시간 구동 시 염료분자의 화학적 분해를 유발할 수 있고, 소량의 산소와 수분과의 작용으로 금속성분의 모듈 그리드(module grid)를 심각하게 파괴하기도 한다. The dual liquid electrolyte component portion is closely related to the long term stability of the device. Iodine-containing volatile electrolytes have excellent advantages in terms of energy conversion efficiency, but they also have a disadvantage in that if the electrolyte is leaked or volatilized during the use period, the stability of the device may become a serious problem. In particular, the iodine component of the electrolyte can cause the chemical decomposition of the dye molecules during long-time operation and seriously destroy the module grid of the metal component due to the action of a small amount of oxygen and moisture.

이러한 용액 상태의 전해액이 가진 문제점들을 해결하기 위해 p-형 유기 반도체 물질을 사용하여 기존의 액체 전해액을 대체하기 위해 많은 노력이 진행되고 있으며 2013년에 스위스의 그라첼(Gratzel) 그룹에서는 Y123 유기염료를 사용하고 기존의 액체 전해액을 2,2′,7,7′-테트라키스(N,N-다이-p-메톡시페닐-아민)9,9′-스피로바이플루오렌(Spiro-OMeTAD) p-형 유기 반도체 물질로 대체하여 7.2%의 에너지 변환효율을 얻을 수 있음을 보고 하였으며, 이는 현재까지 보고된 고체형 염료감응 태양전지의 효율중 가장 높은 값이다. In order to solve the problems of the electrolyte solution, a lot of efforts have been made to replace the existing liquid electrolyte by using p-type organic semiconductor material. In 2013, the Gratzel group of Switzerland, Y123 organic dye (N, N-di-p-methoxyphenyl-amine) 9,9'-spiro-OMeTAD p - type organic semiconducting material, the energy conversion efficiency of 7.2% is obtained. This is the highest value of the efficiency of solid state dye-sensitized solar cell reported so far.

이처럼 p-형 유기 반도체 물질을 사용하여 고체형 염료감응 태양전지를 제조할 경우 기존의 액체 전해액을 사용한 염료감응 태양전지에 비해 에너지 변환효율이 낮은 이유는 액체 전해액에 비해 유기 p-형 반도체 물질의 TiO2 다공으로의 침투 능력에 한계가 있기 때문에 2 μm의 매우 얇은 TiO2 박막을 사용하여야 하고 이 경우 염료의 흡착량이 줄어들어 빛을 충분히 흡수할 수 없기 때문이다. When the solid-state dye-sensitized solar cell is manufactured using the p-type organic semiconductor material, the reason why the energy conversion efficiency is lower than that of the dye-sensitized solar cell using the conventional liquid electrolyte is that the organic p- Because of the limited ability to penetrate into TiO 2 perforations, a very thin TiO 2 film of 2 μm should be used and in this case the amount of dye adsorption is reduced and the light can not be absorbed sufficiently.

반면 최근 큰 주목을 받고 있는 페로브스카이트 구조를 갖는 CH3NH3PbI3 광흡수 물질과 Spiro-MeOTAD 홀전도체를 이용한 유/무기 혼성 태양전지의 경우 표준 태양광 조건에서 15%의 고효율을 얻을 수 있음이 보고되었는데, 이는 페로브스카이트 물질의 광흡수 능력이 매우 뛰어나 매우 얇은 두께 (약 500 nm)의 TiO2 박막을 사용하여도 빛을 충분히 흡수할 수 있기 때문이다. On the other hand, in the case of organic / inorganic hybrid solar cells using a CH 3 NH 3 PbI 3 light absorbing material having a perovskite structure and a Spiro-MeOTAD hole conductor, which have recently attracted a great deal of attention, a high efficiency of 15% This is because the perovskite material is very excellent in light absorption capability and can sufficiently absorb light even when a very thin TiO 2 thin film (about 500 nm) is used.

본 발명은 기존에 사용해오던 Spiro-OMeTAD의 대용으로 사용할 수 있는 새로운 개념의 p-형 정공수송물질로서, 기존의 Spiro-OMeTAD 물질에 비해 용매로의 용해도가 우수하여 고체형 염료감응 태양전지의 제조에 사용할 경우 스핀 코팅 시 TiO2 기공 내부로의 침투 능력이 우수하기 때문에 2 μm 이상의 TiO2 박막을 사용하여도 기공 내부를 효율적으로 채워 에너지 변환 효율의 저하가 나타 나지 않으며, 또한 정공수송능력이 기존 Spiro-OMeTAD 물질에 비해 우수하기 때문에 염료/TiO2/정공수송물질 계면에서 여기 전자의 재결합 저항을 크게 함으로서 개방전압의 손실을 막을 수 있고 이로 인해 기존의 Sipro-OMeTAD 물질을 사용할 경우에 비해 높은 효율을 얻을 수 있을 뿐만 아니라 우수한 정공수송 능력으로 인하여 페로브스카이트 광흡수 물질과 함께 유/무기 혼성 태양전지를 제조할 경우 기존의 Spiro-OMeTAD 물질을 사용한 경우에 비해 우수한 에너지 변환 효율을 얻을 수 있는 새로운 정공수송 물질을 제공하는 것을 목적으로 한다. The present invention is a new concept p-type hole transport material which can be used as a substitute for Spiro-OMeTAD which has been used in the past, and is superior in solubility to a solvent as compared with the existing Spiro-OMeTAD material, If the use spin coating when TiO 2 is excellent in penetration capability into the interior of the pores because of 2 μm or more TiO also use the second thin film filling the inside porosity effectively it does not appear in the decrease of energy conversion efficiency, also existing a hole transportability Since it is superior to the Spiro-OMeTAD material, it can prevent the loss of open-circuit voltage by increasing the recombination resistance of the excited electrons at the interface of dye / TiO 2 / hole transport material. As a result, But also the perovskite light absorbing material and the organic / inorganic hybrid material If the production of the battery to provide a new hole transport materials that can obtain an excellent energy conversion efficiency as compared with the case using the conventional Spiro-OMeTAD material for the purpose.

또한, 본 발명은 기존의 액체 전해액을 상기 정공수송물질로 대체함으로써 광전류 광전압 및 Fill factor가 개선되는 염료감응 및 유/무기 혼성 태양전지를 제공하는 것을 목적으로 한다. Another object of the present invention is to provide a dye-sensitized and organic / inorganic hybrid solar cell in which a photocurrent voltage and a fill factor are improved by replacing a conventional liquid electrolyte with the hole transport material.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 p-형 유기반도체 화합물을 제공한다:In order to achieve the above object, the present invention provides a p-type organic semiconductor compound represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112015120042043-pat00001
Figure 112015120042043-pat00001

상기 화학식 1에서,In Formula 1,

R1은 (C1-C50)알킬이고;R < 1 > is (C1-C50) alkyl;

X는 단일결합, O 또는 S이고;X is a single bond, O or S;

m이 1인 경우 Ar은 하기 구조에서 선택되는 2가기이고;when m is 1, Ar is a divalent group selected from the following structures;

Figure 112015120042043-pat00002
Figure 112015120042043-pat00002

m이 2인 경우 Ar은 하기 구조에서 선택되는 3가기이고;when m is 2, Ar is a triple bond selected from the following structures;

Figure 112015120042043-pat00003
Figure 112015120042043-pat00003

R2 내지 R9는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴옥시(C1-C20)알킬이고, 상기 R2 내지 R9의 알킬 및 아릴옥시알킬은 (C1-C20)알콕시로 더 치환될 수 있고;R 2 to R 9 are each independently hydrogen, (C 1 -C 20) alkyl or (C 6 -C 20) aryloxy (C 1 -C 20) alkyl, wherein the alkyl and aryloxyalkyl of R 2 through R 9 is ) Alkoxy; < / RTI >

a, b 및 c는 각각 독립적으로 1 내지 4의 정수이다.a, b and c are each independently an integer of 1 to 4;

또한, 본 발명은 상기 p-형 유기반도체 화합물을 포함하는 태양전지용 고체전해질을 제공한다.The present invention also provides a solid electrolyte for a solar cell comprising the p-type organic semiconductor compound.

또한, 본 발명은 상기 태양전지용 고체전해질을 포함하는 태양전지를 제공한다.The present invention also provides a solar cell comprising the above solid electrolyte for a solar cell.

본 발명의 P-형 유기반도체 화합물은 기존의 고체 염료감응 및 유/무기 혼성 태양전지에 사용되었던 Spiro-OMeTAD P-형 유기반도체에 비해 합성이 용이하고 성능이 우수하다.The P-type organic semiconductor compound of the present invention is easy to synthesize and has excellent performance compared to the Spiro-OMeTAD P-type organic semiconductor used in conventional solid dye-sensitized and organic / inorganic hybrid solar cells.

또한, 본 발명의 p-형 유기반도체 화합물은 기존의 Spiro-OMeTAD 물질에 비해 용매로의 용해도가 우수하여 고체형 염료감응 태양전지의 제조에 사용할 경우 스핀 코팅 시 TiO2 기공 내부로의 침투 능력이 우수하기 때문에 2 μm 이상의 TiO2 박막을 사용하여도 기공 내부를 효율적으로 채워 에너지 변환 효율의 저하가 나타나지 않는 효과가 있다. In addition, the p-type organic semiconductor compound of the present invention is superior in solubility to a solvent as compared with the existing Spiro-OMeTAD material, and therefore, when used in the production of a solid dye-sensitized solar cell, the ability to penetrate TiO 2 pores It is effective to fill the pores efficiently even if a TiO 2 thin film of 2 탆 or more is used so that the energy conversion efficiency does not decrease.

또한 본 발명의 p-형 유기반도체 화합물은 정공수송능력이 기존 Spiro-OMeTAD 물질 보다 우수하기 때문에 염료/TiO2/정공수송물질 계면에서 여기 전자의 재결합 저항을 크게 함으로서 개방전압의 손실을 막을 수 있고 이로 인해 기존의 Sipro-OMeTAD 물질을 사용할 경우 보다 높은 효율을 얻을 수 있는 효과가 있다.Further, since the p-type organic semiconductor compound of the present invention is superior in hole transporting ability to the existing Spiro-OMeTAD material, the resistance of the open-circuit voltage can be prevented by increasing the recombination resistance of the excited electrons at the dye / TiO 2 / hole transporting material interface As a result, a higher efficiency can be obtained when using the existing Sipro-OMeTAD material.

또한 본 발명의 p-형 유기반도체 화합물은 우수한 정공수송 능력으로 인하여 페로브스카이트 광흡수 물질과 함께 유/무기 혼성 태양전지를 제조할 경우 기존의 Spiro-OMeTAD 물질을 사용한 경우 보다 우수한 에너지 변환 효율을 얻을 수 있는 효과가 있다.In addition, the p-type organic semiconductor compound of the present invention is superior in energy conversion efficiency to that of the existing Spiro-OMeTAD material when an organic / inorganic hybrid solar cell is manufactured together with a perovskite light- It is possible to obtain an effect.

도 1은 본 발명의 신규 P-형 유기반도체 물질의 모식도 이다.
도 2는 실시예 24, 실시예 25,실시예 26 및 비교예 2에서 제조된 유/무기 혼성 태양전지의 전류-전압곡선이다.
1 is a schematic diagram of a novel P-type organic semiconductor material of the present invention.
2 is a current-voltage curve of the organic / inorganic hybrid solar cell manufactured in Example 24, Example 25, Example 26, and Comparative Example 2. FIG.

본 발명에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 갖는 것으로 해석될 수 있다.The technical terms and scientific terms used in the present invention can be construed as meaning ordinary meanings understood by those of ordinary skill in the art without departing from the scope of the present invention.

