KR20150110373A - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
KR20150110373A
KR20150110373A KR1020150038126A KR20150038126A KR20150110373A KR 20150110373 A KR20150110373 A KR 20150110373A KR 1020150038126 A KR1020150038126 A KR 1020150038126A KR 20150038126 A KR20150038126 A KR 20150038126A KR 20150110373 A KR20150110373 A KR 20150110373A
Authority
KR
South Korea
Prior art keywords
antenna element
antenna
cell structure
artificial magnetic
magnetic conductor
Prior art date
Application number
KR1020150038126A
Other languages
Korean (ko)
Inventor
아츠시 다카사키
고지 유키마사
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20150110373A publication Critical patent/KR20150110373A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention relates to an antenna device, which is configured of a multi-layer structure having a conductive layer and a dielectric layer, which includes a cell structure including a plurality of cells arranged in a matrix pattern, and which includes a first antenna element arranged over the cell structure, and further, a second antenna element. The cell is configured to have an artificial magnetic conductor effect corresponding to a different frequency band in a first and a second direction. The first antenna element and the second antenna element are arranged in parallel on a surface of the cell structure along the first and the second direction, respectively.

Description

안테나 디바이스{ANTENNA DEVICE}ANTENNA DEVICE

본 발명은 안테나 디바이스에 관한 것이다. 특히, 본 발명은 높은 표면 임피던스를 갖는 평면형 구조와, 이러한 평면형 구조를 이용한 안테나 디바이스에 관한 것이다.The present invention relates to an antenna device. Particularly, the present invention relates to a planar structure having a high surface impedance and an antenna device using this planar structure.

최근, 특정한 주파수 대역폭에서 전자파의 전파를 저지하는 전자기 밴드갭 구조(이하, "EBG 구조")에 관한 기술에 대한 연구가 수행되고 있다. 고려할 만한 EBG 구조는, 일정한 갭 간격으로 직사각형의 패치 도체를 동일 평면에 매트릭스 형상으로 배치하고, 패치 도체와 평행하게 배치된 그라운드 도체에 패치 도체로부터 도통 비아가 접속되는 구조를 갖는다. 이 구조에서, 하나의 패치 도체, 하나의 그라운드 도체 및 1개의 도통 비아의 세트는 그 형상으로 인해 머시룸 구조라고 지칭된다. 이 EBG 구조는 전자파의 차단과 별도로, 특정한 주파수 대역폭에서 높은 표면 임피던스를 갖는 인공 자기도체의 효과도 나타낸다. 이러한 인공 자기도체의 특성에 착안하고 EBG 구조를 안테나의 높이 소형화를 위해 이용함으로써, 효과적인 인공 자기도체 타입 높이-소형화 안테나(low-dimensioned antenna)를 실현하는 것이 기대되고 있다.In recent years, studies have been conducted on an electromagnetic bandgap structure (hereinafter referred to as "EBG structure") that prevents electromagnetic wave propagation in a specific frequency bandwidth. The EBG structure to be considered has a structure in which rectangular patch conductors are arranged in a matrix on a plane with a constant gap interval and the conductive vias are connected to the ground conductors arranged parallel to the patch conductors. In this structure, a set of one patch conductor, one ground conductor, and one conduction via is referred to as a machine room structure because of its shape. This EBG structure also shows the effect of an artificial magnetic conductor having a high surface impedance in a specific frequency bandwidth, apart from the interruption of electromagnetic waves. It is expected to realize an effective artificial magnetic conductor type height-miniaturized antenna by paying attention to the characteristics of such an artificial magnetic conductor and using the EBG structure for downsizing the height of the antenna.

EBG 구조를 이용한 종래의 인공 자기도체 타입 높이-소형화 안테나에서는, 하나의 안테나 소자에 대해 하나의 EBG 구조가 제공되는 구조만 실현할 수 있었고, 따라서 다중대역 안테나의 높이 소형화를 달성하는 것이 곤란했다.In the conventional artificial magnetic conductor type height-miniaturization antenna using the EBG structure, only a structure in which one EBG structure is provided for one antenna element was realized, and therefore it was difficult to achieve miniaturization of the height of the multi-band antenna.

본 발명은 상술한 관점에서 달성되는 것으로, 복수의 공진 주파수에서 동작 가능한 높이-소형화 안테나를 제공한다.SUMMARY OF THE INVENTION The present invention is achieved in view of the foregoing and provides a height-miniaturized antenna operable at a plurality of resonant frequencies.

본 발명의 일 양태에 따르면, 도체층 및 유전체층을 갖는 다층 구조로 구성되며 매트릭스 형상으로 배치된 복수의 셀을 포함하는 셀 구조를 포함하고, 셀 구조 위로 배치되는 제1 안테나 소자 및 제2 안테나 소자를 추가로 포함하는 안테나 디바이스가 제공되고, 셀은 제1 방향 및 제2 방향으로 다른 주파수 대역에 대응하는 인공 자기도체 효과(artificial magnetic conductor effect)를 갖도록 구성되고, 제1 안테나 소자 및 제2 안테나 소자는 각각 제1 방향 및 제2 방향을 따라서 셀 구조의 면에 평행하게 배치된다.According to an aspect of the present invention, there is provided a semiconductor device comprising a cell structure including a plurality of cells arranged in a matrix and composed of a multi-layer structure having a conductor layer and a dielectric layer, Wherein the cell is configured to have an artificial magnetic conductor effect corresponding to a different frequency band in a first direction and a second direction, and wherein the first antenna element and the second antenna The elements are arranged parallel to the plane of the cell structure along the first direction and the second direction, respectively.

본 발명의 추가 특징은 첨부 도면을 참조하여 예시적 실시예의 이후의 설명으로부터 명백해질 것이다.Additional features of the present invention will become apparent from the following description of exemplary embodiments with reference to the accompanying drawings.

