KR20150067807A - Dielectric material for temperature compensation and method of preparing the same - Google Patents

Dielectric material for temperature compensation and method of preparing the same Download PDF

Info

Publication number
KR20150067807A
KR20150067807A KR1020130152539A KR20130152539A KR20150067807A KR 20150067807 A KR20150067807 A KR 20150067807A KR 1020130152539 A KR1020130152539 A KR 1020130152539A KR 20130152539 A KR20130152539 A KR 20130152539A KR 20150067807 A KR20150067807 A KR 20150067807A
Authority
KR
South Korea
Prior art keywords
temperature
dielectric constant
dielectric material
range
compensating
Prior art date
Application number
KR1020130152539A
Other languages
Korean (ko)
Other versions
KR101575244B1 (en
Inventor
오선미
손현수
김영민
Original Assignee
현대자동차주식회사
(주)동일기연
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, (주)동일기연 filed Critical 현대자동차주식회사
Priority to KR1020130152539A priority Critical patent/KR101575244B1/en
Priority to DE102014217742.1A priority patent/DE102014217742B4/en
Priority to JP2014182343A priority patent/JP6382653B2/en
Priority to CN201410507866.1A priority patent/CN104692796B/en
Publication of KR20150067807A publication Critical patent/KR20150067807A/en
Application granted granted Critical
Publication of KR101575244B1 publication Critical patent/KR101575244B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Provided are a dielectric material for temperature compensation represented by the following formula 1 and a preparing method thereof. [Formula 1] (Ba_1-a-b-3c/2Sr_aMg_bLa_c)(Ti_1-xSn_x)O_3 (Each of a, b, c and x in the formula 1 is as defined in the specification.)

Description

온도보상용 유전체 재료 및 이의 제조 방법{DIELECTRIC MATERIAL FOR TEMPERATURE COMPENSATION AND METHOD OF PREPARING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a dielectric material for temperature compensation and a manufacturing method thereof. BACKGROUND OF THE INVENTION < RTI ID = 0.0 >

본 발명은 온도계수가 크고 비유전율이 크면서 납을 포함하지 않는 온도보상용 유전체 재료 및 이의 제조 방법에 관한 것이다.
The present invention relates to a temperature-compensating dielectric material having a large temperature coefficient and a large relative dielectric constant, but not containing lead, and a method for producing the same.

압전 초음파센서의 구동회로에 인덕터(inductor)를 포함한 LC 동조회로(LC tuned circuit)가 주로 사용되고 있다. 하지만 자동차 주차 보조용 초음파센서와 같이 사용 온도 범위가 -40℃ 에서 80℃ 정도로 매우 넓은 경우 LC 동조 구동회로에서 구동 파형 및 구동 효율을 유지하기 위해서는 압전 센서의 온도에 따른 정전용량 변화를 보상하기 위한 대책이 필요하다.An LC tuned circuit including an inductor is mainly used as a driving circuit of a piezoelectric ultrasonic sensor. However, in order to maintain the driving waveform and driving efficiency in the LC synchronous driving circuit when the operating temperature range is as wide as -40 ° C to 80 ° C, such as an ultrasonic sensor for car parking assist, it is necessary to compensate for the capacitance change according to the temperature of the piezoelectric sensor Measures are needed.

정전용량 온도보상 재료의 온도보상율을 나타내는 온도계수(temperature coefficient of capacitance, TCC)는 25℃ 기준으로 아래와 같이 주어진다.The temperature coefficient of capacitance (TCC), which represents the temperature compensation factor of the capacitance temperature compensating material, is given at 25 ° C as follows.

TCC(ppm/℃) = 106 X (CT-C25/C25)/(T-25)TCC (ppm / ° C) = 10 6 X (C T -C 25 / C 25 ) / (T-25)

(T는 온도이고, CT 및 C25는 각각 온도 T 및 25℃에서의 정전용량이다.)(T is the temperature, C T and C 25 are the capacitance at temperature T and 25 ° C, respectively).

압전 초음파센서에 사용되는 압전 재료로 압전 정수가 크고 주파수 경시변화가 작은 PZT-5 계열의 연성 압전 재료(soft piezoelectric materials)가 주로 사용되고 있다. 그러나 상기 재료는 -40 에서 25 ℃ 범위 및 25에서 80 ℃ 범위에서의 TCC가 2,500 및 4,000 ppm/℃로 매우 크고, 비유전율도 또한 2,000 내외로 매우 크다. PZT-5 soft piezoelectric materials are widely used as piezoelectric materials for piezoelectric ultrasonic sensors, which have a large piezoelectric constant and a small change over time. However, the material has a very large TCC of 2500 and 4000 ppm / DEG C in the range of -40 to 25 DEG C and 25 to 80 DEG C, and the relative dielectric constant is also very large, about 2,000 or so.

초음파센서용 압전 소자는 대부분 알루미늄이나 고분자 플라스틱 등의 재질에 에폭시 등의 접착제로 붙여서 사용하게 되는데, 이와 같이 접착된 압전 소자의 TCC는 접착제의 온도에 따른 경도 변화로 인해 더 커지게 된다. 예를 들어 접착제의 온도 특성에 따른 TCC는 6,000 내지 10,000 ppm/℃에까지 이르기도 한다. Most of piezoelectric elements for ultrasonic sensors are bonded to materials such as aluminum or polymer plastic with an adhesive such as epoxy. The TCC of the piezoelectric element thus bonded becomes larger due to the hardness change depending on the temperature of the adhesive. For example, the TCC according to the temperature characteristics of the adhesive may range from 6,000 to 10,000 ppm / ° C.

초음파센서에서는 온도보상 소자가 주로 압전 소자에 대해 병렬로 연결되며, 따라서 초음파센서의 수신 감도를 적절히 유지하고 송신파형의 진동 감쇄 특성을 유지하기 위해서는 정전용량 보상 소자의 정전용량의 크기는 보상율을 감안하여 적절히 선택되어야 한다. 보상 소자의 정전용량은 주로 압전 소자의 정전용량의 30% 내지 70% 내외로 하고 있다.In the ultrasonic sensor, the temperature compensation element is mainly connected in parallel to the piezoelectric element. Therefore, in order to properly maintain the reception sensitivity of the ultrasonic sensor and to maintain the vibration attenuation characteristic of the transmission waveform, the size of the capacitance of the capacitance compensation element Should be selected accordingly. The capacitance of the compensating element is mainly set to about 30% to 70% of the capacitance of the piezoelectric element.

차량용 초음파센서에서 온도보상 소자는 미국특허 5,987,992 에서와 같이 주로 센서 구조물에 내장되고 전선이 직접 납땜된다. 초음파센서의 구동 전압은 400 내지 600 V/mm 정도까지 이르러 절연 내압 및 절연용 연면 이격거리 등을 고려할 때 비유전율이 작은 경우 두께를 줄여 정전용량을 늘리는 데는 한계가 있다. 또한 두께를 줄여 정전용량을 증가시키면 보상 소자의 강도가 약해 취급이 어려워지며 온도보상 소자가 일체화된 초음파센서를 제작하는데 어려움이 따르게 된다. In a vehicle ultrasonic sensor, the temperature compensating element is built in the sensor structure mainly as in US Pat. No. 5,987,992 and the wires are soldered directly. The driving voltage of the ultrasonic sensor reaches 400 to 600 V / mm, and when the dielectric constant and the insulation distance for insulation are taken into consideration, there is a limit to increase the capacitance by reducing the thickness when the dielectric constant is small. Also, if the capacitance is increased by decreasing the thickness, the strength of the compensating element becomes weak, which makes handling difficult, and it becomes difficult to manufacture an ultrasonic sensor in which the temperature compensating element is integrated.

따라서 온도보상 소자의 크기 축소, 취급 및 제조의 용이성을 가지며 넓은 온도 범위에서 압전 초음파 센서를 효과적으로 온도 보상하기 위해서는 -5,000 내지 -30,000 ppm/℃ 정도의 온도 보상율을 가지며 비유전율 1000 이상인 재료가 바람직하다.Therefore, in order to effectively reduce the size of the temperature-compensating device, ease of handling and manufacture, and effectively compensate the temperature of the piezoelectric ultrasonic sensor in a wide temperature range, a material having a temperature compensation ratio of about -5,000 to -30,000 ppm / .

현재 주로 일반회로용 온도보상용 유전체 재료는 CaTiO3-ZrTiO3-SrTiO3계의 재료가 사용되고 있으나, 온도 보상율이 최대 -5,000 내지 -6,000 ppm/℃ 이며 비유전율은 200 내지 800 정도로 작다. 미국등록특허 6,251,816은 BaTiO3-CaZrO3-ZnO-SiO3계의 재료에서 온도계수 -5,000 내지 -15,000 ppm/℃ 정도인 조성을 보이고 있으나 비유전율이 700 내지 1,100 정도에 그치고 있다. 미국등록특허 4,388,416은 Pb3O4-SrO-CaO-TiO2-Bi2O3-MgO를 기반으로 한 재료계에서 온도계수 -2,500 ppm/℃ 정도를 가진 조성을 보이고 있으나 비유전율은 500 이하로 작으며 유해 물질인 Pb를 함유하고 있다. 미국등록특허 3,660,124는 CaTiO3-PbTiO3-La2O3-TiO2 계에서 온도계수 -8,700 ppm/℃인 조성을 보이고 있으나 비유전율은 1,000 이하이며 또한 Pb를 함유하고 있다.
Currently, materials for CaTiO 3 -ZrTiO 3 -SrTiO 3 system are used as temperature-compensating dielectric materials for general circuits, but the temperature compensation ratio is from -5,000 to -6,000 ppm / ° C. and the relative dielectric constant is as small as about 200 to 800. US Patent 6,251,816 is BaTiO 3 -CaZrO 3 -ZnO-SiO has stopped the temperature coefficient of -5,000 to -15,000 ppm / ℃ degree in the composition the relative dielectric constant of 700 to 1,100 degree, but seen in the material of the third series. US Patent No. 4,388,416 discloses a composition having a temperature coefficient of about -2,500 ppm / ° C in a material system based on Pb 3 O 4 -SrO-CaO-TiO 2 -Bi 2 O 3 -MgO, but has a relative dielectric constant of less than 500 And contains Pb which is a harmful substance. U.S. Patent No. 3,660,124 shows a composition with a temperature coefficient of -8,700 ppm / ° C in a CaTiO 3 -PbTiO 3 -La 2 O 3 -TiO 2 system, but has a relative dielectric constant of 1,000 or less and also contains Pb.

유전율 및 온도보상율이 높아 넓은 온도 범위에서 압전 초음파센서의 온도 보상을 최적화하고 온도보상 소자의 소형화가 가능할 뿐 아니라 납을 사용하지 않는 온도보상용 유전체 재료를 제공하기 위한 것이다.
The present invention aims to provide a temperature-compensating dielectric material which does not use lead and which is capable of miniaturizing the temperature-compensating device and optimizing the temperature compensation of the piezoelectric ultrasonic sensor in a wide temperature range.

일 구현예는 하기 화학식 1로 표시되는 온도보상용 유전체 재료를 제공한다.One embodiment provides a dielectric material for temperature compensation represented by the following formula (1).

[화학식 1][Chemical Formula 1]

(Ba1 -a-b-3c/2SraMgbLac)(Ti1 - xSnx)O3 (Ba 1 -ab-3c / 2 Sr a Mg b La c ) (Ti 1 - x Sn x ) O 3

(상기 화학식 1에서, (In the formula 1,

a, b, c 및 x는 각각 0≤a<0.20, 0<b<0.05, 0<c<0.01 및 0<x<0.20 이다.)a, b, c and x are 0? a <0.20, 0 <b <0.05, 0 <c <0.01 and 0 <x <0.20, respectively.

상기 온도보상용 유전체 재료는 하기 수학식 1에서 얻어지는 유전율의 온도계수가 -40 내지 25 ℃의 온도 범위와 25 내지 80 ℃의 온도 범위에서 음(-)의 값을 가지고, 구체적으로는 -5,000 내지 -30,000 ppm/℃의 값을 가진다. The dielectric constant of the dielectric material for temperature compensation is such that the temperature coefficient of the dielectric constant obtained by the following formula (1) has a negative value in a temperature range of -40 to 25 占 폚 and a temperature range of 25 to 80 占 폚, 30,000 ppm / ° C.

[수학식 1][Equation 1]

유전율의 온도계수(TCC)(ppm/℃) = 106 X (CT-C25/C25)/(T-25)Temperature coefficient of dielectric constant (TCC) (ppm / ° C) = 10 6 X (C T -C 25 / C 25 ) / (T-25)

(상기 수학식 1에서, T는 온도이고, CT 및 C25는 각각 온도 T 및 25℃에서의 정전용량이다.)(Where T is the temperature and C T and C 25 are the capacitance at the temperature T and 25 ° C, respectively, in the above equation (1)).

상기 온도보상용 유전체 재료는 하기 수학식 2에서 얻어지는 비유전율(25℃ 기준)이 1,000 내지 3,000의 값을 가질 수 있다. The temperature-compensating dielectric material may have a dielectric constant (based on 25 ° C) of 1,000 to 3,000, which is obtained from the following formula (2).

[수학식 2]&Quot; (2) &quot;

비유전율(K) = ε/ε0 Relative dielectric constant (K) =? /? 0

(상기 수학식 2에서, ε는 온도보상용 유전체 재료의 유전율이고, ε0는 진공의 유전율이다.)(In the above equation (2),? Is the dielectric constant of the temperature-compensating dielectric material and? 0 is the dielectric constant of the vacuum.)

다른 일 구현예는 BaCO3, TiO2, SnO2, La2O3 및 MgO와 선택적으로 SrCO3를 포함하는 원료를 상기 화학식 1의 조성비에 따라 혼합하여 혼합물을 얻는 단계; 및 상기 혼합물을 1280 내지 1360 ℃의 온도에서 1 내지 3 시간 동안 소결하는 단계를 포함하는 온도보상용 유전체 재료의 제조 방법을 제공한다.
According to another embodiment, the raw material containing BaCO 3 , TiO 2 , SnO 2 , La 2 O 3 and MgO and optionally SrCO 3 is mixed according to the composition ratio of Formula 1 to obtain a mixture; And sintering the mixture at a temperature of 1280 to 1360 캜 for 1 to 3 hours.

납을 포함하지 않고 유전율 및 온도보상율이 높은 온도보상용 유전체 재료를 제공함에 따라, 규제 물질인 납을 사용하지 않고도 넓은 온도 범위에서 압전 초음파센서의 온도보상을 최적화할 수 있고 온도보상 소자의 크기도 소형화할 수 있다.
It is possible to optimize the temperature compensation of a piezoelectric ultrasonic sensor over a wide temperature range without using lead, which is a regulating material, by providing a dielectric material for temperature compensation that does not include lead and has a high dielectric constant and a high temperature compensation ratio. It can be downsized.

이하, 본 발명의 구현예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. Hereinafter, embodiments of the present invention will be described in detail. However, it should be understood that the present invention is not limited thereto, and the present invention is only defined by the scope of the following claims.

일 구현예에 따른 온도보상용 유전체 재료는 하기 화학식 1로 표시되는 물질일 수 있다.The dielectric material for temperature compensation according to one embodiment may be a substance represented by the following formula (1).

[화학식 1][Chemical Formula 1]

(Ba1 -a-b-3c/2SraMgbLac)(Ti1 - xSnx)O3 (Ba 1 -ab-3c / 2 Sr a Mg b La c ) (Ti 1 - x Sn x ) O 3

(상기 화학식 1에서, (In the formula 1,

a, b, c 및 x는 각각 0≤a<0.20, 0<b<0.05, 0<c<0.01 및 0<x<0.20 이다.)a, b, c and x are 0? a <0.20, 0 <b <0.05, 0 <c <0.01 and 0 <x <0.20, respectively.

자동차용 초음파센서의 동작 온도는 -40 내지 80 ℃이다. BaTiO3계 재료를 이용하여 상기 저온까지 온도보상을 하기 위해서는 BaTiO3의 큐리온도(curie temperature, Tc)를 -40℃ 이하로 낮추는 것이 요구된다. Tc를 낮추는데 주로 사용되는 스트론튬(Sr) 만을 사용할 경우 상온 유전율이 지나치게 낮아지게 된다. 일 구현예에서는 BaTiO3계 재료에 주석(Sn) 및 란타늄(La)을 함께 사용함에 따라 Tc를 낮추면서 유전율의 감소 효과를 줄일 수 있을 뿐 아니라, 유해 물질인 납(Pb)을 사용하지 않으므로 친환경적이다.The operating temperature of the ultrasonic sensor for automobile is -40 to 80 캜. In order to perform temperature compensation to the low temperature by using a BaTiO 3 -based material, it is required to lower the Curie temperature (Tc) of BaTiO 3 to below -40 ° C. When only strontium (Sr), which is mainly used for lowering Tc, is used, the dielectric constant at room temperature becomes too low. In one embodiment, the use of tin (Sn) and lanthanum (La) together with a BaTiO 3 -based material not only reduces the effect of decreasing the dielectric constant while lowering the Tc, but also does not use lead (Pb) to be.