본 발명은 하기 화학식 1로 표시되는 p-형 유기반도체 화합물에 관한 것이다:The present invention relates to a p-type organic semiconductor compound represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112015120042043-pat00004
Figure 112015120042043-pat00004

상기 화학식 1에서,In Formula 1,

R1은 (C1-C50)알킬이고;R < 1 > is (C1-C50) alkyl;

X는 단일결합, O 또는 S이고;X is a single bond, O or S;

m이 1인 경우 Ar은 하기 구조에서 선택되는 2가기이고;when m is 1, Ar is a divalent group selected from the following structures;

Figure 112015120042043-pat00005
Figure 112015120042043-pat00005

m이 2인 경우 Ar은 하기 구조에서 선택되는 3가기이고;when m is 2, Ar is a triple bond selected from the following structures;

Figure 112015120042043-pat00006
Figure 112015120042043-pat00006

R2 내지 R9는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴옥시(C1-C20)알킬이고, 상기 R2 내지 R9의 알킬 및 아릴옥시알킬은 (C1-C20)알콕시로 더 치환될 수 있고;R 2 to R 9 are each independently hydrogen, (C 1 -C 20) alkyl or (C 6 -C 20) aryloxy (C 1 -C 20) alkyl, wherein the alkyl and aryloxyalkyl of R 2 through R 9 is ) Alkoxy; < / RTI >

a, b 및 c는 각각 독립적으로 1 내지 4의 정수이다.a, b and c are each independently an integer of 1 to 4;

본 발명에 따른 p-형 유기반도체 화합물은 짧은 합성루트로 인하여 기존의 고가인 Spiro-OMeTAD 물질보다 가격이 저렴하게 책정될 수 있는 장점이 있으며 그럼에도 불구하고 태양광 소자를 제작 시 기존의 Spiro-OMeTAD 물질에 견줄만한 우수한 성능을 얻기 위한 것으로서, 본 발명에 따른 p-형 유기반도체 화합물은 다이머(Dimer) 혹은 트리머(Trimer) 화학구조를 갖는 카바졸 유도체를 도입함으로 인하여 우수한 전하전도도를 나타내며 또한 알킬 그룹의 도입으로 인하여 용해도를 증가시킴으로서 TiO2 광전극과의 계면특성을 향상시킨다.The p-type organic semiconductor compound according to the present invention has an advantage that it can be manufactured at a lower price than the existing expensive Spiro-OMeTAD material due to a short synthesis route. Nevertheless, when manufacturing a photovoltaic device, existing Spiro-OMeTAD The p-type organic semiconductor compound according to the present invention has excellent charge conductivity by introducing a carbazole derivative having a dimer or trimmer chemical structure, Thereby increasing the solubility and improving the interface characteristics with the TiO 2 photoelectrode.

본 발명에 기재된 치환기들에 포함된 알킬기는 직쇄 또는 분지쇄 형태일 수 있다.The alkyl groups included in the substituents described in the present invention may be in the form of a linear or branched chain.

상기 R1은 (C1-C50)알킬이고, 바람직하게는 (C1-C35)알킬일 수 있다.R 1 is (C 1 -C 50) alkyl, preferably (C 1 -C 35) alkyl.

본 발명의 일 실시예에 있어서, 상기 p-형 유기반도체 화합물은 하기 화학식 2 또는 화학식 3으로 표시되는 p-형 유기반도체 화합물을 포함한다:In one embodiment of the present invention, the p-type organic semiconductor compound includes a p-type organic semiconductor compound represented by the following Chemical Formula 2 or 3:

[화학식 2] (2)

Figure 112015120042043-pat00007
Figure 112015120042043-pat00007

[화학식 3] (3)

Figure 112015120042043-pat00008
Figure 112015120042043-pat00008

상기 R1은 (C1-C50)알킬이고;Wherein R < 1 > is (C1-C50) alkyl;

X는 O 또는 S이고;X is O or S;

Ar은 하기 구조에서 선택되는 2가기이다.Ar is a divalent group selected from the following structures.

Figure 112015120042043-pat00009
Figure 112015120042043-pat00009

본 발명의 일 실시예에 있어서, 상기 p-형 유기반도체 화합물은 하기 화학식 4 또는 화학식 5로 표시되는 p-형 유기반도체 화합물을 포함한다:In one embodiment of the present invention, the p-type organic semiconductor compound includes a p-type organic semiconductor compound represented by the following Chemical Formula 4 or 5:

[화학식 4][Chemical Formula 4]

Figure 112015120042043-pat00010
Figure 112015120042043-pat00010

[화학식 5][Chemical Formula 5]

Figure 112015120042043-pat00011
Figure 112015120042043-pat00011

상기 R1은 (C1-C50)알킬이고;Wherein R < 1 > is (C1-C50) alkyl;

X는 O 또는 S이고;X is O or S;

Ar은 하기 구조에서 선택되는 3가기이다.Ar is a triple bond selected from the following structures.

Figure 112015120042043-pat00012
Figure 112015120042043-pat00012

본 발명의 일 실시예에 있어서, 상기 p-형 유기반도체 화합물은 구체적으로 하기 구조로 예시될 수 있다: In one embodiment of the present invention, the p-type organic semiconductor compound can be specifically exemplified by the following structure:

Figure 112015120042043-pat00013
Figure 112015120042043-pat00013

Figure 112015120042043-pat00014
Figure 112015120042043-pat00014

Figure 112015120042043-pat00015
Figure 112015120042043-pat00015

Figure 112015120042043-pat00016
Figure 112015120042043-pat00016

Figure 112015120042043-pat00017
Figure 112015120042043-pat00017

Figure 112015120042043-pat00018
Figure 112015120042043-pat00018

Figure 112015120042043-pat00019
Figure 112015120042043-pat00019

Figure 112015120042043-pat00020
Figure 112015120042043-pat00020

Figure 112015120042043-pat00021
Figure 112015120042043-pat00021

Figure 112015120042043-pat00022
Figure 112015120042043-pat00022

Figure 112015120042043-pat00023
Figure 112015120042043-pat00023

Figure 112015120042043-pat00024
Figure 112015120042043-pat00024

본 발명의 일 실시예에 있어서, 상기 p-형 유기반도체 화합물은 구체적으로 하기 구조로 예시될 수 있다:In one embodiment of the present invention, the p-type organic semiconductor compound can be specifically exemplified by the following structure:

Figure 112015120042043-pat00025
Figure 112015120042043-pat00025

Figure 112015120042043-pat00026
Figure 112015120042043-pat00026

Figure 112015120042043-pat00027
Figure 112015120042043-pat00027

Figure 112015120042043-pat00028
Figure 112015120042043-pat00028

Figure 112015120042043-pat00029
Figure 112015120042043-pat00029

Figure 112015120042043-pat00030
Figure 112015120042043-pat00030

Figure 112015120042043-pat00031
Figure 112015120042043-pat00031

Figure 112015120042043-pat00032
Figure 112015120042043-pat00032

본 발명의 p-형 유기반도체 화합물은 예를 들어 하기 반응식 1 및 2에 의해 제조될 수 있다. 더 자세한 내용은 하기 실시예 1 내지 20에서 설명된다. 그러나, 제조 방법이 하기 반응식 1 및 2에 한정하는 것은 아니고, 공지의 유기 반응을 이용하여 다양한 방법으로 합성할 수 있다.The p-type organic semiconductor compound of the present invention can be produced, for example, by the following Reaction Schemes 1 and 2. Further details are described in Examples 1 to 20 below. However, the production method is not limited to the following Reaction Schemes 1 and 2, but can be synthesized by various methods using known organic reactions.

[반응식 1][Reaction Scheme 1]

Figure 112015120042043-pat00033
Figure 112015120042043-pat00033

[반응식 2][Reaction Scheme 2]

Figure 112015120042043-pat00034
Figure 112015120042043-pat00034

상기 화학식 1로 표시되는 p-형 유기반도체 화합물은 고체 염료감응 및 유/무기 혼성 태양전지용 고체전해질로서 유용하게 사용될 수 있다. 따라서, 본 발명은 상기 화학식 1의 p-형 유기반도체 화합물을 포함하는 고체 염료감응 및 유/무기 혼성 태양전지용 고체전해질을 제공한다.The p-type organic semiconductor compound represented by Formula 1 can be usefully used as a solid electrolyte for solid dye-sensitized and organic / inorganic hybrid solar cells. Accordingly, the present invention provides a solid electrolyte for a solid-dye-sensitized and organic / inorganic hybrid solar cell comprising the p-type organic semiconductor compound of Formula 1.

또한, 본 발명은 상기 태양전지용 고체전해질을 포함하는 태양전지를 제공한다. 상기 태양전지는 염료감응형 태양전지 또는 유/무기 혼성 태양전지일 수 있다.The present invention also provides a solar cell comprising the above solid electrolyte for a solar cell. The solar cell may be a dye-sensitized solar cell or an organic / inorganic hybrid solar cell.

본 발명에서 염료감응 태양전지는, 이에 한정되는 것은 아니나, 다음과 같은 구성을 가질 수 있다:In the present invention, the dye-sensitized solar cell may have the following configuration, but not limited thereto:

전도성 투명 기판을 포함하는 제1전극;A first electrode comprising a conductive transparent substrate;

상기 제1전극의 어느 일면에 형성된 광흡수층;A light absorbing layer formed on one surface of the first electrode;

상기 광흡수층이 형성된 제1전극에 대향하여 배치되는 제2전극; 및A second electrode disposed opposite to the first electrode on which the light absorbing layer is formed; And

상기 제1전극과 제2전극 사이의 공간에 위치하는 전해질.Wherein the electrolyte is located in a space between the first electrode and the second electrode.

상기 전해질은 본 발명의 p-형 유기반도체 화합물을 포함한다.The electrolyte includes the p-type organic semiconductor compound of the present invention.

상기 태양전지를 구성하는 소재들을 예를 들어 설명하면 다음과 같다.The materials constituting the solar cell will be described as follows.

전도성 투명 기판을 포함하는 제1전극은 인듐 틴 옥사이드, 플루오린 틴 옥사이드, ZnO-Ga2O3, ZnO-Al2O3 및 주석계 산화물로 이루어진 군에서 선택되는 1종 이상의 물질로 형성된 투광성 전극을 포함하는 유리 기판 또는 플라스틱 기판일 수 있다.The first electrode including the conductive transparent substrate is formed of a transparent electrode formed of at least one material selected from the group consisting of indium tin oxide, fluorine tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and tin oxide Or a plastic substrate.

상기 광흡수층은 반도체 미립자, 염료, 페로브스카이트(Perovskite) 결정구조의 CH3NH3PbI3 화합물 등을 포함하며, 상기 반도체 미립자는, 이에 한정되는 것은 아니나, 이산화티탄(TiO2), 이산화주석(SnO2), 산화아연(ZnO) 등의 나노입자 산화물로 형성될 수 있다. 상기 반도체 미립자 상에 흡착되는 염료로는 가시광선 영역의 빛을 흡수할 수 있으며, 나노산화물 표면과 견고한 화학결합을 이루며, 열 및 광확적 안정성을 지니고 있는 것이라면 제한 없이 사용될 수 있다. 대표적인 예로서, 루테늄계 유기금속화합물 혹은 페로브스카이트 결정구조의 CH3NH3PbI3 화합물을 들 수 있다. The light absorbing layer includes semiconductor fine particles, a dye, a CH 3 NH 3 PbI 3 compound having a perovskite crystal structure, and the semiconductor fine particles include, but are not limited to, titanium dioxide (TiO 2 ) Tin oxide (SnO 2 ), zinc oxide (ZnO), or the like. The dye adsorbed on the semiconductor fine particles may be used without limitation as long as it absorbs light in the visible light region, forms a strong chemical bond with the surface of the nano-oxide, and has heat and optical stability. As a representative example, a ruthenium-based organometallic compound or a CH 3 NH 3 PbI 3 compound having a perovskite crystal structure can be given.

상기 제2전극으로는 Au, Ag 혹은 Al 이 사용될 수 있으며 주로 열증착 방식을 통하여 p-형 유기반도체 위에 증착된다.Au, Ag, or Al may be used as the second electrode, and is deposited on the p-type organic semiconductor through a thermal deposition method.

이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나, 이러한 실시예는 본 발명을 좀 더 명확하게 설명하기 위하여 제시되는 것일 뿐, 본 발명의 범위를 제한하는 목적으로 제시되는 것은 아니다. 본 발명의 범위는 후술하는 특허청구범위의 기술적 사상에 의해 정해질 것이다.Hereinafter, the present invention will be described in detail by way of examples. However, these embodiments are provided to explain the present invention more clearly and not to limit the scope of the present invention. The scope of the present invention will be determined by the technical idea of the following claims.