도 1은 제1 실시예에 따른 이중 대역 높이-소형화 안테나의 구성을 도시한 도면.
도 2는 EBG 구조의 단위 셀에 대하여 시뮬레이션 해석을 실행한 경우의 모델도.
도 3은 제1 실시예에 따른 이중 대역 높이-소형화 안테나에 대한 해석 결과를 도시하는 도면.
도 4는 제1 실시예에 따른 안테나 방사 특성을 도시하는 도면.
도 5는 종래예에 따른 안테나 방사 특성을 도시하는 도면.
도 6은 제1 실시예에 따른 안테나 방사 특성을 도시하는 도면.
도 7은 종래예에 따른 안테나 방사 특성을 도시하는 도면.
도 8은 제2 실시예에 따른 이중 대역 높이-소형화 안테나의 개략도.
도 9는 이중 주파수 직교 역 F 안테나의 구성을 도시하는 도면.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a configuration of a dual-band height-miniaturization antenna according to a first embodiment; Fig.
2 is a model diagram of a case where a simulation analysis is performed on a unit cell of an EBG structure.
Fig. 3 is a diagram showing the results of analysis for the dual-band height-miniaturization antenna according to the first embodiment; Fig.
4 is a view showing an antenna radiation characteristic according to the first embodiment;
5 is a view showing an antenna radiation characteristic according to a conventional example;
6 is a view showing an antenna radiation characteristic according to the first embodiment;
7 is a view showing an antenna radiation characteristic according to a conventional example;
8 is a schematic diagram of a dual-band height-miniaturization antenna according to a second embodiment;
9 is a diagram showing a configuration of a dual frequency orthogonal inverse F antenna;

이하, 첨부 도면을 참조하여 본 발명의 몇몇 실시예를 상세히 설명할 것이다. 이하의 실시예에서 설명된 구성은 단지 예이며, 본 발명은 도시된 구성에 한정되도록 의도되지 않는 점에 유의한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the configurations described in the following embodiments are merely examples, and the present invention is not intended to be limited to the configurations shown.

메타물질 구조의 일 특징은 인공 자기도체 효과이다. 주기 구조를 구비한 면은 높은 표면 임피던스를 갖는 구조이고, 특정한 주파수 대역폭에서 동상 반사(in-phase reflection)를 실현한다. 단위 셀 구조를 반복하여 구성되는 주기 구조를 갖는 메타물질 인공 자기도체에 관해, 단위 셀의 구조 및 주기 구조에 대해 비대칭적 조건을 설정함으로써 두 개의 방향으로 다른 인공 자기도체 특성을 갖는 구조가 실현될 수 있다. 예를 들어, 수직 및 수평 방향으로 상이한 치수를 갖는 패치 도체로 구성된 머시룸 구조를 갖는 인공 자기도체에서, 두 개의 상이한 주파수 대역폭에 대응하는 인공 자기도체 효과가 획득된다. 따라서, 2개의 주파수 대역에서 동작하는 안테나 소자를 안테나 소자의 구조가 다른 공진 방향을 갖도록 배치하고, 안테나 소자의 두 개의 동작 대역에서 효과를 나타내는 인공 자기도체 구조를 갖는 주기 구조를 안테나 소자의 아래에 배치하는 경우, 이면의 GND 도체로부터의 영향이 완화된, 높이 소형화 이중 대역 안테나를 실현할 수 있다. 두 개의 실시예가 아래에서 설명될 것이다.One feature of the metamaterial structure is the artificial magnetic conductor effect. The surface with the periodic structure is a structure with a high surface impedance and realizes in-phase reflection in a specific frequency bandwidth. With respect to the metamaterial artificial magnetic conductor having the periodic structure in which the unit cell structure is repeatedly formed, by setting the asymmetric condition with respect to the structure of the unit cell and the periodic structure, a structure having different artificial magnetic conductor characteristics in two directions is realized . For example, in an artificial magnetic conductor having a machine room structure composed of patch conductors having different dimensions in the vertical and horizontal directions, an artificial magnetic conductor effect corresponding to two different frequency bandwidths is obtained. Therefore, the antenna elements operating in two frequency bands are arranged so that the structure of the antenna element has a different resonance direction, and the periodic structure having the artificial magnetic conductor structure exhibiting the effect in the two operating bands of the antenna element is arranged below the antenna element It is possible to realize a high-miniaturized double-band antenna in which the influence from the GND conductor on the back surface is relaxed. Two embodiments will be described below.

제1 실시예First Embodiment

도 1은 본 실시예에 따른 이중 대역 높이-소형화 안테나(101)를 도시하는 전체적 개략도이다. 본 실시예에 따른 이중 대역 높이-소형화 안테나(101)는 EBG 구조의 단위 셀(102)을 8x8의 매트릭스 형상으로 배치한 기판을 포함하고, 기판의 중심 영역에는 이중 주파수 직교 다이폴 안테나(103)가 기판에 평행하게 배치된다. 단위 셀(102) 각각은 대략 10x15mm의 직사각형의 형상을 갖는 머시룸 구조를 갖고, 인공 자기도체의 효과를 나타내도록 매트릭스 형상으로 주기적으로 배치된다.1 is an overall schematic view showing a dual-band height-miniaturization antenna 101 according to the present embodiment. The dual band height-miniaturization antenna 101 according to the present embodiment includes a substrate in which unit cells 102 having an EBG structure are arranged in a matrix of 8x8, and a dual frequency orthogonal dipole antenna 103 And is disposed parallel to the substrate. Each of the unit cells 102 has a machine room structure having a rectangular shape of approximately 10 x 15 mm and is periodically arranged in a matrix shape to exhibit the effect of the artificial magnetic conductor.

