JP7182137B2 - Antenna device and communication device - Google Patents

Antenna device and communication device Download PDF

Info

Publication number
JP7182137B2
JP7182137B2 JP2020131023A JP2020131023A JP7182137B2 JP 7182137 B2 JP7182137 B2 JP 7182137B2 JP 2020131023 A JP2020131023 A JP 2020131023A JP 2020131023 A JP2020131023 A JP 2020131023A JP 7182137 B2 JP7182137 B2 JP 7182137B2
Authority
JP
Japan
Prior art keywords
conductor
antenna
antenna device
artificial magnetic
amc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020131023A
Other languages
Japanese (ja)
Other versions
JP2022027182A (en
Inventor
太一 濱邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020131023A priority Critical patent/JP7182137B2/en
Priority to US17/373,133 priority patent/US11677136B2/en
Publication of JP2022027182A publication Critical patent/JP2022027182A/en
Application granted granted Critical
Publication of JP7182137B2 publication Critical patent/JP7182137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface

Description

本開示は、アンテナ装置および通信装置に関する。 The present disclosure relates to antenna devices and communication devices.

特許文献1は、人工磁気導体(Artificial Magnetic Conductor;以下、AMCという)を利用したアンテナ装置を開示している。 Patent Literature 1 discloses an antenna device using an artificial magnetic conductor (hereinafter referred to as AMC).

特開2015-70542号公報JP 2015-70542 A

本開示は、周囲が金属構造体により覆われた配置でも、動作周波数の広帯域化とアンテナ利得の向上とを両立するアンテナ装置および通信装置を提供する。 The present disclosure provides an antenna device and a communication device that achieve both broadening of the operating frequency band and improvement of antenna gain even in an arrangement surrounded by a metal structure.

本開示は、給電アンテナ導体と、非給電アンテナ導体と、接地導体と、前記給電アンテナ導体、前記非給電アンテナ導体および前記接地導体により狭設される第1の人工磁気導体と、前記第1の人工磁気導体と並べて配置され、前記接地導体と導通する少なくとも1つの第2の人工磁気導体と、を備える、アンテナ装置を提供する。 The present disclosure includes a feeding antenna conductor, a non-feeding antenna conductor, a ground conductor, a first artificial magnetic conductor narrowly provided by the feeding antenna conductor, the non-feeding antenna conductor and the ground conductor, and the first and at least one second artificial magnetic conductor arranged side by side with the artificial magnetic conductor and conducting with the ground conductor.

また、本開示は、アンテナ装置と、表示部を保護する前面パネルと、前記アンテナ装置の筐体より大きな窓開口部を有し、前記窓開口部により囲まれて前記前面パネルの一部に固定された前記アンテナ装置を包囲する金属フレームと、を備え、前記アンテナ装置は、給電アンテナ導体と、非給電アンテナ導体と、接地導体と、前記給電アンテナ導体、前記非給電アンテナ導体および前記接地導体により狭設される第1の人工磁気導体と、前記第1の人工磁気導体と並べて配置され、前記接地導体と導通する少なくとも1つの第2の人工磁気導体と、を有する、通信装置を提供する。 Further, the present disclosure includes an antenna device, a front panel that protects a display unit, and a window opening larger than a housing of the antenna device, and is surrounded by the window opening and fixed to a part of the front panel. a metal frame surrounding the antenna device, the antenna device comprising: a feeding antenna conductor; a non-feeding antenna conductor; a ground conductor; Provided is a communication device having a narrowly arranged first artificial magnetic conductor and at least one second artificial magnetic conductor arranged side by side with the first artificial magnetic conductor and conducting with the ground conductor.

本開示によれば、アンテナ装置および通信装置において、周囲が金属構造体により覆われた配置でも、動作周波数の広帯域化とアンテナ利得の向上とを両立できる。 Advantageous Effects of Invention According to the present disclosure, in an antenna device and a communication device, it is possible to achieve both widening of the operating frequency band and improvement of the antenna gain even when the periphery is covered with a metal structure.

実施の形態1に係るアンテナ装置が搭載された通信装置の外観を示す斜視図1 is a perspective view showing the appearance of a communication device equipped with an antenna device according to Embodiment 1; FIG. 図1に示すモニタ上方中央部の正面図Front view of the upper central part of the monitor shown in FIG. 比較例に係るアンテナ装置とパネルとを接着する両面テープの厚さの変化例を示す側面図The side view which shows the example of a change of the thickness of the double-sided tape which adheres the antenna apparatus and panel which concern on a comparative example. 実施の形態1に係るアンテナ装置の外観を示す斜視図1 is a perspective view showing the appearance of an antenna device according to Embodiment 1; 図4の矢印A-A線方向から見たアンテナ装置の内部構造を示す縦断面図A vertical cross-sectional view showing the internal structure of the antenna device viewed from the direction of the arrow AA in FIG. 実施の形態1に係るアンテナ装置の層構成の一例を示す図A diagram showing an example of the layer configuration of the antenna device according to the first embodiment. 実施の形態1に係るアンテナ装置の層構成の一例を示す図A diagram showing an example of the layer configuration of the antenna device according to the first embodiment. 比較例に係るアンテナ装置の層構成の一例を示す図A diagram showing an example of a layer configuration of an antenna device according to a comparative example. AMCの多段化の概念を模式的に示す図Diagram schematically showing the concept of multistage AMC 実施の形態1に係るアンテナ装置の放射パターンのシミュレーション結果の一例を示す図FIG. 4 is a diagram showing an example of a simulation result of the radiation pattern of the antenna device according to Embodiment 1; 比較例に係るアンテナ装置の放射パターンのシミュレーション結果の一例を示す図FIG. 11 is a diagram showing an example of a simulation result of a radiation pattern of an antenna device according to a comparative example; ピークゲインの周波数特性の測定結果の一例を示す図A diagram showing an example of measurement results of frequency characteristics of peak gain VSWRの周波数特性のシミュレーション結果の一例を示す図FIG. 11 is a diagram showing an example of a simulation result of frequency characteristics of VSWR;

以下、適宜図面を参照しながら、本開示に係るアンテナ装置および通信装置を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments specifically disclosing an antenna device and a communication device according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art. It should be noted that the accompanying drawings and the following description are provided for a thorough understanding of the present disclosure by those skilled in the art and are not intended to limit the claimed subject matter.

以下の実施の形態1では、2.4GHz帯(例えば2400~2500MHz)の周波数を動作周波数とし、Bluetooth(登録商標)、Wi-Fi(登録商標)等の無線LAN(Local Area Network)の規格に準拠した無線通信が可能なアンテナ装置を例示して説明する。但し、実施の形態1に係るアンテナ装置は、前述した規格以外の他の規格に準拠した周波数帯の無線通信を行ってもよい。 In the first embodiment described below, the frequency of the 2.4 GHz band (for example, 2400 to 2500 MHz) is used as the operating frequency, and wireless LAN (Local Area Network) standards such as Bluetooth (registered trademark) and Wi-Fi (registered trademark) are used. An antenna device capable of compliant wireless communication will be described as an example. However, the antenna device according to Embodiment 1 may perform wireless communication in a frequency band complying with standards other than the standards described above.

図1は、実施の形態1に係るアンテナ装置100が搭載された通信装置SM1の外観を示す斜視図である。図2は、図1に示すモニタ上方中央部UP1の正面図である。以下の説明において、x軸、y軸、z軸は図1に示す方向とする。x軸はアンテナ装置100あるいは通信装置SM1の厚み方向を示す。y軸はアンテナ装置100あるいは通信装置SM1の幅方向を示す。z軸はアンテナ装置100あるいは通信装置SM1の長手方向を示す。 FIG. 1 is a perspective view showing the appearance of a communication device SM1 equipped with an antenna device 100 according to Embodiment 1. FIG. FIG. 2 is a front view of the monitor upper central portion UP1 shown in FIG. In the following description, x-axis, y-axis, and z-axis are the directions shown in FIG. The x-axis indicates the thickness direction of the antenna device 100 or the communication device SM1. The y-axis indicates the width direction of the antenna device 100 or the communication device SM1. The z-axis indicates the longitudinal direction of the antenna device 100 or communication device SM1.