상기 조성을 가지는 온도보상용 유전체 재료는 유전율의 온도계수가 -40 내지 25 ℃의 온도 범위와 25 내지 80 ℃의 온도 범위 모두에서 음(-)의 값을 가질 수 있고, 구체적으로는 -5,000 내지 -30,000 ppm/℃의 값을 가질 수 있다. 상기 온도보상용 유전체 재료가 상기 범위 내의 온도계수를 가질 경우 -40 내지 80 ℃의 넓은 온도 범위에서 우수한 온도보상 특성을 가질 수 있으며, 이에 따라 압전 초음파센서의 온도보상을 최적화할 수 있고 온도보상 소자의 크기도 소형화할 수 있다. The temperature-compensating dielectric material having the above composition may have a negative temperature coefficient in a temperature range of -40 to 25 占 폚 and a temperature range of 25 to 80 占 폚, specifically, -5,000 to -30,000 ppm / [deg.] C. When the temperature-compensating dielectric material has a temperature coefficient within the above-mentioned range, it can have an excellent temperature compensation characteristic in a wide temperature range of -40 to 80 ° C, thereby optimizing the temperature compensation of the piezoelectric ultrasonic sensor, It is possible to downsize the size.

상기 유전율의 온도계수는 하기 수학식 1로부터 얻어질 수 있다.The temperature coefficient of the dielectric constant can be obtained from the following equation (1).

[수학식 1][Equation 1]

유전율의 온도계수(TCC)(ppm/℃) = 106 X (CT-C25/C25)/(T-25)Temperature coefficient of dielectric constant (TCC) (ppm / ° C) = 10 6 X (C T -C 25 / C 25 ) / (T-25)

(상기 수학식 1에서, T는 온도이고, CT 및 C25는 각각 온도 T 및 25℃에서의 정전용량이다.)(Where T is the temperature and C T and C 25 are the capacitance at the temperature T and 25 ° C, respectively, in the above equation (1)).

또한 상기 온도보상용 유전체 재료는 비유전율(25℃ 기준)이 1,000 내지 3,000의 값을 가질 수 있다. 상기 온도보상용 유전체 재료가 상기 범위 내의 비유전율을 가질 경우 -40 내지 80 ℃의 넓은 온도 범위에서 우수한 온도보상 특성을 가질 수 있으며, 이에 따라 압전 초음파센서의 온도보상을 최적화할 수 있고 온도보상 소자의 크기도 소형화할 수 있다. The temperature-compensating dielectric material may have a dielectric constant (based on 25 ° C) of 1,000 to 3,000. When the temperature-compensating dielectric material has a relative dielectric constant within the range, it can have an excellent temperature compensation characteristic in a wide temperature range of -40 to 80 ° C, thereby optimizing the temperature compensation of the piezoelectric ultrasonic sensor, It is possible to downsize the size.

상기 비유전율은 25℃ 기준으로 하기 수학식 2로부터 얻어질 수 있다.The relative dielectric constant can be obtained from the following equation (2) on the basis of 25 ° C.

[수학식 2]&Quot; (2) &quot;

비유전율(K) = ε/ε0 Relative dielectric constant (K) =? /? 0

(상기 수학식 2에서, ε는 온도보상용 유전체 재료의 유전율이고, ε0는 진공의 유전율이다.)(In the above equation (2),? Is the dielectric constant of the temperature-compensating dielectric material and? 0 is the dielectric constant of the vacuum.)

하기 표 1에서 조성 7번 및 8번과 10번 내지 12번은 일 구현예에 따른 실시예에 해당되며, 조성 1번 내지 6번 및 9번은 비교예에 해당된다. 또한 하기 표 1에서 a, b, c 및 x는 상기 화학식 1에서 각각 Sr, Mg, La 및 Sn의 함량에 해당하는 조성비를 나타낸다. Compositions # 7 and # 8 and # 10 to # 12 in Table 1 correspond to the embodiment according to one embodiment, and Compositions # 1 to # 6 and # 9 are comparative examples. In Table 1, a, b, c, and x represent the composition ratios corresponding to the contents of Sr, Mg, La, and Sn in the above Formula 1, respectively.

하기 표 2에서 보듯이 Sn, Sr, Mg 및 La의 함량을 일 구현예의 범위 내에서 적절히 조절함에 따라 상온(25℃) 비유전율은 1,500 내지 2,500의 값을, -40 내지 25 ℃의 온도 범위에서 유전율의 온도계수(TCC)는 -9,200 내지 -30,000 ppm/℃ 정도의 값을 얻을 수 있다. Sn 함량이나 Sr 함량을 일 구현예에 따른 범위 내에서 가감함에 따라 상온 비유전율 및 유전율의 온도계수를 필요에 따라 조정할 수 있음을 알 수 있다. 종래와 비교할 때 Pb를 포함하지 않으면서도 유전율이 높고 TCC도 커서 -40 내지 80 ℃의 넓은 온도 범위에서 압전센서의 정전용량 감소를 효과적으로 보상할 수 있다.As shown in the following Table 2, the specific dielectric constant at room temperature (25 ° C) is in the range of 1,500 to 2,500 as the contents of Sn, Sr, Mg and La are appropriately controlled within the range of one embodiment, The temperature coefficient of dielectric constant (TCC) can be about -9,200 to -30,000 ppm / DEG C. It can be understood that the temperature coefficient of normal temperature relative dielectric constant and permittivity can be adjusted as needed as the Sn content or the Sr content is increased or decreased within the range according to one embodiment. Compared with the prior art, the dielectric constant is high and the TCC is high without containing Pb, so that it is possible to effectively compensate the capacitance decrease of the piezoelectric sensor in a wide temperature range of -40 to 80 캜.

하기 표 1 및 표 2에서 보듯이, 조성 1번 및 2번과 같이 Sr만 첨가하는 경우, a가 0.5 또는 0.6인 경우에도 Tc가 충분히 낮지 않고 또한 TCC가 너무 크며, 조성 2번에서와 같이 Sr 함량을 더 증대하면 상온 유전율이 급격히 감소해 압전소자 보상재료로는 적합하지 않게 된다.As shown in the following Tables 1 and 2, when only Sr is added as in the compositions 1 and 2, even when a is 0.5 or 0.6, Tc is not sufficiently low and TCC is too large, and Sr If the content is further increased, the dielectric constant at room temperature sharply decreases and it is not suitable as a piezoelectric element compensation material.

조성 3번 내지 5번과 같이 Sn만을 첨가한 경우, TCC가 Sr만 첨가 시의 경우와 같이 TCC가 크거나 유전율이 급격히 감소하게 된다.When Sn alone is added as in the compositions 3 to 5, the TCC is large or the dielectric constant is drastically decreased as in the case of adding only TCC.

La 첨가는 소결 시 입성장을 억제하고 Tc를 내리면서도 급격한 유전율 저하를 방지할 수 있다. La이 첨가될 때 La의 함량, 즉, c가 0.01 이상이 되면 소결성이 급격히 낮아져서 유전손실이 너무 커져 적용이 어렵게 된다. 하지만 소결을 위해 소결 온도를 올리게 되면 La이 전부 입자 내로 고용되어 첨가 효과가 미미해진다. 이에 따라 일 구현예에서는 La의 함량, c의 범위를 0<c<0.01로 제한하였다.The addition of La suppresses grain growth during sintering and can prevent a rapid decrease in dielectric constant while lowering Tc. When La is added, that is, when the content of La, that is, c is 0.01 or more, the sinterability is drastically lowered and the dielectric loss becomes too large, which makes the application difficult. However, if the sintering temperature is raised for sintering, all the La is solved into the particles, and the addition effect becomes insignificant. Accordingly, in one embodiment, the content of La and the range of c are limited to 0 < c < 0.01.

Mg의 첨가는 Tc를 낮추고 소결성을 증대하고 TCC를 감소하는 효과가 있다. 조성 6번과 같이 Mg가 첨가되지 않은 경우 소결 밀도가 낮아 유전손실이 커서 사용이 불가능하였다. 이에 따라 일 구현예에서는 Mg 추가에 따른 비유전율의 급격한 감소를 방지하기 위해 Mg의 함량, b의 범위를 0<b<0.05로 제한하였다.Addition of Mg has the effect of lowering Tc, increasing sinterability and decreasing TCC. As in the case of composition No. 6, when Mg was not added, the sintered density was low and the dielectric loss was large, which made it impossible to use. Accordingly, in one embodiment, the content of Mg and the range of b are limited to 0 < b < 0.05 in order to prevent a drastic decrease in the relative dielectric constant due to the addition of Mg.

상기 온도보상용 유전체 재료는 다음과 같은 방법으로 제조될 수 있다.The temperature-compensating dielectric material can be produced by the following method.

기초 원료로 BaCO3, TiO2, SnO2, La2O3 및 MgO와 선택적으로 SrCO3를 사용할 수 있고, 이 기초 원료를 상기 화학식 1의 조성비 범위 내로 혼합할 수 있다. 혼합하여 얻어진 혼합물을 건조 및 하소한 후 합성 분말을 제조한 다음, 성형 및 소결하여 제조할 수 있다. 이때 소결은 1280 내지 1360 ℃의 온도에서 1 내지 3 시간 동안 수행될 수 있다. BaCO 3 , TiO 2 , SnO 2 , La 2 O 3 and MgO, and optionally SrCO 3 can be used as the base raw materials, and the base raw materials can be mixed in the composition ratio range of the above formula (1). Drying the mixture obtained by mixing, calcining the mixture, preparing a synthetic powder, and molding and sintering the mixture. The sintering may be carried out at a temperature of 1280 to 1360 캜 for 1 to 3 hours.

구체적으로, 하기 표 1에 제시된 온도보상용 유전체 재료는 다음과 같은 방법으로 제조되었다. Specifically, the temperature-compensating dielectric materials shown in Table 1 were prepared in the following manner.

기초 원료로서 BaCO3, TiO2, SnO2, SrCO3, La2O3 및 MgO를 하기 표 1에 있는 조성에 따라 계근 후 계근한 원료를 아트리션밀에서 탈이온수 및 분산제를 첨가하여 균일하게 혼합하고 진공필터링 후 80 내지 120 ℃에서 건조하였다. 상기 분산재로는 비이온계 분산제 등이 사용 가능하며 무게비로 0.25% 가량 첨가한다. 건조된 케이크를 파쇄한 후 1,100℃에서 2시간 하소하여 원료를 합성하였다. 하소한 케이크를 파쇄한 후 탈이온수 및 상기 분산제를 첨가하고 다시 아트리션밀을 이용하여 미분쇄, 필터링, 건조 과정을 거쳐 합성 분말을 제조하였다. 합성 분말에 10% 폴리비닐알코올(PVA) 용액을 첨가하고 분무과립하여 성형용 과립을 제조하고, 프레스를 이용하여 직경 12mm, 두께 1mm로 성형한 후, 각각 1,300℃ 및 1,340℃에서 2시간 소결하여 소결체를 제작하였다. 소결체 양면에 은 페이스트를 인쇄 건조한 후 820℃에서 15분 가열하여 은 전극을 입히고 특성을 측정하였다. 정전용량 및 유전손실은 LCR 측정기를 이용하여 1kHz, 1V에서 측정했으며, 보상율은 항온 오븐을 이용하여 -40 내지 80 ℃의 구간에서 측정하였다.BaCO 3 , TiO 2 , SnO 2 , SrCO 3 , La 2 O 3 and MgO as basic raw materials were mixed with the deionized water and the dispersing agent in an artificial mill, Followed by vacuum filtration and drying at 80 to 120 ° C. As the dispersing agent, a nonionic dispersing agent and the like can be used and they are added in an amount of about 0.25% by weight. The dried cake was crushed and calcined at 1,100 ° C for 2 hours to synthesize the raw material. After crushing the calcined cake, the deionized water and the dispersant were added, and further pulverized, filtered and dried using an art mill to prepare a synthetic powder. 10% polyvinyl alcohol (PVA) solution was added to the synthetic powder and granulated by spraying to prepare granules for molding. The granules were molded into a 12 mm diameter and 1 mm thick by pressing, and then sintered at 1,300 ° C and 1,340 ° C for 2 hours, respectively To prepare a sintered body. Silver paste was printed on both sides of the sintered body, dried, and then heated at 820 ° C for 15 minutes to coat the silver electrode and measure its characteristics. Capacitance and dielectric loss were measured at 1 kHz, 1 V using an LCR meter and the compensation factor was measured in the range of -40 to 80 ° C using a constant temperature oven.

조성 번호Composition number aa bb cc xx 비고Remarks 1One 0.500.50 00 00 00 비교예 1Comparative Example 1 22 0.600.60 00 00 00 비교예 2Comparative Example 2 33 00 00 00 0.200.20 비교예 3Comparative Example 3 44 00 00 00 0.250.25 비교예 4Comparative Example 4 55 00 00 00 0.300.30 비교예 5Comparative Example 5 66 0.080.08 00 0.0060.006 0.100.10 비교예 6Comparative Example 6 77 0.080.08 0.0050.005 0.0050.005 0.100.10 실시예1Example 1 88 0.080.08 0.0050.005 0.00750.0075 0.100.10 실시예2Example 2 99 0.080.08 0.0050.005 0.010.01 0.100.10 비교예 7Comparative Example 7 1010 0.080.08 0.0050.005 0.00830.0083 0.100.10 실시예3Example 3 1111 0.080.08 0.0050.005 0.00650.0065 0.1250.125 실시예4Example 4 1212 0.080.08 0.0050.005 0.00650.0065 0.150.15 실시예5Example 5

조성 번호Composition number K(25℃)K (25 캜) tanδ(25℃)tan? (25 占 폚) TCC(ppm/℃)(-40~25 ℃)TCC (ppm / ° C) (-40 to 25 ° C) TCC(ppm/℃)
(25~80 ℃)
TCC (ppm / DEG C)
(25 to 80 ° C)
소결 온도(℃)Sintering temperature (℃) 비고Remarks
1One 1,5001,500 0.0020.002 -- -- 1,3001,300 비교예 1Comparative Example 1 22 850850 0.0030.003 - 60,000 - 60,000 -3,600-3,600 1,3001,300 비교예 2Comparative Example 2 33 3,0003,000 0.0020.002 -61,000-61,000 -7,000-7,000 1,3001,300 비교예 3Comparative Example 3 44 1,4001,400 0.0030.003 -45,000-45,000 -7,300-7,300 1,3001,300 비교예 4Comparative Example 4 55 850850 0.0040.004 -16,000-16,000 -7,000-7,000 1,3001,300 비교예 5Comparative Example 5 66 1,1001,100 0.250.25 -- -- 1,3001,300 비교예 6Comparative Example 6 77 1,7001,700 0.0030.003 -19,000-19,000 -8,600-8,600 1,3001,300 실시예 1Example 1 88 2,4002,400 0.0010.001 -30,000-30,000 -8,200-8,200 1,3001,300 실시예 2Example 2 99 1,1601,160 0.1550.155 -- -- 1,3001,300 비교예 7Comparative Example 7 1010 1,5001,500 0.0040.004 -19,000-19,000 -8,500-8,500 1,3001,300 실시예 3Example 3 1111 1,5001,500 0.0040.004 -9,200-9,200 -6,360-6,360 1,3001,300 실시예 4Example 4 1212 2,3002,300 0.0030.003 -30,000-30,000 -10,000-10,000 1,3001,300 실시예 5Example 5 77 2,2502,250 0.0050.005 -21,500-21,500 -9,100-9,100 1,3401,340 실시예 6Example 6 88 2,2502,250 0.0040.004 -28,000-28,000 -10,000-10,000 1,3401,340 실시예 7Example 7 1010 1,7001,700 0.0060.006 -15,000-15,000 -7,300-7,300 1,3401,340 실시예 8Example 8 1111 1,6301,630 0.0050.005 -11,500-11,500 -6,400-6,400 1,3401,340 실시예 9Example 9 1212 1,5001,500 0.0050.005 -20,000-20,000 -8,200-8,200 1,3401,340 실시예 10Example 10

상기 표 2에서, 비교예 1은 Tc가 -27℃ 정도로 높아 사용 불가하여 데이터를 나타내지 않았으며, 비교예 6 및 7은 소결성이 나빠서 TCC를 측정하지 않았다. 또한 상기 표 2에서 상기 TCC는 상기 수학식 1로부터 계산되었고, 상기 K는 상기 수학식 2로부터 계산되었다.In Table 2, in Comparative Example 1, the Tc was as high as -27 deg. C, so that it was not usable and data were not shown. In Comparative Examples 6 and 7, TCC was not measured because sinterability was poor. Also, in Table 2, the TCC was calculated from Equation (1), and K was calculated from Equation (2).

상기 표 1 및 2를 통하여, 일 구현예에 따른 조성을 가지는 온도보상용 유전체 재료를 사용한 실시예 1 내지 10의 경우, 비교예 1 내지 7과 달리, 유전율의 온도계수가 -40 내지 25 ℃의 온도 범위와 25 내지 80 ℃의 온도 범위에서 모두 -5,000 내지 -30,000 ppm/℃의 값을 가지고, 비유전율이 1,000 내지 3,000의 값을 가짐을 확인할 수 있다. 이에 따라 넓은 온도 범위에서 압전 초음파센서의 온도 보상을 최적화하고 온도보상 소자의 소형화를 구현할 수 있음을 알 수 있다.Through the above Tables 1 and 2, in the case of Examples 1 to 10 using the temperature-compensating dielectric material having the composition according to one embodiment, unlike Comparative Examples 1 to 7, the temperature coefficient of the dielectric constant ranges from -40 to 25 占 폚 And a value of -5,000 to -30,000 ppm / 占 폚 both in the temperature range of 25 to 80 占 폚, and has a relative dielectric constant of 1,000 to 3,000. As a result, it can be seen that the temperature compensation of the piezoelectric ultrasonic sensor can be optimized in a wide temperature range and the miniaturization of the temperature compensation element can be realized.

또한 소결 온도가 1360℃를 초과할 경우 새로운 상이 형성되고 TCC가 지나치게 커지며, 또한 1280℃ 미만이 되면 소결이 미진하여 유전 손실이 커져서 사용이 적합하지 않게 된다.If the sintering temperature exceeds 1360 DEG C, a new phase is formed and TCC becomes excessively large. If the sintering temperature is lower than 1280 DEG C, the sintering is insufficient and the dielectric loss becomes large and the use becomes unsuitable.

이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, And falls within the scope of the invention.

Claims (5)

하기 화학식 1로 표시되는 온도보상용 유전체 재료.
[화학식 1]
(Ba1 -a-b-3c/2SraMgbLac)(Ti1 - xSnx)O3
(상기 화학식 1에서,
a, b, c 및 x는 각각 0≤a<0.20, 0<b<0.05, 0<c<0.01 및 0<x<0.20 이다.)
1. A temperature-compensating dielectric material represented by the following formula (1).
[Chemical Formula 1]
(Ba 1 -ab-3c / 2 Sr a Mg b La c ) (Ti 1 - x Sn x ) O 3
(In the formula 1,
a, b, c and x are 0? a <0.20, 0 <b <0.05, 0 <c <0.01 and 0 <x <0.20, respectively.
제1항에 있어서,
상기 온도보상용 유전체 재료는 하기 수학식 1에서 얻어지는 유전율의 온도계수가 -40 내지 25 ℃의 온도 범위와 25 내지 80 ℃의 온도 범위에서 음(-)의 값을 가지는 온도보상용 유전체 재료.
[수학식 1]
유전율의 온도계수(TCC)(ppm/℃) = 106 X (CT-C25/C25)/(T-25)
(상기 수학식 1에서, T는 온도이고, CT 및 C25는 각각 온도 T 및 25℃에서의 정전용량이다.)
The method according to claim 1,
Wherein the temperature coefficient dielectric constant of the dielectric material for temperature compensation has a negative value in a temperature range of -40 to 25 占 폚 and a temperature range of 25 to 80 占 폚.
[Equation 1]
Temperature coefficient of dielectric constant (TCC) (ppm / ° C) = 10 6 X (C T -C 25 / C 25 ) / (T-25)
(Where T is the temperature and C T and C 25 are the capacitance at the temperature T and 25 ° C, respectively, in the above equation (1)).
제1항에 있어서,
상기 온도보상용 유전체 재료는 하기 수학식 1에서 얻어지는 유전율의 온도계수가 -40 내지 25 ℃의 온도 범위와 25 내지 80 ℃의 온도 범위에서 -5,000 내지 -30,000 ppm/℃의 값을 가지는 온도보상용 유전체 재료.
[수학식 1]
유전율의 온도계수(TCC)(ppm/℃) = 106 X (CT-C25/C25)/(T-25)
(상기 수학식 1에서, T는 온도이고, CT 및 C25는 각각 온도 T 및 25℃에서의 정전용량이다.)
The method according to claim 1,
The dielectric material for temperature compensation is a dielectric material for temperature compensation having a temperature coefficient of the dielectric constant obtained by the following formula (1) and having a value in the range of -40 to 25 占 폚 and a temperature range of 25 to 80 占 폚 in the range of -5,000 to -30,000 ppm / material.
[Equation 1]
Temperature coefficient of dielectric constant (TCC) (ppm / ° C) = 10 6 X (C T -C 25 / C 25 ) / (T-25)
(Where T is the temperature and C T and C 25 are the capacitance at the temperature T and 25 ° C, respectively, in the above equation (1)).
제1항에 있어서,
상기 온도보상용 유전체 재료는 하기 수학식 2에서 얻어지는 비유전율(25℃ 기준)이 1,000 내지 3,000의 값을 가지는 온도보상용 유전체 재료.
[수학식 2]
비유전율(K) = ε/ε0
(상기 수학식 2에서, ε는 온도보상용 유전체 재료의 유전율이고, ε0는 진공의 유전율이다.)
The method according to claim 1,
Wherein the temperature-compensating dielectric material has a relative dielectric constant (25 deg. C) obtained from the following formula (2): 1,000 to 3,000.
&Quot; (2) &quot;
Relative dielectric constant (K) =? /? 0
(In the above equation (2),? Is the dielectric constant of the temperature-compensating dielectric material and? 0 is the dielectric constant of the vacuum.)
BaCO3, TiO2, SnO2, La2O3 및 MgO와 선택적으로 SrCO3를 포함하는 원료를 하기 화학식 1의 조성비에 따라 혼합하여 혼합물을 얻는 단계; 및
상기 혼합물을 1280 내지 1360 ℃의 온도에서 1 내지 3 시간 동안 소결하는 단계
를 포함하는 온도보상용 유전체 재료의 제조 방법.
[화학식 1]
(Ba1 -a-b-3c/2SraMgbLac)(Ti1 - xSnx)O3
(상기 화학식 1에서,
a, b, c 및 x는 각각 0≤a<0.20, 0<b<0.05, 0<c<0.01 및 0<x<0.20 이다.)
Mixing a raw material containing BaCO 3 , TiO 2 , SnO 2 , La 2 O 3 and MgO and optionally SrCO 3 according to a composition ratio of the following formula 1 to obtain a mixture; And
Sintering the mixture at a temperature of 1280 to 1360 DEG C for 1 to 3 hours
Of the dielectric material.
[Chemical Formula 1]
(Ba 1 -ab-3c / 2 Sr a Mg b La c ) (Ti 1 - x Sn x ) O 3
(In the formula 1,
a, b, c and x are 0? a <0.20, 0 <b <0.05, 0 <c <0.01 and 0 <x <0.20, respectively.
KR1020130152539A 2013-12-09 2013-12-09 Dielectric material for temperature compensation and method of preparing the same KR101575244B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130152539A KR101575244B1 (en) 2013-12-09 2013-12-09 Dielectric material for temperature compensation and method of preparing the same
DE102014217742.1A DE102014217742B4 (en) 2013-12-09 2014-09-04 DIELECTRIC MATERIAL FOR TEMPERATURE COMPENSATION AND METHOD FOR THE PRODUCTION THEREOF
JP2014182343A JP6382653B2 (en) 2013-12-09 2014-09-08 Temperature compensation dielectric material and manufacturing method thereof
CN201410507866.1A CN104692796B (en) 2013-12-09 2014-09-28 Dielectric material and preparation method thereof for temperature-compensating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130152539A KR101575244B1 (en) 2013-12-09 2013-12-09 Dielectric material for temperature compensation and method of preparing the same

Publications (2)

Publication Number Publication Date
KR20150067807A true KR20150067807A (en) 2015-06-19
KR101575244B1 KR101575244B1 (en) 2015-12-08

Family

ID=53185519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130152539A KR101575244B1 (en) 2013-12-09 2013-12-09 Dielectric material for temperature compensation and method of preparing the same

Country Status (4)

Country Link
JP (1) JP6382653B2 (en)
KR (1) KR101575244B1 (en)
CN (1) CN104692796B (en)
DE (1) DE102014217742B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217742B4 (en) 2013-12-09 2019-12-05 Dong Il Technology Ltd. DIELECTRIC MATERIAL FOR TEMPERATURE COMPENSATION AND METHOD FOR THE PRODUCTION THEREOF

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021191197A (en) * 2020-06-04 2021-12-13 株式会社ニコン Vibrating body and vibrating wave motor
CN111925199B (en) * 2020-07-03 2022-07-01 成都宏科电子科技有限公司 Low-temperature sintered microwave dielectric ceramic material and preparation method thereof
CN112979314B (en) * 2021-04-19 2022-05-10 清华大学 Medium-dielectric-constant high-Q microwave dielectric ceramic material and preparation method thereof
CN114478007A (en) * 2022-02-17 2022-05-13 同济大学 Sodium niobate-based ceramic material with good process tolerance, high piezoelectric property and high dielectric property, and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469514A (en) * 1987-09-11 1989-03-15 Ube Industries Preparation of starting powder for condenser material
JPH0340962A (en) * 1989-05-02 1991-02-21 Japan Metals & Chem Co Ltd Dielectric porcelain composition
JP3087657B2 (en) 1996-07-26 2000-09-11 株式会社村田製作所 Dielectric porcelain composition
US6268054B1 (en) 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials
JP2000264724A (en) * 1999-03-18 2000-09-26 Murata Mfg Co Ltd Dielectric ceramic composition and ceramic multilayered substrate
KR100646680B1 (en) 2004-06-04 2006-11-23 익스팬테크주식회사 Dielectric ceramic composition
FR2900148B1 (en) * 2006-04-19 2008-07-11 Centre Nat Rech Scient CERAMICS BASED ON LANTHAN DOPED BARIUM TITANATE, NOVEL PREPARATION METHOD AND USES.
JP4949220B2 (en) * 2007-12-25 2012-06-06 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor
KR101575244B1 (en) 2013-12-09 2015-12-08 현대자동차 주식회사 Dielectric material for temperature compensation and method of preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217742B4 (en) 2013-12-09 2019-12-05 Dong Il Technology Ltd. DIELECTRIC MATERIAL FOR TEMPERATURE COMPENSATION AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JP2015113279A (en) 2015-06-22
CN104692796B (en) 2019-03-12
DE102014217742B4 (en) 2019-12-05
DE102014217742A1 (en) 2015-06-11
JP6382653B2 (en) 2018-08-29
CN104692796A (en) 2015-06-10
KR101575244B1 (en) 2015-12-08

Similar Documents

Publication Publication Date Title
KR101575244B1 (en) Dielectric material for temperature compensation and method of preparing the same
US20200308059A1 (en) Barium strontium titanate-based dielectric ceramic materials, preparation method and application thereof
KR101258997B1 (en) Dielectric ceramic composition and electronic component
US10562819B2 (en) Ceramic material for multilayer ceramic capacitor and method of making the same
JPH05152158A (en) Ceramic capacitor
CN110015894B (en) Sodium bismuth titanate-based ceramic with high dielectric stability at high temperature and preparation method and application thereof
KR20160111404A (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
US10759705B2 (en) Dielectric composition and electronic component
KR101767672B1 (en) Dielectric ceramic composition and electronic component
KR100808472B1 (en) Dielectric ceramic compositions and manufacturing method thereof
US10752552B2 (en) Dielectric composition and electronic component
JP4710574B2 (en) Dielectric porcelain composition and electronic component
CN109081693A (en) A kind of high dielectric X8R ceramic medium material and preparation method thereof
JP2006169011A (en) Dielectric ceramic composition
KR101751790B1 (en) Dielectric ceramic composition and electronic component
KR101624080B1 (en) Dielectric ceramic composition and electronic device
JP5471093B2 (en) Method for producing dielectric ceramic composition
CN107304130B (en) Dielectric composition, dielectric ceramic, and capacitor
US9255034B1 (en) Dielectric material for temperature compensation and method of preparing the same
KR20200110946A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
US20230260702A1 (en) Dielectric ceramic composition and single layer capacitor
KR101429034B1 (en) Dielectric ceramic composition and electronic component
US20230145549A1 (en) Dielectric composition and electronic component
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPH0571538B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191127

Year of fee payment: 5