도 2는 EBG 구조의 단위 셀(102)에 대해 시뮬레이션 해석을 실행한 경우의 모델도이다. 단위 셀(102) 각각은 상부의 직사각형 패치 도체(201), 유전체층(202), 하부의 GND 도체(203) 및 다층 구조의 이들 도체를 연결하는 접속 비아(204)로 구성된다. 단위 셀(102)의 인공 자기도체 특성을 관측하기 위해 전자파 입사면(205)이 해석용으로 설정된다. 화살표(206) 방향의 전자파 및 화살표(207) 방향의 전자파에 대해 전자파 입사면(205)에서 EBG 구조에서의 반사파의 위상이 해석된다. 면(208)은 주기 구조의 경계를 형성하는 면이고, 해석 공간은 수평 방향으로 4개의 면에서 반복하는 단위 셀 구조를 포함하는 주기 구조로서 설정된다.2 is a model diagram of a case where a simulation analysis is performed on the unit cell 102 having the EBG structure. Each of the unit cells 102 is composed of an upper rectangular patch conductor 201, a dielectric layer 202, a lower GND conductor 203 and connection vias 204 connecting these conductors in a multi-layer structure. The electromagnetic wave incident surface 205 is set for analysis so as to observe the artificial magnetic conductor characteristic of the unit cell 102. [ The phase of the reflected wave in the EBG structure is analyzed on the electromagnetic wave incident surface 205 with respect to the electromagnetic wave in the direction of the arrow 206 and the electromagnetic wave in the direction of the arrow 207. [ The surface 208 is a surface forming the boundary of the periodic structure, and the analysis space is set as a periodic structure including a unit cell structure repeated in four planes in the horizontal direction.

도 3은 도 2에 도시된 모델을 해석한 결과를 나타내는 그래프이다. 도 3에서, 가로축은 주파수를 나타내고, 세로축은 반사파 위상을 나타낸다. 곡선(301)은 도 2에서 화살표(206) 방향의 전자파에 대한 반사파의 위상 변화를 나타내고, 곡선(302)은 도 2에서 화살표(207) 방향의 전자파에 대한 반사파의 위상을 나타낸다. 반사파의 위상이 ±180°가 되지 않는 범위 내에서, 약 45°내지 135°의 범위(303)는 인공 자기도체으로서 유효한 동작에 대응하는 구간으로 상정한다. 이 경우, 곡선(301) 및 곡선(302)은 각각 4.1GHz 로부터 5.7GHz 까지 그리고 3.4GHz 로부터 4.1GHz까지 인공 자기도체으로서 유효한 동작을 나타낸다. 반사파의 위상이 약 -45°내지-135°의 구간에서도 유사한 인공 자기도체 효과를 기대할 수 있지만, 이 영역은 주파수 범위 보다 높고, 따라서 반사 계수 범위가 45°로부터 135°까지인 주파수 범위(303)를 사용하는 점을 유의한다.3 is a graph showing the result of analyzing the model shown in Fig. 3, the horizontal axis represents the frequency and the vertical axis represents the reflected wave phase. The curve 301 shows the phase change of the reflected wave with respect to the electromagnetic wave in the direction of the arrow 206 in Fig. 2, and the curve 302 shows the phase of the reflected wave with respect to the electromagnetic wave in the direction of the arrow 207 in Fig. In a range where the phase of the reflected wave does not fall within the range of 180 degrees, a range 303 of about 45 degrees to 135 degrees is assumed to be a section corresponding to an effective operation as an artificial magnetic conductor. In this case, curve 301 and curve 302 show effective operation as an artificial magnetic conductor from 4.1 GHz to 5.7 GHz and from 3.4 GHz to 4.1 GHz, respectively. Although a similar artificial magnetic conductor effect can be expected in the interval of the reflected wave of about -45 to -135 degrees, this region is higher than the frequency range, and therefore the frequency range 303 with reflection coefficient range from 45 to 135 degrees. . ≪ / RTI >

도 4는 인공 자기도체 효과에 의해 안테나 방사 특성이 확보되는 경우를 시뮬레이션에서 확인한 결과를 나타낸다. 기판(401)은 EBG 구조의 단위 셀(102)을 8x8의 매트릭스 형상으로 배치한 FR4 기판이며, 그 중심 영역에 다이폴 안테나(402)가 배치된다. 다이폴 안테나(402)는 약 5GHz로 공진하고 기판(401)으로부터 1.2mm의 높이에 고정된다. 곡선(403)은 안테나의 방사 효율을 나타내고, 곡선(404)은 안테나 S11 반사 특성(안테나 반사 손실)을 나타낸다. 곡선(403)의 특징으로부터 5GHz 부근에서는 방사 효율이 높은 것을 알 수 있고, 곡선(404)의 특징으로부터 5GHz 부근에서는 S11 반사 특성은 낮은 수준으로 억제되는 것을 알 수 있다. 즉, 이들 곡선으로부터 다이폴 안테나의 공진 주파수에서는 인공 자기도체 효과에 의해 전자파 방사가 방해되지 않는 것을 알 수 있다.Fig. 4 shows a result obtained by simulating the case where the antenna radiation characteristic is secured by the artificial magnetic conductor effect. The substrate 401 is an FR4 substrate in which unit cells 102 having an EBG structure are arranged in a matrix of 8x8, and a dipole antenna 402 is disposed in the center region thereof. The dipole antenna 402 resonates at about 5 GHz and is fixed at a height of 1.2 mm from the substrate 401. Curve 403 represents the radiation efficiency of the antenna, and curve 404 represents the antenna S11 reflection characteristic (antenna return loss). From the characteristics of the curve 403, it can be seen that the radiation efficiency is high at around 5 GHz, and from the characteristic of the curve 404, the S11 reflection characteristic is suppressed to a low level at around 5 GHz. In other words, it can be seen from these curves that the electromagnetic wave radiation is not disturbed by the artificial magnetic conductor effect at the resonance frequency of the dipole antenna.

비교를 위해, 도 5는 인공 자기도체 효과를 나타내지 않는 도체를 균일하게 배치한 경우의 안테나(502)의 특성을 도시한다. 기판(501)의 면에는 도체가 균일하게 배치되고, 안테나 반사 특성은 거의 전반사 상태이다. 곡선(503)은 안테나 방사 효율을 나타내고, 곡선(504)은 안테나 S11 반사 특성(안테나의 반사 손실)을 나타낸다. 도 4의 곡선(403)과 비교하면, 곡선(503)은 5GHz 부근에서는 방사 효율이 10dB 내지 20dB 저하되는 것을 확인할 수 있다. 또한, 도 4의 곡선(404)과 비교하면, 곡선(504)은 5GHz 부근에서는 S11 반사 특성이 10dB 내지 20dB 저하되는 것을 확인할 수 있다.For comparison, FIG. 5 shows the characteristics of the antenna 502 when conductors that do not exhibit an artificial magnetic conductor effect are uniformly arranged. Conductors are uniformly arranged on the surface of the substrate 501, and the antenna reflection characteristic is almost totally reflected. Curve 503 represents antenna radiation efficiency, and curve 504 represents antenna S11 reflection characteristics (return loss of antenna). Compared with the curve 403 in FIG. 4, it can be seen that the radiation efficiency is lowered by 10 dB to 20 dB in the vicinity of 5 GHz in the curve 503. In comparison with the curve 404 in FIG. 4, it can be seen that the S11 reflection characteristic is lowered by 10 dB to 20 dB in the curve 504 in the vicinity of 5 GHz.

도 6은 도 4로부터 다른 주파수에서의 안테나 방사 특성이 다른 방향으로의 인공 자기도체 효과에 의해 확보되는 경우를 시뮬레이션에서 확인한 결과를 도시한다. 도 4와 유사하게, 기판(601)은 EBG 구조의 단위 셀(102)을 8x8의 매트릭스 형상으로 배치한 FR4 기판이며, 그 중심 영역에 다이폴 안테나(602)가 배치된다. 다이폴 안테나(602)는 약 3.7GHz로 공진하고, 기판(601)으로부터 1.5mm의 높이에, 도 4의 다이폴 안테나(402)의 방향과 직교하는 방향에 고정된다. 곡선(603)은 안테나의 방사 효율을 나타내고, 곡선(604)은 안테나 S11 반사 특성을 나타낸다. 곡선(603)의 특징으로부터 3.7GHz 부근에서는 방사 효율이 높은 것을 알 수 있고, 곡선(604)의 특징으로부터 3.7GHz 부근에서는 S11 반사 특성이 낮은 수준으로 억제되는 것을 알 수 있다. 즉, 이들 곡선으로부터 다이폴 안테나(602)의 공진 주파수에서는 인공 자기도체 효과에 의해 전자파의 방사가 방해되지 않는 것을 알 수 있다.Fig. 6 shows a result obtained by simulation in the case where the antenna radiation characteristic at different frequencies is ensured by the artificial magnetic conductor effect in the other direction from Fig. 4, the substrate 601 is an FR4 substrate in which unit cells 102 of an EBG structure are arranged in a matrix of 8x8, and a dipole antenna 602 is disposed in the center region thereof. The dipole antenna 602 resonates at about 3.7 GHz and is fixed at a height of 1.5 mm from the substrate 601 in a direction orthogonal to the direction of the dipole antenna 402 in Fig. Curve 603 represents the radiation efficiency of the antenna, and curve 604 represents the reflection characteristic of the antenna S11. From the characteristics of the curve 603, it can be seen that the radiation efficiency is high at around 3.7 GHz, and from the characteristic of the curve 604, the S11 reflection characteristic is suppressed to a low level at around 3.7 GHz. In other words, it can be seen from these curves that the radiation of the electromagnetic wave is not disturbed by the artificial magnetic conductor effect at the resonance frequency of the dipole antenna 602.

비교를 위해, 도 7은 인공 자기도체 대신 인공 자기도체 효과를 나타내지 않는 도체를 균일하게 배치한 경우의 안테나(702)의 특성을 도시한다. 기판(701)의 면에는 도체가 균일하게 배치되고, 안테나 반사 특성은 거의 전반사 상태이다. 곡선(703)은 안테나의 방사 효율을 나타내고, 곡선(704)은 안테나 S11 반사 특성(안테나의 반사 손실)을 나타낸다. 도 6의 곡선(603)과 비교하면, 곡선(703)은 3.7GHz 부근에서는 방사 효율이 10dB 내지 20dB 저하되는 것을 확인할 수 있다. 또한, 도 6의 곡선(604)과 비교하면, 곡선(704)은 3.7GHz 부근에서는 S11 반사 특성이 10dB 내지 20dB 저하되는 것을 확인할 수 있다.For comparison, FIG. 7 shows the characteristics of the antenna 702 when conductors that do not exhibit the artificial magnetic conductor effect are placed uniformly instead of the artificial magnetic conductor. Conductors are uniformly arranged on the surface of the substrate 701, and the antenna reflection characteristic is almost totally reflected. Curve 703 represents the radiation efficiency of the antenna, and curve 704 represents the reflection characteristic of the antenna S11 (reflection loss of the antenna). Compared with the curve 603 in FIG. 6, it can be seen that the radiation efficiency is reduced by 10 dB to 20 dB in the curve 703 near 3.7 GHz. In comparison with the curve 604 in FIG. 6, it can be seen that the S11 reflection characteristic is lowered by 10 dB to 20 dB in the curve 704 near 3.7 GHz.

상술한 바와 같이, 본 실시예에 따르면 EBG 구조의 면에 원하는 인공 자기도체 효과를 나타내기 위해 복수의 방향으로 복수의 안테나 소자를 배치함으로써, 다중 대역 안테나에서의 높이 소형화를 실현할 수 있다. 구체적으로, 본 실시예에서 도 1에 도시된 바와 같이 이면에 GND 층을 갖는 EBG 기판으로부터 1.2 내지 1.5mm의 근거리에 다이폴 안테나를 배치함으로써 이중 대역 높이-소형화 안테나를 구성할 수 있다. 1.2 내지 1.5mm의 거리는 공진 주파수 대역의 1/4 파장보다 짧다. 또한, 제품에 내장된 안테나의 배치를 설계할 때, 회로 기판 또는 금속 프레임과 같이 안테나 동작을 열화시키는 부재의 근방에도, 방사 특성의 열화를 허용하지 않는 안테나 배치를 실현할 수 있다.As described above, according to the present embodiment, by arranging a plurality of antenna elements in a plurality of directions so as to exhibit a desired artificial magnetic conductor effect on the surface of the EBG structure, it is possible to achieve downsizing of the height in the multi-band antenna. Specifically, in the present embodiment, as shown in Fig. 1, a dual-band height-miniaturization antenna can be constructed by disposing a dipole antenna at a short distance of 1.2 to 1.5 mm from an EBG substrate having a GND layer on its back surface. A distance of 1.2 to 1.5 mm is shorter than a quarter wavelength of the resonance frequency band. Further, when designing the arrangement of the antennas incorporated in the product, it is possible to realize an antenna arrangement that does not allow deterioration of the radiation characteristic even in the vicinity of the member that deteriorates the antenna operation such as a circuit board or a metal frame.

제2 실시예Second Embodiment

도 8은 본 실시예에 따른 이중 대역 높이-소형화 안테나(801)를 도시하는 전체적 개략도이다. 본 실시예에 따른 이중 대역 높이-소형화 안테나(801)는 EBG 구조의 단위 셀(802)을 8x8의 매트릭스 형상으로 배치한 기판을 포함하고, 기판의 중심 영역에 기판에 평행하게 이중 주파수 직교 역 F 안테나(803)가 배치된다. 단위 셀(802)로 구성된 EBG 구조는 제1 실시예에서 설명한 구성과 유사한 구성을 갖고, 인공 자기도체 효과를 나타낸다.8 is an overall schematic diagram showing the dual-band height-miniaturization antenna 801 according to the present embodiment. The dual band height-miniaturization antenna 801 according to the present embodiment includes a substrate in which unit cells 802 of the EBG structure are arranged in a matrix of 8x8, and a double frequency orthogonal transformer F An antenna 803 is disposed. The EBG structure composed of the unit cell 802 has a structure similar to that described in the first embodiment, and exhibits an artificial magnetic conductor effect.

도 9는 이중 주파수 직교 역 F 안테나의 구성을 도시한다. 공급 라인(901)은 예를 들어, EBG 구조를 구성하는 기판의 이면에 배치된 회로 부분으로부터 무선 신호를 전송하는 신호 선이다. 소자(902 및 903)는 2개의 역 F 안테나 소자 도체(904 및 905)의 GND 소자이고, EBG 구조를 구성하는 기판의 이면의 GND 도체에 연결되고, 역 F 안테나의 임피던스 정합을 실행한다. 안테나 소자 도체(904) 및 안테나 소자 도체(905)는 기판으로부터 서로 다른 거리에 배치될 수 있다.9 shows a configuration of a dual frequency orthogonal inverse F antenna. The supply line 901 is, for example, a signal line for transmitting a radio signal from a circuit portion disposed on the back surface of the substrate constituting the EBG structure. The elements 902 and 903 are GND elements of two inverted F antenna element conductors 904 and 905 and are connected to the GND conductor on the backside of the substrate constituting the EBG structure and perform impedance matching of the inverted F antenna. The antenna element conductor 904 and the antenna element conductor 905 may be disposed at different distances from the substrate.

본 실시예에서, 상부 층에 역 F 안테나 소자 도체(904 및 905)가 배치되고, 제2 층에 단위 셀(802)로 구성된 EBG 구조의 패치 도체층이 배치되고, 저부 층에 GND 층이 배치된다. 이 층들을 연결하는 비아를 사용하여, EBG 구조를 구성하는 비아, 급전 라인(901) 및 2 개의 역 F 안테나의 GND 소자(902 및 903)를 일체화한 다층 기판을 구성할 수 있다. 즉, 상술한 구성으로, 본 실시예의 높이-소형화 안테나(801)를 하나의 FR4 기판에 실현할 수 있다. 또한, GND 층보다 아래에 회로 기판층을 배치함으로써, 무선 회로와 일체화된 기판을 구성하는 것도 가능하다.In this embodiment, the inverted F antenna element conductors 904 and 905 are disposed on the upper layer, the patch conductor layer of the EBG structure composed of the unit cells 802 is disposed on the second layer, and the GND layer is disposed on the bottom layer do. A via connecting these layers can be used to constitute a multilayer substrate in which a via, a feed line 901 constituting an EBG structure, and GND elements 902 and 903 of two inverted F antennas are integrated. That is, with the above-described configuration, the height-downsizing antenna 801 of the present embodiment can be realized on one FR4 board. Further, by disposing the circuit substrate layer below the GND layer, it is possible to constitute a substrate integrated with the radio circuit.

상술한 바와 같이, 본 실시예에 따르면 제1 실시예와 유사하게 다중밴드 안테나에서의 높이 소형화를 실현할 수 있다. 또한, 제품에 내장된 안테나의 배치를 설계할 때에, 무선부 이외의 회로용 기판 또는 금속 프레임과 같이 안테나 동작을 열화시키는 부재의 근방에 장착하는 경우에도, 방사 특성의 열화를 허용하지 않는 안테나 배치를 실현할 수 있다.As described above, according to the present embodiment, it is possible to realize downsizing of the height in the multiband antenna similarly to the first embodiment. Further, when designing the arrangement of the antennas incorporated in the product, even when the antenna is mounted in the vicinity of a member for deteriorating the antenna operation such as a circuit board or a metal frame other than the radio portion, Can be realized.

상술한 실시예에서는 높이-소형화 안테나 소자로서 다이폴 안테나 및 역 F 안테나를 사용했지만, 이것에 한정되지 않는 점에 유의한다. 특정한 방향으로 도체로서 공진 방향을 갖는 임의의 안테나 소자에 대해, 공진 방향을 인공 자기도체 방향과 정합시킴으로써, 유사한 효과를 나타낼 수 있다. 또한, 상술한 실시예에서는 직사각형 패치와 함께 머시룸 구조를 갖는 EBG 구조를 사용했지만, 이것에 한정되지 않는다. 복수의 방향으로 인공 자기도체 특성을 나타내는 구조를 실현하는 다른 기술이 있고, 이러한 다른 기술을 사용해도 상기 실시예와 유사한 효과를 나타낼 수 있다. 또한, 상술한 실시예에서는 인공 자기도체의 방향을 직교 방향으로 설정하였으나, 이에 한정되지 않는다. 예를 들어, 45°의 각도 또는 다른 각도로 설정된 방향에 대해서도, 성분으로서 인공 자기도체 효과가 관측되는 임의의 구조에 대해, 안테나 소자의 공진 방향을 인공 자기도체 성분의 방향으로 배치함으로써, 유사한 효과를 나타낼 수 있다.In the above-described embodiment, the dipole antenna and the inverted-F antenna are used as the height-miniaturized antenna element, but the present invention is not limited to this. For any antenna element having a resonance direction as a conductor in a specific direction, a similar effect can be exhibited by matching the resonance direction with the artificial magnetic conductor direction. In the above-described embodiment, the EBG structure having a machine room structure together with the rectangular patch is used, but the present invention is not limited thereto. There are other techniques for realizing a structure that exhibits artificial magnetic conductor characteristics in a plurality of directions, and similar effects to those of the above-described embodiments can be obtained by using these other techniques. In the above-described embodiment, the direction of the artificial magnetic conductor is set to the orthogonal direction, but the present invention is not limited to this. For example, with respect to any structure in which an artificial magnetic conductor effect is observed as a component, even in a direction set at an angle of 45 ° or another angle, by arranging the resonance direction of the antenna element in the direction of the artificial magnetic conductor component, Lt; / RTI >

본 발명은 예시적인 실시예를 참조하여 설명되었으나, 본 발명은 개시된 예시적인 실시예로 제한되지 않음이 이해되어야 한다. 다음 청구항의 범위는 모든 이러한 수정예 및 등가적 구성예 및 기능예를 포함하도록 가장 넓은 해석이 허용되어야 한다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications, equivalent structures and function examples.

Claims (10)

도체층 및 유전체층을 갖는 다층 구조로 구성되며 매트릭스 형상으로 배치된 복수의 셀을 포함하는 셀 구조를 포함하고,
상기 셀 구조 위로 배치되는 제1 안테나 소자 및 제2 안테나 소자를 추가로 포함하는 안테나 디바이스이며,
상기 셀은 제1 방향 및 제2 방향으로 다른 주파수 대역에 대응하는 인공 자기도체 효과를 갖도록 구성되고,
상기 제1 안테나 소자 및 제2 안테나 소자는 각각 제1 방향 및 제2 방향을 따라 상기 셀 구조의 면에 평행하게 배치되는, 안테나 디바이스.
A cell structure including a plurality of cells arranged in a matrix shape and having a multilayer structure having a conductor layer and a dielectric layer,
An antenna device further comprising a first antenna element and a second antenna element disposed over the cell structure,
The cell is configured to have an artificial magnetic conductor effect corresponding to a different frequency band in the first direction and the second direction,
Wherein the first antenna element and the second antenna element are disposed parallel to a plane of the cell structure along a first direction and a second direction, respectively.
제1항에 있어서,
상기 제1 안테나 소자는 상기 제1 방향으로 공진을 나타내고, 상기 제2 안테나 소자는 상기 제2 방향으로 공진을 나타내는, 안테나 소자
The method according to claim 1,
Wherein the first antenna element exhibits resonance in the first direction and the second antenna element exhibits resonance in the second direction,
제1항에 있어서,
상기 제1 안테나 소자는 상기 제1 방향으로 전자파에 대한 반사파 위상이 180°가 되지 않는 주파수 대역폭에서 공진을 나타내고,
상기 제2 안테나 소자는 상기 제2 방향으로 전자파에 대한 반사파 위상이 180°가 되지 않는 주파수 대역폭에서 공진을 나타내는, 안테나 디바이스.
The method according to claim 1,
Wherein the first antenna element exhibits resonance in a frequency bandwidth in which the reflected wave phase with respect to electromagnetic waves in the first direction is not 180 degrees,
Wherein the second antenna element exhibits resonance in a frequency bandwidth in which the reflected wave phase with respect to the electromagnetic wave in the second direction does not become 180 degrees.
제1항에 있어서,
상기 제1 안테나 소자는 상기 제1 방향으로 전자파에 대한 반사파 위상이 45°내지 135°인 주파수 대역폭에서 공진을 나타내고,
상기 제2 안테나 소자는 상기 제2 방향으로 전자파에 대한 반사파 위상이 45°내지 135°인 주파수 대역폭에서 공진을 나타내는, 안테나 디바이스.
The method according to claim 1,
Wherein the first antenna element exhibits resonance in a frequency bandwidth in which the reflected wave phase with respect to the electromagnetic wave in the first direction is 45 to 135,
Wherein the second antenna element exhibits resonance in a frequency bandwidth with a reflected wave phase for electromagnetic waves in the second direction being between 45 degrees and 135 degrees.
제1항에 있어서,
상기 제1 안테나 소자는 상기 셀 구조로부터의 거리가 상기 제1 안테나 소자가 공진을 나타내는 주파수의 파장의 1/4보다 짧도록 배치되고,
상기 제2 안테나 소자는 상기 셀 구조로부터의 거리가 상기 제2 안테나 소자가 공진을 나타내는 주파수의 파장의 1/4보다 짧도록 배치되는, 안테나 디바이스.
The method according to claim 1,
Wherein the first antenna element is disposed such that a distance from the cell structure is shorter than 1/4 of a wavelength of a frequency at which the first antenna element exhibits resonance,
Wherein the second antenna element is disposed such that a distance from the cell structure is shorter than 1/4 of a wavelength of a frequency at which the second antenna element exhibits resonance.
제1항에 있어서,
상기 제1 안테나 소자 및 제2 안테나 소자는 상기 셀 구조로부터 서로 다른 거리에 배치되는, 안테나 디바이스.
The method according to claim 1,
Wherein the first antenna element and the second antenna element are disposed at different distances from the cell structure.
제1항에 있어서,
상기 제1 안테나 소자 및 제2 안테나 소자는 직교 방향으로 공진을 나타내도록 배치되는, 안테나 디바이스.
The method according to claim 1,
Wherein the first antenna element and the second antenna element are arranged to exhibit resonance in an orthogonal direction.
제1항에 있어서,
상기 도체층의 도체는 직사각형인, 안테나 디바이스.
The method according to claim 1,
Wherein the conductors of the conductor layer are rectangular.
제1항에 있어서,
상기 제1 안테나 소자 및 제2 안테나 소자는 각각 다이폴 안테나인, 안테나 디바이스.
The method according to claim 1,
Wherein the first antenna element and the second antenna element are dipole antennas, respectively.
제1항에 있어서,
상기 제1 안테나 소자 및 제2 안테나 소자는 역 F 안테나를 형성하는, 안테나 디바이스.
The method according to claim 1,
Wherein the first antenna element and the second antenna element form an inverted F antenna.
KR1020150038126A 2014-03-20 2015-03-19 Antenna device KR20150110373A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2014-059076 2014-03-20
JP2014059076A JP2015185946A (en) 2014-03-20 2014-03-20 antenna device

Publications (1)

Publication Number Publication Date
KR20150110373A true KR20150110373A (en) 2015-10-02

Family

ID=52684165

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150038126A KR20150110373A (en) 2014-03-20 2015-03-19 Antenna device

Country Status (4)

Country Link
US (1) US9825369B2 (en)
EP (1) EP2922143B1 (en)
JP (1) JP2015185946A (en)
KR (1) KR20150110373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698131B1 (en) * 2015-10-22 2017-01-19 아주대학교 산학협력단 Broadband circularly polarized antenna using with metasurface
KR101895723B1 (en) * 2017-07-11 2018-09-05 홍익대학교 산학협력단 Directional monopole array antenna using hybrid type ground plane
US10594387B2 (en) 2017-04-18 2020-03-17 Ajou University Industry-Academic Cooperation Foundation Solar cell integrated with radio wave transceiving apparatus

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10068181B1 (en) 2015-04-27 2018-09-04 Rigetti & Co, Inc. Microwave integrated quantum circuits with cap wafer and methods for making the same
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10027159B2 (en) * 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US20170270624A1 (en) * 2016-03-15 2017-09-21 Waterfind USA, Inc. Systems and Methods for Imputing Groundwater Usage in a Groundwater Basin
FR3052617B1 (en) * 2016-06-14 2019-04-05 Parrot Drones COMPACT WIFI ANTENNA WITH METAMATERIAL REFLECTOR
JP6742666B2 (en) * 2016-08-17 2020-08-19 日本アンテナ株式会社 Planar antenna
BR112019004165B1 (en) * 2016-10-09 2022-10-11 Huawei Technologies Co., Ltd FREQUENCY AND ANTENNA SELECTIVE SURFACE
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102349607B1 (en) 2016-12-12 2022-01-12 에너저스 코포레이션 Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
CN106911001B (en) * 2017-02-09 2019-10-22 南京邮电大学 A kind of dynamic multi-frequency multi-beam space arbitrary scan reflective array
US10862198B2 (en) 2017-03-14 2020-12-08 R.A. Miller Industries, Inc. Wideband, low profile, small area, circular polarized uhf antenna
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
GB201708242D0 (en) * 2017-05-23 2017-07-05 Univ Bradford Radiation shield
US11121301B1 (en) 2017-06-19 2021-09-14 Rigetti & Co, Inc. Microwave integrated quantum circuits with cap wafers and their methods of manufacture
US11276727B1 (en) 2017-06-19 2022-03-15 Rigetti & Co, Llc Superconducting vias for routing electrical signals through substrates and their methods of manufacture
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
CN109841941B (en) * 2017-11-29 2021-06-04 华为技术有限公司 Dual-band antenna and wireless communication device
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
CN113597723A (en) 2019-01-28 2021-11-02 艾诺格思公司 System and method for miniaturized antenna for wireless power transmission
CN113661660B (en) 2019-02-06 2023-01-24 艾诺格思公司 Method of estimating optimal phase, wireless power transmitting apparatus, and storage medium
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4032169A4 (en) 2019-09-20 2023-12-06 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
JP7182137B2 (en) * 2020-07-31 2022-12-02 パナソニックIpマネジメント株式会社 Antenna device and communication device
US11735819B2 (en) * 2020-10-20 2023-08-22 Qualcomm Incorporated Compact patch and dipole interleaved array antenna
CN113036442B (en) * 2021-03-04 2024-05-14 齐齐哈尔大学 Multifunctional digital super-surface for four-channel wave front regulation and control
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297580B2 (en) 1996-02-26 2002-07-02 キヤノン株式会社 Spread spectrum communication equipment
US6707841B1 (en) 1999-05-27 2004-03-16 Canon Kabushiki Kaisha Spreading code generator
US6483481B1 (en) 2000-11-14 2002-11-19 Hrl Laboratories, Llc Textured surface having high electromagnetic impedance in multiple frequency bands
US6545647B1 (en) * 2001-07-13 2003-04-08 Hrl Laboratories, Llc Antenna system for communicating simultaneously with a satellite and a terrestrial system
US6657592B2 (en) * 2002-04-26 2003-12-02 Rf Micro Devices, Inc. Patch antenna
JP2003338783A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Antenna assembly
JP2005094360A (en) * 2003-09-17 2005-04-07 Kyocera Corp Antenna device and radio communication apparatus
US7145518B2 (en) 2003-09-30 2006-12-05 Denso Corporation Multiple-frequency common antenna
US7079079B2 (en) * 2004-06-30 2006-07-18 Skycross, Inc. Low profile compact multi-band meanderline loaded antenna
WO2008050441A1 (en) 2006-10-26 2008-05-02 Panasonic Corporation Antenna device
KR100859718B1 (en) 2006-12-04 2008-09-23 한국전자통신연구원 Dipole tag antenna mountable on metallic objects using artificial magnetic conductorAMC for wireless identification and wireless identification system using the same dipole tag antenna
CN101743760B (en) 2007-07-13 2013-12-25 松下电器产业株式会社 Diaphragm for speaker, speaker using diaphragm, and system using speaker
JP5023853B2 (en) 2007-07-13 2012-09-12 パナソニック株式会社 Speaker diaphragm, speaker using the same, and electronic device and apparatus using the speaker
JP5307610B2 (en) 2009-04-17 2013-10-02 キヤノン株式会社 Wireless communication system and communication method
JP2011055036A (en) * 2009-08-31 2011-03-17 Kumamoto Univ Planar antenna and polarization system of planar antenna
JP5723218B2 (en) 2010-07-13 2015-05-27 キヤノン株式会社 Loop antenna
US9431709B2 (en) * 2012-04-03 2016-08-30 Wemtec, Inc. Artificial magnetic conductor antennas with shielded feedlines
JP2013243428A (en) 2012-05-17 2013-12-05 Canon Inc Structure
JP5969821B2 (en) 2012-05-25 2016-08-17 キヤノン株式会社 Antenna device
JP6204747B2 (en) 2013-08-21 2017-09-27 キヤノン株式会社 Electromagnetic band gap device and electronic circuit
JP2015043526A (en) * 2013-08-26 2015-03-05 株式会社国際電気通信基礎技術研究所 Antenna apparatus and electromagnetic wave energy recovery apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698131B1 (en) * 2015-10-22 2017-01-19 아주대학교 산학협력단 Broadband circularly polarized antenna using with metasurface
US10594387B2 (en) 2017-04-18 2020-03-17 Ajou University Industry-Academic Cooperation Foundation Solar cell integrated with radio wave transceiving apparatus
KR101895723B1 (en) * 2017-07-11 2018-09-05 홍익대학교 산학협력단 Directional monopole array antenna using hybrid type ground plane

Also Published As

Publication number Publication date
JP2015185946A (en) 2015-10-22
EP2922143B1 (en) 2020-02-12
US20150270622A1 (en) 2015-09-24
US9825369B2 (en) 2017-11-21
EP2922143A1 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
KR20150110373A (en) Antenna device
EP3841637B1 (en) Antennas including multi-resonance cross-dipole radiating elements and related radiating elements
US20200274256A1 (en) Ultra compact ultra broad band dual polarized base station antenna
US8368595B2 (en) Metamaterial loaded antenna devices
JP4384102B2 (en) Portable radio device and antenna device
US10516218B2 (en) Dual-band radiation system and antenna array thereof
Deng et al. Design and performance of a double-layer miniaturized-element frequency selective surface
US20150303576A1 (en) Miniaturized Patch Antenna
KR101315546B1 (en) Dual-band omnidirectional circularly polarized wave antenna using metamaterial
KR20180034576A (en) Broadband antennas including a substrate-integrated waveguide
KR20150032972A (en) Antenna device and electronic device with the same
US20080266179A1 (en) Electrical connection elements provided in the amc structure of an antenna arrangement
EP2963736A1 (en) Multi-band antenna element and antenna
Baba et al. Design of miniaturized multiband patch antenna using CSRR for WLAN/WiMAX applications
Haraz et al. New dense dielectric patch array antenna for future 5G short-range communications
Aminu-Baba et al. Microstrip antenna with CSRR ground structure
Chen et al. Bandwidth enhancement using dual-band frequency selective surface with Jerusalem cross elements for 2.4/5.8 GHz WLAN antennas
Alibakhshikenari et al. A technique to suppress mutual coupling in densely packed antenna arrays using metamaterial supersubstrate
Pal et al. Low-profile steerable loop antenna with capacitively coupled feeds
EP3588676B1 (en) Dual antenna support and isolation enhancer
Ahmad et al. Performance analysis of a wearable and dual band planar antenna using a mushroom-like electromagentic bandgap (EBG) ground plane
US10490897B1 (en) Frequency selective surface antenna element
Palreddy et al. An octave bandwidth electromagnetic band gap (EBG) structure
Dong et al. Miniaturized zeroth order resonance antenna over a reactive impedance surface
US20190379127A1 (en) Terminal Antenna and Terminal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application