JP5471093B2 - Method for producing dielectric ceramic composition - Google Patents
Method for producing dielectric ceramic composition Download PDFInfo
- Publication number
- JP5471093B2 JP5471093B2 JP2009161825A JP2009161825A JP5471093B2 JP 5471093 B2 JP5471093 B2 JP 5471093B2 JP 2009161825 A JP2009161825 A JP 2009161825A JP 2009161825 A JP2009161825 A JP 2009161825A JP 5471093 B2 JP5471093 B2 JP 5471093B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- ceramic composition
- main component
- dielectric ceramic
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inorganic Insulating Materials (AREA)
Description
本発明は、誘電体磁器組成物の製造方法に関し、より詳しくはチタン酸バリウムを主成分とした誘電体磁器組成物の製造方法に関する。 The present invention relates to a method for manufacturing a dielectric ceramic composition, and more particularly to a method for manufacturing a dielectric ceramic composition mainly composed of barium titanate.
近年におけるエレクトロニクス技術の発展に伴い、積層セラミックコンデンサ等の電子部品では、小型化、大容量化が急速に進行している。 With the recent development of electronics technology, electronic parts such as multilayer ceramic capacitors have been rapidly reduced in size and capacity.
そして、高性能なセラミックコンデンサを得るべく、従来より、材料面から様々な工夫がなされている。 In order to obtain a high-performance ceramic capacitor, various devices have been conventionally made in terms of materials.
例えば、特許文献1には、不純物が、Ca、Sr、Mg、Y、Zrおよびアルカリ金属酸化物であり、前記チタン酸バリウム粉末100重量%に対して、 前記不純物としてのCa量が4〜340ppmであり、
前記不純物としてのSr量が120〜1500ppmであり、 前記不純物としてのMg量が0.6〜150ppmであり、前記不純物としてのY量が5〜1000ppmであり、
前記不純物としてのZr量が85〜2000ppmであり、 前記不純物としてのアルカリ金属酸化物量が300〜2000ppmであるチタン酸バリウム粉末が提案されている。
For example, in Patent Document 1, the impurities are Ca, Sr, Mg, Y, Zr and alkali metal oxide, and the amount of Ca as the impurity is 4 to 340 ppm with respect to 100% by weight of the barium titanate powder. And
The amount of Sr as the impurity is 120 to 1500 ppm, the amount of Mg as the impurity is 0.6 to 150 ppm, the amount of Y as the impurity is 5 to 1000 ppm,
A barium titanate powder having a Zr content of 85 to 2000 ppm as the impurity and an alkali metal oxide content of 300 to 2000 ppm as the impurity has been proposed.
この特許文献1では、Ca、Sr、Mg、Y、Zr、及びアルカリ金属酸化物などの不純物を上記所定の範囲とすることにより、積層セラミックコンデンサなどの電子部品を構成する誘電体層のさらなる薄層化や積層数の増加を図った場合であっても、クラックの発生を低減し、製造歩留まりを向上させることができる。 In Patent Document 1, by setting impurities such as Ca, Sr, Mg, Y, Zr, and alkali metal oxides within the predetermined range, the dielectric layer constituting an electronic component such as a multilayer ceramic capacitor is further thinned. Even when layering or increasing the number of layers is achieved, the generation of cracks can be reduced and the manufacturing yield can be improved.
すなわち、例えば、上記不純物のうちCaについては、Ca量が少なすぎると、得られたチタン酸バリウム粉末を用いて焼結体を製造する際に、セラミック材料の焼結収縮挙動と導電性材料の焼結収縮挙動のミスマッチが起こり易くなり、一方、Ca量が多すぎると、クラック率や電気特性が劣化し、焼結性低下を招くおそれがある。 That is, for example, regarding Ca among the above impurities, if the amount of Ca is too small, when the sintered body is produced using the obtained barium titanate powder, the sintering shrinkage behavior of the ceramic material and the conductive material On the other hand, mismatching of sintering shrinkage behavior is likely to occur. On the other hand, if the amount of Ca is too large, the crack rate and electrical characteristics may be deteriorated, resulting in a decrease in sinterability.
そこで、特許文献1では、チタン酸バリウム粉末中の不純物としてのCaについて、その含有量を4〜340ppmとすることにより、焼結性を安定させている。 Therefore, in Patent Document 1, sinterability is stabilized by setting the content of Ca as an impurity in the barium titanate powder to 4 to 340 ppm.
しかしながら、特許文献1では、上述したように、不純物であるCaの含有量を4〜340ppmに調整することにより、焼結性を安定させているが、この場合、比誘電率が低下したり、比誘電率や温度特性などの電気特性が安定しない場合があるという問題点があった。 However, in Patent Document 1, as described above, the sinterability is stabilized by adjusting the content of Ca, which is an impurity, to 4 to 340 ppm, but in this case, the relative dielectric constant decreases, There has been a problem that electrical characteristics such as relative permittivity and temperature characteristics may not be stable.