실시예Example

사용된 시약Reagents used

본 발명의 화합물 제조에 필요한 시약은 아연 파우더(Zn dust), 소듐 나이트라이트(sodium nitrite), 소듐 아이오다이드(sodium iodide), 4-4'-디브로모바이페닐(4,4'-dibromobiphenyl), 트라이페닐포스핀(triphenylphosphine), 4-아이오도아니졸(4-iodoanisole), 파라-아니시딘(p-anisidine), 소듐 하이드라이드(sodium hydride), 팔라듐(II) 아세테이트(palladum(II) acetate), 소듐 터트-부톡사이드(sodium tert-butoxide), 1,1'-비스(디페닐포스피노)페로센(1,1'-Bis(diphenylphosphino)ferrocene), 구리 파우더(Cu powder), 리튬 알루미늄 하이드라이드(Lithium aluminium hydride), 2-에틸헥실 브로마이드(2-Ethylhexyl bromide), 1,3,5-트리브로모벤젠(1,3,5-tribromobenzene), 트리페닐아민(triphenylamine), Hydrogen iodide, Lithium Bis(Trifluoromethanesulfonyl)Imide, 4-tert-butylpyridine, methylamine (CH3NH2) solution (33wt% in absolute ethanol), hydroiodic acid (55 wt% in water) 은 알드리치(Aldrich)사 제품을 사용하였으며, 1,3,5-트리스(4-브로모페닐)벤젠(1,3,5-Tris(4-bromophenyl)benzene)을 TCI사 제품을 사용하였으며, 5-니트로-메타-자일렌(5-nitro-m-xylene)은 Alfa aesar 제품을 사용하였으며, 테트라하이드로퓨란(tetrahydrofuran), 헥산(hexane), 톨루엔(toluene), 디클로로메탄(dichloromethane), 클로로포름(chloroform), 에탄올(ethanol), 아세톤(acetone), 파라-톨루엔설포닐 클로라이드(p-toluenesulfonyl chloride), KOH, MgSO4는 삼전화학 제품을 사용하였다. 이중 THF, 헥산, 톨로엔은 소듐/벤조페논(sodium/benzophenone) 하에서 정제하여 사용하였고, CHCl3, CH2Cl2는 CaH2 및 P2O5 하에서 정제하여 사용하였다. 그 외의 시약들은 별다른 정제 과정 없이 사용하였다. TIO2 페이스트는 Dyesol사의 18-NRT를 사용하였다. FK209(tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)-cobalt(III)-tris(bis(trifluoromethylsulfonyl)imide)는 J. Mater. Chem. A, 2013, 1, 11842 문헌의 방법대로 제조하여 사용하였다. The reagents necessary for preparing the compound of the present invention include zinc dust, sodium nitrite, sodium iodide, 4,4'-dibromobiphenyl, , Triphenylphosphine, 4-iodoanisole, p-anisidine, sodium hydride, palladum (II) acetate ), Sodium tert-butoxide, 1,1'-bis (diphenylphosphino) ferrocene, copper powder, lithium aluminum hydride Lithium aluminum hydride, 2-ethylhexyl bromide, 1,3,5-tribromobenzene, triphenylamine, Hydrogen iodide, 4-tert-butylpyridine, methylamine (CH 3 NH 2 ) solution (33 wt% in absolute ethanol) and hydroiodic acid (55 wt% in water) were purchased from Aldrich, , 3,5-tris (4-bromophenyl) benzene was used as a product of TCI, and 5-nitro- m-xylene) is a product of Alfa aesar and is used in the form of tetrahydrofuran, hexane, toluene, dichloromethane, chloroform, ethanol, acetone, Para-toluenesulfonyl chloride, KOH and MgSO 4 were used. Among them, THF, hexane and toluene were purified and used under sodium / benzophenone. CHCl 3 and CH 2 Cl 2 were purified and used under CaH 2 and P 2 O 5 . Other reagents were used without further purification. The TIO 2 paste used was 18-NRT from Dyesol. Bis (trifluoromethylsulfonyl) imide) was prepared according to the method described in J. Mater. Chem. A, 2013, 1, 11842 Were prepared and used according to the literature method.

합성된 화합물의 확인방법Identification of synthesized compounds

제조한 화합물은 1H NMR과 MASS SPECTRASCOPY 그리고 FT-IR 분광학적인 방법으로 구조를 확인하였다. 1H NMR은 베리안(Varian) 300 분광기를 사용하여 기록하였고, 모든 화학적 이동도는 내부 표준물질인 테트라메틸실란(tetramethyl silane)에 대해 ppm 단위로 기록하였다. IR 스펙트럼은 퍼킨-엘머(Perkin-Elmer) 분광계를 사용하여 KBr 펠렛으로 측정하였다. 발광 스펙트럼은 에디버그(Edinburgh)사 FS920으로 고체상으로 측정하였다.The compound was identified by 1 H NMR, MASS SPECTRASCOPY and FT-IR spectroscopy. 1 H NMR was recorded using a Varian 300 spectrometer, and all chemical mobilities were recorded in ppm relative to the internal standard tetramethyl silane. IR spectra were measured with KBr pellet using a Perkin-Elmer spectrometer. The luminescence spectrum was measured in solid phase with Edinburgh FS920.

중간체의 합성Synthesis of intermediates

4,4'-다이아이오도-2,2',6,6'-테트라메틸바이페닐(4,4'-diiodo-2,2',6,6'-tetramethylbiphenyl)은 “Eur. J. Org. Chem., 2010, 120.” 문헌의 방법대로 제조하였고, 다이메틸 4,4'-다이브로모-6,6'-다이메틸바이페닐-2,2'-다이카복실레이트(dimethyl 4,4'-dibromo-6,6'-dimethylbiphenyl-2,2'-dicarboxylate)은 “J. Org. Chem., 2006, 71, 5921.” 문헌의 방법대로 제조하였고, 비스(4-메톡시페닐)아민(bis(4-methoxyphenyl)amine)은 “Organic Letters, 2003, Vol 5, No. 14, 2453.” 문헌의 방법대로 제조하였고, 11-(브로모메틸)트리코산(11-(bromomethyl)tricosane)은 “J. Am. Chem. Soc., 2004, 126(26), 8074.” 문헌의 방법대로 제조하였고, 트리스(4-브로모페닐)아민(tris(4-bromophenyl)amine)은 “J. Mater. Chem., 2012, 22(16), 7945.” 문헌의 방법대로 제조하였고, 2,7-다이브로모-9H-카바졸(2,7-dibromo-9H-carbazole)은 “Journal of Polymer Science: Part A: Polymer Chemistry, 2010, Vol. 48, 5479.” 문헌의 방법대로 제조하였고, 터트-부틸 3,7-다이브로모-10H-페노티아진-10-카복실레이트(tert-butyl 3,7-dibromo-10H-phenothiazine-10-carboxylate)는 "Org. Lett., 2004, vol. 6, 3493." 의 방법대로 제조하였다.4,4'-diiodo-2,2 ', 6,6'-tetramethylbiphenyl (4,4'-diiodo-2,2', 6,6'-tetramethylbiphenyl) J. Org. Chem., 2010, 120. " was prepared by the method of the literature and dimethyl 4,4'-dibromo-6,6'-dimethylbiphenyl-2,2'-dicarboxylate dibromo-6,6'-dimethylbiphenyl-2,2'-dicarboxylate is referred to as "J. Org. Chem., 2006, 71, 5921. " Bis (4-methoxyphenyl) amine was prepared according to the literature method, and is described in Organic Letters, 2003, Vol. 14, 2453. " 11- (bromomethyl) tricosane was prepared according to the method described in " J. Am. Chem. Soc., 2004, 126 (26), 8074. "Tris (4-bromophenyl) amine" was prepared according to the method described in "J. Mater. 2,7-dibromo-9H-carbazole was prepared according to the method described in Journal of Polymer Science: Part. Chem., 2012, 22 (16), 7945. "2,7- A: Polymer Chemistry, 2010, Vol. 48, 5479. ", and the tert-butyl 3,7-dibromo-10H-phenothiazine-10-carboxylate Quot; Org. Lett., 2004, vol. 6, 3493. " ≪ / RTI >

실시예 1: SGT-401의 합성Example 1: Synthesis of SGT-401

1-One- 1: 21: 2 ,7-, 7- 디브로모Dibromo -9-토실-9H--9-tosyl-9H- 카바졸의Carbazole 합성 synthesis

Figure 112015120042043-pat00035
Figure 112015120042043-pat00035

250 ml 플라스크에 2,7-브로모카바졸(15.2g, 46.77mmol), 파라-톨루엔설포닐 클로라이드(13.37g, 70.15mmol), 소듐 하이드라이드(2.81g, 70.15mmol) 및 테트라하이드로퓨란(25mL)을 넣고 12시간 동안 환류 교반하였다. 반응이 종결되면 에탄올과 증류수를 첨가하고 디클로로메탄으로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물을 얻었다. 수득률은 95%이었다.To a 250 ml flask was added 2,7-bromocabazole (15.2 g, 46.77 mmol), para-toluenesulfonyl chloride (13.37 g, 70.15 mmol), sodium hydride (2.81 g, 70.15 mmol) and tetrahydrofuran And the mixture was refluxed for 12 hours. When the reaction was completed, ethanol and distilled water were added, extracted with dichloromethane, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and the product was isolated by column chromatography. The yield was 95%.

1H NMR (DMSO-d6, ppm): δ 8.32 (s, 2H, Ar-H), 8.15 (d, 2H, Ar-H), 7.78 (d, 2H, Ar-H), 7.66 (d, 2H, Ar-H), 7.64 (d, 2H, Ar-H), 7.36 (d, 2H, Ar-H). 1 H NMR (DMSO-d 6 , ppm): δ 8.32 (s, 2H, Ar-H), 8.15 (d, 2H, Ar-H), 7.78 (d, 2H, Ar-H), 7.66 (d, 2H, Ar-H), 7.64 (d, 2H, Ar-H), 7.36 (d, 2H, Ar-H).

1-2: 1-2: NN 22 ,N, N 22 ,N, N 77 ,N, N 77 -- 테트라키스Tetrakis (4-(4- 메톡시페닐Methoxyphenyl )-9H-) -9H- 카바졸Carbazole -2,7--2,7- 디아민의Diamine 합성 synthesis

Figure 112015120042043-pat00036
Figure 112015120042043-pat00036

250 ml 플라스크에 2,7-디브로모-9-토실-9H-카바졸(5.12g, 10.68mmol), 비스(4-메톡시페닐)아민(5.02g, 21.90 mmol), 팔라듐 아세테이트(0.48g, 2.14mmol), 트리-터트부틸-포스핀(0.86g, 4.27mmol), 소듐-터트부톡사이드(12.32g, 128.22mmol) 및 톨루엔(25mL)을 넣고 12시간 동안 환류 교반하였다. 반응이 종결되면 증류수를 첨가하고 에틸 아세테이트로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물을 얻었다. 수득률은 80%이었다.To a 250 ml flask was added 2,7-dibromo-9-tosyl-9H-carbazole (5.12 g, 10.68 mmol), bis (4- methoxyphenyl) amine (5.02 g, 21.90 mmol), palladium acetate , Tri-tert-butyl-phosphine (0.86 g, 4.27 mmol), sodium-tert-butoxide (12.32 g, 128.22 mmol) and toluene (25 mL) were stirred at reflux for 12 hours. When the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and the product was isolated by column chromatography. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 10.6 (s, 1H, Ar-NH), 7.74 (d, 2H, Ar-H), 6.99 (d, 8H, Ar-H), 6.89 (d, 8H, Ar-H), 6.67 (s, 2H, Ar-H), 6.65 (d, 2H, Ar-H), 3.73 (s, 12H, Ar-OCH3). FT-IR (KBr pellet, cm-1): 3400 (Ar-NH). 1 H NMR (DMSO-d 6 , ppm): δ 10.6 (s, 1H, Ar-NH), 7.74 (d, 2H, Ar-H), 6.99 (d, 8H, Ar-H), 6.89 (d, 8H, Ar-H), 6.67 (s, 2H, Ar-H), 6.65 (d, 2H, Ar-H), 3.73 (s, 12H, Ar-OCH 3). FT-IR (KBr pellet, cm -1 ): 3400 (Ar-NH).

1-3: SGT-401의 합성1-3: Synthesis of SGT-401

Figure 112015120042043-pat00037
Figure 112015120042043-pat00037

250 ml 플라스크에 N2,N2,N7,N7-테트라키스(4-메톡시페닐)-9H-카바졸-2,7-디아민(1.08g, 1.74mmol), 1,4-디브로모벤젠(0.2g, 0.85mmol), 팔라듐 아세테이트(Pd(OAc)2, 0.04g, 0.17mmol), 트리-터트부틸-포스핀((tert-Bu)3P, 0.07g, 0.08mmol), 소듐-터트부톡사이드(tert-BuO-Na+, 0.49g, 5.09mmol) 및 톨루엔(25mL)을 넣고 48시간 동안 환류 교반하였다. 반응이 종결되면 증류수을 첨가하고 에틸 아세테이트로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물 SGT-401을 얻었다. 수득률은 80%이었다.A 250 ml flask was charged with N 2 , N 2 , N 7 , N 7 -tetrakis (4-methoxyphenyl) -9H-carbazole-2,7-diamine (1.08 g, 1.74 mmol) Mo benzene (0.2g, 0.85mmol), palladium acetate (Pd (OAc) 2, 0.04g , 0.17mmol), tri-tert-butyl-phosphine ((tert-Bu) 3 P , 0.07g, 0.08mmol), sodium (Tert-BuO - Na + , 0.49 g, 5.09 mmol) and toluene (25 mL) were added and the mixture was stirred under reflux for 48 hours. After the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and purified by column chromatography to obtain the product SGT-401. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.88 (d, 4H, Ar-H), 7.49 (s, 4H, Ar-H), 6.83 (m, 40H, Ar-H), 3.73 (s, 24H, -OCH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.88 (d, 4H, Ar-H), 7.49 (s, 4H, Ar-H), 6.83 (m, 40H, Ar-H), 3.73 (s, 24H, -OCH 3).