図1に示す通信装置SM1は、例えば、Bluetooth(登録商標)の無線通信が利用可能な航空機内の乗客用座席の背面部に取り付けられたシートモニタである。なお、アンテナ装置100が配置される通信装置SM1は、上述したシートモニタに限定されない。図1に示すように、通信装置SM1は、ガラス等のパネルPNL1を用いたタッチパネルTP1(表示部の一例)が前面側に設けられ、ユーザである乗客がタッチパネルTP1に対面(対向)するように乗客用座席に座った状態で利用される。つまり、通信装置SM1は、画像等のデータをタッチパネルTP1に表示したり、ユーザの指等による操作をタッチパネルTP1で受け付けたりする。また、通信装置SM1は、アンテナ装置100を介して、ユーザが保持しているスマートフォンあるいはタブレット等の通信機器(図示略)との間でBluetooth(登録商標)の無線通信を行うことが可能である。 The communication device SM1 shown in FIG. 1 is, for example, a seat monitor attached to the back of a passenger seat in an aircraft capable of using Bluetooth (registered trademark) wireless communication. Note that the communication device SM1 in which the antenna device 100 is arranged is not limited to the seat monitor described above. As shown in FIG. 1, a communication device SM1 is provided with a touch panel TP1 (an example of a display unit) using a panel PNL1 made of glass or the like on the front side. It is used while sitting on the passenger seat. That is, the communication device SM1 displays data such as an image on the touch panel TP1, and accepts an operation by a user's finger or the like on the touch panel TP1. In addition, the communication device SM1 can perform Bluetooth (registered trademark) wireless communication with a communication device (not shown) such as a smartphone or a tablet held by the user via the antenna device 100. .

アンテナ装置100は、アンテナ装置100が実装されたプリント配線基板1(図4参照)が保護用の樹脂カバーCV1に包囲され、通信装置SM1の筐体のモニタ上方中央部UP1に固定的に配置される。アンテナ装置100は、通信装置SM1の前面(例えばパネルPNL1)から後側の乗客用座席の正面方向(図10および図11参照)に向けて、Bluetooth(登録商標)の2.4GHz帯の偏波(電磁波)を放射する。アンテナ装置100の詳細な構成例については後述する。 The antenna device 100 is fixedly arranged in the central part UP1 above the monitor of the housing of the communication device SM1, with the printed wiring board 1 (see FIG. 4) on which the antenna device 100 is mounted being surrounded by a protective resin cover CV1. be. Antenna device 100 transmits polarized waves in the 2.4 GHz band of Bluetooth (registered trademark) from the front (for example, panel PNL1) of communication device SM1 toward the front of the rear passenger seat (see FIGS. 10 and 11). (Electromagnetic waves). A detailed configuration example of the antenna device 100 will be described later.

また図1には、モニタ上方中央部UP1の要部が示されている。モニタ上方中央部UP1は、ガラス等のパネルPNL1の背面部に接着固定された金属フレームFRM1により構成されている。図1のモニタ上方中央部UP1の要部および図2ではパネルPNL1の図示を省略している。金属フレームFRM1は、x軸方向の断面形状が中空の略長方形状となる、中空の略直方体形状の金属構造体である。例えば図1の金属フレームFRM1は、4つの異なる長方形状の金属片の端部がそれぞれ隣接する金属片と直交するように溶接等で接合された形状を有している。 Further, FIG. 1 shows the main part of the monitor upper central portion UP1. The monitor upper central portion UP1 is composed of a metal frame FRM1 adhesively fixed to the back portion of a panel PNL1 made of glass or the like. 1 and the panel PNL1 are omitted in FIG. The metal frame FRM1 is a hollow, substantially rectangular parallelepiped metal structure whose cross-sectional shape in the x-axis direction is a hollow, substantially rectangular shape. For example, the metal frame FRM1 in FIG. 1 has a shape in which four different rectangular metal pieces are joined by welding or the like such that their ends are perpendicular to adjacent metal pieces.

金属フレームFRM1は、yz平面においてアンテナ装置100および樹脂カバーCV1よりも広い面積を有する開口部(例えば前方窓部WD1)を有する。つまり、金属フレームFRM1の前面側には開口部(例えば前方窓部WD1)が形成されている。金属フレームFRM1は、4つの異なる金属片によってアンテナ装置100を包囲する(図2および図3参照)。つまり、アンテナ装置100はアンテナ装置100の周囲が金属フレームFRM1により囲まれて配置されるので、金属の影響を受け易く、アンテナとしての性能(例えば利得あるいはVSWR(Voltage Standing Wave Ratio)の周波数特性)の低下が懸念される。 Metal frame FRM1 has an opening (for example, front window WD1) having a larger area than antenna device 100 and resin cover CV1 in the yz plane. That is, an opening (eg, front window WD1) is formed on the front side of the metal frame FRM1. Metal frame FRM1 surrounds antenna device 100 with four different metal pieces (see FIGS. 2 and 3). That is, since the antenna device 100 is surrounded by the metal frame FRM1, the antenna device 100 is easily affected by the metal, and performance as an antenna (for example, gain or frequency characteristics of VSWR (Voltage Standing Wave Ratio)) is affected. There are concerns about a decline in

このため、実施の形態1では、アンテナ装置100は、アンテナとしての性能(例えば利得あるいはVSWRの周波数特性)の低下を抑制するために、アンテナ装置100の前面側が前方窓部WD1によって金属フレームFRM1との接触が無い状態で両面テープTPE1(図3参照)によりパネルPNL1に接着される。これにより、アンテナ装置100とパネルPNL1とが両面テープTPE1を介して直に固定され、アンテナ装置100は金属フレームFRM1の影響を抑制可能となる。 For this reason, in the first embodiment, the antenna device 100 has a metal frame FRM1 formed on the front side of the antenna device 100 by the front window portion WD1 in order to suppress deterioration in antenna performance (for example, gain or VSWR frequency characteristics). The panel PNL1 is adhered to the panel PNL1 by a double-sided tape TPE1 (see FIG. 3) without any contact between the two. Thereby, the antenna device 100 and the panel PNL1 are directly fixed via the double-sided tape TPE1, and the antenna device 100 can suppress the influence of the metal frame FRM1.

図3は、比較例に係るアンテナ装置100zとパネルPNLzとを接着する両面テープTPEzの厚さの変化例を示す側面図である。比較例に係るアンテナ装置100zの詳細な構成例については図7を参照して後述する。 FIG. 3 is a side view showing an example of change in thickness of the double-sided tape TPEz for bonding the antenna device 100z and the panel PNLz according to the comparative example. A detailed configuration example of the antenna device 100z according to the comparative example will be described later with reference to FIG.

アンテナ装置100zはx軸方向の断面形状が略コの字状の金属フレームFRMzにより覆われ、両面テープTPEzによってガラス等のパネルPNLzに接着固定されている。パネルPNLzと接着固定される前面側の金属フレームFRMzの厚さは2.6mmである。両面テープTPEzの厚さは0.15mmなので、アンテナ装置100zの給電点は2.6mm厚の金属フレームFRMzに対してかなり前面側(パネルPNLzに近い位置)に位置している。これにより、アンテナ装置100zは金属フレームFRMzに覆われても、アンテナ装置100zからの放射パターンRPNzから分かるようにアンテナとしての性能(例えば利得)の劣化はそれほど見られない。 The antenna device 100z is covered with a metal frame FRMz having a substantially U-shaped cross section in the x-axis direction, and is adhesively fixed to a panel PNLz made of glass or the like with a double-sided tape TPEz. The thickness of the front-side metal frame FRMz, which is adhesively fixed to the panel PNLz, is 2.6 mm. Since the thickness of the double-sided tape TPEz is 0.15 mm, the feed point of the antenna device 100z is located on the front side (close to the panel PNLz) with respect to the metal frame FRMz with a thickness of 2.6 mm. As a result, even if the antenna device 100z is covered with the metal frame FRMz, the antenna performance (for example, gain) does not degrade so much as can be seen from the radiation pattern RPNz from the antenna device 100z.

ところが、実際の使用実績を想定した設計時の考察を経て、両面テープTPEzの厚さが0.15mmであるとアンテナ装置100zの位置を固定する際の機構的信頼性(例えばアンテナ装置100zが落ちにくいことあるいは位置ずれしにくいこと)が不十分であることが分かった。 However, through consideration during the design process assuming actual usage records, it was found that if the thickness of the double-sided tape TPEz is 0.15 mm, the mechanical reliability when fixing the position of the antenna device 100z (for example, the antenna device 100z may be lowered). It has been found that the "hardness or misalignment" is insufficient.

そこで、実施の形態1に至る経緯として、両面テープTPEzの厚さが従来の0.15mmから0.8mmに変更され、厚さ0.8mmの両面テープTPE1によってアンテナ装置100はパネルPNL1に接着固定された。これにより、アンテナ装置100zの位置を固定する際の機構的信頼性(上述参照)を確保することができると思われる。但し、両面テープTPE1の厚さが0.15mmから0.8mmと厚くなったことで、アンテナ装置100zはパネルPNLzからより離間することになる(つまり、図3に示す方向bに移動することになる)。このため、アンテナ装置100zは、金属フレームFRMz(特にパネルPNLzと接着される前面側の金属フレーム)の影響を受け、アンテナ装置100zの放射パターンRPNzが劣化する。 Therefore, as the background to the first embodiment, the thickness of the double-sided tape TPEz is changed from 0.15 mm to 0.8 mm, and the antenna device 100 is adhesively fixed to the panel PNL1 by the double-sided tape TPE1 having a thickness of 0.8 mm. was done. Thus, it is considered that the mechanical reliability (see above) can be ensured when fixing the position of the antenna device 100z. However, since the thickness of the double-sided tape TPE1 is increased from 0.15 mm to 0.8 mm, the antenna device 100z is further separated from the panel PNLz (that is, moved in the direction b shown in FIG. 3). Become). Therefore, the antenna device 100z is affected by the metal frame FRMz (particularly, the metal frame on the front side adhered to the panel PNLz), and the radiation pattern RPNz of the antenna device 100z deteriorates.

そこで、以上の経緯を踏まえ、パネルPNL1の背面部に厚さ0.8mm程の両面テープTPE1を用いて接着固定された場合(つまり、パネルPNL1からアンテナが離れた場合)でも、周囲の金属フレームFRM1の影響を抑制してアンテナとしての性能(例えば利得あるいはVSWRの周波数特性)の劣化を抑制するアンテナ装置100(図6参照),100a(図7参照)の例を説明する。 Therefore, based on the above background, even if the back part of the panel PNL1 is adhesively fixed using a double-sided tape TPE1 with a thickness of about 0.8 mm (that is, when the antenna is separated from the panel PNL1), the surrounding metal frame Examples of antenna devices 100 (see FIG. 6) and 100a (see FIG. 7) that suppress the influence of FRM1 and suppress deterioration of antenna performance (for example, gain or VSWR frequency characteristics) will be described.

図4は、実施の形態1に係るアンテナ装置100の外観を示す斜視図である。図5は、図4の矢印A-A線方向から見たアンテナ装置100の内部構造を示す縦断面図である。図6は、実施の形態1に係るアンテナ装置100の層構成の一例を示す図である。図7は、実施の形態1に係るアンテナ装置100aの層構成の一例を示す図である。図8は、比較例に係るアンテナ装置100zの層構成の一例を示す図である。図4~図8において、x軸、y軸およびz軸は図1の図示に従うとする。 FIG. 4 is a perspective view showing the appearance of the antenna device 100 according to the first embodiment. FIG. 5 is a vertical cross-sectional view showing the internal structure of the antenna device 100 viewed from the direction of arrow AA in FIG. FIG. 6 is a diagram showing an example of the layer configuration of the antenna device 100 according to the first embodiment. FIG. 7 is a diagram showing an example of the layer configuration of the antenna device 100a according to the first embodiment. FIG. 8 is a diagram showing an example of a layer configuration of an antenna device 100z according to a comparative example. 4 to 8, the x-axis, y-axis and z-axis follow the illustration in FIG.

アンテナ装置100,100a,100zの一例として、ダイポールアンテナを例示して説明する。ダイポールアンテナは、複数の層を有する積層基板であるプリント配線基板1上に形成され、表面の金属箔をエッチング等することによってダイポールアンテナのパターンを形成している。複数の層のそれぞれは、例えば銅箔あるいはガラスエポキシ等で構成される。アンテナ装置100,100a,100zは、アンテナ層L1、AMC層L2およびグランド層L3を少なくとも備える構成である。 A dipole antenna will be described as an example of the antenna devices 100, 100a, and 100z. The dipole antenna is formed on a printed wiring board 1 which is a laminated board having a plurality of layers, and the pattern of the dipole antenna is formed by etching the metal foil on the surface. Each of the plurality of layers is made of, for example, copper foil or glass epoxy. Antenna devices 100, 100a, and 100z are configured to include at least an antenna layer L1, an AMC layer L2, and a ground layer L3.

図4に示すように、アンテナ装置100,100aは、プリント配線基板1と、給電アンテナの一例としてのストリップ導体であるアンテナ導体2と、非給電アンテナの一例としてのストリップ導体であるアンテナ導体3と、アンテナ導体2,3の側方に配置される無給電導体6と、を備える。アンテナ装置100,100aのプリント配線基板1は、シートモニタ等の通信装置SM1のモニタ上方中央部UP1に配置される(図1参照)。 As shown in FIG. 4, the antenna device 100, 100a includes a printed wiring board 1, an antenna conductor 2 which is a strip conductor as an example of a feeding antenna, and an antenna conductor 3 which is a strip conductor as an example of a non-feeding antenna. , and a parasitic conductor 6 arranged laterally of the antenna conductors 2 and 3 . The printed wiring board 1 of the antenna devices 100 and 100a is arranged in the monitor upper central portion UP1 of the communication device SM1 such as a seat monitor (see FIG. 1).

アンテナ導体2,3は、それぞれプリント配線基板1のビア導体4,5に接続される。ビア導体4は、例えば導電性を有する銅箔を用いて形成され、アンテナ導体2の給電点Q1と無線通信回路(図示略;例えばプリント配線基板1の裏面1bに実装される信号源回路)との間の給電線を構成する。ビア導体5は、例えば導電性を有する銅箔を用いて形成され、アンテナ導体3の給電点Q2と上述した無線通信回路(図示略)との間の接地線を構成する。 Antenna conductors 2 and 3 are connected to via conductors 4 and 5 of printed wiring board 1, respectively. The via conductor 4 is formed using, for example, a conductive copper foil, and is connected to a feeding point Q1 of the antenna conductor 2 and a wireless communication circuit (not shown; for example, a signal source circuit mounted on the back surface 1b of the printed wiring board 1). constitute the feeder between The via conductor 5 is formed using a conductive copper foil, for example, and constitutes a ground line between the feeding point Q2 of the antenna conductor 3 and the wireless communication circuit (not shown).

アンテナ導体2,3のそれぞれは、例えばダイポールアンテナを構成するよう略長方形状(長方形状を含む)を有し、それらの長手方向が一直線上でz方向に延在する。また、アンテナ導体2,3のそれぞれは、アンテナ導体2,3の対向する給電点Q1,Q2側の端部(言い換えると、給電側端部)がアンテナ導体2、3のそれぞれから放射される電磁波の相殺を極力少なくするために所定間隔だけ離隔するように、プリント配線基板1の表面1aに形成される。 Each of the antenna conductors 2 and 3 has a substantially rectangular shape (including a rectangular shape) so as to constitute, for example, a dipole antenna, and their longitudinal directions extend in the z-direction on a straight line. In addition, the antenna conductors 2 and 3 are configured so that the ends of the antenna conductors 2 and 3 facing the feeding points Q1 and Q2 (in other words, feeding side ends) are electromagnetic waves radiated from the antenna conductors 2 and 3, respectively. are formed on the surface 1a of the printed wiring board 1 so as to be spaced apart by a predetermined distance in order to minimize the cancellation of .

なお、アンテナ導体2,3のそれぞれの給電側端部とは反対のそれぞれの端部(具体的には、アンテナ装置100,100aをyz平面において平面視したときに、最大に互いに離隔する端部)を以下、アンテナ導体2,3のそれぞれの「先端側端部」という。 Note that the ends of the antenna conductors 2 and 3 opposite to the feeding-side ends (specifically, the ends that are maximally separated from each other when the antenna devices 100 and 100a are viewed on the yz plane ) are hereinafter referred to as “tip end portions” of the antenna conductors 2 and 3, respectively.

無給電導体6は、アンテナ導体2,3のそれぞれの配置方向(z方向)に並列し、アンテナ導体2,3のそれぞれの側面の一方側に配置され、アンテナ導体2,3と電気的に分離されている。無給電導体6とアンテナ導体2,3のそれぞれとの間は、同様にそれぞれから放射される電磁波の相殺を極力少なくするために所定の距離だけ確保される。所定の距離は、例えばアンテナ装置100,100aが対応する動作周波数帯の電磁波の1波長の4分の1以内の距離である。無給電導体6は、アンテナ導体2,3と同様にAMC8と静電結合するため、アンテナ導体2,3とAMC8との間の静電容量を増加させ、動作周波数を低域側にシフトさせることが可能である。無給電導体6は、アンテナ導体2,3と電気的に分離されている。 The parasitic conductor 6 is arranged in parallel in the arrangement direction (z direction) of each of the antenna conductors 2 and 3, is arranged on one side of each side surface of the antenna conductors 2 and 3, and is electrically separated from the antenna conductors 2 and 3. It is A predetermined distance is ensured between the parasitic conductor 6 and each of the antenna conductors 2 and 3 in order to similarly minimize cancellation of electromagnetic waves radiated from each. The predetermined distance is, for example, a distance within a quarter of one wavelength of electromagnetic waves in the operating frequency band that the antenna devices 100 and 100a support. Since the parasitic conductor 6 is electrostatically coupled with the AMC 8 in the same manner as the antenna conductors 2 and 3, the electrostatic capacitance between the antenna conductors 2 and 3 and the AMC 8 is increased, and the operating frequency is shifted to the low frequency side. is possible. The parasitic conductor 6 is electrically separated from the antenna conductors 2 and 3 .

なお、無給電導体6の大きさ、形状、数等は特に限定されず、AMC8から見てアンテナ導体2,3と同じ側にあり、AMC8と静電結合すればよく、無給電導体6がAMC8上に配置されず、表面には、アンテナ導体2,3のみであってもよい。 The size, shape, number, and the like of the parasitic conductors 6 are not particularly limited. There may be only the antenna conductors 2, 3 on the surface, not arranged on top.

ビア導体4,5は、それぞれプリント配線基板1の表面1aから裏面1bにわたって厚み方向(x方向)に形成された貫通孔に銅箔等の導体を充填することで成形されている。ビア導体4,5は、それぞれ給電点Q1,Q2の直下の実質的に対向する位置に形成される。アンテナ導体2は、給電アンテナとして機能するため、ビア導体4を介して、プリント配線基板1の裏面1b上の無線通信回路(上述参照)の給電端子に接続される。アンテナ導体3は、非給電アンテナとして機能するため、ビア導体5を介して、プリント配線基板1内の接地導体10および無線通信回路(上述参照)の接地端子に接続される。 The via conductors 4 and 5 are formed by filling conductors such as copper foil into through holes formed in the thickness direction (x direction) from the front surface 1a to the back surface 1b of the printed wiring board 1, respectively. Via conductors 4 and 5 are formed at substantially opposing positions immediately below feeding points Q1 and Q2, respectively. Since the antenna conductor 2 functions as a power feeding antenna, the antenna conductor 2 is connected to the power feeding terminal of the wireless communication circuit (see above) on the rear surface 1 b of the printed wiring board 1 through the via conductor 4 . Since the antenna conductor 3 functions as a non-powered antenna, it is connected to the ground conductor 10 in the printed wiring board 1 and the ground terminal of the wireless communication circuit (see above) through the via conductor 5 .

図5において、プリント配線基板1は、誘電体基板7と、AMC8(人工磁気導体:Artificial Magnetic Conductor)と、誘電体基板9と、接地導体10と、誘電体基板11とが積層された構成である。プリント配線基板1の積層構成は一例である。ここで、誘電体基板7,9,11は、それぞれ直流成分に対して絶縁性を有する基板であり、例えばガラスエポキシ等で形成される。 In FIG. 5, the printed wiring board 1 has a structure in which a dielectric substrate 7, an AMC 8 (Artificial Magnetic Conductor), a dielectric substrate 9, a ground conductor 10, and a dielectric substrate 11 are laminated. be. The laminated structure of the printed wiring board 1 is an example. Here, the dielectric substrates 7, 9, and 11 are substrates having insulating properties against DC components, and are formed of, for example, glass epoxy.

AMC8は、PMC(Perfect Magnetic Conductor)特性を有する人工磁気導体であり、所定の金属パターンにより形成される。AMC8は、アンテナ導体2,3および無給電導体6とそれぞれ静電結合するので、アンテナの薄型化および高利得化ができる。AMC8には、z軸方向に対向するビア導体4,5の中間部に、AMC8の厚さ方向(x軸方向)に貫通しかつAMC8の幅方向(y軸方向)の端部近傍まで延在するスリット81が形成される(図6~図8参照)。実施の形態1では、スリット81は、3つのスリットが幅方向の中央部分で連結する形状を有する(図6~図8参照)。 AMC8 is an artificial magnetic conductor having PMC (Perfect Magnetic Conductor) characteristics, and is formed of a predetermined metal pattern. Since the AMC 8 is electrostatically coupled to the antenna conductors 2 and 3 and the parasitic conductor 6, the antenna can be made thinner and gain higher. In the AMC 8, the intermediate portions of the via conductors 4 and 5 facing each other in the z-axis direction are penetrated in the thickness direction (x-axis direction) of the AMC 8 and extend to the vicinity of the ends in the width direction (y-axis direction) of the AMC 8. A slit 81 is formed (see FIGS. 6 to 8). In Embodiment 1, the slit 81 has a shape in which three slits are connected at the central portion in the width direction (see FIGS. 6 to 8).

また、AMC8には、スリット81用の孔と、ビア導体4を貫通させかつ内側AMC8i2(後述参照)と電気的に絶縁して形成されるビア導体絶縁用孔15と、ビア導体5を貫通させかつ内側AMC8i1(後述参照)と電気的に接続する孔と、ビア導体V1,V2(後述参照)を貫通させかつ外側AMC8o1,8o2(後述参照)のそれぞれと電気的に接続する孔とがそれぞれ形成されている。 In addition, the AMC 8 has a hole for the slit 81, a via-conductor insulating hole 15 formed through the via-conductor 4 and electrically insulated from the inner AMC 8i2 (see later), and a via-conductor 5 passing through. A hole electrically connected to the inner AMC 8i1 (see below) and a hole through which the via conductors V1 and V2 (see below) penetrate and are electrically connected to the outer AMCs 8o1 and 8o2 (see below) are respectively formed. It is

ビア導体4は、円柱形状を有し、アンテナ導体2をアンテナとして駆動するための電力を供給するための給電線であり、プリント配線基板1の表面1aに形成されたアンテナ導体2を、無線通信回路(上述参照)の給電端子に電気的に接続する。ビア導体4は、AMC8および接地導体10のそれぞれとは電気的に接続しないように、AMC8および接地導体10のそれぞれに形成されたビア導体絶縁用孔15,16と実質的に同軸となるように形成される。したがって、ビア導体4の直径は、ビア導体絶縁用孔15,16の直径よりも小さい。 The via conductor 4 has a cylindrical shape and is a feeder line for supplying electric power for driving the antenna conductor 2 as an antenna. It is electrically connected to the power supply terminal of the circuit (see above). Via conductor 4 is substantially coaxial with via-conductor insulating holes 15 and 16 formed in AMC 8 and ground conductor 10, respectively, so as not to be electrically connected to AMC 8 and ground conductor 10, respectively. It is formed. Therefore, the diameter of via conductor 4 is smaller than the diameter of via conductor insulating holes 15 and 16 .

ビア導体5は、円柱形状を有し、アンテナ導体3を無線通信回路(上述参照)の接地端子に電気的に接続する接地線であり、プリント配線基板1の表面1aに形成されたアンテナ導体3を、無線通信回路(上述参照)の接地端子に電気的に接続する。ビア導体5は、AMC8および接地導体10のそれぞれと電気的に接続される。 The via conductor 5 has a cylindrical shape and is a ground line that electrically connects the antenna conductor 3 to the ground terminal of the wireless communication circuit (see above). is electrically connected to the ground terminal of the radio communication circuit (see above). Via conductor 5 is electrically connected to each of AMC 8 and ground conductor 10 .

接地導体10は、導電性を有する銅箔を用いて形成されている。接地導体10には、ビア導体4を貫通させかつ接地導体10と電気的に絶縁して形成されるビア導体絶縁用孔16と、スリット81に対向するように設けられたコネクタ端子接続孔82と、ビア導体5を貫通させかつ接地導体10と電気的に接続する孔と、ビア導体V1,V2(後述参照)を貫通させかつ接地導体10と電気的に接続する孔とがそれぞれ形成されている。コネクタ端子接続孔82は、無線通信回路(上述参照)のコネクタ端子と対向して固定する時の位置合わせ用に設けられている。 The ground conductor 10 is formed using a conductive copper foil. In the ground conductor 10, a via-conductor insulating hole 16 is formed through which the via-conductor 4 penetrates and is electrically insulated from the ground conductor 10; , a hole through which the via conductor 5 penetrates and is electrically connected to the ground conductor 10, and a hole through which the via conductors V1 and V2 (see later) penetrate and are electrically connected to the ground conductor 10 are formed. . The connector terminal connection hole 82 is provided for positioning when fixing the connector terminal of the wireless communication circuit (see above) facing the connector terminal.

また、実施の形態1に係るアンテナ装置100,100a(図6,図7参照)は、比較例に係るアンテナ装置100z(図8参照)と比べると、アンテナ導体2,3からAMC8の端部までの長さは異なるものの、スリット81をそれぞれの端部に有する内側AMC8i1,8i2以外に、ビア導体V1,V2を介してそれぞれ接地導体10に導通する外側AMC8o1,8o2を有する。実施の形態1に係るアンテナ装置100,100a(図6および図7参照)では、アンテナ導体2,3から内側AMC8i1,8i2の端部までの長さは19.5mmであり、比較例に係るアンテナ装置100z(図8参照)では、アンテナ導体2,3からAMC8i1z,8i2zの端部までの長さは21.5mmである。 Further, in the antenna devices 100 and 100a (see FIGS. 6 and 7) according to the first embodiment, compared to the antenna device 100z (see FIG. 8) according to the comparative example, the length from the antenna conductors 2 and 3 to the end of the AMC 8 is greater. In addition to the inner AMCs 8i1 and 8i2 having slits 81 at their ends, they have outer AMCs 8o1 and 8o2 that are electrically connected to the ground conductor 10 via via conductors V1 and V2, respectively, although they have different lengths. In the antenna devices 100, 100a (see FIGS. 6 and 7) according to the first embodiment, the length from the antenna conductors 2, 3 to the ends of the inner AMCs 8i1, 8i2 is 19.5 mm, and the antenna according to the comparative example In device 100z (see FIG. 8), the length from antenna conductors 2, 3 to the ends of AMCs 8i1z, 8i2z is 21.5 mm.