本発明はこのような事情に鑑みなされたものであって、所望の高比誘電率を確保することができ、かつ静電容量の温度特性を安定した良好なものに維持できる誘電体磁器組成物を得ることのできる誘電体磁器組成物の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a dielectric ceramic composition capable of ensuring a desired high relative dielectric constant and maintaining a stable and stable temperature characteristic of capacitance. It is an object of the present invention to provide a method for producing a dielectric ceramic composition that can be obtained.
チタン酸バリウムを主成分とする高比誘電率系のセラミックコンデンサ用誘電体磁器組成物では、通常、副成分としてCaZrO3やその他の各種複合酸化物、酸化物を適宜含有させ、用途に応じた電気特性を得るようにしている。 In a dielectric ceramic composition for a ceramic capacitor having a high relative dielectric constant based on barium titanate as a main component, CaZrO 3 and other various complex oxides and oxides are usually appropriately added as subcomponents, depending on the application. I try to get electrical characteristics.
また、これら誘電体磁器組成物を合成するためのセラミック素原料には、通常、Ca等が不純物として不可避的に含まれている。 Moreover, the ceramic raw material for synthesizing these dielectric ceramic compositions usually contains Ca or the like as an impurity.
そして、チタン酸バリウムを主成分とする主成分粉末に副成分粉末を添加して誘電体磁器組成物を作製し、電気特性を評価したところ、副成分粉末に含まれるCa量は電気特性への影響が小さいのに対し、主成分粉末であるチタン酸バリウム中に含まれるCa量は電気特性に大きな影響を及ぼすことが分かった。 Then, the dielectric ceramic composition was prepared by adding the subcomponent powder to the main component powder containing barium titanate as the main component, and the electrical characteristics were evaluated. The amount of Ca contained in the subcomponent powder was reduced to the electrical characteristics. While the influence was small, it was found that the amount of Ca contained in the main component powder, barium titanate, had a great influence on the electrical characteristics.
そこで、本発明者らが、更に鋭意研究を行ったところ、チタン酸バリウム中に含まれるCa成分の含有量を200〜322ppmに調整することにより、所望の高比誘電率を確保でき、かつ静電容量の温度特性が良好な誘電体磁器組成物を安定して得ることができることが分かった。 Therefore, the present inventors conducted further research, and as a result, by adjusting the content of the Ca component contained in the barium titanate to 200 to 322 ppm, a desired high relative dielectric constant can be secured and static It was found that a dielectric ceramic composition having a good temperature characteristic of capacitance can be obtained stably.
本発明はこのような知見に基づきなされたものであって、本発明に係る誘電体磁器組成物の製造方法は、バリウム化合物及びチタン化合物を含む複数のセラミック素原料を調合してチタン酸バリウムを主成分とする主成分粉末を作製する主成分粉末作製工程を備えた誘電体磁器組成物の製造方法において、前記主成分粉末作製工程は、前記主成分粉末中のカルシウム成分の含有量が200〜322ppmとなるようにカルシウム化合物の添加量を調整する添加量調整工程を含むことを特徴としている。 The present invention has been made on the basis of such knowledge, and a method for producing a dielectric ceramic composition according to the present invention comprises preparing a plurality of ceramic raw materials containing a barium compound and a titanium compound to prepare barium titanate. In the method for manufacturing a dielectric ceramic composition comprising a main component powder preparation step for preparing a main component powder as a main component, the main component powder preparation step has a calcium component content of 200 to 200 in the main component powder. An addition amount adjusting step for adjusting the addition amount of the calcium compound so as to be 322 ppm is included.
また、本発明の誘電体磁器組成物の製造方法は、前記カルシウム成分には、不可避不純物を含むことを特徴としている。 Moreover, the method for producing a dielectric ceramic composition of the present invention is characterized in that the calcium component contains inevitable impurities.
さらに、本発明の誘電体磁器組成物の製造方法は、前記主成分粉末作製工程は、前記バリウム化合物及び前記チタン化合物と前記添加量調整工程で添加された前記カルシウム化合物との調合物を仮焼する仮焼工程を含むことを特徴としている。 Furthermore, in the method for producing a dielectric ceramic composition of the present invention, the main component powder preparation step includes calcining a preparation of the barium compound and the titanium compound and the calcium compound added in the addition amount adjusting step. It is characterized by including a calcination step.
また、本発明の誘電体磁器組成物の製造方法は、前記主成分粉末と、少なくとも1種以上の副成分粉末とを所定比率で配合する配合工程を含むことを特徴としている。 In addition, the method for producing a dielectric ceramic composition of the present invention is characterized by including a blending step of blending the main component powder and at least one subcomponent powder in a predetermined ratio.
また、本発明の誘電体磁器組成物の製造方法は、前記副成分粉末には、CaZrO3を含むことを特徴としている。 Moreover, the method for producing a dielectric ceramic composition of the present invention is characterized in that the subcomponent powder contains CaZrO 3 .
上記誘電体磁器組成物の製造方法によれば、チタン酸バリウムを主成分とする主成分粉末中のカルシウム成分の含有量が200〜322ppmとなるようにカルシウム化合物の添加量を調整するので、所望の高比誘電率を確保でき、かつ静電容量の温度特性が良好な誘電体磁器組成物を安定して得ることが可能となる。 According to the above method for producing a dielectric ceramic composition, the amount of calcium compound added is adjusted so that the content of the calcium component in the main component powder mainly composed of barium titanate is 200 to 322 ppm. Thus, it is possible to stably obtain a dielectric ceramic composition having a high specific dielectric constant and excellent temperature characteristics of capacitance.
また、Ca成分には不可避不純物を含むので、Ca含有量を正確に管理することができる。 Moreover, since Ca component contains inevitable impurities, the Ca content can be managed accurately.
また、前記主成分粉末と、CaZrO3等の少なくとも1種以上の副成分粉末とを所定比率で配合する配合工程を含むので、副成分粉末中のCa含有量に依存することなく主成分粉末中のCa成分を管理するだけで、静電容量の温度特性や比誘電率が安定し、かつ所望の高比誘電率を確保できる誘電体磁器組成物を容易に得ることができ、多品種生産する場合のコストダウンに効果的な製造方法を実現することが可能となる。 In addition, since it includes a blending step of blending the main component powder and at least one subcomponent powder such as CaZrO 3 in a predetermined ratio, the main component powder is not dependent on the Ca content in the subcomponent powder. By simply managing the Ca component, it is possible to easily obtain a dielectric ceramic composition that can stabilize the temperature characteristics and relative dielectric constant of the capacitance and can secure a desired high relative dielectric constant, and produces a variety of products. In this case, it is possible to realize an effective manufacturing method for cost reduction.
次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
本発明の製造方法により製造される誘電体磁器組成物は、BaTiO3を主成分とする主成分粉末に副成分粉末が配合されている。 In the dielectric ceramic composition manufactured by the manufacturing method of the present invention, a subcomponent powder is blended with a main component powder containing BaTiO 3 as a main component.
副成分粉末としては、用途に応じた所望の電気特性を得る観点から、必要に応じCaZrO3、SrTiO3、MgTiO3等の各種複合酸化物、Y2O3、Dy2O3等の希土類酸化物、SiO2、Al2O3等の各種酸化物を適宜選択して使用することができる。 As the subcomponent powder, various complex oxides such as CaZrO 3 , SrTiO 3 , MgTiO 3 , rare earth oxidation such as Y 2 O 3 , Dy 2 O 3, etc., as needed, from the viewpoint of obtaining desired electrical characteristics according to the application And various oxides such as SiO 2 and Al 2 O 3 can be appropriately selected and used.
そして、上記誘電体磁器組成物は、主成分粉末であるBaTiO3中のCa含有量が不可避不純物を含め200〜322ppmとなるように調整されている。 Then, the dielectric ceramic composition, Ca content in the main component BaTiO 3 powder is adjusted to be 200~322ppm including unavoidable impurities.
すなわち、誘電体磁器組成物中には、種々の不純物が不可避的に含有されており、例えば、主成分粉末や副成分粉末を合成するためのセラミック素原料中には、微量のCa成分が不純物として含有されている。 That is, the dielectric ceramic composition inevitably contains various impurities. For example, a small amount of Ca component is contained in the ceramic raw material for synthesizing the main component powder and subcomponent powder. It is contained as.
そして、本発明者らの研究結果により、副成分粉末中の微量のCa成分は、電気特性に殆ど影響がないのに対し、主成分粉末であるBaTiO3中に含有されている微量のCa成分は、電気特性に大きな影響を及ぼすことが分かった。 According to the results of the study by the present inventors, a trace amount of Ca component contained in the main component powder, BaTiO 3 , whereas a trace amount of Ca component in the subcomponent powder hardly affects the electrical characteristics. Has been found to have a significant effect on electrical properties.
具体的には、BaTiO3粉末中のCa成分の含有量が200ppm未満になると、比誘電率εrが低下傾向となって所望の高比誘電率を維持することができなくなる。一方、BaTiO3粉末中のCa成分の含有量が322ppmを超えると、静電容量の温度変化率が大きくなって温度特性の劣化を招くおそれがある。 Specifically, when the content of the Ca component in the BaTiO 3 powder is less than 200 ppm, the relative dielectric constant εr tends to decrease and the desired high relative dielectric constant cannot be maintained. On the other hand, when the content of the Ca component in the BaTiO 3 powder exceeds 322 ppm, there is a possibility that the temperature change rate of the capacitance increases and the temperature characteristics are deteriorated.
そこで、本誘電体磁器組成物は、主成分粉末であるBaTiO3中のCa含有量が不可避不純物を含め200〜322ppmとなるように、Ca化合物の添加量を調整している。 Therefore, in this dielectric ceramic composition, the additive amount of the Ca compound is adjusted so that the Ca content in BaTiO 3 as the main component powder is 200 to 322 ppm including inevitable impurities.
以下、本発明に係る誘電体磁器組成物の製造方法を詳述する。 Hereinafter, a method for producing a dielectric ceramic composition according to the present invention will be described in detail.
まず、セラミック素原料として、Ba化合物、及びTi化合物を用意し、ICP−AES(誘導結合プラズマ質量分析法)等の分析法を使用し、これらセラミック素原料に含まれるCa成分の含有量を予め測定する。すなわち、上述したように、これらのセラミック素原料には、通常、不可避不純物としてCa成分が含まれているため、これらセラミック素原料中のCa成分の含有量を予め測定しておく。 First, as a ceramic raw material, a Ba compound and a Ti compound are prepared, and an analysis method such as ICP-AES (inductively coupled plasma mass spectrometry) is used, and the content of the Ca component contained in these ceramic raw materials is determined in advance. taking measurement. That is, as described above, these ceramic raw materials usually contain a Ca component as an inevitable impurity, so the content of the Ca component in these ceramic raw materials is measured in advance.
次いで、合成後のBaTiO3粉末に含有されるCa成分の含有量が200〜322ppmとなるように所定量のBa化合物、Ti化合物、及びCa化合物を秤量する。 Next, predetermined amounts of the Ba compound, Ti compound, and Ca compound are weighed so that the content of the Ca component contained in the synthesized BaTiO 3 powder is 200 to 322 ppm.
そして、このように秤量された秤量物を分散剤及び純水と共に撹拌ミルに投入し、混合・粉砕してスラリーを作製する。 Then, the weighed material thus weighed is put into a stirring mill together with a dispersant and pure water, mixed and pulverized to produce a slurry.
得られたスラリーを所定温度に加熱して仮焼し、次いで、乾式で粉砕し、BaTiO3粉末を主成分とする主成分粉末を作製する。 The obtained slurry is heated to a predetermined temperature and calcined, and then pulverized in a dry manner to produce a main component powder mainly composed of BaTiO 3 powder.
次に、所望の電気特性を得るために所定の副成分粉末を所定量秤量し、前記主成分粉末、バインダー、純水等と共にPSZ(部分安定化ジルコニア)ボールを内有したボールミルに投入し、混合・粉砕してスラリーを作製する。そして、このスラリーを乾燥させ、これにより誘電体磁器組成物を得ることができる。 Next, in order to obtain a desired electrical property, a predetermined amount of a predetermined subcomponent powder is weighed and put into a ball mill having PSZ (partially stabilized zirconia) balls inside together with the main component powder, a binder, pure water and the like, Mix and grind to make slurry. And this slurry is dried, Thereby, a dielectric ceramic composition can be obtained.
このように本実施の形態によれば、BaTiO3を主成分とする主成分粉末中のCa成分の含有量が不可避不純物を含め200〜322ppmとなるようにCa化合物の添加量を調整しているので、高比誘電率を確保しつつ、良好な温度特性を有する誘電体磁器組成物を安定して得ることができる。 Thus, according to the present embodiment, the addition amount of the Ca compound is adjusted so that the content of the Ca component in the main component powder containing BaTiO 3 as a main component is 200 to 322 ppm including inevitable impurities. Therefore, it is possible to stably obtain a dielectric ceramic composition having good temperature characteristics while ensuring a high relative dielectric constant.
また、Ca成分には不可避不純物を含むので、Ca含有量を常に正確に管理することができる。 Moreover, since Ca component contains inevitable impurities, the Ca content can always be managed accurately.
また、前記主成分粉末と、CaZrO3等の少なくとも1種以上の副成分粉末とを所定比率で配合する配合工程を含むので、副成分粉末中のCa含有量に依存することなく主成分粉末中のCa成分を管理するだけで、静電容量の温度特性や比誘電率が安定し、かつ所望の高比誘電率を有する誘電体磁器組成物を容易に得ることができ、多品種生産する場合のコストダウンに効果的な製造方法を実現することができる。 In addition, since it includes a blending step of blending the main component powder and at least one subcomponent powder such as CaZrO 3 in a predetermined ratio, the main component powder is not dependent on the Ca content in the subcomponent powder. In the case of producing various types of dielectric ceramic compositions that can stabilize the temperature characteristics and relative dielectric constant of capacitance and have a desired high relative dielectric constant simply by managing the Ca component It is possible to realize an effective manufacturing method for cost reduction.
そしてこの誘電体磁器組成物をセラミック原料として使用することにより、所望の積層セラミックコンデンサや単板形状のセラミックコンデンサを得ることができる。 By using this dielectric ceramic composition as a ceramic raw material, a desired multilayer ceramic capacitor or single plate-shaped ceramic capacitor can be obtained.
尚、本発明は上記実施の形態に限定されるものではない。例えば、Caの存在形態についても、結晶粒内、結晶粒界、結晶三重点のいずれに存在していてもよい。また、セラミック素原料となるBa化合物、Ti化合物、Ca化合物の形態についても、炭酸物、水酸化物、酸化物等いずれでもよく、特に限定されるものではない。 The present invention is not limited to the above embodiment. For example, the presence form of Ca may exist in any of the crystal grains, the crystal grain boundaries, and the crystal triple points. Also, the form of the Ba compound, Ti compound, and Ca compound used as the ceramic raw material may be any of carbonate, hydroxide, oxide, and the like, and is not particularly limited.
次に、本発明の実施例を具体的に説明する。 Next, examples of the present invention will be specifically described.
セラミック素原料として、BaCO3及びTiO2の粉末を用意し、ICP−AES(誘導結合プラズマ質量分析法)で、これらのセラミック素原料に含まれるCa成分の含有量を測定したところ、25ppmであった。 BaCO 3 and TiO 2 powders were prepared as ceramic raw materials, and the content of Ca component contained in these ceramic raw materials was measured by ICP-AES (inductively coupled plasma mass spectrometry). It was.
そして、合成後のBaTiO3粉末に含有されるCa成分の含有量が129〜400ppmとなるように所定量のBaCO3、TiO2、及びCaCO3の各粉末を秤量した。 Then, the Ca content contained in BaTiO 3 powder after synthesis BaCO 3, TiO 2 in predetermined amounts so that 129~400Ppm, and were weighed powders of CaCO 3.
次に、分散剤が予め含有された純水と共に、この秤量物を媒体型攪拌ミルに投入し、混合・粉砕してスラリーを作製した。 Next, together with pure water containing a dispersant in advance, this weighed product was put into a medium type stirring mill, and mixed and pulverized to prepare a slurry.
次いで、得られたスラリーを脱水乾燥した後、所定温度に加熱した回転式の管状炉に投入した。管状炉に投入された乾燥粉末は、管状炉の回転に伴って中央部に送られ、仮焼される。そしてこの仮焼物を乾式で粉砕してBaTiO3粉末(主成分粉末)を作製し、BaTiO3粉末のCa含有量をICP−AESで実測した。 Next, the obtained slurry was dehydrated and dried, and then charged into a rotary tubular furnace heated to a predetermined temperature. The dry powder thrown into the tubular furnace is sent to the central part as the tubular furnace is rotated and calcined. Then, this calcined product was pulverized by a dry method to prepare BaTiO 3 powder (main component powder), and the Ca content of the BaTiO 3 powder was measured by ICP-AES.
次に、セラミック素原料として、CaCO3粉末及びZrO2粉末を所定量秤量し、上述と同様、分散剤が予め含有された純水と共に、この秤量物を媒体型攪拌ミルに投入し、混合・粉砕してスラリーを作製した。粉砕媒体としてのPSZボールが内有されたボールミルに分散剤、純水に投入し、混合・粉砕してスラリーを作製した。 Next, as a ceramic raw material, CaCO 3 powder and ZrO 2 powder are weighed in predetermined amounts, and in the same manner as described above, the weighed product is put into a medium-type stirring mill together with pure water containing a dispersant in advance. A slurry was prepared by grinding. Into a ball mill containing PSZ balls as a grinding medium, a dispersant and pure water were added, mixed and ground to prepare a slurry.
次いで、得られたスラリーを脱水乾燥した後、所定の温度に加熱した回転式の管状炉に投入し、上述と同様、仮焼し、乾式で粉砕し、CaZrO3粉末を作製した。 Next, after the obtained slurry was dehydrated and dried, it was put into a rotary tubular furnace heated to a predetermined temperature, calcined in the same manner as described above, and pulverized in a dry manner to prepare CaZrO 3 powder.
次に、モル比が88:12となるように、BaTiO3粉末、CaZrO3粉末を所定量秤量し、さらにMgTiO3粉末、Y2O3粉末、SiO2粉末、Al2O3粉末を所定量秤量した。 Next, predetermined amounts of BaTiO 3 powder and CaZrO 3 powder are weighed so that the molar ratio is 88:12, and further predetermined amounts of MgTiO 3 powder, Y 2 O 3 powder, SiO 2 powder, and Al 2 O 3 powder. Weighed.
そして、この秤量物を、バインダー等を含有した純水と共にPSZボールを内有したボールミルに投入し、混合・粉砕してスラリーを作製し、このスラリーを乾燥させ、組成式(Ba0.88Ca0.12)(Ti0.88Zr0.12)O3で表わされる誘電体磁器組成物を得た。 Then, the weighed product is put into a ball mill having PSZ balls inside together with pure water containing a binder and the like, mixed and pulverized to produce a slurry, and the slurry is dried. The composition formula (Ba 0.88 Ca 0.12 ) A dielectric ceramic composition represented by (Ti 0.88 Zr 0.12 ) O 3 was obtained.
そして、この誘電体磁器組成物をプレス加工して成形体を作製し、所定温度で2時間保持して焼成を行い、直径12.5mm、厚み1.0mmのセラミック焼結体を得た。 The dielectric ceramic composition was then pressed to produce a molded body, which was fired by holding at a predetermined temperature for 2 hours to obtain a ceramic sintered body having a diameter of 12.5 mm and a thickness of 1.0 mm.
次に、得られたセラミック焼結体の両主面にAgを蒸着させて電極を形成し、試料番号1〜9の試料を作製した、
次に、試料番号1〜9の各試料について、LCRメータを使用して1kHz、1Vrmsの条件で+20℃における比誘電率εrを測定した。
Next, Ag was vapor-deposited on both main surfaces of the obtained ceramic sintered body to form electrodes, and samples Nos. 1 to 9 were produced.
Next, the relative dielectric constant εr at + 20 ° C. was measured for each sample Nos. 1 to 9 using an LCR meter under the conditions of 1 kHz and 1 Vrms.
また、雰囲気温度を−25℃〜+85℃の範囲で変化させ、+85℃及び−25℃における比誘電率εrをそれぞれ求め、試料寸法から静電容量C+85、C-25を各々算出し、下記数式(1)、(2)に基づき+20℃を基準にした静電容量の温度変化率ΔC+85、ΔC-25を求めた。 Further, the ambient temperature is changed in the range of −25 ° C. to + 85 ° C., the relative dielectric constant εr at + 85 ° C. and −25 ° C. is obtained, and the capacitances C +85 and C −25 are respectively calculated from the sample dimensions. Based on the following formulas (1) and (2), capacitance temperature change rates ΔC +85 and ΔC -25 based on + 20 ° C. were obtained.
ΔC+85=(C+85℃−C20℃)/C20℃×100 …(1)
ΔC-25=(C-25℃−C20℃)/C20℃×100 …(2)
表1はBaTiO3中のCa含有量、比誘電率εr、静電容量の温度変化率ΔC+85、ΔC-25を示している。
ΔC +85 = (C + 85 ° C.− C 20 ° C. ) / C 20 ° C. × 100 (1)
ΔC −25 = (C −25 ° C.− C 20 ° C. ) / C 20 ° C. × 100 (2)
Table 1 shows the Ca content, relative dielectric constant εr, and capacitance temperature change rate ΔC +85 , ΔC -25 in BaTiO 3 .
試料番号6及び7は、BaTiO3中のCa含有量がそれぞれ129ppm、150ppmと少ないため、静電容量の温度変化率ΔC+85、ΔC-25は良好であるが、比誘電率εrは7500以下に低下している。 In Sample Nos. 6 and 7, the Ca content in BaTiO 3 is as low as 129 ppm and 150 ppm, respectively, so that the temperature change rates ΔC +85 and ΔC -25 of the capacitance are good, but the relative dielectric constant εr is 7500 or less. It has dropped to.
一方、試料番号8及び9は、BaTiO3中のCa含有量がそれぞれ357ppm、400ppmと過剰であるため、比誘電率は高いものの、静電容量の温度変化率ΔC+85がそれぞれ−55.0%、−55.9%となって変動幅が大きくなり、温度特性が悪化している。 On the other hand, Sample Nos. 8 and 9 have an excessive Ca content in BaTiO 3 of 357 ppm and 400 ppm, respectively. Therefore, although the relative permittivity is high, the temperature change rate ΔC +85 of the capacitance is −55.0. %, -55.9%, the fluctuation range is large, and the temperature characteristics are deteriorated.
これに対し試料番号1〜5は、BaTiO3中のCa含有量は、200〜322ppmと本発明の範囲内であるので、7500以上の高比誘電率を確保でき、しかも静電容量の温度変化率ΔC+85、ΔC-25も−38.0%〜−53.5%と許容範囲内であり、良好な温度特性を得ることのできることが分かった。
On the other hand, sample Nos. 1 to 5 have a Ca content in
図1は、試料番号1〜9におけるBaTiO3中のCa含有量と比誘電率εrの関係を示す図であり、横軸がCa含有量(ppm)、縦軸が比誘電率εrである。 FIG. 1 is a graph showing the relationship between the Ca content in BaTiO 3 and the relative dielectric constant εr in sample numbers 1 to 9, with the horizontal axis representing the Ca content (ppm) and the vertical axis representing the relative dielectric constant εr.
また、図2及び図3は、試料番号1〜9におけるBaTiO3中のCa含有量と静電容量の温度変化率ΔC+85、ΔC-25の関係を示す図であり、横軸がCa含有量(ppm)、縦軸が静電容量の温度変化率ΔC+85、ΔC-25(%)である。 2 and 3 are diagrams showing the relationship between the Ca content in BaTiO 3 and the temperature change rates ΔC +85 and ΔC −25 of Sample Nos. 1 to 9, with the horizontal axis representing the Ca content. The amount (ppm) and the vertical axis are the temperature change rates ΔC +85 and ΔC -25 (%) of the capacitance.
この図1〜図3から明らかなように、BaTiO3中のCa含有量を200〜322ppmに調整することにより、静電容量の温度変化率ΔC+85、ΔC-25(%)の変動幅を抑制しつつ、7500以上の高比誘電率を維持できる誘電体磁器組成物を得ることができた。 As apparent from FIGS. 1 to 3, by adjusting the Ca content in BaTiO 3 to 200 to 322 ppm, the variation ranges of the capacitance temperature change rates ΔC +85 and ΔC −25 (%) are reduced. It was possible to obtain a dielectric ceramic composition capable of maintaining a high relative dielectric constant of 7500 or higher while suppressing it.
実施例1の試料番号3で作製したCa含有量が257ppmのBaTiO3粉末を用意した。 A BaTiO 3 powder having a Ca content of 257 ppm prepared in Sample No. 3 of Example 1 was prepared.
次に、実施例1で作製したCaZrO3粉末を用意し、さらにMgTiO3粉末、Y2O3粉末、SiO2粉末、Al2O3粉末を用意し、実施例1と同様の方法・手順で組成式(Ba0.88Ca0.12)(Ti0.88Zr0.12)O3で表わされる試料番号15の試料を得た。 Next, the CaZrO 3 powder prepared in Example 1 is prepared, and further MgTiO 3 powder, Y 2 O 3 powder, SiO 2 powder, and Al 2 O 3 powder are prepared, and the same method and procedure as in Example 1 are used. A sample No. 15 represented by the composition formula (Ba 0.88 Ca 0.12 ) (Ti 0.88 Zr 0.12 ) O 3 was obtained.
また、CaZrO3の添加量を変化させることによって、BaTiO3粉末とCaZrO3粉末との混合比を変化させ、Caの含有モル比0.12に対し、重量比率で−726ppm〜+364ppmの範囲で異ならせた試料番号11〜14、16、17の試料を作製した。 Further, by changing the amount of CaZrO 3 added, the mixing ratio of BaTiO 3 powder and CaZrO 3 powder is changed, and the Ca molar ratio of 0.12 is different from the range of -726 ppm to +364 ppm with respect to the Ca molar ratio of 0.12. Samples No. 11 to 14, 16, and 17 were prepared.
そして、〔実施例1〕と同様、比誘電率εr及び静電容量の温度変化率ΔC+85、ΔC-25を求めた。 Then, as in [Example 1], relative permittivity εr and capacitance temperature change rates ΔC +85 and ΔC -25 were obtained.
表2はCaZrO3におけるCaの変動量と測定結果を示している。 Table 2 shows the amount of variation of Ca in CaZrO 3 and the measurement results.
また、図4は、試料番号11〜17におけるCaZrO3のCa変動量と比誘電率εrの関係を示す図であり、横軸がCa変動量(ppm)、縦軸が比誘電率εrである。 FIG. 4 is a graph showing the relationship between the Ca fluctuation amount of CaZrO 3 and the relative dielectric constant εr in Sample Nos. 11 to 17, where the horizontal axis is the Ca fluctuation amount (ppm), and the vertical axis is the relative dielectric constant εr. .
また、図5及び図6は、試料番号11〜17におけるCaZrO3のCa変動量と静電容量の温度変化率ΔC+85、ΔC-25の関係を示す図であり、横軸がCa含有量Δα(ppm)、縦軸が静電容量の温度変化率ΔC+85、ΔC-25(%)である。 5 and 6 are graphs showing the relationship between the Ca fluctuation amount of CaZrO 3 and the temperature change rates ΔC +85 and ΔC −25 of Sample Nos. 11 to 17, and the horizontal axis represents the Ca content. Δα (ppm), and the vertical axis represents capacitance temperature change rates ΔC +85 and ΔC -25 (%).
この表2及び図4から明らかなように、BaTiO3中のCa含有量が一定(257ppm)であれば、CaZrO3のCaが−700ppm〜350ppm程度の範囲で変動しても、比誘電率εrは7500以上を確保できることが分かった。 As is apparent from Table 2 and FIG. 4, if the Ca content in BaTiO 3 is constant (257 ppm), the relative dielectric constant εr even if the Ca of CaZrO 3 varies in the range of about −700 ppm to 350 ppm. It was found that 7500 or more can be secured.
また、表2及び図5、6から明らかなように、BaTiO3中のCa含有量が一定(257ppm)であれば、CaZrO3のCaが−700ppm〜350ppm程度の範囲で変動しても、温度変化率の変動幅は−37.5〜−54.3%と比較的安定していることが分かった。 Further, as is clear from Table 2 and FIGS. 5 and 6, if the Ca content in BaTiO 3 is constant (257 ppm), even if the Ca of CaZrO 3 fluctuates in the range of about −700 ppm to 350 ppm, the temperature It was found that the fluctuation range of the change rate was relatively stable at −37.5 to −54.3%.
上述した〔実施例1〕、〔実施例2〕から明らかなように、BaTiO3系の誘電体磁器組成物では、高比誘電率を確保でき、かつ静電容量の温度特性を安定した良好なものとするには、主成分粉末であるBaTiO3に含有されるCa成分の添加量を200〜322ppmに調整するのが効果的であることが確認された。 As is clear from the above-mentioned [Example 1] and [Example 2], the BaTiO 3 based dielectric ceramic composition can ensure a high relative dielectric constant and has a stable temperature characteristic of capacitance. to the things, it was confirmed to adjust the addition amount of Ca component contained in the main component BaTiO 3 powder 200~322ppm is effective.
BaTiO3を主成分粉末とし、副成分粉末が添加された誘電体磁器組成物において、BaTiO3中のCa成分の含有量を200〜322ppmに調整することにより、高比誘電率と良好な温度特性を安定的に確保する。 In a dielectric ceramic composition containing BaTiO 3 as a main component powder and subcomponent powders added, by adjusting the content of Ca component in BaTiO 3 to 200 to 322 ppm, a high relative dielectric constant and good temperature characteristics To ensure a stable.
Claims (5)
前記主成分粉末作製工程は、前記主成分粉末中のカルシウム成分の含有量が200〜322ppmとなるようにカルシウム化合物の添加量を調整する添加量調整工程を含むことを特徴とする誘電体磁器組成物の製造方法。 In a method for manufacturing a dielectric ceramic composition comprising a main component powder preparation step of preparing a main component powder mainly composed of barium titanate by preparing a plurality of ceramic raw materials containing a barium compound and a titanium compound,
The main component powder preparation step includes an addition amount adjusting step of adjusting the addition amount of the calcium compound so that the content of the calcium component in the main component powder is 200 to 322 ppm. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009161825A JP5471093B2 (en) | 2009-07-08 | 2009-07-08 | Method for producing dielectric ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009161825A JP5471093B2 (en) | 2009-07-08 | 2009-07-08 | Method for producing dielectric ceramic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011016682A JP2011016682A (en) | 2011-01-27 |
JP5471093B2 true JP5471093B2 (en) | 2014-04-16 |
Family
ID=43594781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009161825A Active JP5471093B2 (en) | 2009-07-08 | 2009-07-08 | Method for producing dielectric ceramic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5471093B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967599B2 (en) * | 2006-10-23 | 2012-07-04 | Tdk株式会社 | Barium titanate powder, dielectric ceramic composition and electronic component |
CN114763304B (en) * | 2021-01-14 | 2023-05-05 | 东莞华科电子有限公司 | Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4446324B2 (en) * | 2001-09-27 | 2010-04-07 | 株式会社村田製作所 | Dielectric porcelain composition and capacitor using the same |
JP2006027939A (en) * | 2004-07-14 | 2006-02-02 | Tdk Corp | Method of manufacturing dielectric ceramic composition, electronic component and laminated ceramic capacitor |
JP2006111468A (en) * | 2004-10-12 | 2006-04-27 | Tdk Corp | Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor |
JP4556607B2 (en) * | 2004-10-12 | 2010-10-06 | Tdk株式会社 | Dielectric ceramic composition and electronic component |
-
2009
- 2009-07-08 JP JP2009161825A patent/JP5471093B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011016682A (en) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3028503B2 (en) | Non-reducing dielectric porcelain composition | |
KR101258997B1 (en) | Dielectric ceramic composition and electronic component | |
JP6646265B2 (en) | Dielectric porcelain composition and ceramic capacitor | |
JP2010285336A (en) | Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same | |
JP4524411B2 (en) | Dielectric porcelain composition | |
KR101767672B1 (en) | Dielectric ceramic composition and electronic component | |
JP2006306632A (en) | Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact | |
CN101333105B (en) | X7RMLCC medium porcelain of thin medium | |
JP5471093B2 (en) | Method for producing dielectric ceramic composition | |
JP2005008471A (en) | Method of manufacturing complex oxide powder, complex oxide powder, dielectric ceramic composition and lamination type electronic component | |
CN111718193A (en) | Method for producing dielectric with low dielectric loss and dielectric produced thereby | |
KR101751790B1 (en) | Dielectric ceramic composition and electronic component | |
Nurmi et al. | The effect of titanium excess and deficiency on the microstructure and dielectric properties of lanthanum doped Ba0. 55Sr0. 45TiO3 with colossal permittivity | |
JP5289239B2 (en) | Dielectric porcelain and capacitor | |
JP4765367B2 (en) | Dielectric porcelain composition | |
JP4782551B2 (en) | Dielectric porcelain | |
JPH05345664A (en) | High dielectric ceramic composition | |
JP2006273616A (en) | Dielectric ceramic composition | |
JP3696947B2 (en) | Dielectric porcelain composition | |
JP3588210B2 (en) | Dielectric porcelain composition | |
JP3450919B2 (en) | Dielectric ceramic composition for temperature compensation | |
JP2005179110A (en) | Dielectric ceramic composition | |
KR100474249B1 (en) | Dielectric ceramic composition and manufacture method | |
JPH07187771A (en) | Dielectric porcelain composition | |
JPH06333422A (en) | Dielectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5471093 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |