KR20150117701A - 위상 이동 디바이스 - Google Patents
위상 이동 디바이스 Download PDFInfo
- Publication number
- KR20150117701A KR20150117701A KR1020157024272A KR20157024272A KR20150117701A KR 20150117701 A KR20150117701 A KR 20150117701A KR 1020157024272 A KR1020157024272 A KR 1020157024272A KR 20157024272 A KR20157024272 A KR 20157024272A KR 20150117701 A KR20150117701 A KR 20150117701A
- Authority
- KR
- South Korea
- Prior art keywords
- tunable
- signal electrode
- transmission line
- pieces
- liquid crystal
- Prior art date
Links
- 230000010363 phase shift Effects 0.000 title description 10
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 63
- 239000000463 material Substances 0.000 claims abstract description 44
- 230000005540 biological transmission Effects 0.000 claims abstract description 42
- 239000003989 dielectric material Substances 0.000 claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 24
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 21
- 239000011521 glass Substances 0.000 description 10
- 229920000106 Liquid crystal polymer Polymers 0.000 description 6
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 6
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000005352 borofloat Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000005268 rod-like liquid crystal Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/184—Strip line phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G7/00—Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
- H01G7/06—Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/181—Phase-shifters using ferroelectric devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/106—Microstrip slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Waveguide Aerials (AREA)
- Waveguides (AREA)
Abstract
본 발명은, 유전체 물질에 의해 분리된 신호 전극(2)과 접지 전극(1)에 의해 형성된 평면 전송 라인을 포함하는 위상 이동 디바이스로서, 상기 평면 전송 라인의 상기 신호 전극(2)은 수 개의 조각(4, 5)으로 분할되고, 튜닝가능한 액정 물질(7)로 충전된 인접한 조각(4, 5)과 오버랩하여, 금속-절연체-금속 유형 커패시터를 갖는 유전체 튜닝가능한 부품(버랙터)을 형성하는 오버랩 영역(6)을 포함하는 위상 이동 디바이스에 관한 것이다. 상기 신호 전극(2)의 수 개의 조각(4, 5)은 상기 접지 전극(1)에 대해 2개 이상의 상이한 거리 레벨에 배열된다. 상기 튜닝가능한 액정 물질(7)은 2개의 상이한 거리 레벨에 배열된 상기 신호 전극(2)의 수 개의 조각(4, 5)들 사이에 연속층으로 배열된다.
Description
본 발명은 적어도 하나의 튜닝가능한 부품(component)을 갖는 위상 이동 디바이스에 관한 것이다. 이 위상 이동은 주파수 독립적(위상 이동기) 또는 주파수 종속적(가변 지연 라인)이다.
무선 통신에 이용가능한 주파수 스펙트럼이 부족하고 더 작은 볼륨에 더 많은 기능을 요구하는 것으로 인해 재구성가능한 부품을 요구하는 것이 증가되고 있다. 이후 무선 주파수(RF)는 무선 신호를 운반하고 전송하는 교류 전류와 무선 전파의 주파수에 대응하는 약 3 kHz 내지 300 GHz의 범위에서 발진율을 의미한다. 디바이스 요구조건에 따라 , 예를 들어, 반도체, MEMS 또는 튜닝가능한 유전체와 같은 위상 이동 디바이스에 대해 빠른 RF 부품을 설계하는데 상이한 가능 해법이 있다.
위상 이동 디바이스는 재구성가능한 전자 빔 조향 안테나를 위한 핵심 요소들 중 하나이다.
전술된 위상 이동 디바이스의 예로서 다음 문서들이 종래 기술에 언급된다:
1. 미국 특허 US 8,305,259 B2
2. 미국 특허 US 8,022,861 B2
3. 미국 특허 US 8,013,688 B2
4. PCT 특허 출원 WO 2012/123072 A1
5. 미국 특허 출원 US 2009/0302976 A1
6. F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, 및 R. Jakoby, "Tunable liquid crystal phase shifter for microwave frequencies", Electronics Letters, vol. 45, no. 13, pp. 686-687, 2009.
7. O. H. Karabey, F. Goelden, A. Gaebler, S. Strunck, 및 R. Jakoby, "Tunable 5 loaded line phase shifters for microwave applications", inProc. IEEE MTT-S Int. Microwave Symp. Digest (MTT) , 2011, pp. 1-4.
8. 미국 특허 출원 US 5,936,484 A
9. 일본 특허 출원 JP 2003/008310 A
10. Onur Hamza Karabey 등, "Continuously Polarization Agile Antenna by Using Liquid Crystal- Based Tunable Variable Delay Lines", IEEE vol. 61, no. 1, 1. January 2013, pages 70-76, ISSN: 0018-926X
11. 미국 특허 출원 US 2009/073332 A1
위상 이동 디바이스와 같은 마이크로파 부품은 마이크로스트립 라인(microstrip line)으로 형성될 수 있다. 마이크로스트립 라인은 인쇄 회로 기판 기술을 사용하여 제조될 수 있는 전기 평면 전송 라인(electric planar transmission line)의 유형이다. 이 라인은 기판으로 알려진 유전체 층에 의해 평면 접지 전극과 분리된 전도성 스트립 형상의 전극으로 구성된다.
[1, 3]에서와 같이, 기판은 액정 폴리머(liquid crystal polymer: LCP)로 형성될 수 있다. 그러나, LCP 물질은 이 물질의 상대적인 유전율에 대해 튜닝가능하지 않다.
그러므로, 튜닝가능한 RF 디바이스를 구성하기 위하여 적절히 튜닝가능한 특성적 특징이 부족한 것으로 인해, LCP를 사용하여 버랙터(varactor)와 같은 튜닝가능한 디바이스를 설계하는 것은 편리하지 않다.
액정(LC)은 고체 결정(solid crystal) 뿐만 아니라 종래의 액체의 특징과 특성을 나타낸다. 예를 들어, LC는 액체 같이 흐를 수 있으나, 그 분자는 결정-같은 방식(crystal-like way)으로 배향될 수 있다. 액정 폴리머(LCP)와 대조적으로, 액정(LC)의 상대적인 유전율은 예를 들어 LC 물질에 인가되는 전압에 의해 영향을 받을 수 있다.
종래 기술 [6]에서, 공면 도파로(coplanar waveguide: CPW)에는 분로(shunt) LC 버랙터가 로딩(loaded)되었다. 이러한 LC 디바이스의 튜닝 속력은 그 토폴로지(topology)에 의해 영향을 받는다. 이러한 디바이스의 알려진 단점 중 하나는 CPW의 금속 손실이 높다는 것이다. 추가적으로, 이 CPW로 인해, 버랙터는 중심 전도체와 접지 평면을 가교시키는 플로팅 전극(floating electrode)으로서 패치(patch)에 의해 구현되었다. 이것에 의해 이러한 인공 전송 라인의 튜닝 효율은 낮고 삽입 손실은 높다.
유사하게 [7]에서, LC 버랙터의 튜닝 효율은 평행한 판 커패시터 토폴로지를 사용하여 개선된다. 그러나, 슬롯 라인에는 분로에 이 LC 버랙터가 로딩되었다. 사실, 마이크로스트립 라인은 시스템에-고유한 손실이 낮은 것을 특징으로 하기 때문에 마이크로스트립 라인을 로딩하면 더 높은 성능을 초래한다.
그러므로 본 발명의 과제는 종래 기술에 따른 위상 이동 디바이스의 단점을 감소시키고, 콤팩트하고 평면인 구성으로 이들 특징을 동시에 포함하는 높은 성능 뿐만 아니라 낮은 응답 시간을 구비하는 유리한 위상 이동 디바이스를 제공하는 것이다.