言い換えると、アンテナ装置100zとアンテナ装置100,100aとの違いはAMC8の数(あるいは面積)である。これにより、アンテナ装置100,100aのAMC8の配置パターンの数(あるいは面積)は、外側AMC8o2あるいは外側AMC8o1,8o2の分だけアンテナ装置100zのAMCの配置パターンよりも多く(広く)なっている。後述するが、これらの外側AMCが設けられたことで、実施の形態1に係るアンテナ装置100,100aは、図3のように厚さ0.8mのような両面テープTPE1で接着固定された場合でも、アンテナとしての性能(例えば利得あるいはVSWRの周波数特性)の劣化を抑制可能としている(図12および図13参照)。なお、図7に示すように、外側AMC8o1,8o2のうち少なくとも一方(具体的には、給電点Q1側の外側AMC8o2)だけが設けられた場合でも、同様にアンテナとしての性能(例えば利得あるいはVSWRの周波数特性)の劣化を抑制可能となることが判明した。 In other words, the difference between the antenna device 100z and the antenna devices 100 and 100a is the number (or area) of the AMC8. As a result, the number (or area) of the arrangement patterns of the AMCs 8 of the antenna devices 100 and 100a is larger (wider) than the arrangement pattern of the AMCs of the antenna device 100z by the outer AMC 8o2 or the outer AMCs 8o1 and 8o2. As will be described later, when these outer AMCs are provided, the antenna devices 100 and 100a according to the first embodiment are adhesively fixed with a double-sided tape TPE1 having a thickness of 0.8 m as shown in FIG. However, it is possible to suppress deterioration of antenna performance (for example, gain or VSWR frequency characteristics) (see FIGS. 12 and 13). As shown in FIG. 7, even when at least one of the outer AMCs 8o1 and 8o2 (specifically, the outer AMC 8o2 on the feeding point Q1 side) is provided, the antenna performance (for example, gain or VSWR It was found that it is possible to suppress the deterioration of the frequency characteristics of

ビア導体V1,V3は、円柱形状を有し、アンテナ導体3から例えば19.5mm離れた位置に、誘電体基板7、外側AMC8o1、誘電体基板9、接地導体10および誘電体基板11を貫通するように設けられている。ビア導体V1,V3は、導電性を有する銅箔を用いて形成され、外側AMC8o1と接地導体10との間の接地線を構成する(図5および図6参照)。外側AMC8o1は、内側AMC8i1に対し、所定長のギャップ83を介して離間するように設けられている。ギャップ83は、例えば動作周波数帯の電磁波の波長の8分の1以下である。また、ビア導体V1,V3は、外側AMC8o1に最も近い内側AMC8i1の端部(上述した先端側端部)から所定長ほど離間した位置に設けられている。ここで、所定長とは、例えば動作周波数帯の電磁波の波長の8分の1以下である。 The via conductors V1 and V3 have a columnar shape and penetrate the dielectric substrate 7, the outer AMC 8o1, the dielectric substrate 9, the ground conductor 10 and the dielectric substrate 11 at a distance of, for example, 19.5 mm from the antenna conductor 3. is provided as follows. Via conductors V1 and V3 are formed using conductive copper foil, and form ground lines between outer AMC 8o1 and ground conductor 10 (see FIGS. 5 and 6). The outer AMC 8o1 is provided so as to be separated from the inner AMC 8i1 via a gap 83 having a predetermined length. The gap 83 is, for example, one-eighth or less of the wavelength of the electromagnetic waves in the operating frequency band. In addition, the via conductors V1 and V3 are provided at positions spaced apart by a predetermined length from the end of the inner AMC 8i1 closest to the outer AMC 8o1 (the tip end described above). Here, the predetermined length is, for example, 1/8 or less of the wavelength of the electromagnetic wave in the operating frequency band.

同様に、ビア導体V2,V4は、円柱形状を有し、アンテナ導体2から例えば19.5mm離れた位置に、誘電体基板7、外側AMC8o1、誘電体基板9、接地導体10および誘電体基板11を貫通するように設けられている。ビア導体V2,V4は、導電性を有する銅箔を用いて形成され、外側AMC8o2と接地導体10との間の接地線を構成する(図5参照)。外側AMC8o2は、内側AMC8i2に対し、所定長のギャップ84を介して離間するように設けられている。ギャップ84は、ギャップ83と同様に、例えば0.2mm程度である。また、ビア導体V2,V4は、外側AMC8o2に最も近い内側AMC8i2の端部(上述した先端側端部)から所定長ほど離間した位置に設けられている。ここで、所定長とは、例えば動作周波数帯の電磁波の波長の8分の1以下である。 Similarly, the via conductors V2 and V4 have a columnar shape, and are arranged at positions separated from the antenna conductor 2 by, for example, 19.5 mm. is provided to pass through the The via conductors V2 and V4 are formed using a conductive copper foil, and constitute ground lines between the outer AMC 8o2 and the ground conductor 10 (see FIG. 5). The outer AMC 8o2 is provided so as to be separated from the inner AMC 8i2 via a gap 84 of a predetermined length. The gap 84 is, like the gap 83, about 0.2 mm, for example. In addition, the via conductors V2 and V4 are provided at positions spaced apart by a predetermined length from the end of the inner AMC 8i2 closest to the outer AMC 8o2 (the tip end described above). Here, the predetermined length is, for example, 1/8 or less of the wavelength of the electromagnetic wave in the operating frequency band.

実施の形態1では、ビア導体V1,V2を介して接地導体10に導通する外側AMC8o1,8o2が設けられたことで、外側AMC8o1,8o2が設けられない場合(図8参照)に比べて、厚さ0.8mm程度の両面テープTPE1でパネルPNL1に接着されても周囲の金属フレームFRM1の影響を抑制して、アンテナ装置100の性能(例えば利得)を動作周波数帯において向上可能となる(図12参照)。また、アンテナ装置100によると、Bluetooth(登録商標)の規格に準拠した理想的な動作周波数と一致あるいは近づくように動作周波数帯を低域側にシフトさせることが可能となる。これは、例えば図13のVSWR特性において、最小値(ピーク)が得られる時の動作周波数が低域側にシフトすることを意味する。例えば、接地導体10にそれぞれ導通する外側AMC8o1,8o2が設けられたことで、アンテナ導体3からAMC8および接地導体10に流れる電流の経路(面積)がより増加したことことに起因すると考えられる。 In the first embodiment, the provision of the outer AMCs 8o1 and 8o2 that are electrically connected to the ground conductor 10 through the via conductors V1 and V2 reduces the thickness compared to the case where the outer AMCs 8o1 and 8o2 are not provided (see FIG. 8). Even if the panel PNL1 is adhered to the panel PNL1 with a double-sided tape TPE1 having a thickness of about 0.8 mm, the influence of the surrounding metal frame FRM1 can be suppressed, and the performance (for example, gain) of the antenna device 100 can be improved in the operating frequency band (FIG. 12). reference). Further, according to the antenna device 100, it is possible to shift the operating frequency band to the low frequency side so as to match or approach the ideal operating frequency conforming to the Bluetooth (registered trademark) standard. This means that, for example, in the VSWR characteristics of FIG. 13, the operating frequency at which the minimum value (peak) is obtained shifts to the low frequency side. For example, provision of the outer AMCs 8o1 and 8o2 electrically connected to the ground conductor 10 is thought to increase the path (area) of the current flowing from the antenna conductor 3 to the AMC 8 and the ground conductor 10 .

図9は、AMCの多段化の概念を模式的に示す図である。AMCは、アンテナ装置に使用される際、アンテナ装置の動作周波数帯においてPMC(完全磁気導体)の特性を有するように形成される。完全磁気導体は、非常に高い表面インピーダンス特性を有するので、表面における磁界の接線成分がゼロになるという特性を有する。このため、AMCは、アンテナ装置の動作周波数帯の周波数を有する電磁波がAMCの表面に沿って伝搬することを抑制できる。これにより、AMCからアンテナ素子への不要な放射が抑制されてアンテナ装置としての性能の向上が可能となる。 FIG. 9 is a diagram schematically showing the concept of multistage AMC. When used in an antenna device, the AMC is formed to have PMC (Perfect Magnetic Conductor) characteristics in the operating frequency band of the antenna device. A perfect magnetic conductor has a very high surface impedance property, so that the tangential component of the magnetic field at the surface is zero. Therefore, the AMC can suppress propagation of electromagnetic waves having frequencies in the operating frequency band of the antenna device along the surface of the AMC. As a result, unnecessary radiation from the AMC to the antenna element is suppressed, and the performance of the antenna device can be improved.

したがって、図9に示すように、給電点Q1がそれぞれ形成されたアンテナ導体が配置されたAMCパターンA1,A2以外に、AMCパターンA1の隣にAMCパターンA3,A5,…、AMCパターンA2の隣にAMCパターンA4,A6,…がそれぞれ並んで配置(多段化)されることで、理想的な性能を有するアンテナ装置ILA1が得られる。つまり、無限周期でAMCパターンが配置されることでアンテナ装置ILA1の動作周波数帯の広帯域化が図られ、利得も向上する。ここでいう多段化とは、アンテナ装置において、複数のAMCパターンが隣接するように並べて配置されることをいう。 Therefore, as shown in FIG. 9, AMC patterns A3, A5, . By arranging the AMC patterns A4, A6, . In other words, by arranging the AMC patterns in infinite cycles, the operating frequency band of the antenna device ILA1 can be widened, and the gain can be improved. The term "multistage" as used herein means that a plurality of AMC patterns are arranged side by side in the antenna device.

しかし、このようなアンテナ装置ILA1ではAMCパターンの数(あるいは面積)が多く(広く)なり、小型化が困難であるという難点がある。例えば、通信装置SM1等のように、装置内に配置されるアンテナ装置の配置スペースは限られることが多い。 However, in such an antenna device ILA1, the number (or area) of AMC patterns is increased (widened), and there is a problem that miniaturization is difficult. For example, like the communication device SM1, the installation space of an antenna device arranged in the device is often limited.

そこで、実施の形態1に係るアンテナ装置100では、小型化を実現可能となるように、給電点Q1,Q2がそれぞれ形成されたアンテナ導体2,3が配置されたAMCパターン(具体的には内側AMC8i2,8i1)に並んで、接地導体10と導通する外側AMC8o2,8o1が配置される。つまり、実施の形態1に係るアンテナ装置100では、比較例に係るアンテナ装置100zに比べて、外側AMC8o1,8o2が追加されている。外側AMC8o1はビア導体V1,V3を介して接地導体10と導通する。外側AMC8o2はビア導体V2,V4を介して接地導体10と導通する。これにより、アンテナ装置100は、内側AMC8i1,8i2と外側AMC8o1,8o2とが並んで配置されることでAMC8が多段化され、周囲に金属フレームFRM1等の金属構造体が配置されている場合でもその影響を抑制して、アンテナとしての性能(例えば利得あるいはVSWRの周波数特性)が向上する。 Therefore, in the antenna device 100 according to Embodiment 1, an AMC pattern (specifically, an inner Outer AMCs 8o2, 8o1 electrically connected to the ground conductor 10 are arranged side by side with the AMCs 8i2, 8i1). That is, in the antenna device 100 according to Embodiment 1, outer AMCs 8o1 and 8o2 are added compared to the antenna device 100z according to the comparative example. Outer AMC 8o1 is electrically connected to ground conductor 10 through via conductors V1 and V3. Outer AMC 8o2 is electrically connected to ground conductor 10 through via conductors V2 and V4. As a result, in the antenna device 100, the inner AMCs 8i1 and 8i2 and the outer AMCs 8o1 and 8o2 are arranged side by side so that the AMCs 8 are arranged in multiple stages, and even if a metal structure such as a metal frame FRM1 is arranged around it, the AMCs 8i1 and 8i2 are arranged side by side. The influence is suppressed, and performance as an antenna (for example, gain or frequency characteristics of VSWR) is improved.

図10は、実施の形態1に係るアンテナ装置100の放射パターンPTY1のシミュレーション結果の一例を示す図である。図11は、比較例に係るアンテナ装置100zの放射パターンPTYzのシミュレーション結果の一例を示す図である。放射パターンは、アンテナ装置の位置を中心とした場合のアンテナ装置から放射される電磁波の方位(方向)ごとの強さ(利得)を示す。図10および図11のそれぞれにおいて、ゼロ度の示す方向は正面方向を示す。ここでいう正面方向は、通信装置SM1から後部の乗客用座席に向く方向を示す。図11に示すように、比較例に係るアンテナ装置100zの放射パターンPTYzによると、正面方向の利得は-2.0dBiである。しかし、図10に示すように、実施の形態1に係るアンテナ装置100の放射パターンPTY1によると、正面方向の利得は-0.8dBiに改善している。つまり、アンテナ装置100は、正面方向にいるユーザの所持する通信機器との間で高利得な無線通信を行える。 FIG. 10 is a diagram showing an example of simulation results of the radiation pattern PTY1 of the antenna device 100 according to the first embodiment. FIG. 11 is a diagram showing an example of simulation results of the radiation pattern PTYz of the antenna device 100z according to the comparative example. The radiation pattern indicates the strength (gain) for each azimuth (direction) of electromagnetic waves radiated from the antenna device when the position of the antenna device is the center. In each of FIGS. 10 and 11, the direction indicated by zero degrees indicates the front direction. The front direction here indicates the direction from the communication device SM1 to the rear passenger seat. As shown in FIG. 11, according to the radiation pattern PTYz of the antenna device 100z according to the comparative example, the gain in the front direction is -2.0 dBi. However, as shown in FIG. 10, according to the radiation pattern PTY1 of the antenna device 100 according to Embodiment 1, the gain in the front direction is improved to -0.8 dBi. That is, the antenna device 100 can perform high-gain wireless communication with a communication device owned by a user in the front direction.

図12は、ピークゲインの周波数特性PTY2,PTY2zの測定結果の一例を示す図である。図12の横軸は周波数(Frequency)[MHz]を示し、図12の縦軸はピークゲイン(Peak Gain)[dBi]を示す。周波数特性PTY2は実施の形態1に係るアンテナ装置100のピークゲインを示し、周波数特性PTY2zは比較例に係るアンテナ装置100zのピークゲインを示す。図12に示すように、アンテナ装置100,100zの動作周波数帯をBluetooth(登録商標)の周波数帯(2400~2480MHz)とする場合、アンテナ装置100zのピークゲインは高域側(例えば2440~2480MHz)において低下してしまう。一方、アンテナ装置100のピークゲインは無線通信の対象とする動作周波数帯において安定して高く推移する。これにより、アンテナ装置100は、アンテナ装置100zに比べて、無線通信の対象とする動作周波数帯において高利得な無線通信を行える。 FIG. 12 is a diagram showing an example of measurement results of the peak gain frequency characteristics PTY2 and PTY2z. The horizontal axis of FIG. 12 indicates frequency (Frequency) [MHz], and the vertical axis of FIG. 12 indicates peak gain (Peak Gain) [dBi]. A frequency characteristic PTY2 indicates the peak gain of the antenna device 100 according to the first embodiment, and a frequency characteristic PTY2z indicates the peak gain of the antenna device 100z according to the comparative example. As shown in FIG. 12, when the operating frequency band of the antenna devices 100 and 100z is the Bluetooth (registered trademark) frequency band (2400 to 2480 MHz), the peak gain of the antenna device 100z is on the high frequency side (eg, 2440 to 2480 MHz). will decrease in On the other hand, the peak gain of the antenna device 100 remains stably high in the operating frequency band targeted for wireless communication. Accordingly, the antenna device 100 can perform wireless communication with higher gain in the operating frequency band targeted for wireless communication than the antenna device 100z.

図13は、VSWRの周波数特性PTY3,PTY4のシミュレーション結果の一例を示す図である。VSWRは、アンテナ装置での電圧定在波比を示す。図13の横軸は周波数(Frequency)[MHz]を示し、図13の縦軸はVSWRを示す。周波数特性PTY3は、図7に示すアンテナ装置100a(つまり、内側AMC8i1,8i2に外側AMC8o2だけが追加された構成)のVSWR特性を示す。周波数特性PTY4は、図6に示すアンテナ装置100(つまり、内側AMC8i1,8i2に外側AMC8o1,8o2の両方が追加された構成)のVSWR特性を示す。図13に示すように、実施の形態1に係るアンテナ装置100,100aによると、VSWRの値が3以下となる範囲(つまり動作周波数帯)が広く広帯域化が図られるとともに、動作周波数の中心が低域側(例えば2450MHz近傍)にシフトしている。このため、例えばBluetooth(登録商標)の無線周波数(上述した2.4GHz帯)に対応するアンテナ装置を構成できる。つまり、実施の形態1に係るアンテナ装置100,100aによれば、例えばBluetooth(登録商標)の無線周波数(上述した2.4GHz帯)に対応した無線通信を行える。 FIG. 13 is a diagram showing an example of simulation results of frequency characteristics PTY3 and PTY4 of VSWR. VSWR indicates the voltage standing wave ratio in the antenna device. The horizontal axis of FIG. 13 indicates frequency (Frequency) [MHz], and the vertical axis of FIG. 13 indicates VSWR. A frequency characteristic PTY3 indicates a VSWR characteristic of the antenna device 100a shown in FIG. 7 (that is, a configuration in which only the outer AMC 8o2 is added to the inner AMCs 8i1 and 8i2). A frequency characteristic PTY4 indicates a VSWR characteristic of the antenna device 100 shown in FIG. 6 (that is, a configuration in which both the outer AMCs 8o1 and 8o2 are added to the inner AMCs 8i1 and 8i2). As shown in FIG. 13, according to the antenna devices 100 and 100a according to the first embodiment, the range in which the value of VSWR is 3 or less (that is, the operating frequency band) is widened, and the center of the operating frequency is It is shifted to the low frequency side (for example, around 2450 MHz). Therefore, for example, it is possible to configure an antenna device compatible with the radio frequency of Bluetooth (registered trademark) (2.4 GHz band described above). That is, according to the antenna devices 100 and 100a according to the first embodiment, wireless communication corresponding to the radio frequency of Bluetooth (registered trademark) (2.4 GHz band described above) can be performed, for example.

以上により、実施の形態1に係るアンテナ装置100,100aは、給電アンテナ導体(例えばアンテナ導体2)と、非給電アンテナ導体(例えばアンテナ導体3)と、接地導体10と、給電アンテナ導体、非給電アンテナ導体および接地導体10により狭設される第1の人工磁気導体(例えば内側AMC8i1,8i2)と、を備える。また、アンテナ装置100には、第1の人工磁気導体と並列に配置され、接地導体10と導通する少なくとも1つの第2の人工磁気導体(例えば外側AMC8o2)を備える。また、実施の形態1に係る通信装置SM1は、アンテナ装置100,100aと、表示部(例えばタッチパネルTP1)を保護する前面パネル(例えばパネルPNL1)と、アンテナ装置100の筐体より大きな窓開口部(例えば前方窓部WD1)を有し、窓開口部により囲まれて前面パネルの一部に固定されたアンテナ装置100を包囲する金属フレームFRM1と、を備える。 As described above, the antenna devices 100 and 100a according to the first embodiment include a feeding antenna conductor (for example, the antenna conductor 2), a non-feeding antenna conductor (for example, the antenna conductor 3), a ground conductor 10, a feeding antenna conductor, a non-feeding A first artificial magnetic conductor (for example, the inner AMCs 8i1 and 8i2) narrowly provided by the antenna conductor and the ground conductor 10. Moreover, the antenna device 100 is provided with at least one second artificial magnetic conductor (for example, the outside AMC 8 o 2 ) that is arranged in parallel with the first artificial magnetic conductor and conducts with the ground conductor 10 . Further, the communication device SM1 according to the first embodiment includes antenna devices 100 and 100a, a front panel (for example, panel PNL1) that protects a display unit (for example, touch panel TP1), and a window opening larger than the housing of antenna device 100. (For example, a front window portion WD1) and a metal frame FRM1 that surrounds the antenna device 100 that is surrounded by the window opening and fixed to a portion of the front panel.

これにより、アンテナ装置100,100aあるいは通信装置SM1は、第1の人工磁気導体より外側に少なくとも第2の人工磁気導体が配置されることでAMC8が実質的に多段化(図9参照)され、周囲に金属フレームFRM1等の金属構造体が配置されている場合でもその影響を抑制して、アンテナとしての性能(例えば利得あるいはVSWRの周波数特性)を向上できる。したがって、アンテナ装置100,100aは、動作周波数の広帯域化とアンテナ利得の向上とを両立できる。 As a result, in the antenna device 100, 100a or the communication device SM1, at least the second artificial magnetic conductor is arranged outside the first artificial magnetic conductor, so that the AMC 8 is substantially multistage (see FIG. 9), Even if a metal structure such as a metal frame FRM1 is arranged around, the influence thereof can be suppressed, and the performance as an antenna (for example, gain or VSWR frequency characteristics) can be improved. Therefore, the antenna devices 100 and 100a can achieve both widening of the operating frequency and improvement of the antenna gain.

また、第2の人工磁気導体は、給電アンテナ導体(例えばアンテナ導体2)と対向する第1の人工磁気導体(例えば内側AMC8i2)に近い側の端部から所定長(例えば動作周波数帯の波長の8分の1以下の長さ)ほど離れた位置に設けられたビア導体(例えばビア導体V2,V4)を介して接地導体10と導通する。これにより、第1の人工磁気導体の近くで第2の人工磁気導体が接地導体10と導通するように配置されるので、第1の人工磁気導体および第2の人工磁気導体が多段化されてアンテナ装置100,100aの特性が向上する。 In addition, the second artificial magnetic conductor has a predetermined length (for example, the wavelength of the operating frequency band) from the end near the first artificial magnetic conductor (for example, inner AMC8i2) facing the feeding antenna conductor (for example, antenna conductor 2). It is electrically connected to the ground conductor 10 via via conductors (for example, via conductors V2 and V4) provided at positions separated by about one-eighth or less of the length. Thereby, since the second artificial magnetic conductor is arranged to conduct with the ground conductor 10 near the first artificial magnetic conductor, the first artificial magnetic conductor and the second artificial magnetic conductor are multi-staged The characteristics of the antenna devices 100 and 100a are improved.

また、第2の人工磁気導体は、2つ設けられる。それぞれの第2の人工磁気導体(例えば外側AMC8o1,8o2)は、最も近い第1の人工磁気導体(例えば内側AMC8i1,8i2)より外側に配置される。ここでいう外側とは、アンテナ層L1を構成するアンテナ導体2,3より離れる方向を示す。これにより、アンテナ装置100は、第2の人工磁気導体が1つだけ配置されたアンテナ装置100aに比べて、動作周波数帯を低域側にシフトさせることができる(図13参照)。 Moreover, two 2nd artificial magnetism conductors are provided. Each second artificial magnetic conductor (eg outer AMC 8o1, 8o2) is arranged outside the closest first artificial magnetic conductor (eg inner AMC 8i1, 8i2). The term "outside" as used herein refers to a direction away from the antenna conductors 2 and 3 forming the antenna layer L1. Thereby, the antenna device 100 can shift the operating frequency band to the low frequency side compared to the antenna device 100a in which only one second artificial magnetic conductor is arranged (see FIG. 13).

また、アンテナ装置100には、給電アンテナ導体(例えばアンテナ導体2)と非給電アンテナ導体(例えばアンテナ導体3)との間の位置に実質的に対向する、AMC8の位置にはスリット81が形成される。これにより、アンテナ装置100は、小型化されたダイポールアンテナの利得を高めることができる。 Also, in the antenna device 100, a slit 81 is formed at the position of the AMC 8, which substantially faces the position between the feeding antenna conductor (for example, the antenna conductor 2) and the non-feeding antenna conductor (for example, the antenna conductor 3). be. Thereby, the antenna device 100 can increase the gain of the miniaturized dipole antenna.

また、アンテナ装置100は、給電アンテナ導体(例えばアンテナ導体2)および非給電アンテナ導体(例えばアンテナ導体3)が配置される基板(例えば誘電体基板7)上に設けられる無給電導体6をさらに備える。これにより、無給電導体6は、アンテナ導体2,3とAMC8との間の静電容量を増加させ、アンテナ装置100の動作周波数を低減側にシフトすることが可能である。したがって、アンテナ装置100は、小型化されても、基本波帯域(2.4GHz帯)の無線周波数の電磁波を送受信可能である。 Further, the antenna device 100 further includes a parasitic conductor 6 provided on a substrate (eg, dielectric substrate 7) on which a feeding antenna conductor (eg, antenna conductor 2) and a non-feeding antenna conductor (eg, antenna conductor 3) are arranged. . As a result, the parasitic conductor 6 increases the capacitance between the antenna conductors 2 and 3 and the AMC 8, and the operating frequency of the antenna device 100 can be shifted to the lower side. Therefore, even if the antenna device 100 is miniaturized, it is capable of transmitting and receiving radio frequency electromagnetic waves in the fundamental band (2.4 GHz band).

以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present disclosure is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications, modifications, substitutions, additions, deletions, and equivalents within the scope of the claims. Naturally, it is understood that it belongs to the technical scope of the present disclosure. In addition, the constituent elements of the various embodiments described above may be combined arbitrarily without departing from the gist of the invention.

また、上述した実施の形態1,2では、アンテナ装置101,102は、航空機内に設置されるシートモニタ内に搭載される例を示した。しかし、シートモニタに限らず、例えばコードレス電話機の親機あるいは子機、電子棚札(例えば小売店の陳列棚に貼付される、商品の売価が表示されたカード型の電子機器)、スマートスピーカ、車載機器、電子レンジ、冷蔵庫等の多くのIoT(Internet Of Things)機器等に搭載されてもよい。 Further, in the first and second embodiments described above, the antenna devices 101 and 102 are mounted in the seat monitor installed in the aircraft. However, not limited to seat monitors, for example, cordless telephone base unit or slave unit, electronic shelf label (for example, a card-type electronic device that displays the selling price of a product attached to a display shelf in a retail store), smart speakers, It may be installed in many IoT (Internet Of Things) devices such as in-vehicle devices, microwave ovens, and refrigerators.

また、上述した実施の形態1に係るアンテナ装置100,100aは、電磁波の送受信がともに可能なアンテナ装置の例を説明したが、例えば送信専用あるいは受信専用のアンテナ装置に適用してもよい。 Further, the antenna devices 100 and 100a according to Embodiment 1 described above are examples of antenna devices capable of both transmission and reception of electromagnetic waves, but they may be applied to, for example, transmission-only or reception-only antenna devices.

本開示は、周囲が金属構造体により覆われた配置でも、動作周波数の広帯域化とアンテナ利得の向上とを両立するアンテナ装置および通信装置として有用である。 INDUSTRIAL APPLICABILITY The present disclosure is useful as an antenna device and a communication device that achieve both broadening of the operating frequency band and improvement of antenna gain even in an arrangement surrounded by a metal structure.

1 プリント配線基板
1a 表面
1b 裏面
2、3 アンテナ導体
4、5、V1、V2、V3、V4 ビア導体
6 無給電導体
7、9、11 誘電体基板
8 AMC
8i1、8i2 内側AMC
8o1、8o2 外側AMC
10 接地導体
15、16 ビア導体絶縁用孔
81 スリット
82 コネクタ端子接続孔
83、84 ギャップ
100 アンテナ装置
L1 アンテナ層
L2 AMC層
L3 グランド層
SM1 通信装置
Q1、Q2 給電点
1 Printed wiring board 1a Front surface 1b Back surface 2, 3 Antenna conductors 4, 5, V1, V2, V3, V4 Via conductor 6 Parasitic conductors 7, 9, 11 Dielectric substrate 8 AMC
8i1, 8i2 inner AMC
8o1, 8o2 Outer AMC
10 ground conductors 15, 16 via conductor insulating hole 81 slit 82 connector terminal connection hole 83, 84 gap 100 antenna device L1 antenna layer L2 AMC layer L3 ground layer SM1 communication device Q1, Q2 feeding point

Claims (6)

給電アンテナ導体と、
非給電アンテナ導体と、
接地導体と、
前記給電アンテナ導体、前記非給電アンテナ導体および前記接地導体により狭設される第1の人工磁気導体と、
前記第1の人工磁気導体と並べて配置され、前記接地導体と導通する少なくとも1つの第2の人工磁気導体と、を備える、
アンテナ装置。
a feeding antenna conductor;
a non-fed antenna conductor;
a ground conductor;
a first artificial magnetic conductor narrowly provided by the feeding antenna conductor, the non-feeding antenna conductor and the ground conductor;
At least one second artificial magnetic conductor arranged side by side with the first artificial magnetic conductor and conducting with the ground conductor,
antenna device.
前記第2の人工磁気導体は、前記給電アンテナ導体と対向する前記第1の人工磁気導体に近い側の端部から所定長ほど離れた位置に設けられたビア導体を介して前記接地導体と導通する、
請求項1に記載のアンテナ装置。
The second artificial magnetic conductor is electrically connected to the ground conductor via a via conductor provided at a position separated by a predetermined length from an end portion of the second artificial magnetic conductor facing the feeding antenna conductor and closer to the first artificial magnetic conductor. do,
The antenna device according to claim 1.
前記第2の人工磁気導体は、2つ設けられ、
それぞれの前記第2の人工磁気導体は、前記第1の人工磁気導体より外側に配置される、
請求項1に記載のアンテナ装置。
The second artificial magnetic conductor is provided with two,
Each said second artificial magnetic conductor is arranged outside said first artificial magnetic conductor,
The antenna device according to claim 1.
前記給電アンテナ導体と前記非給電アンテナ導体との間の位置に実質的に対向する、前記第1の人工磁気導体の位置にはスリットが形成される、
請求項1に記載のアンテナ装置。
A slit is formed at a position of the first artificial magnetic conductor substantially opposite a position between the fed antenna conductor and the non-fed antenna conductor,
The antenna device according to claim 1.
前記給電アンテナ導体および前記非給電アンテナ導体が配置される基板上に設けられる無給電導体、をさらに備える、
請求項1~4のうちいずれか一項に記載のアンテナ装置。
a parasitic conductor provided on a substrate on which the feeding antenna conductor and the non-feeding antenna conductor are arranged;
The antenna device according to any one of claims 1-4.
アンテナ装置と、
表示部を保護する前面パネルと、
前記アンテナ装置の筐体より大きな窓開口部を有し、前記窓開口部により囲まれて前記前面パネルの一部に固定された前記アンテナ装置を包囲する金属フレームと、を備え、
前記アンテナ装置は、
給電アンテナ導体と、
非給電アンテナ導体と、
接地導体と、
前記給電アンテナ導体、前記非給電アンテナ導体および前記接地導体により狭設される第1の人工磁気導体と、
前記第1の人工磁気導体と並べて配置され、前記接地導体と導通する少なくとも1つの第2の人工磁気導体と、を有する、
通信装置。
an antenna device;
a front panel that protects the display;
a metal frame that has a window opening larger than the housing of the antenna device and surrounds the antenna device that is surrounded by the window opening and fixed to a portion of the front panel;
The antenna device is
a feeding antenna conductor;
a non-fed antenna conductor;
a ground conductor;
a first artificial magnetic conductor narrowly provided by the feeding antenna conductor, the non-feeding antenna conductor and the ground conductor;
At least one second artificial magnetic conductor arranged in parallel with the first artificial magnetic conductor and conducting with the ground conductor,
Communication device.
JP2020131023A 2020-07-31 2020-07-31 Antenna device and communication device Active JP7182137B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020131023A JP7182137B2 (en) 2020-07-31 2020-07-31 Antenna device and communication device
US17/373,133 US11677136B2 (en) 2020-07-31 2021-07-12 Antenna device and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020131023A JP7182137B2 (en) 2020-07-31 2020-07-31 Antenna device and communication device

Publications (2)

Publication Number Publication Date
JP2022027182A JP2022027182A (en) 2022-02-10
JP7182137B2 true JP7182137B2 (en) 2022-12-02

Family

ID=80003522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020131023A Active JP7182137B2 (en) 2020-07-31 2020-07-31 Antenna device and communication device

Country Status (2)

Country Link
US (1) US11677136B2 (en)
JP (1) JP7182137B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107782A (en) 2012-11-29 2014-06-09 Nippon Dengyo Kosaku Co Ltd Antenna
JP2015070542A (en) 2013-09-30 2015-04-13 マスプロ電工株式会社 Antenna device
JP2015185946A (en) 2014-03-20 2015-10-22 キヤノン株式会社 antenna device
WO2019107382A1 (en) 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Antenna device
JP2019186788A (en) 2018-04-12 2019-10-24 学校法人金沢工業大学 Antenna and communication device
JP2020098979A (en) 2018-12-17 2020-06-25 パナソニックIpマネジメント株式会社 Antenna device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514680B (en) * 2014-03-17 2015-12-21 Wistron Neweb Corp Multiband antenna and multiband antenna configuration method
US9871301B2 (en) * 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10581153B2 (en) * 2017-09-11 2020-03-03 Apple Inc. Electronic device antennas including conductive display structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107782A (en) 2012-11-29 2014-06-09 Nippon Dengyo Kosaku Co Ltd Antenna
JP2015070542A (en) 2013-09-30 2015-04-13 マスプロ電工株式会社 Antenna device
JP2015185946A (en) 2014-03-20 2015-10-22 キヤノン株式会社 antenna device
WO2019107382A1 (en) 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Antenna device
JP2019186788A (en) 2018-04-12 2019-10-24 学校法人金沢工業大学 Antenna and communication device
JP2020098979A (en) 2018-12-17 2020-06-25 パナソニックIpマネジメント株式会社 Antenna device

Also Published As

Publication number Publication date
JP2022027182A (en) 2022-02-10
US11677136B2 (en) 2023-06-13
US20220037762A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
TWI425713B (en) Three-band antenna device with resonance generation
US8982003B2 (en) Slot antenna, electronic apparatus, and method for manufacturing slot antenna
US7248220B2 (en) Antenna
US9472855B2 (en) Antenna device
JP5794312B2 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
JP2013051644A (en) Antenna device and electronic apparatus comprising the same
JP6489534B2 (en) Antenna and electrical equipment
TWI506853B (en) Antenna and communication device including the same
US20200295449A1 (en) Antenna device
JP3139975B2 (en) Antenna device
US11240909B2 (en) Antenna device
US11303031B2 (en) Antenna device and one set of antenna devices
US11152706B2 (en) Antenna device
JP7182137B2 (en) Antenna device and communication device
US11621489B2 (en) Antenna device
US11355847B2 (en) Antenna structure
EP4290694A1 (en) Antenna device and communication device
WO2019017322A1 (en) Multiband compatible antenna and wireless communication device
JP2023181038A (en) Antenna device and communication device
US20230402741A1 (en) Wearable device
US20230402753A1 (en) Antenna device and communication device
JP2023180978A (en) Antenna device and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R151 Written notification of patent or utility model registration

Ref document number: 7182137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151