실시예Example 2 :  2 : SGTSGT -402의 합성Synthesis of -402

Figure 112015120042043-pat00038
Figure 112015120042043-pat00038

1,4-디브로모벤젠 대신에 4,4'-디브로모바이페닐을 사용한 것 이외에는 실시예 1-3의 방법과 동일한 방법으로 SGT-402를 제조하였다. 수득률은 80%이었다.SGT-402 was prepared in the same manner as in Example 1-3 except that 4,4'-dibromobiphenyl was used instead of 1,4-dibromobenzene. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.88 (d, 4H, Ar-H), 7.38 (d, 4H, Ar-H), 7.29 (d, 4H, Ar-H), 6.97 (m, 20H, Ar-H), 6.80 (m, 20H, Ar-H), 3.68 (s, 24H, Ar-OCH3). 1 H NMR (DMSO-d 6 , ppm):? 7.88 (d, 4H, Ar-H), 7.38 (d, 20H, Ar-H), 6.80 (m, 20H, Ar-H), 3.68 (s, 24H, Ar-OCH 3).

실시예Example 3:  3: SGTSGT -403의 합성Synthesis of -403

Figure 112015120042043-pat00039
Figure 112015120042043-pat00039

1,4-디브로모벤젠 대신에 4,4'-디아이오도-2,2',6,6'-테트라메틸바이페닐을 사용한 것 이외에는 실시예 1-3의 방법과 동일한 방법으로 SGT-403를 제조하였다. 수득률은 80%이었다.Except that 4,4'-diiodo-2,2 ', 6,6'-tetramethylbiphenyl was used in place of 1,4-dibromobenzene, SGT-403 . The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.83 (d, 4H, Ar-H), 7.11 (s, 4H, Ar-H), 7.05 (d, 16H, Ar-H), 6.88 (d, 16H, Ar-H), 6.73 (d, 4H, Ar-H), 6.68 (s, 4H, Ar-H), 3.70 (s, 24H, Ar-OCH3), 1.68 (s, 12H, Ar-CH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.83 (d, 4H, Ar-H), 7.11 (s, 4H, Ar-H), 7.05 (d, 16H, Ar-H), 6.88 (d, 16H, Ar-H), 6.73 (d, 4H, Ar-H), 6.68 (s, 4H, Ar-H), 3.70 (s, 24H, Ar-OCH 3), 1.68 (s, 12H, Ar- CH 3).

실시예 4: SGT-404의 합성Example 4 Synthesis of SGT-404

4-4- 1: 41: 4 ,4'-,4'- 디브로모Dibromo -6,6'--6,6'- 디메틸바이페닐Dimethyl biphenyl -2,2'--2,2'- 디일Dill )) 디메탄올의Dimethanol 합성 synthesis

Figure 112015120042043-pat00040
Figure 112015120042043-pat00040

50 ml 플라스크에 질소하에서 디메틸 4,4'-디브로모-6,6'-디메틸바이페닐-2,2'-디카르복실레이트(2.83g, 6.20mmol), 무수 테트라하이드로퓨란(THF) (25 mL)을 넣고 0℃로 냉각한 후 LiAlH4 2M solution in THF 용액 (9.31 mL, 18.61 mmol)을 천천히 첨가한 후 24시간동안 환류 교반하였다. 반응이 종결되면 EtOH와 증류수을 첨가하고 에틸 아세테이트로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 감압 하에서 여과하고 감압 하에서 용매를 제거하여 생성물을 얻었다. 수득률은 80%이었다.Dimethyl biphenyl-2,2'-dicarboxylate (2.83 g, 6.20 mmol) and anhydrous tetrahydrofuran (THF) were added to a 50 ml flask under nitrogen 25 mL) was added, and the mixture was cooled to 0 ° C. Then, a solution of LiAlH 4 2M solution in THF (9.31 mL, 18.61 mmol) was slowly added thereto, followed by reflux stirring for 24 hours. After the reaction was completed, EtOH and distilled water were added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried over MgSO 4 , filtered under reduced pressure, and the solvent was removed under reduced pressure to obtain a product. The yield was 80%.

1H NMR (CDCl3, ppm): δ 7.55 (s, 2H, Ar-H), 7.46 (s, sH, Ar-H), 5.19 (Br-s, 2H, -OH), 3.91 (s, 4H, -CH2-O), 1.81 (s, 6H, Ar-CH3). 1 H NMR (CDCl 3, ppm ): δ 7.55 (s, 2H, Ar-H), 7.46 (s, sH, Ar-H), 5.19 (Br-s, 2H, -OH), 3.91 (s, 4H , -CH 2 -O), 1.81 ( s, 6H, Ar-CH 3).

4-4- 2: 42: 4 ,4'-,4'- 디브로모Dibromo -2,2'--2,2'- 비스Bis (( 브로모메틸Bromomethyl )-6,6'-) -6,6'- 디메틸바이페닐의Dimethylbiphenyl 합성 synthesis

Figure 112015120042043-pat00041
Figure 112015120042043-pat00041

50 ml 플라스크에 4,4'-디브로모-6,6'-디메틸바이페닐-2,2'-디일)디메탄올(0.85g, 2.12mmol), HBr(48% in H2O, 12 mL), 아세트산을 넣고 24시간 동안 환류 교반하였다. 반응이 종결되면 증류수를 첨가하고 에틸 아세테이트(Ethyl acetate)로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 감압 하에서 여과하고 감압 하에서 용매를 제거하여 생성물을 얻었다. 수득률은 98%이었다.To a 50 ml flask 4,4-dibromo -6,6'- dimethyl-biphenyl-2,2'-diyl) dimethanol (0.85g, 2.12mmol), HBr ( 48% in H 2 O, 12 mL ) And acetic acid were added thereto, followed by reflux stirring for 24 hours. After the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried over MgSO 4 , filtered under reduced pressure, and the solvent was removed under reduced pressure to obtain a product. The yield was 98%.

1H NMR (CDCl3, ppm): δ 7.59 (s, 2H, Ar-H), 7.43 (s, 2H, Ar-H), 4.05 (s, 4H, -CH2-O), 1.97 (s, 6H, Ar-CH3). 1 H NMR (CDCl 3, ppm ): δ 7.59 (s, 2H, Ar-H), 7.43 (s, 2H, Ar-H), 4.05 (s, 4H, -CH 2 -O), 1.97 (s, 6H, Ar-CH 3).

4-4- 3: 43: 4 -(2--(2- 에틸헥실옥시Ethylhexyloxy )페놀의 합성) Synthesis of phenol

Figure 112015120042043-pat00042
Figure 112015120042043-pat00042

250 ml 플라스크에 하이드로퀴논(5.13g, 46.60mmol), 2-에틸헥실브로마이드(3g, 15.53mmol), K2CO3 (6.44g, 46.60mmol), 아세토나이트릴 30 mL를 넣고 24시간 동안 환류 교반하였다. 반응이 종결되면 증류수를 첨가하고 에틸 아세테이트(Ethyl acetate)로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물을 얻었다. 수득률은 40%이었다.To a 250 ml flask was added hydroquinone (5.13 g, 46.60 mmol), 2-ethylhexyl bromide (3 g, 15.53 mmol), K 2 CO 3 (6.44 g, 46.60 mmol) and acetonitrile Respectively. After the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and the product was isolated by column chromatography. The yield was 40%.

1H NMR (DMSO-d6, ppm): δ 8.87 (s, 2H, Ar-OH), 6.73 (d, 2H, Ar-H), 6.64 (d, 2H, Ar-H), 3.72 (d, 2H, -OCH2-), 1.61 (q, 1H, -CH-) 1.38 (m, 8H, -CH2-), 0.97 (m, 6H, -CH3). 1 H NMR (DMSO-d 6 , ppm): δ 8.87 (s, 2H, Ar-OH), 6.73 (d, 2H, Ar-H), 6.64 (d, 2H, Ar-H), 3.72 (d, 2H, -OCH 2 -), 1.61 (q, 1H, -CH-) 1.38 (m, 8H, -CH 2 -), 0.97 (m, 6H, -CH 3).

4- 4: 4 ,4'- 디브로모 -2,2'- 비스 ((4-(2- 에틸헥실옥시 ) 페녹시 ) 메틸 )-6,6'- 디메틸바이페닐의 합성 4-4: 4, 4'-dibromo-2,2'-bis ((4- (2-ethyl-hexyloxy) phenoxy) methyl) Synthesis of dimethoxy -6,6'- biphenyl-butyl

Figure 112015120042043-pat00043
Figure 112015120042043-pat00043

250 ml 플라스크에 4-(2-에틸헥실옥시)페놀(0.92g, 4.14mmol), 4,4'-디브로모-2,2'-비스(브로모메틸)-6,6'-디메틸바이페닐(1.07g, 2.03mmol), K2CO3 (2.86g, 20.69mmol), 아세토나이트릴 30 mL를 넣고 24시간 동안 환류 교반하였다. 반응이 종결되면 증류수를 첨가하고 에틸 아세테이트(Ethyl acetate)로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물을 얻었다. 수득률은 98%이었다.To a 250 ml flask was added 4- (2-ethylhexyloxy) phenol (0.92 g, 4.14 mmol), 4,4'-dibromo-2,2'-bis (bromomethyl) -6,6'- Biphenyl (1.07 g, 2.03 mmol), K 2 CO 3 (2.86 g, 20.69 mmol) and acetonitrile (30 mL) were added and the mixture was stirred under reflux for 24 hours. After the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and the product was isolated by column chromatography. The yield was 98%.

1H NMR (CDCl3, ppm): δ 7.64 (s, 2H, Ar-H), 7.43 (s, 2H, Ar-H), 6.77 (d, 4H, Ar-H), 6.67 (d, 4H, Ar-H), 4.47 (m, 4H, -OCH2-), 3.75 (m, 4H, -OCH2-), 1.93 (s, 6H, Ar-CH3), 1.66 (q, 1H, -CH-), 1.38 (m, 8H, -CH2-), 0.90 (m, 6H, -CH3). 1 H NMR (CDCl 3, ppm ): δ 7.64 (s, 2H, Ar-H), 7.43 (s, 2H, Ar-H), 6.77 (d, 4H, Ar-H), 6.67 (d, 4H, Ar-H), 4.47 (m , 4H, -OCH 2 -), 3.75 (m, 4H, -OCH 2 -), 1.93 (s, 6H, Ar-CH 3), 1.66 (q, 1H, -CH- ), 1.38 (m, 8H, -CH 2 -), 0.90 (m, 6H, -CH 3).

4-5: 4-5: SGTSGT -404의 합성Synthesis of -404

Figure 112015120042043-pat00044
Figure 112015120042043-pat00044

1,4-디브로모벤젠 대신에 4,4'-디브로모-2,2'-비스((4-(2-에틸헥실옥시)페녹시)메틸)-6,6'-디메틸바이페닐을 사용한 것 이외에는 실시예 1-3의 방법과 동일한 방법으로 SGT-404를 제조하였다. 수득률은 80%이었다.Except that 4,4'-dibromo-2,2'-bis ((4- (2-ethylhexyloxy) phenoxy) methyl) -6,6'-dimethylbai SGT-404 was prepared in the same manner as in Example 1-3, except that phenyl was used. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.85 (d, 4H, Ar-H), 7.42 (s, 2H, Ar-H), 7.27 (s, 2H, Ar-H), 7.05 (d, 16H, Ar-H), 7.02 (d, 16H, Ar-H), 6.75 (d, 8H, Ar-H), 6.63 (d, 4H, Ar-H), 6.39 (d, 4H, Ar-H), 4.35 (s, 4H, -OCH2-), 3.61 (m, 28H, -OCH3), 1.74 (s, 6H, Ar-CH3), 1.66 (q, 2H, -CH-), 1.38 (m, 16H, -CH2-), 0.80 (m, 12H, -CH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.85 (d, 4H, Ar-H), 7.42 (s, 2H, Ar-H), 7.27 (s, 2H, Ar-H), 7.05 (d, (D, 4H, Ar-H), 7.02 (d, 16H, Ar-H), 6.75 , 4.35 (s, 4H, -OCH 2 -), 3.61 (m, 28H, -OCH 3), 1.74 (s, 6H, Ar- CH 3), 1.66 (q, 2H, -CH-), 1.38 (m, 16H, -CH 2 -), 0.80 (m, 12H, -CH 3).

실시예Example 5:  5: SGTSGT -405의 합성Synthesis of -405

Figure 112015120042043-pat00045
Figure 112015120042043-pat00045

250 ml 플라스크에 N2,N2,N7,N7-테트라키스(4-메톡시페닐)-9H-카바졸-2,7-디아민(1.84g, 2.95mmol), 1,3,5-트리브로모벤젠(0.3g, 0.95mmol), 팔라듐 아세테이트(0.06g, 0.29mmol), 트리-터트부틸-포스핀(0.12g, 0.57mmol), 소듐-터트부톡사이드(1.37g, 14.29mmol), 톨루엔(25 mL)을 넣고 48시간 동안 환류 교반하였다. 반응이 종결되면 증류수을 첨가하고 에틸 아세테이트로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 SGT-405을 얻었다. 수득률은 70%이었다.N 2, N 2 in 250 ml flask, N 7, N 7 - tetrakis (4-methoxyphenyl) -9H- carbazol-2,7-diamine (1.84g, 2.95mmol), 1,3,5- (0.12 g, 0.57 mmol), sodium-tert-butoxide (1.37 g, 14.29 mmol), palladium acetate (0.06 g, 0.29 mmol), tributylbenzene Toluene (25 mL) was added and the mixture was stirred under reflux for 48 hours. After the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and purified by column chromatography to obtain SGT-405. The yield was 70%.