본 발명은 유전체 물질에 의해 분리된 신호 전극과 접지 전극으로 형성되고 액정 물질을 더 포함하는 위상 이동 디바이스로서, 상기 평면 전송 라인의 상기 신호 전극은 수 개의 조각(piece)으로 분할되고, 튜닝가능한 액정 물질로 충전된 인접한 조각들의 오버랩(overlap) 영역들을 포함하여, 금속-절연체-금속 유형 커패시터를 갖는 유전체 튜닝가능한 부품(버랙터)을 형성하는 것을 특징으로 하는 위상 이동 디바이스에 관한 것이다.
전송 라인(마이크로스트립 라인)은 2개의 전극, 즉 신호 전극과 접지 전극에 의해 형성된다. 전극의 물질은 바람직하게는 Ag, Cu 또는 Au와 같은 낮은 저항성 RF 전극 물질이다. 유사한 전도성 특성을 갖는 다른 물질 또는 합금도 가능하다. 상기 신호 전극은 길이를 따라, 즉 전파 방향을 따라 수 개의 조각으로 분할된다. 이들 조각은 예를 들어 하부 유리의 상부측 상에 상부측 조각으로 구현되고, 상부 유리의 하부측 상에 하부측 조각으로 구현된다. 상부 유리와 하부 유리는 평면도에서, 즉 상기 신호의 전파 방향에 수직하게 보았을 때 연속 신호 전극이 형성되는 방식으로 스택된다. 상부 유리와 하부 유리라는 용어는 다른 적절한 물질이 배제되는 것을 나타내는 것은 아니다. 추가적으로, 신호 전극의 상부측 조각과 하부측 조각은 오버랩되는 일부 구획(section)이 있다. 신호 전극의 상부측 조각과 각 하부측 조각과 2개의 유리 사이의 적어도 오버랩 영역은 튜닝가능한 액정 물질로 충전된다. 그리하여, 각 오버랩 영역은 금속-절연체-금속 유형 커패시터를 형성한다. 이 경우에, 절연체가 튜닝가능한 액정 물질이므로, 이 영역은 유전체 튜닝가능한 부품(버랙터)을 형성한다. 이 튜닝가능한 부품은 이 위상 이동 디바이스를 매우 콤팩트한 방식으로 구성할 수 있게 한다.
LC 기술로 인해, 상기 버랙터는 5 GHz를 초과하는 주파수, 바람직하게는 10 GHz를 초과하는 주파수를 위한 반도체와 같은 다른 기술에 비해 낮은 손실을 특징으로 한다. 추가적으로, 마이크로스트립 라인이 사용되기 때문에, 상기 위상 이동기 손실은 [6, 7]에 비해 훨씬 더 낮을 수 있다.
본 발명의 일 실시예에 따라 신호 전극의 수 개의 조각은 접지 전극에 대해 2개 이상의 상이한 거리 레벨에 배열된다. 2개의 상이한 레벨이 기판 층의 2개의 표면 상에 있을 수 있으므로 2개의 상이한 레벨에 신호 전극의 수 개의 조각을 배열하면 이러한 디바이스를 용이하고 비용 절감적으로 제조할 수 있다. 상이한 거리 레벨이 3개 이상이면 2개의 인접한 거리 레벨들 사이에 위치되는 LC 물질의 구성을 복잡케 할 수 있는데 예를 들어 상이한 층들이 허용될 수 있다.
튜닝가능한 액정 물질은 2개의 상이한 거리 레벨에 배열된 신호 전극의 수 개의 조각들 사이에 단일한 연속층으로 배열될 수 있다. 이 연속, 즉 중단되지 않은 층의 바운더리는 수 개의 조각으로 이루어진 커버로 한정된 신호 전극의 형상과 연장에 적응되고 제한될 수 있다. 이 연속층은 통상 더 큰 접지 전극을 완전히 커버할 수 있다. 많은 응용에서 상기 연속층은 전극 또는 기판 층의 2개의 인접한 층들 사이에 배열되고, 유전체 기판 층들 사이에 공동을 완전히 충전할 수 있다. 이것에 의해 예를 들어 잘 확립된 액정 디스플레이 기술을 사용하여 이러한 배열을 신속하고 저렴하게 제조할 수 있다.
그러나, 튜닝가능한 액정 물질을 절감하거나 또는 튜닝가능한 액정 물질의 한정된 공간적 구역을 개별적으로 제어하기 위하여 2개의 상이한 거리 레벨에 신호 전극의 인접한 조각들의 오버랩 영역들 사이에 튜닝가능한 액정 물질을 수 개의 한정된 층 영역으로 배열하는 것이 가능하다.
대부분의 응용에서, 전파 방향과 평행한 방향으로, 예를 들어 무선 주파수 신호의 전파 방향을 따라 선형으로 신호 전극의 조각들을 배열하는 것이 불연속을 방지하여 더 적은 손실을 초래하기 때문에 유리하다. 요구되거나 실현가능하다면, 상기 신호 전극의 조각은 직선 라인으로 배열된다.
그러나, 전송 라인을 따라 많은 버랙터를 요구하는 일부 응용에서, 상기 전송 라인은, 예를 들어 N-형상 또는 나선(spiral) 형상으로 구불구불하게 형성될 수 있다. 이것으로 전송 라인의 길이는 상기 위상 이동 디바이스의 물리적인 크기보다 훨씬 더 길 수 있다.
전송 라인을 따른 위상 이동은 배타적으로 또는 적어도 대부분 상기 금속-절연체-금속 커패시터 유형이고 신호 전극을 따라 배열되는 튜닝가능한 버랙터에 기인하는 것이다. 신호 전극의 조각들의 구성, 형상 및 배열은 전송 라인을 따라 신호 전파에 대한 시간 지연에 상당히 영향을 미치는 공진 구조를 초래하여서는 안된다.
본 발명의 일 실시예에 따른 위상 이동 디바이스는 신호 전극이 전송 라인의 길이를 따라 수 개의 조각으로 분할되고, 수 개의 조각은 상부측 상의 상부측 조각과 비-튜닝가능한 유전체 기판의 하부측 상의 하부측 조각으로 교대로 구현되고, 일부 구획에 신호 전극의 상부측 조각과 인접한 하부측 조각 사이에 오버랩 영역이 있고, 이들 오버랩 영역은 튜닝가능한 액정 물질로 충전되고, 이 오버랩 영역은 금속-절연체-금속 유형 커패시터를 갖는 유전체 튜닝가능한 부품(버랙터)을 형성하는 것을 특징으로 할 수 있다.
예시적인 실시예에서 신호 전극의 수 개의 조각을 지원하는 비-튜닝가능한 유전체 기판은 25℃ 및 1 MHz에서 εr,유리 = 4.6 및 그 손실 탄젠트 tanδ = 0.0037을 갖는 Schott AG사의 700 μm 두께의 붕소 플로트 유리(boro float glass)이도록 선택된다. LC 혼합물이 사용되고, 그 상대적인 유전 상수는 튜닝 전압과 표면 정렬 방법을 적용하는 것에 의해 2.4 내지 3.2에서 연속적으로 튜닝가능하다. 이 물질의 최대 유전체 손실 탄젠트 tanδ는 모든 튜닝 상태에서 0.006 미만이다. (금속에서 금속으로) LC 층은 3 μm으로 지정되어, 25 ms 미만의 신속한 응답 시간을 얻을 수 있다. 상기 디바이스는 최대값에서 6.1 dB 삽입 손실과 20 GHz에서 367°의 차동 위상 이동을 제공한다.
이 디바이스의 RF 성능을 정량화하는 중요한 파라미터는 주파수-종속하는 성능지수(figure of merit: FoM)이다. 이것은 모든 튜닝 상태에 걸쳐 최대 차동 위상 이동의 비율과 최고 삽입 손실에 의해 한정된다.