1H NMR (DMSO-d6, ppm): δ 7.95 (d, 6H, Ar-H), 7.30 (s, 3H, Ar-H), 6.82 (m, 32H, Ar-H), 6.49 (d, 24H, Ar-H), 3.46 (s, 36H, -OCH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.95 (d, 6H, Ar-H), 7.30 (s, 3H, Ar-H), 6.82 (m, 32H, Ar-H), 6.49 (d, 24H, Ar-H), 3.46 (s, 36H, -OCH 3).

실시예Example 6:  6: SGTSGT -406의 합성Synthesis of -406

Figure 112015120042043-pat00046
Figure 112015120042043-pat00046

1,3,5-트리브로모벤젠 대신에 1,3,5-트리(4-브로모페닐)벤젠을 사용한 것 이외에는 실시예 5의 방법과 동일한 방법으로 SGT-406를 제조하였다. 수득률은 60%이었다.SGT-406 was prepared in the same manner as in Example 5 except that 1,3,5-tri (4-bromophenyl) benzene was used instead of 1,3,5-tribromobenzene. The yield was 60%.

1H NMR (THF-d5, ppm): δ 7.82 (d, 8H, Ar-H), 7.47 (d, 6H, Ar-H), 6.94 (m, 67H, Ar-H), 3.69 (s, 36H, -OCH3). 1 H NMR (THF-d 5 , ppm): δ 7.82 (d, 8H, Ar-H), 7.47 (d, 6H, Ar-H), 6.94 (m, 67H, Ar-H), 3.69 (s, 36H, -OCH 3).

실시예Example 7:  7: SGTSGT -407의 합성Synthesis of -407

Figure 112015120042043-pat00047
Figure 112015120042043-pat00047

1,3,5-트리브로모벤젠 대신에 트리스(4-브로모페닐)아민을 사용한 것 이외에는 실시예 5의 방법과 동일한 방법으로 SGT-407을 제조하였다. 수득률은 60%이었다.SGT-407 was prepared in the same manner as in Example 5 except that tris (4-bromophenyl) amine was used instead of 1,3,5-tribromobenzene. The yield was 60%.

1H NMR (DMSO-d6, ppm): δ 7.87 (d, 6H, Ar-H), 7.30 (d, 6H, Ar-H), 6.82 (m, 66H, Ar-H), 3.46 (s, 36H, -OCH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.87 (d, 6H, Ar-H), 7.30 (d, 6H, Ar-H), 6.82 (m, 66H, Ar-H), 3.46 (s, 36H, -OCH 3).

실시예 8: SGT-408의 합성Example 8: Synthesis of SGT-408

8-8- 1: 11: 1 -(2--(2- 데실테트라데실옥시Decyltetradecyloxy )-4-)-4- 아이오도벤젠의Of iodobenzene 합성 synthesis

Figure 112015120042043-pat00048
Figure 112015120042043-pat00048

250 ml 플라스크에 11-(브로모메틸)트리코세인(11.4g, 27.30mmol), 4-아이오드페놀(6.61g, 30.03mmol), K2CO3(11.32g, 81.91mmol), DMF(25 mL)를 넣고 48시간 동안 환류 교반하였다. 반응이 종결되면 증류수을 첨가하고 에틸 아세테이트로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물을 얻었다. 수득률은 95%이었다.To a 250 ml flask was added 11- (bromomethyl) tricocaine (11.4 g, 27.30 mmol), 4-iodophenol (6.61 g, 30.03 mmol), K 2 CO 3 (11.32 g, 81.91 mmol) ) And the mixture was stirred under reflux for 48 hours. After the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and the product was isolated by column chromatography. The yield was 95%.

1H NMR (CDCl3, ppm): δ 7.53 (d, 2H, Ar-H), 6.67 (d, 2H, Ar-H), 3.78 (d, 2H, -OCH2-), 1.75 (q, 1H, -CH-), 1.26 (m, 40H, -CH2-), 0.88 (m, 6H, -CH3). 1 H NMR (CDCl 3, ppm ): δ 7.53 (d, 2H, Ar-H), 6.67 (d, 2H, Ar-H), 3.78 (d, 2H, -OCH 2 -), 1.75 (q, 1H , -CH-), 1.26 (m, 40H, -CH 2 -), 0.88 (m, 6H, -CH 3).

8-8- 2: 42: 4 -(2--(2- 데실테트라데실옥시Decyltetradecyloxy )-N-(4-) -N- (4- 메톡시페닐Methoxyphenyl )아닐린의 합성) Synthesis of aniline

Figure 112015120042043-pat00049
Figure 112015120042043-pat00049

250 ml 플라스크에 1-(2-데실테트라데실옥시)-4-아이오도벤젠(4.8g, 8.62mmol), 파라-아니시딘(1.59g, 12.93mmol), 팔라듐 아세테이트(0.22g, 0.39mmol), 1,1'-비스-디페닐포스피노-페로센(0.23g, 0.39mmol), 소듐-터트부톡사이드(3.73g, 38.80mmol), 톨루엔(25 mL)을 넣고 48시간 동안 환류 교반하였다. 반응이 종결되면 증류수을 첨가하고 에틸 아세테이트로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물을 얻었다. 수득률은 70%이었다.To a 250 ml flask was added 1- (2-decyltetradecyloxy) -4-iodobenzene (4.8 g, 8.62 mmol), para-anisidine (1.59 g, 12.93 mmol), palladium acetate (0.22 g, 0.39 mmol) (3.73 g, 38.80 mmol) and toluene (25 mL) were added to the mixture, and the mixture was refluxed for 48 hours. After the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and the product was isolated by column chromatography. The yield was 70%.

1H NMR ((CD3)CO-d6, ppm): δ 6.96 (m, 4H, Ar-H), 6.81 (m, 4H, Ar-H), 3.83 (d, 2H, -OCH2-), 3.73 (s, 3H, -OCH3), 1.75 (q, 1H, -CH-), 1.26 (m, 40H, -CH2-), 0.88 (m, 6H, -CH3). 1 H NMR ((CD 3) CO-d 6, ppm): δ 6.96 (m, 4H, Ar-H), 6.81 (m, 4H, Ar-H), 3.83 (d, 2H, -OCH 2 -) , 3.73 (s, 3H, -OCH 3), 1.75 (q, 1H, -CH-), 1.26 (m, 40H, -CH 2 -), 0.88 (m, 6H, -CH 3).

8-3: N 2 ,N 7 - 비스 (4-(2- 데실테트라데실옥시 )페닐)- N 2 ,N 7 - 비스 (4- 메톡시페닐 )-9H-카바졸-2,7-디아민의 합성 8-3: N 2, N 7 - bis (4- (2-decyl tetra-decyloxy) phenyl) - N 2, N 7 - bis (4-methoxyphenyl) - 9H- carbazole-2,7 Synthesis of diamine

Figure 112015120042043-pat00050
Figure 112015120042043-pat00050

비스(4-메톡시페닐)아민 대신에 4-(2-데실테트라데실옥시)-N-(4-메톡시페닐)아닐린을 사용한 것 이외에는 실시예 1-2의 방법과 동일한 방법으로 생성물을 제조하였다. 수득률은 80%이었다.The same procedure as in Example 1-2 was followed except that 4- (2-decyltetradecyloxy) -N- (4-methoxyphenyl) aniline was used instead of bis (4-methoxyphenyl) . The yield was 80%.

1H NMR ((CD3)CO-d6, ppm): δ 9.75 (s, 1H, -NH-), 7.80 (d, 2H, Ar-H), 6.86 (m, 20H, Ar-H), 3.88 (d, 4H, -OCH2-), 3.80 (s, 6H, -OCH3), 1.75 (q, 2H, -CH-), 1.26 (m, 72H, -CH2-), 0.88 (m, 12H, -CH3). FT-IR (KBr pellet, cm-1): 3400 (Ar-NH). 1 H NMR ((CD 3) CO-d 6, ppm): δ 9.75 (s, 1H, -NH-), 7.80 (d, 2H, Ar-H), 6.86 (m, 20H, Ar-H), 3.88 (d, 4H, -OCH 2 -), 3.80 (s, 6H, -OCH 3), 1.75 (q, 2H, -CH-), 1.26 (m, 72H, -CH 2 -), 0.88 (m, 12H, -CH 3). FT-IR (KBr pellet, cm -1 ): 3400 (Ar-NH).

8-4: 8-4: SGTSGT -408의 합성Synthesis of -408

Figure 112015120042043-pat00051
Figure 112015120042043-pat00051

N2,N2,N7,N7-테트라키스(4-메톡시페닐)-9H-카바졸-2,7-디아민 대신에 N2,N7-비스(4-(2-데실테트라데실옥시)페닐)-N2,N7-비스(4-메톡시페닐)-9H-카바졸-2,7-디아민을 사용한 것 이외에는 실시예 1-3의 방법과 동일한 방법으로 SGT-408를 제조하였다. 수득률은 80%이었다. N 2, N 2, N 7 , N 7 - tetrakis (4-methoxyphenyl) -9H- carbazol -2,7- N 2 in place of the diamine, N 7 - bis (4- (2-decyl tetradecyl hexyloxy) phenyl) -N 2, N 7 - bis (4-methoxyphenyl) SGT-408 according to the same method as in the embodiment -9H- carbazol-2,7-diamine was used in example 1-3 except that . The yield was 80%.

1H NMR (THF-d5, ppm): δ 7.88 (d, 4H, Ar-H), 7.49 (s, 4H, Ar-H), 6.83 (m, 34H, Ar-H), 3.79 (d, 8H, -OCH2-), 3.73 (s, 12H, -OCH3), 1.30 (m, 148H, -CH2-), 0.88 (m, 24H, -CH3). 1 H NMR (THF-d 5 , ppm): δ 7.88 (d, 4H, Ar-H), 7.49 (s, 4H, Ar-H), 6.83 (m, 34H, Ar-H), 3.79 (d, 8H, -OCH 2 -), 3.73 (s, 12H, -OCH 3), 1.30 (m, 148H, -CH 2 -), 0.88 (m, 24H, -CH 3).

실시예Example 9:  9: SGTSGT -409의 합성Synthesis of -409

Figure 112015120042043-pat00052
Figure 112015120042043-pat00052

1,4-디브로모벤젠 대신에 4,4'-디브로모바이페닐을 사용한 것 이외에는 실시예 8-4의 방법과 동일한 방법으로 SGT-409를 제조하였다. 수득률은 80%이었다.SGT-409 was prepared in the same manner as in Example 8-4 except that 4,4'-dibromobiphenyl was used instead of 1,4-dibromobenzene. The yield was 80%.

1H NMR (THF-d5, ppm): δ 7.88 (d, 4H, Ar-H), 7.38 (d, 4H, Ar-H), 7.29 (d, 4H, Ar-H), 6.97 (m, 20H, Ar-H), 6.80 (m, 20H, Ar-H), 3.79 (d, 8H, -OCH2-), 3.73 (s, 12H, -OCH3), 1.30 (m, 148H, -CH2-), 0.88 (m, 24H, -CH3). 1 H NMR (THF-d 5 , ppm): δ 7.88 (d, 4H, Ar-H), 7.38 (d, 4H, Ar-H), 7.29 (d, 4H, Ar-H), 6.97 (m, 20H, Ar-H), 6.80 (m, 20H, Ar-H), 3.79 (d, 8H, -OCH 2 -), 3.73 (s, 12H, -OCH 3), 1.30 (m, 148H, -CH 2 -), 0.88 (m, 24H , -CH 3).

실시예Example 10:  10: SGTSGT -410의 합성Synthesis of -410

Figure 112015120042043-pat00053
Figure 112015120042043-pat00053

1,4-디브로모벤젠 대신에 1,3,5-트리(4-브로모페닐)벤젠을 사용한 것 이외에는 실시예 8-4의 방법과 동일한 방법으로 SGT-410를 제조하였다. 수득률은 80%이었다.Except that 1,3,5-tri (4-bromophenyl) benzene was used in place of 1,4-dibromobenzene, SGT-410 was obtained in the same manner as in Example 8-4 . The yield was 80%.

1H NMR (THF-d5, ppm): δ 7.87 (d, 6H, Ar-H), 7.30 (d, 6H, Ar-H), 6.82 (m, 66H, Ar-H), 3.79 (d, 12H, -OCH2-), 3.73 (s, 18H, -OCH3), 1.30 (m, 222H, -CH2-), 0.88 (m, 36H, -CH3). 1 H NMR (THF-d 5 , ppm): δ 7.87 (d, 6H, Ar-H), 7.30 (d, 6H, Ar-H), 6.82 (m, 66H, Ar-H), 3.79 (d, 12H, -OCH 2 -), 3.73 (s, 18H, -OCH 3), 1.30 (m, 222H, -CH 2 -), 0.88 (m, 36H, -CH 3).

실시예 11: SGT-411의 합성Example 11 Synthesis of SGT-411

11-1: N 3 ,N 3 ,N 7 ,N 7 - 테트라키스 (4- 메톡시페닐 )-10H- 페노싸이아진 -3,7- 디아민의 합성 11-1: N 3, N 3, N 7, N 7 - tetrakis (4-methoxyphenyl) -10H- phenothiazine-triazine-3,7-diamine PSY synthesis

Figure 112015120042043-pat00054
Figure 112015120042043-pat00054

250 ml 플라스크에 터트-부틸 3,7-디브로모-10H-페노싸이아진-10-카르복실레이트(3g, 6.08mmol), 비스(4-메톡시페닐)아민(2.86g, 12.47mmol), 팔라듐 아세테이트(0.27g, 1.22mmol), 트리-터트부틸-포스핀(0.49g, 2.43mmol), 소듐-터트부톡사이드(7.02g, 72.99mmol), 톨루엔(25 mL)를 넣고 12시간 동안 환류 교반하였다. 반응이 종결되면 증류수를 첨가하고 에틸 아세테이트로 추출하여 증류수로 수 회 세척하였다. 유기층을 MgSO4로 건조한 후 여과하였다. 얻어진 여액을 감압 하에서 농축시키고, 관 크로마토그래피로 분리하여 생성물을 얻었다. 수득률은 80%이었다.Butyl 3,7-dibromo-10H-phenothiazine-10-carboxylate (3 g, 6.08 mmol), bis (4- methoxyphenyl) amine (2.86 g, 12.47 mmol) (0.49 g, 2.43 mmol), sodium-tert-butoxide (7.02 g, 72.99 mmol) and toluene (25 mL) were added to the mixture, and the mixture was refluxed for 12 hours Respectively. When the reaction was completed, distilled water was added, extracted with ethyl acetate, and washed several times with distilled water. The organic layer was dried with MgSO 4 and filtered. The resulting filtrate was concentrated under reduced pressure and the product was isolated by column chromatography. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 10.6 (s, 1H, Ar-NH), 7.25 (m, 4H, Ar-H), 6.99 (d, 8H, Ar-H), 6.89 (d, 8H, Ar-H), 6.67 (d, 2H, Ar-H), 3.73 (s, 12H, -OCH3). FT-IR (KBr pellet, cm-1): 3400 (Ar-NH). 1 H NMR (DMSO-d 6 , ppm): δ 10.6 (s, 1H, Ar-NH), 7.25 (m, 4H, Ar-H), 6.99 (d, 8H, Ar-H), 6.89 (d, 8H, Ar-H), 6.67 (d, 2H, Ar-H), 3.73 (s, 12H, -OCH 3). FT-IR (KBr pellet, cm -1 ): 3400 (Ar-NH).

11-2: 11-2: SGTSGT -411의 합성Synthesis of -411

Figure 112015120042043-pat00055
Figure 112015120042043-pat00055

N2,N2,N7,N7-테트라키스(4-메톡시페닐)-9H-카바졸-2,7-디아민 대신에 N3,N3,N7,N7-테트라키스(4-메톡시페닐)-10H-페노싸이아진-3,7-디아민을 사용한 것 이외에는 실시예 8-4의 방법과 동일한 방법으로 SGT-411를 제조하였다. 수득률은 80%이었다. N 2, N 2, N 7 , N 7 - tetrakis (4-methoxyphenyl) -9H- carbazol-2,7-diamine instead of N 3, N 3, N 7 , N 7 - tetrakis (4 -Methoxyphenyl) -10H-phenothiazin-3,7-diamine was used in place of SGT-411 in the same manner as in Example 8-4. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.25 (m, 8H, Ar-H), 6.83 (m, 36H, Ar-H), 6.67 (d, 4H, Ar-H), 3.73 (s, 24H, -OCH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.25 (m, 8H, Ar-H), 6.83 (m, 36H, Ar-H), 6.67 (d, 4H, Ar-H), 3.73 (s, 24H, -OCH 3).

실시예Example 12:  12: SGTSGT -412의 합성Synthesis of -412

Figure 112015120042043-pat00056
Figure 112015120042043-pat00056

1,4-디브로모벤젠 대신에 4,4'-디브로모바이페닐을 사용한 것 이외에는 실시예 11-2의 방법과 동일한 방법으로 SGT-412를 제조하였다. 수득률은 80%이었다.SGT-412 was prepared in the same manner as in Example 11-2 except that 4,4'-dibromobiphenyl was used instead of 1,4-dibromobenzene. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.38 (d, 4H, Ar-H), 7.29 (d, 4H, Ar-H), 7.25 (m, 8H, Ar-H), 6.97 (m, 16H, Ar-H), 6.80 (m, 16H, Ar-H), 6.67 (d, 4H, Ar-H), 3.68 (s, 24H, Ar-OCH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.38 (d, 4H, Ar-H), 7.29 (d, 4H, Ar-H), 7.25 (m, 8H, Ar-H), 6.97 (m, 16H, Ar-H), 6.80 (m, 16H, Ar-H), 6.67 (d, 4H, Ar-H), 3.68 (s, 24H, Ar-OCH 3).

실시예Example 13:  13: SGTSGT -413의 합성Synthesis of -413

Figure 112015120042043-pat00057
Figure 112015120042043-pat00057

1,4-디브로모벤젠 대신에 4,4'-디아이오도-2,2',6,6'-테트라메틸바이페닐을 사용한 것 이외에는 실시예 11-2의 방법과 동일한 방법으로 SGT-413를 제조하였다. 수득률은 80%이었다. 413 was obtained in the same manner as in Example 11-2 except that 4,4'-diiodo-2,2 ', 6,6'-tetramethylbiphenyl was used instead of 1,4-dibromobenzene. . The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.38 (d, 4H, Ar-H), 7.25 (m, 8H, Ar-H), 7.05 (d, 16H, Ar-H), 6.88 (d, 16H, Ar-H), 6.68 (m, 8H, Ar-H), 3.70 (s, 24H, -OCH3), 1.68 (s, 12H, -CH3). 1 H NMR (DMSO-d 6 , ppm):? 7.38 (d, 4H, Ar-H), 7.25 (m, 8H, Ar- 16H, Ar-H), 6.68 (m, 8H, Ar-H), 3.70 (s, 24H, -OCH 3), 1.68 (s, 12H, -CH 3 ).

실시예Example 14:  14: SGTSGT -414의 합성Synthesis of -414

Figure 112015120042043-pat00058
Figure 112015120042043-pat00058

1,4-디브로모벤젠 대신에 4,4'-디브로모-2,2'-비스((4-(2-에틸헥실옥시)페녹시)메틸)-6,6'-디메틸바이페닐을 사용한 것 이외에는 실시예 11-2의 방법과 동일한 방법으로 SGT-414를 제조하였다. 수득률은 80%이었다. Except that 4,4'-dibromo-2,2'-bis ((4- (2-ethylhexyloxy) phenoxy) methyl) -6,6'-dimethylbai SGT-414 was prepared in the same manner as in Example 11-2 except that phenyl was used. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.42 (s, 2H, Ar-H), 7.27 (s, 2H, Ar-H), 7.25 (m, 8H, Ar-H), 7.05 (d, 16H, Ar-H), 7.02 (d, 16H, Ar-H), 6.75 (d, 8H, Ar-H), 6.39 (d, 4H, Ar-H), 4.35 (s, 4H, -OCH2-), 3.61 (m, 28H, -OCH3), 1.74 (s, 6H, Ar-CH3), 1.66 (q, 2H, -CH-), 1.38 (m, 16H, -CH2-), 0.80 (m, 12H, -CH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.42 (s, 2H, Ar-H), 7.27 (s, 2H, Ar-H), 7.25 (m, 8H, Ar-H), 7.05 (d, 16H, Ar-H), 7.02 (d, 16H, Ar-H), 6.75 (d, 8H, Ar-H), 6.39 (d, 4H, Ar-H), 4.35 (s, 4H, -OCH 2 - ), 3.61 (m, 28H, -OCH 3), 1.74 (s, 6H, Ar- CH 3), 1.66 (q, 2H, -CH-), 1.38 (m, 16H, -CH 2 -), 0.80 (m, 12H, -CH 3).

실시예 15: SGT-415의 합성Example 15: Synthesis of SGT-415

Figure 112015120042043-pat00059
Figure 112015120042043-pat00059

N2,N2,N7,N7-테트라키스(4-메톡시페닐)-9H-카바졸-2,7-디아민 대신에 N3,N3,N7,N7-테트라키스(4-메톡시페닐)-10H-페노싸이아진-3,7-디아민을 사용한 것 이외에는 실시예 5의 방법과 동일한 방법으로 SGT-415를 제조하였다. 수득률은 80%이었다. N 2, N 2, N 7 , N 7 - tetrakis (4-methoxyphenyl) -9H- carbazol-2,7-diamine instead of N 3, N 3, N 7 , N 7 - tetrakis (4 -Methoxyphenyl) -10H-phenothiazin-3,7-diamine was used in place of N-methyl-2-pyrrolidone. The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.30 (s, 3H, Ar-H), 7.25 (m, 12H, Ar-H), 6.82 (m, 24H, Ar-H), 6.67 (d, 6H, Ar-H), 6.49 (d, 24H, Ar-H), 3.46 (s, 36H, -OCH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.30 (s, 3H, Ar-H), 7.25 (m, 12H, Ar-H), 6.82 (m, 24H, Ar-H), 6.67 (d, 6H, Ar-H), 6.49 (d, 24H, Ar-H), 3.46 (s, 36H, -OCH 3).

실시예Example 16:  16: SGTSGT -416의 합성Synthesis of -416

Figure 112015120042043-pat00060
Figure 112015120042043-pat00060

N2,N2,N7,N7-테트라키스(4-메톡시페닐)-9H-카바졸-2,7-디아민 대신에 N3,N3,N7,N7-테트라키스(4-메톡시페닐)-10H-페노싸이아진-3,7-디아민을 사용한 것 이외에는 실시예 6의 방법과 동일한 방법으로 SGT-416를 제조하였다. 수득률은 80%이었다. N 2, N 2, N 7 , N 7 - tetrakis (4-methoxyphenyl) -9H- carbazol-2,7-diamine instead of N 3, N 3, N 7 , N 7 - tetrakis (4 -Methoxyphenyl) -10H-phenothiazine-3,7-diamine was used in place of the compound of Example 6, to thereby produce SGT-416. The yield was 80%.

1H NMR (THF-d5, ppm): δ 7.82 (d, 8H, Ar-H), 7.47 (d, 6H, Ar-H), 6.94 (m, 67H, Ar-H), 3.69 (s, 36H, -OCH3). 1 H NMR (THF-d 5 , ppm): δ 7.82 (d, 8H, Ar-H), 7.47 (d, 6H, Ar-H), 6.94 (m, 67H, Ar-H), 3.69 (s, 36H, -OCH 3).

실시예 17: SGT-417의 합성Example 17: Synthesis of SGT-417

Figure 112015120042043-pat00061
Figure 112015120042043-pat00061

N2,N2,N7,N7-테트라키스(4-메톡시페닐)-9H-카바졸-2,7-디아민 대신에 N3,N3,N7,N7-테트라키스(4-메톡시페닐)-10H-페노싸이아진-3,7-디아민을 사용한 것 이외에는 실시예 7의 방법과 동일한 방법으로 SGT-417를 제조하였다. 수득률은 80%이었다. N 2, N 2, N 7 , N 7 - tetrakis (4-methoxyphenyl) -9H- carbazol-2,7-diamine instead of N 3, N 3, N 7 , N 7 - tetrakis (4 -Methoxyphenyl) -10H-phenothiazin-3,7-diamine was used instead of the compound of Example 7, The yield was 80%.

1H NMR (DMSO-d6, ppm): δ 7.87 (d, 6H, Ar-H), 7.30 (d, 6H, Ar-H), 6.82 (m, 66H, Ar-H), 3.46 (s, 36H, -OCH3). 1 H NMR (DMSO-d 6 , ppm): δ 7.87 (d, 6H, Ar-H), 7.30 (d, 6H, Ar-H), 6.82 (m, 66H, Ar-H), 3.46 (s, 36H, -OCH 3).

실시예 18: SGT-418의 합성Example 18: Synthesis of SGT-418

18-1 : N 3 ,N 7 - 비스 (4-(2- 데실테트라데실옥시 )페닐)- N 3 ,N 7 - 비스 (4- 메톡시페닐)-10H-페노싸이아진-3,7-디아민의 합성 18-1: N 3, N 7 - bis (4- (2-decyl tetra-decyloxy) phenyl) - N 3, N 7 - bis (4-methoxy carbonyl Fe) -10H- phenothiazine Im-triazine-3, Synthesis of 7-diamine

Figure 112015120042043-pat00062
Figure 112015120042043-pat00062

비스(4-메톡시페닐)아민 대신에 4-(2-데실테트라데실옥시)-N-(4-메톡시페닐)아닐린을 사용한 것 이외에는 실시예 11-1의 방법과 동일한 방법으로 생성물을 제조하였다. 수득률은 80%이었다.Except that 4- (2-decyltetradecyloxy) -N- (4-methoxyphenyl) aniline was used in place of bis (4-methoxyphenyl) amine. . The yield was 80%.

1H NMR (THF-d5, ppm): δ 10.6 (s, 1H, Ar-NH), 7.25 (m, 4H, Ar-H), 6.99 (d, 8H, Ar-H), 6.89 (d, 8H, Ar-H), 6.67 (d, 2H, Ar-H), 3.88 (d, 4H, -OCH2-), 3.80 (s, 6H, -OCH3), 1.75 (q, 2H, -CH-), 1.26 (m, 72H, -CH2-), 0.88 (m, 12H, -CH3). FT-IR (KBr pellet, cm-1): 3400 (Ar-NH). 1 H NMR (THF-d 5 , ppm): δ 10.6 (s, 1H, Ar-NH), 7.25 (m, 4H, Ar-H), 6.99 (d, 8H, Ar-H), 6.89 (d, 8H, Ar-H), 6.67 (d, 2H, Ar-H), 3.88 (d, 4H, -OCH 2 -), 3.80 (s, 6H, -OCH 3), 1.75 (q, 2H, -CH- ), 1.26 (m, 72H, -CH 2 -), 0.88 (m, 12H, -CH 3). FT-IR (KBr pellet, cm -1 ): 3400 (Ar-NH).

18-2 : 18-2: SGTSGT -418의 합성Synthesis of -418

Figure 112015120042043-pat00063
Figure 112015120042043-pat00063

N3,N3,N7,N7-테트라키스(4-메톡시페닐)-10H-페노싸이아진-3,7-디아민 대신에 N3,N7-비스(4-(2-데실테트라데실옥시)페닐)-N3,N7-비스(4-메톡시페닐)-10H-페노싸이아진-3,7-디아민을 사용한 것 이외에는 실시예 11-2의 방법과 동일한 방법으로 SGT-418를 제조하였다. 수득률은 80%이었다. N 3, N 3, N 7 , N 7 - tetrakis (4-methoxyphenyl) N 3, N 7, instead -10H- phenothiazine Im-triazine-3,7-diamine-bis (4- (2-decyl tetra decyloxy) phenyl) -N 3, N 7 - bis (4-methoxyphenyl) -10H- phenothiazine-3,7-diamine other than the Sy-triazine was used in embodiment SGT- the same method as that of example 11-2 418. The yield was 80%.

1H NMR (THF-d5, ppm): δ 7.25 (m, 8H, Ar-H), 6.83 (m, 36H, Ar-H), 6.67 (d, 4H, Ar-H), 3.79 (d, 8H, -OCH2-), 3.73 (s, 12H, -OCH3), 1.30 (m, 148H, -CH2-), 0.88 (m, 24H, -CH3). 1 H NMR (THF-d 5 , ppm): δ 7.25 (m, 8H, Ar-H), 6.83 (m, 36H, Ar-H), 6.67 (d, 4H, Ar-H), 3.79 (d, 8H, -OCH 2 -), 3.73 (s, 12H, -OCH 3), 1.30 (m, 148H, -CH 2 -), 0.88 (m, 24H, -CH 3).

실시예 19: SGT-419의 합성Example 19 Synthesis of SGT-419

Figure 112015120042043-pat00064
Figure 112015120042043-pat00064

1,4-디브로모벤젠 대신에 4,4'-디브로모바이페닐을 사용한 것 이외에는 실시예 18-2의 방법과 동일한 방법으로 SGT-419를 제조하였다. 수득률은 80%이었다.SGT-419 was prepared in the same manner as in Example 18-2 except that 4,4'-dibromobiphenyl was used instead of 1,4-dibromobenzene. The yield was 80%.

1H NMR (THF-d5, ppm): δ 7.38 (d, 4H, Ar-H), 7.29 (d, 4H, Ar-H), 7.25 (m, 8H, Ar-H), 6.97 (m, 16H, Ar-H), 6.80 (m, 16H, Ar-H), 6.67 (d, 4H, Ar-H), 3.79 (d, 8H, -OCH2-), 3.73 (s, 12H, -OCH3), 1.30 (m, 148H, -CH2-), 0.88 (m, 24H, -CH3). 1 H NMR (THF-d 5 , ppm): δ 7.38 (d, 4H, Ar-H), 7.29 (d, 4H, Ar-H), 7.25 (m, 8H, Ar-H), 6.97 (m, 16H, Ar-H), 6.80 (m, 16H, Ar-H), 6.67 (d, 4H, Ar-H), 3.79 (d, 8H, -OCH 2 -), 3.73 (s, 12H, -OCH 3 ), 1.30 (m, 148H, -CH 2 -), 0.88 (m, 24H, -CH 3).

실시예 20: SGT-420의 합성Example 20: Synthesis of SGT-420

Figure 112015120042043-pat00065
Figure 112015120042043-pat00065

1,4-디브로모벤젠 대신에 1,3,5-트리(4-브로모페닐)벤젠을 사용한 것 이외에는 실시예 18-2의 방법과 동일한 방법으로 SGT-420를 제조하였다. 수득률은 80%이었다.SGT-420 was prepared in the same manner as in Example 18-2 except that 1,3,5-tri (4-bromophenyl) benzene was used instead of 1,4-dibromobenzene. The yield was 80%.

1H NMR (THF-d5, ppm): δ 7.82 (d, 8H, Ar-H), 7.47 (d, 6H, Ar-H), 6.94 (m, 67H, Ar-H), 3.79 (d, 12H, -OCH2-), 3.73 (s, 18H, -OCH3), 1.30 (m, 222H, -CH2-), 0.88 (m, 36H, -CH3). 1 H NMR (THF-d 5 , ppm): δ 7.82 (d, 8H, Ar-H), 7.47 (d, 6H, Ar-H), 6.94 (m, 67H, Ar-H), 3.79 (d, 12H, -OCH 2 -), 3.73 (s, 18H, -OCH 3), 1.30 (m, 222H, -CH 2 -), 0.88 (m, 36H, -CH 3).

실시예 21 내지 실시예 23 및 비교예 1: p-형 유기반도체 화합물을 함유하는 스핀코팅 용액의 제조 Examples 21 to Example 23 and Comparative Example 1 Preparation of spin coating a solution containing a p- type organic semiconductor compound

하기 표 1의 p-형 유기 반도체 화합물 및 기타 첨가제를 1 mL의 클로로벤젠에 용해시켜 스핀코팅 용액을 제조하였다.The p-type organic semiconductor compound and other additives shown in Table 1 below were dissolved in 1 mL of chlorobenzene to prepare a spin coating solution.

실시예
21
Example
21
실시예
22
Example
22
실시예
23
Example
23
비교예
1
Comparative Example
One
p-형 유기반도체 화합물p-type organic semiconductor compound SGT-404SGT-404 112 mg112 mg -- -- -- SGT-405SGT-405 -- 114 mg114 mg -- -- SGT-407SGT-407 -- -- 124 mg124 mg -- Spiro-OMeTADSpiro-OMeTAD -- -- -- 72 mg72 mg 기타
첨가제
Other
additive
트리스(2-(1H-피라졸-1-yl)-4-터트-부틸피리딘)코발트(III) 비스(트리플루오로메틸설포닐)이미드(FK209) 용액1) Solution of tris (2- (1H-pyrazol-1-yl) -4-tert-butylpyridine) cobalt (III) bis (trifluoromethylsulfonyl) imide (FK209 ) 21.9μL21.9 μL 21.9μL21.9 μL 21.9μL21.9 μL 21.9μL21.9 μL
Lithium Bis(Trifluoromethanesulfonyl)Imide (LiTFSi) 용액2) Lithium Bis (Trifluoromethanesulfonyl) Imide (LiTFSi) solution 2) 17.5μL17.5 μL 17.5μL17.5 μL 17.5μL17.5 μL 17.5μL17.5 μL 4-tert-butylpyridine4-tert-butylpyridine 28.8 μL28.8 μL 28.8 μL28.8 μL 28.8 μL28.8 μL 28.8 μL28.8 μL 1) 400 mg의 FK209를 1 mL Actonitrile에 용해시킨 용액
2) 520 mg의 LiTFSi를 1 mL Actonitrile에 용해시킨 용액
1) A solution of 400 mg of FK209 dissolved in 1 mL of Actonitrile
2) A solution prepared by dissolving 520 mg of LiTFSi in 1 mL of Actonitrile

실시예 24 내지 실시예 26 및 비교예 2: 유/무기 혼성태양전지( 페로브스카이트 감응 태양전지)의 제조 Preparation of organic / inorganic hybrid solar cells (perovskite-sensitized solar cell): Examples 24 to Example 26 and Comparative Example 2

다음의 공정에 따라 유/무기 혼성 태양전지를 제조하였다.An organic / inorganic hybrid solar cell was prepared according to the following process.

1. FTO 유리기판을 수산화나트륨 세정용액에 넣고 1시간 동안 초음파 세척한 후, 증류수와 에탄올을 이용하여 세척하고, 질소가스를 이용해 건조시켰다.1. The FTO glass substrate was immersed in a sodium hydroxide cleaning solution, ultrasonically cleaned for 1 hour, washed with distilled water and ethanol, and dried using nitrogen gas.

2. 세척된 FTO 유리기판에 3M 테이프로 마스킹 한 후 4M 농도의 HCl 수용액으로 상대전극 부분을 에칭하였다.2. The cleaned FTO glass substrate was masked with 3M tape and the counter electrode portion was etched with a 4M HCl aqueous solution.

3. 0.15 M 농도의 티타늄다이이소프로폭사이드 비스(아세틸아세토네이트) 1-부탄올 용액을 사용하여 TiO2 미세박막을 제조하였다.3. Titanium diisopropoxide bis (acetylacetonate) 1-butanol solution at a concentration of 0.15 M was used to prepare a TiO 2 micro-thin film.

4. 이어서, 20 nm 입자 크기의 TiO2 페이스트 (18-NRT, Dyesol)를 에탄올 용매에 1:3 무게비로 희석하여 5000 rpm으로 스핀코팅 방법으로 코팅하고 상온(25℃)에서 두 시간 동안 건조하였다. 4. Next, a TiO 2 paste (18-NRT, Dyesol) having a particle size of 20 nm was diluted in an ethanol solvent at a weight ratio of 1: 3 and coated by spin coating at 5000 rpm and dried at room temperature (25 ° C) for 2 hours .

5. TiO2가 코팅된 FTO 유리기판을 80℃ 오븐에서 2시간 동안 건조시켰다.5. The FTO glass substrate coated with TiO 2 was dried in an oven at 80 ° C for 2 hours.

6. 이어서, TiO2가 코팅된 FTO 유리기판을 가열로를 이용하여 서서히 온도를 올리면서 최대 500℃에서 30분간 소성시켰다.6. Then, the FTO glass substrate coated with TiO 2 was fired at 500 ° C for 30 minutes while gradually raising the temperature using a heating furnace.

7. 이어서, 상기 소성된 FTO 유리기판을 20mM TiCl4 수용액에 15분 동안 담근 후, 증류수와 에탄올을 이용하여 세척하고 질소가스를 이용하여 건조시키고, 80℃ 오븐에서 10분 동안 건조시켰다.7. Subsequently, the fired FTO glass substrate was immersed in an aqueous 20 mM TiCl 4 solution for 15 minutes, washed with distilled water and ethanol, dried using nitrogen gas, and dried in an oven at 80 ° C for 10 minutes.

8. 이어서, 상기 건조된 FTO 유리기판을 히팅건(heating gun)을 이용하여 30분 동안 소결한 후에 PbI2 DMF 용액 (420 mg/mL)으로 6500 rpm에서 30초 동안 스핀코팅 한 후 100℃에서 30분동안 건조한 후 상온으로 식혔다.Then, the dried FTO glass substrate was sintered for 30 minutes using a heating gun, and then spin-coated with PbI 2 DMF solution (420 mg / mL) at 6500 rpm for 30 seconds, After drying for 30 minutes, it was cooled to room temperature.

9. 이어서 PbI2가 코팅된 FTO 유리기판을 메틸 암모늄 아이오다이드(methyl ammonium iodide, MAI) 2-프로판올 용액 (10 mg/ml)에 20초 동안 담근 후 2-프로판올로 세척하였다. 9. Next, the FTO glass substrate coated with PbI 2 was immersed in methyl ammonium iodide (MAI) 2-propanol solution (10 mg / ml) for 20 seconds and washed with 2-propanol.

10. 상기와 같이 페로브스카이트 결정을 형성 시킨 후 그 위에 실시예 21 내지 23 및 비교예 1의 p-형 유기반도체 용액 각각을 5000 rpm에서 스핀코팅 하여 p-형 유기반도체 전해질 층을 제조하였다. 10. After the perovskite crystal was formed as described above, p-type organic semiconductor electrolyte layers of Examples 21 to 23 and Comparative Example 1 were spin-coated at 5000 rpm on each of the p-type organic semiconductor solutions to produce a p-type organic semiconductor electrolyte layer .

11. 이어서, 진공챔버를 사용하여 80 nm 두께의 Au 층을 열증착하여 SGT-404을 함유하는 유/무기 혼성 태양전지(실시예 24), SGT-405를 함유하는 유/무기 혼성 태양전지(실시예 25), SGT-407를 함유하는 유/무기 혼성 태양전지(실시예 26) 및 스피로-OMeTAD를 함유하는 유/무기 혼성 태양전지(비교예 2)를 각각 제조하였다.11. Then, an Au / Al composite solar cell (Example 24) containing SGT-404 and an organic / inorganic hybrid solar cell containing SGT-405 (Example 24) were formed by thermally depositing an Au layer of 80 nm thickness using a vacuum chamber Example 25), an organic / inorganic hybrid solar cell containing SGT-407 (Example 26), and an organic / inorganic hybrid solar cell containing Spiro-OMeTAD (Comparative Example 2).

시험예Test Example 1: 염료감응 태양전지의 성능 평가 1: Performance evaluation of dye-sensitized solar cell

실시예 24, 실시예 25,실시예 26 및 비교예 2에서 제조된 유/무기 혼성 태양전지를 사용하여 1 sun (100 mW/cm2) 일루미네이션(illumination) 조건에서 광전류-전압을 측정하고, 그 결과를 하기 표 2에 나타내었다. 실시예 24, 실시예 25,실시예 26 및 비교예 2에서 제조된 유/무기 혼성 태양전지의 전류-전압곡선은 도 2에 도시하였다. The photocurrent-voltage was measured under the illumination condition of 1 sun (100 mW / cm 2 ) using the organic / inorganic hybrid solar cell manufactured in Example 24, Example 25, Example 26 and Comparative Example 2, The results are shown in Table 2 below. The current-voltage curves of the organic / inorganic hybrid solar cells prepared in Example 24, Example 25, Example 26, and Comparative Example 2 are shown in FIG.

태양전지Solar cell p-형 유기반도체 물질p-type organic semiconductor material JSC
(mA/cm2)
J SC
(mA / cm 2 )
Voc
(V)
V oc
(V)
FFFF η
(%)
η
(%)
실시예 24Example 24 SGT-404SGT-404 20.4720.47 0.900.90 0.600.60 11.1011.10 실시예 25-1Example 25-1 SGT-405SGT-405 20.0120.01 0.900.90 0.630.63 11.3511.35 실시예 26Example 26 SGT-407SGT-407 20.7720.77 0.930.93 0.550.55 10.7210.72 실시예 25-2Example 25-2 SGT-405 (AR* 코팅)SGT-405 (AR * coating) 20.9320.93 0.910.91 0.630.63 11.9511.95 비교예 2Comparative Example 2 Spiro-OMeTAD (AR* 코팅)Spiro-OMeTAD (AR * coating) 20.0920.09 0.980.98 0.680.68 13.7713.77 * AR = Anti reflectance * AR = Anti reflectance

Merck사에서 제조 판매하는 Spiro-OMeTAD (비교예 2) 의 경우 합성 루트가 길기 때문에 가격이 매우 고가이나, 본 발명의 신규 P-형 유기반도체 물질들은 합성 루트가 짧기 때문에 대량생산에 용이하고 이 경우 가격을 저렴하게 책정할 수 있는 장점이 있다. 또한 저렴한 가격에도 불구하고 Spiro-OMeTAD와 견줄 만한 에너지 변환 효율을 보이는 장점이 있다.In the case of Spiro-OMeTAD (Comparative Example 2) manufactured and sold by Merck, the synthesis route is long and the price is very high. However, since the synthesis route of the novel P-type organic semiconductor materials of the present invention is short, There is an advantage that the price can be set at a low price. In spite of its low cost, it has the advantage of showing energy conversion efficiency comparable to Spiro-OMeTAD.

Claims (5)

하기 화학식 1로 표시되는 p-형 유기반도체 화합물:
[화학식 1]
Figure 112016065237857-pat00066

상기 화학식 1에서,
R1은 (C1-C50)알킬이고;
X는 단일결합, O 또는 S이고;
m이 1인 경우 Ar은 하기 구조에서 선택되는 2가기이고;
Figure 112016065237857-pat00067

m이 2인 경우 Ar은 하기 구조에서 선택되는 3가기이고;
Figure 112016065237857-pat00068

R2 내지 R9는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴옥시(C1-C20)알킬이고, 상기 R2 내지 R9의 아릴옥시알킬은 (C1-C20)알콕시로 더 치환될 수 있고;
a, b 및 c는 각각 독립적으로 1 내지 4의 정수이다.
A p-type organic semiconductor compound represented by the following Formula 1:
[Chemical Formula 1]
Figure 112016065237857-pat00066

In Formula 1,
R < 1 > is (C1-C50) alkyl;
X is a single bond, O or S;
when m is 1, Ar is a divalent group selected from the following structures;
Figure 112016065237857-pat00067

when m is 2, Ar is a triple bond selected from the following structures;
Figure 112016065237857-pat00068

R 2 to R 9 are each independently hydrogen, (C1-C20) alkyl or (C6-C20) aryloxy (C1-C20) alkyl, aryloxy alkyl wherein the R 2 to R 9 is (C1-C20) alkoxy ≪ / RTI >
a, b and c are each independently an integer of 1 to 4;
제 1항에 있어서,
하기 화학식 2 또는 화학식 3으로 표시되는 p-형 유기반도체 화합물:
[화학식 2]
Figure 112015120042043-pat00069

[화학식 3]
Figure 112015120042043-pat00070

상기 R1은 (C1-C50)알킬이고;
X는 O 또는 S이고;
Ar은 하기 구조에서 선택되는 2가기이다.
Figure 112015120042043-pat00071

The method according to claim 1,
A p-type organic semiconductor compound represented by the following Chemical Formula 2 or 3:
(2)
Figure 112015120042043-pat00069

(3)
Figure 112015120042043-pat00070

Wherein R < 1 > is (C1-C50) alkyl;
X is O or S;
Ar is a divalent group selected from the following structures.
Figure 112015120042043-pat00071

제 1항에 있어서,
하기 화학식 4 또는 화학식 5로 표시되는 p-형 유기반도체 화합물:
[화학식 4]
Figure 112015120042043-pat00072

[화학식 5]
Figure 112015120042043-pat00073

상기 R1은 (C1-C50)알킬이고;
X는 O 또는 S이고;
Ar은 하기 구조에서 선택되는 3가기이다.
Figure 112015120042043-pat00074

The method according to claim 1,
A p-type organic semiconductor compound represented by the following Chemical Formula 4 or 5:
[Chemical Formula 4]
Figure 112015120042043-pat00072

[Chemical Formula 5]
Figure 112015120042043-pat00073

Wherein R < 1 > is (C1-C50) alkyl;
X is O or S;
Ar is a triple bond selected from the following structures.
Figure 112015120042043-pat00074

제 2항에 있어서,
하기 구조로부터 선택되는 p-형 유기반도체 화합물:
Figure 112015120042043-pat00075

Figure 112015120042043-pat00076

Figure 112015120042043-pat00077

Figure 112015120042043-pat00078

Figure 112015120042043-pat00079

Figure 112015120042043-pat00080

Figure 112015120042043-pat00081

Figure 112015120042043-pat00082

Figure 112015120042043-pat00083

Figure 112015120042043-pat00084

Figure 112015120042043-pat00085

Figure 112015120042043-pat00086

3. The method of claim 2,
A p-type organic semiconductor compound selected from the following structures:
Figure 112015120042043-pat00075

Figure 112015120042043-pat00076

Figure 112015120042043-pat00077

Figure 112015120042043-pat00078

Figure 112015120042043-pat00079

Figure 112015120042043-pat00080

Figure 112015120042043-pat00081

Figure 112015120042043-pat00082

Figure 112015120042043-pat00083

Figure 112015120042043-pat00084

Figure 112015120042043-pat00085

Figure 112015120042043-pat00086

제 3항에 있어서,
하기 구조로부터 선택되는 p-형 유기반도체 화합물:
Figure 112015120042043-pat00087

Figure 112015120042043-pat00088

Figure 112015120042043-pat00089

Figure 112015120042043-pat00090

Figure 112015120042043-pat00091

Figure 112015120042043-pat00092

Figure 112015120042043-pat00093

Figure 112015120042043-pat00094
The method of claim 3,
A p-type organic semiconductor compound selected from the following structures:
Figure 112015120042043-pat00087

Figure 112015120042043-pat00088

Figure 112015120042043-pat00089

Figure 112015120042043-pat00090

Figure 112015120042043-pat00091

Figure 112015120042043-pat00092

Figure 112015120042043-pat00093

Figure 112015120042043-pat00094
KR1020150174000A 2015-12-08 2015-12-08 Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells KR101657455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150174000A KR101657455B1 (en) 2015-12-08 2015-12-08 Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150174000A KR101657455B1 (en) 2015-12-08 2015-12-08 Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140070622A Division KR101598426B1 (en) 2014-06-11 2014-06-11 Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells

Publications (2)

Publication Number Publication Date
KR20160002609A KR20160002609A (en) 2016-01-08
KR101657455B1 true KR101657455B1 (en) 2016-09-19

Family

ID=55170495

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150174000A KR101657455B1 (en) 2015-12-08 2015-12-08 Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells

Country Status (1)

Country Link
KR (1) KR101657455B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138225B1 (en) * 2017-09-25 2020-07-28 고려대학교 세종산학협력단 Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
CN111233914B (en) * 2020-02-25 2022-12-06 深圳大学 Star-shaped thermal activation delayed fluorescent material, electronic device and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Adv. Funct. Mater., 2003, Vol. 13(6), pages 445-452*

Also Published As

Publication number Publication date
KR20160002609A (en) 2016-01-08

Similar Documents

Publication Publication Date Title
KR101598426B1 (en) Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
KR101290406B1 (en) Compounds with hole conducting property, their use as co-adsorbent materials, and dye-sensitized solar cell comprising the same
KR101657455B1 (en) Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
KR102335394B1 (en) Organic Blue Dyes featuring a Diketopyrrolopyrrole, Preparation Method Thereof, and Dye-sensitized Solar Cells Comprising the Same
KR101838389B1 (en) Carbazole based on Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
Sorohhov et al. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells
KR101760492B1 (en) Novel compounds, method of preparation thereof and organic solar cell comprising the same
JP6375451B2 (en) Photoelectric conversion element, dye-sensitized solar cell, dye composition and oxide semiconductor electrode
KR101587829B1 (en) Dye sensitized sola cell and dye compond used therefin
KR101509534B1 (en) Dual-Channel Anchorable Heterocyclic Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells and Method for Preparing The Same And Dye-sensitized Solar Cells Containing The Same
KR102138225B1 (en) Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
KR101760493B1 (en) Benzobisoxazole derivatives, method of preparation thereof and organic solar cell comprising the same
US11680035B2 (en) Hole transport material, synthesis thereof, and solar cell
KR101179696B1 (en) Novel compounds containing thienothiophene-vinylene-thienothiophene, methods of preparing the compounds and dye-sensitized solar cells using dyes comprising the compounds
US8410283B2 (en) Electrolyte additive of dye-sensitized solar cell and method of making the same
KR101885480B1 (en) The dye for dye-sensitized solar cells and dye-sensitized solar cells of applying the same
KR101722003B1 (en) Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
Park et al. Molecular Engineering of Carbazole Dyes for Efficient Dye-Sensitized Solar Cells
KR101778292B1 (en) Triphenylene derivatives, method of preparation thereof and organic solar cell comprising the same
KR20210116078A (en) Azobenzene-based Organic Dyes, Preparation Method Thereof, and Dye-sensitized Solar Cells Comprising the Same
KR101205922B1 (en) Ruthenium Complex Compound And Dye-sensitized Solar Cells Comprising The Same
JP6330553B2 (en) A sensitizing dye for a dye-sensitized solar cell, and a dye-sensitized solar cell including the sensitizing dye.
KR101051111B1 (en) Dyes for Dye-Sensitized Solar Cells and Solar Cells comprising the same
KR20130066546A (en) Dual-channel anchorable amine derivatives, organic dye sensitizers containing the same for highly efficient dye-sensitized solar cells and dye-sensitized solar cells containing the same
KR20130131093A (en) Novel tailor-made hole-conducting coadsorbents for highly efficient dye-sensitized solar cells

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190717

Year of fee payment: 4