그리하여, 예시적인 실시예의 FoM은 20 GHz에서 60°/dB이다.
추가적인 실시예에서 평면 전송 라인은 신호 전극의 비-오버랩 구획에 의해 연결된 적어도 2개의 직렬로 연결된 유전체 튜닝가능한 부품을 포함한다. 상기 평면 전송 라인을 따른 신호 전송은 신호 전극을 따라 배열된 버랙터, 즉 튜닝가능한 유전체 부품의 수와 구성에 주로 기본적으로 영향을 받는다. 위상 이동은 버랙터로 작용하는 신호 전극, 즉 평행한 판과 같은 튜닝가능한 커패시터의 인접한 조각들의 오버랩 영역들 사이에 튜닝가능한 유전체 물질을 형성하는 튜닝가능한 액정 물질에 튜닝 바이어스 전압을 인가하는 것에 의해 용이하게 제어되고 변경될 수 있다.
상기 튜닝은 제어 전극에 의해 수행된다. 이들 전극은 제어 요소로 동작한다. 이들 전극은 상이한 바이어스 전압을 전송하여 바이어스 라인을 통해 버랙터를 구동한다. 바이어스 라인은 바람직하게는 RF 회로에 영향을 미치지 않도록 낮은 전도성 물질로 만들어진다. 이 목적을 위하여, 낮은 전도성 전극이 RF 신호에 투명하기 때문에 사용될 수 있다. 바이어스 라인에 일반적인 물질은 바람직하게는 ITO(indium tin oxide), NiCr(nickel chromium) 또는 10e5 S/m 미만의 전도율을 갖는 일부 다른 합금이다.
추가적인 실시예에서 상기 위상 이동 디바이스는 방사 요소(radiating element)와 결합되어 RF 신호를 전송한다. 종종 방사 요소는 또한 패치 안테나로 언급된다. 방사 요소와 급전 라인은 통상 유전체 기판 상에 포토에칭(photoetched)된다. 방사 요소, 즉 패치 안테나는 정사각형, 직사각형, 박막 스트립(쌍극자(dipole)), 원형, 타원형, 삼각형 또는 임의의 다른 형상으로 구성된다.
추가적인 실시예에서 방사 요소는 임의의 형상의 마이크로스트립 패치 안테나 또는 마이크로스트립 슬롯 안테나이다.
액정(LC)은 튜닝가능한 RF 디바이스를 실현하는데 적절하다. LC는 튜닝가능한 유전체로 사용될 수 있고, 구체적으로 최적화된 LC 혼합물은 0.006 미만의 손실 탄젠트를 갖는 마이크로파 주파수에서 높은 성능을 제공한다. 최대 유전율에 대한 최소 유전율의 튜닝 범위의 비율로 정의된 상대적인 튜닝가능성은, 바람직하게는 5% 내지 30% 또는 10% 내지 25% 또는 15% 내지 30% 또는 5% 내지 14%이다.
LC 기반 평면 위상 이동 디바이스는 원하는 안테나 성능에 따라 통상 주문 제작된다. 이 목적을 위해 위상 이동 디바이스는 삽입 손실을 감소시키고, 빔 조향 속력을 증가시키며 광역 범위 스캔을 허용하도록 구성되고 적응된다. 본 발명에 따라, RF 적용에 최적화된 LC 혼합물이 사용된다. LC를 갖는 튜닝가능한 RF 부품을 실현하는 가능성은 도 3에 제시된다. 이 도 3은 상이한 바이어스 전압에 튜닝가능한 기판으로 LC를 사용하여 반전된 마이크로스트립 라인의 단면을 도시한다. 상기 구조는 2개의 스택된 기판, 즉 마이크로스트립 라인을 운반하는 상부 기판과 접지 평면을 운반하는 하부 기판으로 구성된다. 2개의 기판들 사이에서 박막 LC 층이 캡술화된다.
본 발명에 따른 위상 이동 디바이스는 예를 들어 위상 어레이 안테나를 제공하기 위하여 방사 요소와 결합될 수 있다.
이러한 조합의 제1 실시예에서 평면 전송 라인과 안테나는 애퍼처 결합 방법을 사용하여 결합된다. 제2 실시예에서 평면 전송 라인과 안테나는 근접 결합 방법을 사용하여 결합된다. 제3 실시예에서 평면 전송 라인과 안테나는 예를 들어 수직 상호 연결을 통해 또는 인셋-급전(inset-fed) 기술을 사용하여 직접 결합된다.
본 발명의 여러 목적 및 특성은 첨부 도면에 뿐만 아니라 본 발명의 비 제한적인 실시예를 기술하는 이하 상세한 설명으로부터 보다 명확히 드러날 것이다:
도 1은 일반적인 LC 분자와 그 온도 종속성을 도시하는 개략도.
도 2는 종래 기술에 따른 평면 전송 라인의 개략도.
도 3a 내지 도 3d는 본 발명에 따른 수 개의 LC 버랙터를 갖는 위상 이동 디바이스의 개략 사시도, 단면도 및 평면도, 및 이 위상 이동 디바이스의 신호 전극 내에 배열된 튜닝가능한 LC 버랙터의 개략도,
도 4a 및 도 4b는, 도 3a 내지 도 3d에 따른 위상 이동 디바이스 내에 신호 전극의 인접한 조각들의 단일 오버랩 영역의 단면 확대도, 및 도 4a에 도시된 LC 버랙터의 개략도
도 5는 결합된 안테나를 갖는 위상 이동 디바이스의 제1 실시예의 개략 단면도,
도 6은 결합된 안테나를 갖는 위상 이동 디바이스의 제2 실시예의 개략 단면도,
도 7은 결합된 안테나를 갖는 위상 이동 디바이스의 제3 실시예의 개략 단면도, 및
도 8은 도 3a 내지 도 3d에 따른 위상 이동 디바이스의 상이한 구성의 개략 단면도로서, 이 신호 전극의 수 개의 조각들이 접지 전극에 대해 3개의 상이한 거리 레벨 상에 배열된 것을 도시하는 도면.
도 1은 일반적인 LC 분자와 그 온도 종속성을 도시하는 개략도.
도 2는 종래 기술에 따른 평면 전송 라인의 개략도.
도 3a 내지 도 3d는 본 발명에 따른 수 개의 LC 버랙터를 갖는 위상 이동 디바이스의 개략 사시도, 단면도 및 평면도, 및 이 위상 이동 디바이스의 신호 전극 내에 배열된 튜닝가능한 LC 버랙터의 개략도,
도 4a 및 도 4b는, 도 3a 내지 도 3d에 따른 위상 이동 디바이스 내에 신호 전극의 인접한 조각들의 단일 오버랩 영역의 단면 확대도, 및 도 4a에 도시된 LC 버랙터의 개략도
도 5는 결합된 안테나를 갖는 위상 이동 디바이스의 제1 실시예의 개략 단면도,
도 6은 결합된 안테나를 갖는 위상 이동 디바이스의 제2 실시예의 개략 단면도,
도 7은 결합된 안테나를 갖는 위상 이동 디바이스의 제3 실시예의 개략 단면도, 및
도 8은 도 3a 내지 도 3d에 따른 위상 이동 디바이스의 상이한 구성의 개략 단면도로서, 이 신호 전극의 수 개의 조각들이 접지 전극에 대해 3개의 상이한 거리 레벨 상에 배열된 것을 도시하는 도면.
일반적으로 액정(LC) 물질은 이방성(anisotropic)이다. 이 특성은 도 1에 있는 일반적인 LC 분자의 예시적인 구조에 도시된 바와 같이 분자의 봉 같은 형상으로부터 유래된다. 여기서 온도 증가에 따라 LC 물질의 위상 구성이 변하는 방식이 도시된다. 도 1에 있는 분자와 함께 대응하는 이방성 유전체 특성이 나타난다. 이 물질은 액체이므로, 분자는 약한 분자 부착만을 특징으로 하여서, 벌크 내 배향은 변할 수 있다. 봉-같은 형상으로 인해, 벌크 내 분자는 평행한 순서로 이들 분자를 배향하는 경향이 있다. 분자의 장축과 평행한 상대 유전율은 εr ,||로 표시되고 이 장축에 수직인 상대 유전율은 εr,L으로 표시된다.
이러한 액정 물질이 스트립 형상의 전송 라인의 신호 전극과 접지 전극 사이에 배열되면, 전송 라인을 따른 무선 주파수 신호의 전송 속력은 액정 물질의 유전율에 의해 영향을 받을 수 있다.
이들 2개의 유전율이 εr ,|| 및 εr,L인 경우 신호 전송을 위한 손실 탄젠트 tan δ,|| 및 tan δ,L 는 연관된다.
전기장은 예를 들어 제어 전압을 액정 물질에 인가하는 것에 의해 생성될 수 있고, 봉-같은 형상의 액정 분자의 배향에 영향을 미친다. 따라서, 미리 결정된 제어 전압을 인가하는 것에 의해 액정 물질의 상대적인 유전율이 제어될 수 있다.
유사한 특성을 갖는 다른 튜닝가능한 유전체 물질, 즉 전기장을 인가하는 것에 의해 제어되고 조절될 수 있는 튜닝가능한 상대적인 유전율을 갖는 다른 튜닝가능한 유전체 물질이 있다. 이 기술 분야에 통상의 지식을 가진 자라면 이하 상세한 설명은 튜닝가능한 액정 물질에 초점을 두고 있지만, 튜닝가능한 상대적인 유전율을 갖는 많은 상이한 물질이 본 발명을 위해 사용될 수 있고 본 발명에 포함될 수 있다는 것을 이해할 수 있을 것이다.
도 2는 마이크로스트립 라인으로 형성된 종래 기술의 평면 전송 라인을 도시한다. 이 라인은 유전체 기판(3)의 층으로 분리된 접지 전극(1)과 연속, 즉 중단되지 않은 신호 전극(2)으로 구성된다. 전파(propagation) 방향은 신호 전극(2)의 방향을 따르고 화살표로 지시된다.
도 3a, 도 3b 및 도 3c는 본 발명에 따른 위상 이동 디바이스 라인의 메인 부품의 사시도, 단면도 및 개략도를 도시한다. 이 라인은 평면 전송 라인을 형성하는 접지 전극(1)과 신호 전극(2)을 포함한다. 신호 전극(2)은 접지 전극(1)에 수직하고 이 접지 전극에 대해 2개의 상이한 거리 레벨에 배열된 낮은 저항성 RF 전극 물질의 수 개의 조각(4 및 5)으로 구성된다. 수 개의 조각(4, 5)은 전송 라인을 따라, 즉 신호 전극(2)의 방향으로 한정되고 화살표로 지시된 신호 전파 경로를 따라 정렬된다. 신호 전극(2)의 수 개의 조각(4, 5)은 인접한 조각(4, 5)의 오버랩 영역(6)을 형성하기 위하여 서로에 대하여 배열된다.
접지 전극과 신호 전극 사이에는 비-튜닝가능한 유전체 기판(3), 바람직하게는 유리 층이 있다. 신호 전극(2)의 수 개의 조각(4, 5)들 사이 공간에는 튜닝가능한 액정 물질(7)이 충전된다. 각 인접한 조각(4, 5)들 사이에는 오버랩 영역(6)이 있다. 조각(4, 5)은 평면도로 보았을 때, 즉 접지 전극(1)에 수직한 방향으로 보았을 때 명백히 연속적인 신호 전극(2)이 형성되는 방식으로 스택되고 배열된다. 튜닝가능한 액정(7)의 상부에는 비-튜닝가능한 유전체 기판의 제2 층(3')이 있다. 신호 전극(2)의 수 개의 조각(4, 5)은 비-튜닝가능한 유전체 기판의 층(3 및 3')의 대응하는 표면들 상에 예를 들어 인쇄되거나 또는 코팅되거나 또는 적층(laminated)될 수 있다.
신호 전극(2)의 조각(4, 5)은 RF에 투명한 낮은 전도성 물질, 바람직하게는 ITO(indium tin oxide)로 구성된 제어 요소(8)(도 3b 및 도 3c에만 도시)와 연결된다. 이들 제어 요소(8)는 오버랩 영역(6)에 있는 액정 물질(7)을 튜닝하기 위하여, 즉 평면 전송 라인을 따라 전송된 RF 신호의 전송 특성에 영향을 미치는 신호 전극(2)의 인접한 조각(4, 5)들의 오버랩 영역(6)들 사이에 있는 액정 물질(7)의 상대 유전율을 변경하기 위하여 인가될 수 있는 바이어스 전압을 전송한다.
평면 전송 라인을 따라, 즉 본 발명에 따른 위상 이동 디바이스의 전송 라인을 따라 전송되는 신호의 위상 이동을 따라 신호 전송의 시간 지연은 접지 전극(1)에 대해 상이한 거리 레벨에 배열된 신호 전극(2)의 인접한 조각(4, 5)들 사이에 각 신호 점프에 대한 연속적인 시간 지연에 의해 생성된다.
접지 전극(1)과 마이크로스트립 같은 신호 전극(2)(예를 들어 도 2와 유사한) 사이에 튜닝가능한 LC 물질 층을 포함하는 종래 기술의 위상 이동 디바이스와는 달리, 총 시간 지연은 평면 전송 라인을 따라 신호의 전파 동안 신호 점프의 수에 주로 의존한다. 각 단일 점프는 대응하는 오버랩 영역(6)에서 튜닝가능한 액정 물질(7)을 튜닝하는 것에 의해 변경될 수 있는 특정 시간 지연을 야기한다. 총 시간 지연은 단일 점프의 작은 시간 지연을 평면 전송 라인을 따른 점프의 수와 곱한 값이다.
따라서, 본 발명에 따른 위상 이동 디바이스의 평면 전송 라인은 신호 전극(2)의 비-오버랩 구획에 의해 연결된 적어도 2개의, 그러나 바람직하게는 많은 직렬로 연결된 유전체 튜닝가능한 부품(버랙터)을 포함한다. 평면 전송 라인의 개략도는 도 3d에 도시된다.
도 4a 및 도 4b는 도 3a 내지 도 3d에 도시된 바와 같이 위상 이동 디바이스에서 신호 전극(2)과 상기 접지 전극(1)의 2개의 인접한 조각(4, 5)들 사이에 단일 버랙터 구성, 즉 오버랩 영역(6)의 상세 단면도 및 대응하는 개략도를 도시한다.
도 5, 도 6 및 도 7은 안테나 패치(9)와 결합된 도 3a 내지 도 3d에 따른 위상 이동 디바이스를 포함하는 방사 요소에 대한 상이한 실시예를 도시한다.
도 5에서 안테나 패치(9)와 평면 전송 라인의 신호 전극(2)의 수 개의 조각(4, 5)은 애퍼처 결합 방법을 사용하여 결합된다. 이러한 결합에서 안테나 패치(9)는 비-튜닝가능한 유전체 기판의 층(10)에 의해 접지 전극(1)과 분리된다. 전송 라인을 따라, 즉 신호 전극(2)과 접지 전극(1)을 따라 전송되는 에너지는 접지 전극(1) 내 인접 슬롯(1)을 통해 안테나 패치(9)에 결합된다.
도 6에서 평면 전송 라인과 안테나 패치(9)는 근접 결합 방법을 사용하여 결합된다.
도 7에서 평면 전송 라인과 안테나 패치(9)는 삽입 급전 결합 방법을 사용하여 결합된다.
도 8은 본 발명에 따른 위상 이동 디바이스의 상이한 실시예를 도시한다. 전술된 바와는 달리, 2개의 상이한 거리 레벨에 배열된 신호 전극(2)의 수 개의 조각(4, 5)에 더하여, 수 개의 조각(4, 5 및 12)의 일부 추가적인 조각(12)들이 접지 전극(1)에 대해 제3 거리 레벨에 배열된다. 추가적인 조각(12)들은 제2 거리 레벨의 조각(5)들이 장착된 표면과 반대쪽 비-튜닝가능한 유전체 기판의 층(3')의 다른 표면 상에 장착된다.
도 8의 예시적인 실시예에서, 추가적인 조각(5)들이 있는 제3 거리 레벨로부터 조각(5)들이 있는 제2 거리 레벨을 분리시키는 층(3')이 비-튜닝가능한 유전체 기판으로 만들어지기 때문에 추가적인 조각(12)과 인접한 조각(5) 사이의 신호 점프에 대한 시간 지연은 변경될 수 없다. 그리하여 오버랩 영역(6)이 조각(5)과 추가적인 조각(12) 사이에 존재하는 곳이 어디든지 상관없이 이 곳에는 유전체 튜닝가능한 버랙터가 없다. 그리하여, 위상 이동을 튜닝할 수 있기 위하여 조각(12)과 조각(4) 사이에 오버랩 영역을 달성하는 것이 유리할 수 있다. 그럼에도 불구하고, 추가적인 신호 점프는 이 신호 점프의 수에만 의존하는 고정된 시간 지연을 추가하는 것에 의해, 예를 들어 오프셋을 매우 비용-절감적인 방식으로 제조할 수 있다.
도 8에 도시된 것과는 상이한 위상 이동 디바이스의 더 다른 실시예에서, 3개의 상이한 거리 레벨에 있는 오버랩 조각들의 시퀀스는 상이할 수 있고, 예를 들어, 최저 거리 레벨에 있는 제1 조각(4)은 최고 거리 레벨에 있는 후속 조각(12)과 오버랩하고 나서, 중간 거리 레벨에 있는 다른 조각과 오버랩할 수 있다. RF 신호는 최저 거리 레벨로부터 최고 거리 레벨로 점프하고 나서 이후 중간 레벨로 점프하고 다시 최저 레벨로 점프한다. 특정 시간 지연을 각각 야기하는 신호 점프들 각각은 많은 상이한 방식으로 미리 결정되고 배열되어, 신호에 총 위상 이동을 야기할 수 있는 것으로 이해된다. 이 기술 분야에 통상의 지식을 가진 자라면 또한 수직 상호 연결을 통해 상이한 거리 레벨들에 있는 일부 조각들을 전기적으로 더 연결할 수 있을 것이다.
또한 신호 전극(2)의 수 개의 조각(4, 5)과 추가적인 조각(12) 사이에 튜닝가능한 유전체 물질의 제2 층을 추가하는 것이 가능하다. 이러한 제2 층은 튜닝가능한 액정 물질(7)의 제1 층에 사용되는 것과 동일한 액정 물질 또는 완전히 상이한 튜닝가능한 유전체 물질로 구성될 수 있다. 제2 층이 액정 물질(7)의 제1 층과 같을 때에도 상이한 제어 요소를 사용하는 것에 의해 또는 상이한 바이어스 전압을 인가하는 것에 의해 제2 및 제3 거리 레벨 사이에 신호 점프에 대한 시간 지연은 상이하게 제어될 수 있어 위상 이동 디바이스를 제어하는 가능성을 증가시켜 그 결과 위상 이동을 더 많이 증가시킬 수 있다.
접지 전극(1)에 대해 2개를 초과하는 개수 또는 3개의 거리 레벨에 신호 전극(2)의 수 개의 조각(4, 5, 및 12)들을 배열하는 것이 더 가능하다.
1 : 접지 전극
2 : 신호 전극
3 : 비-튜닝가능한 유전체 기판 층
4 : 더 낮은 거리 레벨에 있는 신호 전극(2)의 조각
5 : 더 높은 거리 레벨에 있는 신호 전극(2)의 조각
6 : 오버랩 영역
7 : 튜닝가능한 액정 물질
8 : 제어 요소
9 : 안테나 패치
10 : 비-튜닝가능한 유전체 기판 층
11 : 슬롯
12 : 신호 전극(2)의 추가적인 조각
2 : 신호 전극
3 : 비-튜닝가능한 유전체 기판 층
4 : 더 낮은 거리 레벨에 있는 신호 전극(2)의 조각
5 : 더 높은 거리 레벨에 있는 신호 전극(2)의 조각
6 : 오버랩 영역
7 : 튜닝가능한 액정 물질
8 : 제어 요소
9 : 안테나 패치
10 : 비-튜닝가능한 유전체 기판 층
11 : 슬롯
12 : 신호 전극(2)의 추가적인 조각
Claims (17)
- 유전체 물질에 의해 분리된 신호 전극(2)과 접지 전극(1)에 의해 형성된 평면 전송 라인을 포함하고, 튜닝가능한 유전체 물질(7)을 더 포함하는 위상 이동 디바이스로서, 상기 평면 전송 라인의 상기 신호 전극(2)은 수 개의 조각(4, 5)으로 분할되고, 튜닝가능한 유전체 물질(7)로 충전된 인접한 조각(4, 5)들의 오버랩 영역(6)들을 포함해서, 금속-절연체-금속 유형 커패시터를 갖는 유전체 튜닝가능한 부품(버랙터)을 형성하는 것을 특징으로 하는 위상 이동 디바이스.
- 제1항에 있어서,
상기 튜닝가능한 유전체 물질(7)은 액정 물질인 것을 특징으로 하는 위상 이동 디바이스. - 제1항 또는 제2항에 있어서,
상기 신호 전극(2)의 수 개의 조각(4, 5)은 상기 접지 전극(1)에 대해 2개 이상의 상이한 거리 레벨로 배열된 것을 특징으로 하는 위상 이동 디바이스. - 제3항에 있어서,
상기 튜닝가능한 유전체 물질(7)은 2개의 상이한 거리 레벨로 배열된 상기 신호 전극(2)의 수 개의 조각(4, 5)들 사이에 단일한 연속층으로 배열된 것을 특징으로 하는 위상 이동 디바이스. - 제3항에 있어서,
상기 튜닝가능한 유전체 물질(7)은 2개의 상이한 거리 레벨에서 상기 신호 전극(2)의 인접한 조각(4, 5)들의 상기 오버랩 영역(6)들 사이에 적어도 수 개의 한정된 층 영역으로 배열된 것을 특징으로 하는 위상 이동 디바이스. - 제1항 내지 제5항 중 어느 한 항에 있어서,
상기 신호 전극(2)의 상기 조각(4, 5)은 무선 주파수 신호의 전파 방향을 따라 선형으로 배열된 것을 특징으로 하는 위상 이동 디바이스. - 제1항 내지 제6항 중 어느 한 항에 있어서,
상기 신호 전극(2)의 상기 조각(4, 5)은 직선 라인으로 배열된 것을 특징으로 하는 위상 이동 디바이스. - 제1항 내지 제7항 중 어느 한 항에 있어서,
상기 신호 전극(2)은 상기 전송 라인의 길이를 따라 수 개의 조각(4, 5)으로 분할되고, 상기 수 개의 조각(4, 5)은 상부측 상의 상부측 조각(5)과 비-튜닝가능한 유전체 기판의 하부측 상의 하부측 조각(4)으로 교대로 구현되고, 일부 구획에는 상기 신호 전극(2)의 상부측 조각(5)과 그 인접한 하부측 조각(4) 사이에 오버랩 영역(6)이 있고, 상기 오버랩 영역(6)은 튜닝가능한 액정 물질(7)로 충전되고, 상기 오버랩 영역(6)은 금속-절연체-금속 유형 커패시터를 갖는 유전체 튜닝가능한 부품(버랙터)을 형성하는 것을 특징으로 하는 위상 이동 디바이스. - 제1항 내지 제8항 중 어느 한 항에 있어서,
상기 평면 전송 라인은 상기 신호 전극(2)의 비-오버랩 구획에 의해 연결된 적어도 2개의 직렬로 연결된 유전체 튜닝가능한 부품을 포함하는 것을 특징으로 하는 위상 이동 디바이스. - 제1항 내지 제9항 중 어느 한 항에 있어서,
5% 내지 30%의 최대 유전율에 대한 유전율의 튜닝 범위의 비율로 한정된, 상대 유전율의 튜닝가능성을 갖는 액정 물질(7)을 포함하는 것을 특징으로 하는 위상 이동 디바이스. - 제1항 내지 제10항 중 어느 한 항에 있어서,
상기 신호 전극(2)의 상기 조각(4, 5)들 중 일부와 연결되고, 상기 오버랩 영역(6)에서 상기 액정 물질(7)을 튜닝하기 위하여 바이어스 전압을 전송하는 적어도 하나의 제어 요소(8)를 포함하는 것을 특징으로 하는 위상 이동 디바이스. - 제11항에 있어서,
상기 적어도 하나의 제어 요소(8)는 ITO(indium-tin-oxide)로 구성된 것을 특징으로 하는 위상 이동 디바이스. - 제1항 내지 제12항 중 어느 한 항에 있어서,
상기 평면 전송 라인은 방사 요소와 결합된 것을 특징으로 하는 위상 이동 디바이스. - 제13항에 있어서,
상기 방사 요소는 임의의 형상의 마이크로스트립 패치 안테나(9) 또는 마이크로스트립 슬롯 안테나인 것을 특징으로 하는 위상 이동 디바이스. - 제13항 또는 제14항에 있어서,
상기 평면 전송 라인과 상기 방사 요소는 애퍼처 결합 방법을 사용하여 결합된 것을 특징으로 하는 위상 이동 디바이스. - 제13항 또는 제14항에 있어서,
상기 평면 전송 라인과 상기 방사 요소는 근접 결합 방법을 사용하여 결합된 것을 특징으로 하는 위상 이동 디바이스. - 제13항 내지 제16항 중 어느 한 항에 있어서,
평면 전송 라인과 상기 방사 요소는, 예를 들어 수직 상호 연결을 통해 또는 인셋-급전 기술을 사용하여 직접 연결될 수 있는 것을 특징으로 하는 위상 이동 디바이스.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13155432.1A EP2768072A1 (en) | 2013-02-15 | 2013-02-15 | Phase shifting device |
EP13155432.1 | 2013-02-15 | ||
PCT/EP2014/052964 WO2014125095A1 (en) | 2013-02-15 | 2014-02-14 | Phase shift device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150117701A true KR20150117701A (ko) | 2015-10-20 |
KR102326919B1 KR102326919B1 (ko) | 2021-11-17 |
Family
ID=47715909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157024272A KR102326919B1 (ko) | 2013-02-15 | 2014-02-14 | 위상 이동 디바이스 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10141620B2 (ko) |
EP (2) | EP2768072A1 (ko) |
JP (1) | JP6362624B2 (ko) |
KR (1) | KR102326919B1 (ko) |
CN (1) | CN105308789B (ko) |
ES (1) | ES2623252T3 (ko) |
WO (1) | WO2014125095A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102467623B1 (ko) * | 2021-07-05 | 2022-11-17 | 서울대학교산학협력단 | 액정 기반 리플렉트어레이 안테나 |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2768072A1 (en) * | 2013-02-15 | 2014-08-20 | Technische Universität Darmstadt | Phase shifting device |
US9755286B2 (en) * | 2014-12-05 | 2017-09-05 | Huawei Technologies Co., Ltd. | System and method for variable microwave phase shifter |
CN108604735B (zh) * | 2016-02-16 | 2020-02-07 | 夏普株式会社 | 扫描天线 |
US10811784B2 (en) * | 2016-03-01 | 2020-10-20 | Kymeta Corporation | Broadband RF radial waveguide feed with integrated glass transition |
US10411349B2 (en) | 2016-03-22 | 2019-09-10 | Elwha Llc | Systems and methods for reducing intermodulation for electronically controlled adaptive antenna arrays |
US10535923B2 (en) * | 2016-03-22 | 2020-01-14 | Elwha Llc | Systems and methods for reducing intermodulation for electronically controlled adaptive antenna arrays |
CN105914470B (zh) * | 2016-05-03 | 2019-01-25 | 上海交通大学 | 电调谐范围可变的液晶贴片天线及其制备、使用方法 |
US11109451B2 (en) * | 2016-07-20 | 2021-08-31 | Kymeta Corporation | Internal heater for RF apertures |
CN106154603B (zh) * | 2016-07-29 | 2019-12-06 | 合肥工业大学 | 一种液晶移相单元及其构成的相控天线 |
US10199710B2 (en) * | 2016-09-01 | 2019-02-05 | Wafer Llc | Variable dielectric constant-based devices |
US10326205B2 (en) * | 2016-09-01 | 2019-06-18 | Wafer Llc | Multi-layered software defined antenna and method of manufacture |
CN106773338B (zh) * | 2017-01-16 | 2020-02-18 | 京东方科技集团股份有限公司 | 一种液晶微波移相器 |
CN106684551B (zh) * | 2017-01-24 | 2019-07-23 | 京东方科技集团股份有限公司 | 一种移相单元、天线阵、显示面板和显示装置 |
CN110235301B (zh) * | 2017-01-31 | 2022-04-22 | 三星电子株式会社 | 基于液晶的高频装置和高频开关 |
RU2653084C1 (ru) * | 2017-01-31 | 2018-05-07 | Самсунг Электроникс Ко., Лтд. | Высокочастотное устройство на основе жидких кристаллов |
CN106961008B (zh) * | 2017-04-06 | 2019-03-29 | 京东方科技集团股份有限公司 | 天线结构及其驱动方法和天线系统 |
CN206602182U (zh) * | 2017-04-06 | 2017-10-31 | 京东方科技集团股份有限公司 | 一种天线结构及通讯设备 |
CN106932933B (zh) * | 2017-05-09 | 2019-08-27 | 京东方科技集团股份有限公司 | 一种液晶天线及其制作方法 |
US10651549B2 (en) | 2017-07-06 | 2020-05-12 | Innolux Corporation | Microwave device |
CN113013609B (zh) * | 2017-07-06 | 2023-08-15 | 群创光电股份有限公司 | 微波装置 |
US10705391B2 (en) * | 2017-08-30 | 2020-07-07 | Wafer Llc | Multi-state control of liquid crystals |
US10497774B2 (en) | 2017-10-23 | 2019-12-03 | Blackberry Limited | Small-gap coplanar tunable capacitors and methods for manufacturing thereof |
US10332687B2 (en) | 2017-10-23 | 2019-06-25 | Blackberry Limited | Tunable coplanar capacitor with vertical tuning and lateral RF path and methods for manufacturing thereof |
US11233310B2 (en) * | 2018-01-29 | 2022-01-25 | The Boeing Company | Low-profile conformal antenna |
CN108321541B (zh) * | 2018-02-22 | 2021-10-15 | 京东方科技集团股份有限公司 | 天线结构及其驱动方法和通信装置 |
CN108398816B (zh) | 2018-03-26 | 2020-12-29 | 北京京东方专用显示科技有限公司 | 一种液晶移相器及其制作方法、移相方法 |
CN108539331B (zh) * | 2018-04-13 | 2021-01-15 | 合肥工业大学 | 基于液晶的太赫兹开槽移相单元及其构成的相控阵天线 |
CN108598631B (zh) * | 2018-04-19 | 2020-10-23 | 合肥工业大学 | 一种基于图案化石墨烯电极的反射式双层液晶移相单元 |
CN110416668A (zh) * | 2018-04-26 | 2019-11-05 | 北京超材信息科技有限公司 | 一种液晶移相器 |
CA3101948A1 (en) * | 2018-05-01 | 2019-11-07 | Wafer Llc | Low cost dielectric for electrical transmission and antenna using same |
CN108493592B (zh) * | 2018-05-03 | 2019-12-20 | 京东方科技集团股份有限公司 | 微带天线及其制备方法和电子设备 |
DE102018112069A1 (de) * | 2018-05-18 | 2019-11-21 | Schott Ag | Verwendung eines Flachglases in elektronischen Bauteilen |
CN208655852U (zh) * | 2018-05-21 | 2019-03-26 | 京东方科技集团股份有限公司 | 一种移相器、天线、通信设备 |
WO2019223647A1 (zh) | 2018-05-21 | 2019-11-28 | 京东方科技集团股份有限公司 | 一种移相器及其操作方法、天线和通信设备 |
CN108615966B (zh) * | 2018-05-28 | 2020-06-30 | 京东方科技集团股份有限公司 | 一种天线及其制作方法 |
CN108711669B (zh) | 2018-05-28 | 2021-04-23 | 京东方科技集团股份有限公司 | 一种频率可调天线及其制作方法 |
CN108563050B (zh) * | 2018-05-31 | 2020-10-30 | 成都天马微电子有限公司 | 液晶移相器和天线 |
CN108490270B (zh) * | 2018-07-02 | 2020-01-24 | 京东方科技集团股份有限公司 | 液晶介电常数的测量装置、测量系统、测量方法 |
CN108615962B (zh) | 2018-07-18 | 2020-06-30 | 成都天马微电子有限公司 | 液晶移相器和天线 |
CN108710232B (zh) * | 2018-07-20 | 2020-10-13 | 成都天马微电子有限公司 | 一种液晶移相单元及其制作方法、液晶移相器、天线 |
CN108808181B (zh) * | 2018-07-20 | 2020-05-29 | 成都天马微电子有限公司 | 液晶移相器和天线 |
CN109193081B (zh) * | 2018-08-06 | 2022-11-08 | 艾尔康系统有限责任公司 | 射频移相装置 |
EP3609017A1 (en) * | 2018-08-06 | 2020-02-12 | ALCAN Systems GmbH | Radio frequency phase shifting device |
US10862182B2 (en) | 2018-08-06 | 2020-12-08 | Alcan Systems Gmbh | RF phase shifter comprising a differential transmission line having overlapping sections with tunable dielectric material for phase shifting signals |
CN110658646A (zh) * | 2018-08-10 | 2020-01-07 | 北京京东方传感技术有限公司 | 移相器及液晶天线 |
DE102018119508A1 (de) * | 2018-08-10 | 2020-02-13 | Alcan Systems Gmbh | Gruppenantenne aus einem dielektrischen Material |
CN110824734A (zh) | 2018-08-10 | 2020-02-21 | 北京京东方传感技术有限公司 | 液晶移相器及液晶天线 |
CN109193162B (zh) * | 2018-09-20 | 2020-11-20 | 合肥工业大学 | 一种太赫兹反射式移相单元及其内部液晶的快速调控方法 |
CN109164608B (zh) * | 2018-09-25 | 2022-02-25 | 京东方科技集团股份有限公司 | 移相器、天线及移相器的控制方法 |
CN111146588B (zh) * | 2018-11-06 | 2022-04-29 | 艾尔康系统有限责任公司 | 相控阵天线 |
US10854970B2 (en) | 2018-11-06 | 2020-12-01 | Alcan Systems Gmbh | Phased array antenna |
EP3664215B1 (en) | 2018-12-07 | 2022-09-21 | ALCAN Systems GmbH | Radio frequency phase shifting device |
TWI696315B (zh) * | 2019-01-30 | 2020-06-11 | 友達光電股份有限公司 | 天線裝置與天線系統 |
CN110034358B (zh) * | 2019-04-04 | 2024-02-23 | 信利半导体有限公司 | 一种液晶移相器、液晶天线及液晶移相器的制作方法 |
CN110137636B (zh) * | 2019-05-23 | 2021-08-06 | 京东方科技集团股份有限公司 | 移相器和液晶天线 |
EP3745144A1 (en) | 2019-05-29 | 2020-12-02 | ALCAN Systems GmbH | A method of inspecting a radio frequency device and a radio frequency device |
CN110197939B (zh) * | 2019-06-03 | 2024-04-19 | 北京华镁钛科技有限公司 | 一种超材料可调电容器结构 |
KR102670834B1 (ko) * | 2019-07-25 | 2024-05-29 | 엘지디스플레이 주식회사 | 액정을 포함하는 평판 안테나 |
US11342657B2 (en) * | 2019-08-12 | 2022-05-24 | Innolux Corporation | Antenna device |
CN112448105B (zh) * | 2019-08-29 | 2022-02-25 | 京东方科技集团股份有限公司 | 移相器及天线 |
CN112448106B (zh) * | 2019-08-30 | 2022-04-26 | 京东方科技集团股份有限公司 | 馈电结构、微波射频器件及天线 |
CN112731715B (zh) * | 2019-10-14 | 2022-11-11 | 京东方科技集团股份有限公司 | 液晶移相器及天线 |
EP3809517A1 (en) * | 2019-10-17 | 2021-04-21 | ALCAN Systems GmbH | Transmission line for radio frequency signals |
US11276933B2 (en) | 2019-11-06 | 2022-03-15 | The Boeing Company | High-gain antenna with cavity between feed line and ground plane |
CN110943299B (zh) * | 2019-11-29 | 2021-01-08 | 北京京东方传感技术有限公司 | 移相器和相控阵天线 |
US11811121B2 (en) | 2019-11-29 | 2023-11-07 | Beijing Boe Sensor Technology Co., Ltd. | Electronic device comprising a dielectric substrate having a voltage adjustable phase shifter disposed with respect to the substrate and a manufacturing method |
EP3859985A1 (en) * | 2020-01-30 | 2021-08-04 | Nokia Solutions and Networks Oy | Apparatus comprising a transmission line for radio frequency signals |
CN116315588A (zh) * | 2020-02-05 | 2023-06-23 | 群创光电股份有限公司 | 电子装置 |
CN111176036B (zh) * | 2020-02-26 | 2023-06-02 | 京东方科技集团股份有限公司 | 一种调谐器及其制备方法和控制方法、电子装置 |
US11411544B2 (en) * | 2020-03-24 | 2022-08-09 | Boe Technology Group Co., Ltd. | Phase shifter and antenna |
CN113540767B (zh) * | 2020-04-15 | 2022-12-16 | 上海天马微电子有限公司 | 相控阵天线及其控制方法 |
US11415820B2 (en) * | 2020-05-04 | 2022-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Waveguide structure |
TWI737307B (zh) * | 2020-05-22 | 2021-08-21 | 大陸商北京華鎂鈦科技有限公司 | 超材料可調電容器結構 |
TWI728826B (zh) * | 2020-06-03 | 2021-05-21 | 友達光電股份有限公司 | 自帶濾波功能的可調式平面天線 |
TWI749987B (zh) * | 2021-01-05 | 2021-12-11 | 友達光電股份有限公司 | 天線結構及陣列天線模組 |
WO2022178805A1 (zh) * | 2021-02-26 | 2022-09-01 | 京东方科技集团股份有限公司 | 移相器及天线 |
CN113611991B (zh) * | 2021-07-28 | 2022-12-23 | 北京华镁钛科技有限公司 | 一种液晶移相器、液晶天线和移相方法 |
CN117136467A (zh) * | 2022-02-17 | 2023-11-28 | 京东方科技集团股份有限公司 | 移相器、天线及电子设备 |
WO2023155185A1 (zh) * | 2022-02-21 | 2023-08-24 | 京东方科技集团股份有限公司 | 移相器、天线及电子设备 |
WO2024174224A1 (zh) * | 2023-02-24 | 2024-08-29 | 京东方科技集团股份有限公司 | 移相器及其制备方法、天线 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5936484A (en) * | 1995-02-24 | 1999-08-10 | Thomson-Csf | UHF phase shifter and application to an array antenna |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001257358A1 (en) * | 2000-05-02 | 2001-11-12 | Paratek Microwave, Inc. | Voltage tuned dielectric varactors with bottom electrodes |
JP2003008310A (ja) * | 2001-06-27 | 2003-01-10 | Sumitomo Electric Ind Ltd | 高周波伝送線路の結合構造とそれを用いた可変移相器 |
ATE373945T1 (de) | 2004-02-23 | 2007-10-15 | Georgia Tech Res Inst | Passive signalverarbeitungskomponenten auf flüssigkristallpolymer- und mehrschichtpolymerbasis für hf-/drahtlos-mehrband-anwendungen |
JP4394567B2 (ja) * | 2004-12-20 | 2010-01-06 | 京セラ株式会社 | 液晶部品モジュールおよび誘電率制御方法 |
US20090278744A1 (en) | 2005-10-11 | 2009-11-12 | Panasonic Corporation | Phased array antenna |
JP4376873B2 (ja) * | 2006-04-28 | 2009-12-02 | 京セラ株式会社 | 誘電体導波路デバイス、これを備える移相器、高周波スイッチおよび減衰器、ならびに高周波送信器、高周波受信器、高周波送受信器およびレーダ装置、アレイアンテナ装置、誘電体導波路デバイスの製造方法 |
US8022861B2 (en) | 2008-04-04 | 2011-09-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Dual-band antenna array and RF front-end for mm-wave imager and radar |
US8922293B2 (en) | 2008-06-09 | 2014-12-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Microstrip lines with tunable characteristic impedance and wavelength |
US8766855B2 (en) * | 2010-07-09 | 2014-07-01 | Semiconductor Components Industries, Llc | Microstrip-fed slot antenna |
EP2500977B1 (en) | 2011-03-16 | 2015-09-16 | Alcatel Lucent | Phase shifting device |
EP2768072A1 (en) * | 2013-02-15 | 2014-08-20 | Technische Universität Darmstadt | Phase shifting device |
-
2013
- 2013-02-15 EP EP13155432.1A patent/EP2768072A1/en not_active Withdrawn
-
2014
- 2014-02-14 CN CN201480021255.4A patent/CN105308789B/zh active Active
- 2014-02-14 JP JP2015557448A patent/JP6362624B2/ja active Active
- 2014-02-14 US US14/767,131 patent/US10141620B2/en active Active
- 2014-02-14 EP EP14707670.7A patent/EP2956986B1/en active Active
- 2014-02-14 WO PCT/EP2014/052964 patent/WO2014125095A1/en active Application Filing
- 2014-02-14 KR KR1020157024272A patent/KR102326919B1/ko active IP Right Grant
- 2014-02-14 ES ES14707670.7T patent/ES2623252T3/es active Active
-
2018
- 2018-11-20 US US16/196,570 patent/US10629973B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5936484A (en) * | 1995-02-24 | 1999-08-10 | Thomson-Csf | UHF phase shifter and application to an array antenna |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102467623B1 (ko) * | 2021-07-05 | 2022-11-17 | 서울대학교산학협력단 | 액정 기반 리플렉트어레이 안테나 |
Also Published As
Publication number | Publication date |
---|---|
WO2014125095A1 (en) | 2014-08-21 |
CN105308789A (zh) | 2016-02-03 |
US20190103644A1 (en) | 2019-04-04 |
EP2768072A1 (en) | 2014-08-20 |
US10629973B2 (en) | 2020-04-21 |
KR102326919B1 (ko) | 2021-11-17 |
EP2956986B1 (en) | 2017-02-01 |
EP2956986A1 (en) | 2015-12-23 |
JP2016508697A (ja) | 2016-03-22 |
US10141620B2 (en) | 2018-11-27 |
ES2623252T3 (es) | 2017-07-10 |
CN105308789B (zh) | 2018-11-16 |
US20150380789A1 (en) | 2015-12-31 |
JP6362624B2 (ja) | 2018-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10629973B2 (en) | Phase shift device | |
US11152714B2 (en) | Electronically steerable planar phase array antenna | |
Yaghmaee et al. | Electrically tuned microwave devices using liquid crystal technology | |
Karabey et al. | Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines | |
Zheng et al. | Compact substrate integrated waveguide tunable filter based on ferroelectric ceramics | |
Ebrahimi et al. | Interlayer tuning of X-band frequency-selective surface using liquid crystal | |
Maune et al. | Tunable microwave component technologies for SatCom-platforms | |
Wang et al. | Liquid crystal enabled substrate integrated waveguide variable phase shifter for millimeter-wave application at 60ghz and beyond | |
Shu et al. | A dual polarized pattern reconfigurable antenna array using liquid crystal phase shifter | |
Deo et al. | Liquid crystal based patch antenna array for 60 GHz applications | |
Hu et al. | Liquid crystal varactor loaded variable phase shifter for integrated, compact, and fast beamsteering antenna systems | |
Koeberle et al. | Electrically tunable Liquid Crystal phase shifter in antipodal finline technology for reconfigurable W-Band Vivaldi antenna array concepts | |
Yazdanpanahi et al. | Tunable liquid-crystal millimeter-wave bandpass filter using periodical structure | |
Gao et al. | Electrically steerable leaky-wave antenna capable of both forward and backward radiation based on liquid crystal | |
Li et al. | Electrical biasing substrate integrated waveguide tunable band-pass filter with liquid crystal technology | |
Jiang et al. | Frequency tunable and high selective frequency selective surfaces for Ku-band | |
Roig et al. | Tunable frequency selective surface based on ferroelectric ceramics for beam steering antennas | |
Nyzovets et al. | A mm-wave beam-steerable leaky-wave antenna with ferroelectric substructure | |
Karabey et al. | Liquid crystal based reconfigurable antenna arrays | |
Choi et al. | Reconfigurable Phased Array Antenna Based on Liquid Crystal with Miniaturized Bandpass Filter | |
Wang et al. | Compact and fast response phase shifter based on liquid crystal | |
Che et al. | A Novel liquid crystal based leaky wave antenna | |
Luo et al. | Two-Dimensional Electronically Controlled Scanning Phased Array Antenna Based on Liquid Crystal Material | |
Wang et al. | Millimeter-Wave Low-Profile Phase Shifter Based On Liquid Crystals | |
Chang et al. | Reflective Liquid-Crystal Phase Shifter based on Periodically Loaded Differential Microstrip Lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |