KR20140140929A - 자기 기억 소자 - Google Patents

자기 기억 소자 Download PDF

Info

Publication number
KR20140140929A
KR20140140929A KR20130061973A KR20130061973A KR20140140929A KR 20140140929 A KR20140140929 A KR 20140140929A KR 20130061973 A KR20130061973 A KR 20130061973A KR 20130061973 A KR20130061973 A KR 20130061973A KR 20140140929 A KR20140140929 A KR 20140140929A
Authority
KR
South Korea
Prior art keywords
layer
magnetic layer
perpendicular magnetic
magnetic
sub
Prior art date
Application number
KR20130061973A
Other languages
English (en)
Other versions
KR102105078B1 (ko
Inventor
오세충
이준명
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020130061973A priority Critical patent/KR102105078B1/ko
Priority to US14/265,697 priority patent/US9842987B2/en
Publication of KR20140140929A publication Critical patent/KR20140140929A/ko
Application granted granted Critical
Publication of KR102105078B1 publication Critical patent/KR102105078B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/54Structure including a tunneling barrier layer, the memory effect implying the modification of tunnel barrier conductivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

자기 기억 소자가 제공된다. 자기 기억 소자는, 자유층, 고정층, 및 이들 사이의 터널 배리어층을 포함하는 자기터널접합을 포함한다. 상기 자유층 및 상기 고정층 중 적어도 하나는, 상기 터널 배리어층 상에 배치되고, 보론(B)을 포함하는 제1 수직 자성층, 및 상기 제1 수직 자성층 상에 배치되고, 상기 제1 수직 자성층보다 보론(B) 함유량(content)이 낮은 제2 수직 자성층을 포함한다. 상기 제1 수직 자성층은 상기 터널 배리어층과 상기 제2 수직 자성층 사이에 있고, 상기 제2 수직 자성층의 두께는 상기 제1 수직 자성층의 두께보다 얇다.

Description

자기 기억 소자{MAGNETIC MEMORY DEVICES}
본 발명은 반도체 장치에 관한 것으로, 보다 상세하게는 자기 기억 소자에 관한 것이다.
전자 기기의 고속화 및/또는 저 소비전력화 등에 따라, 전기 기기에 포함되는 반도체 기억 소자의 고속화 및/또는 낮은 동작 전압 등에 대한 요구가 증가되고 있다. 이러한 요구들을 충족시키기 위하여, 반도체 기억 소자로서 자기 기억 소자가 제안된 바 있다. 자기 기억 소자는 고속 동작 및/또는 비휘발성 등의 특성들을 가질 수 있어서 차세대 반도체 기억 소자로 각광받고 있다.
일반적으로, 자기 기억 소자는 자기터널접합 패턴(Magnetic tunnel junction pattern; MTJ)을 포함할 수 있다. 자기터널접합 패턴은 두 개의 자성체와 그 사이에 개재된 절연막을 포함할 수 있다. 두 자성체의 자화 방향들에 따라 자기터널접합 패턴의 저항 값이 달라질 수 있다. 예를 들면, 두 자성체의 자화 방향이 반평행한 경우에 자기터널접합 패턴은 큰 저항 값을 가질 수 있으며, 두 자성체의 자화 방향이 평행한 경우에 자기터널접합 패턴은 작은 저항 값을 가질 수 있다. 이러한 저항 값의 차이를 이용하여 데이터를 기입/판독할 수 있다.
본 발명이 이루고자 하는 기술적 과제는 터널자기저항 특성이 개선된 자기 기억 소자를 제공하는 데 있다.
본 발명에 따른 자기 기억 소자는, 자유층, 고정층, 및 이들 사이의 터널 배리어층을 포함하는 자기터널접합을 포함하되, 상기 자유층 및 상기 고정층 중 적어도 하나는, 상기 터널 배리어층 상에 배치되고, 보론(B)을 포함하는 제1 수직 자성층, 및 상기 제1 수직 자성층 상에 배치되고, 상기 제1 수직 자성층보다 보론(B) 함유량(content)이 낮은 제2 수직 자성층을 포함하되, 상기 제1 수직 자성층은 상기 터널 배리어층과 상기 제2 수직 자성층 사이에 있고, 상기 제2 수직 자성층의 두께는 상기 제1 수직 자성층의 두께보다 얇을 수 있다.
일 실시예에 따르면, 상기 제2 수직 자성층의 포화 자화와 상기 제2 수직 자성층의 두께를 곱한 값은, 상기 제1 수직 자성층의 포화 자화와 상기 제1 수직 자성층의 두께를 곱한 값보다 작을 수 있다.
일 실시예에 따르면, 상기 제2 수직 자성층은 ⅰ) 철(Fe), 코발트(Co), 니켈(Ni), 또는 이들의 합금, 및 ⅱ) 각각 비자성 금속 물질을 더 포함하는 철, 코발트, 니켈, 또는 이들의 합금 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 비자성 금속 물질은 Ta, Ti, Zr, Hf, B, 또는 Cr 중 적어도 하나를 포함할 수 있다.
본 발명에 따른 자기 기억 소자는, 상기 제1 수직 자성층과 상기 제2 수직 자성층 사이의 비자성 금속층을 더 포함할 수 있다.
일 실시예에 따르면, 상기 비자성 금속층은 Hf, Zr, Ti, Ta, 또는 이들의 합금 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 비자성 금속층의 두께는 10Å이하일 수 있다.
본 발명에 따른 자기 기억 소자는, 상기 제2 수직 자성층 상의 금속 산화층을 더 포함하되, 상기 제2 수직 자성층은 상기 금속 산화층과 상기 터널 배리어층 사이에 배치될 수 있다.
일 실시예에 따르면, 상기 금속 산화층은 탄탈륨 산화물, 마그네슘 산화물, 티타늄 산화물, 지르코늄 산화물, 하프늄 산화물, 및 아연 산화물 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 금속 산화층의 저항은 상기 터널 배리어층의 저항의 1/3 이하일 수 있다.
일 실시예에 따르면, 상기 자기터널접합은 기판 상에 배치되고, 상기 고정층은 상기 기판와 상기 터널 배리어층 사이에 배치될 수 있다.
다른 실시예에 따르면, 상기 자기터널접합은 기판 상에 배치되고, 상기 자유층은 상기 기판과 상기 터널 배리어층 사이에 배치될 수 있다.
일 실시예에 따르면, 상기 고정층은 상기 터널 배리어층 상의 제3 수직 자성층, 상기 제3 수직 자성층과 상기 터널 배리어층 사이의 제4 수직 자성층, 및 상기 제3 수직 자성층과 상기 제4 수직 자성층 사이의 교환결합층을 포함하되, 상기 제4 수직 자성층은, 상기 제1 수직 자성층 및 상기 제2 수직 자성층을 포함할 수 있다.
일 실시예에 따르면, 상기 제1 수직 자성층의 일면은 상기 터널 배리어층의 일면과 접할 수 있다.
본 발명의 개념에 따르면, 자유층 및/또는 고정층은 보론(B) 함유량이 서로 다른 자성층들을 포함할 수 있다. 따라서, 어닐링 공정이 저온에서 수행되는 경우에도, 자성층들의 보론(B) 농도 차이에 의해, 상대적으로 보론(B) 함유량이 높은 자성층들 내의 보론(B)이, 상대적으로 보론(B) 함유량이 낮은 자성층들로 각각 용이하게 확산되어, 자기터널접합의 터널자기저항이 높아질 수 있다.
도 1은 본 발명의 실시예들에 따른 자기 기억 소자의 단위 메모리 셀을 예시적으로 도시하는 회로도이다.
도 2는 본 발명의 일 실시예에 따른 자기 기억 소자를 나타내는 단면도이다.
도 3은 본 발명의 일 실시예에 따른 자기 기억 소자의 변형예를 설명하기 위한 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 자기 기억 소자를 나타내는 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 자기 기억 소자의 변형예를 설명하기 위한 단면도이다.
도 6은 본 발명의 또 다른 실시예에 따른 자기 기억 소자를 나타내는 단면도이다.
도 7은 본 발명의 또 다른 실시예에 따른 자기 기억 소자의 변형예를 나타내는 단면도이다.
도 8 및 도 9는 본 발명의 실시예들에 따른 반도체 장치를 포함하는 전자 장치들을 도식적으로 설명하기 위한 도면들이다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예들의 설명을 통해 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분은 동일한 구성요소들을 나타낸다.
본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서, 도면에서 예시된 영역들은 개략적인 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다. 본 명세서의 다양한 실시예들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명함으로써 본 발명을 상세히 설명한다.
도 1은 본 발명의 실시예들에 따른 자기 기억 소자의 단위 메모리 셀을 예시적으로 도시하는 회로도이다.
도 1을 참조하면, 단위 메모리 셀(70)은 서로 교차하는 제1 배선(L1) 및 제2 배선(L2) 사이에서 이들을 연결할 수 있다. 상기 단위 메모리 셀(70)은 스위칭 소자(60), 자기터널접합(magnetic tunnel junction; MTJ), 제1 도전 구조체(10), 및 제2 도전 구조체(50)를 포함할 수 있다. 상기 스위칭 소자(60), 상기 제1 도전 구조체(10), 상기 자기터널접합(MTJ), 및 상기 제2 도전 구조체(50)는 전기적으로 직렬로 연결될 수 있다. 상기 제1 및 제2 배선들(L1, L2) 중의 하나는 워드라인으로 사용되고 다른 하나는 비트라인으로 사용될 수 있다.
상기 스위칭 소자(60)는 상기 자기터널접합(MTJ)을 지나는 전하의 흐름을 선택적으로 제어하도록 구성될 수 있다. 예를 들면, 상기 스위칭 소자(60)는 다이오드, 피엔피 바이폴라 트랜지스터, 엔피엔 바이폴라 트랜지스터, 엔모스 전계효과트랜지스터 및 피모스 전계효과트랜지스터 중의 하나일 수 있다. 상기 스위칭 소자(60)가 3단자 소자인 바이폴라 트랜지스터 또는 모스 전계효과트랜지스터로 구성되는 경우, 추가적인 배선(미도시)이 상기 스위칭 소자(60)에 연결될 수 있다.
상기 자기터널접합(MTJ)은 제1 자성 구조체(20), 제2 자성 구조체(40) 및 이들 사이의 터널 배리어(30)를 포함할 수 있다. 상기 제1 및 제2 자성 구조체들(20 및 40) 각각은 자성 물질로 형성되는 적어도 하나의 자성층을 포함할 수 있다. 상기 제1 도전 구조체(10)는 상기 제1 자성 구조체(20)와 상기 스위칭 소자(60) 사이에 개재될 수 있고, 상기 제2 도전 구조체(50)은 상기 제2 자성 구조체(40)과 상기 제2 배선(L2) 사이에 개재될 수 있다.
상기 제1 자성 구조체(20)의 자성층 및 상기 제2 자성 구조체(40)의 자성층 중 하나의 자화 방향는, 통상적인 사용 환경 아래에서, 외부 자계(external magnetic field)에 상관없이 고정될 수 있다. 이러한 고정된 자화 특성을 갖는 자성층을 고정층(pinned layer)이라 정의한다. 반면, 상기 제1 자성 구조체(20)의 자성층 및 상기 제2 자성 구조체(40)의 자성층 중 다른 하나의 자화 방향은 그것에 인가되는 외부 자계에 의해 스위치될 수 있다. 이러한 가변적인 자화 특성을 갖는 자성층을 자유층(free layer)이라 정의한다. 상기 자기터널접합(MTJ)은 상기 터널 배리어(30)에 의해 분리된 적어도 하나의 상기 자유층 및 적어도 하나의 상기 고정층을 구비할 수 있다.
상기 자기터널접합(MTJ)의 전기적 저항은 상기 자유층 및 상기 고정층의 자화 방향들에 의존적일 수 있다. 예를 들면, 상기 자기터널접합(MTJ)의 전기적 저항은 상기 자유층 및 상기 고정층의 자화 방향들이 평행한 경우에 비해 이들이 반평행한(antiparallel) 경우에 훨씬 클 수 있다. 결과적으로, 상기 자기터널접합(MTJ)의 전기적 저항은 상기 자유층의 자화 방향을 변경함으로써 조절될 수 있으며, 이는 본 발명에 따른 자기 메모리 장치에서의 데이터 저장 원리로서 이용될 수 있다.
도 2는 본 발명의 일 실시예에 따른 자기 기억 소자를 나타내는 단면도이다.
도 2를 참조하면, 기판(100) 상에 제1 유전막(110)이 배치될 수 있고, 하부 콘택 플러그(120)가 상기 제1 유전막(110)을 관통할 수 있다. 상기 하부 콘택 플러그(120)의 하부면은 스위칭 소자의 일 단자에 전기적으로 접속될 수 있다. 상기 기판(100)은 반도체 특성을 갖는 물질들, 절연성 물질들, 절연성 물질에 의해 덮인 반도체 또는 도전체 중의 하나일 수 있다. 일 예로, 상기 기판(100)은 실리콘 웨이퍼일 수 있다. 상기 제1 유전막(110)은 산화물, 질화물, 및/또는 산화질화물을 포함할 수 있다. 상기 하부 콘택 플러그(120)는 도전 물질을 포함할 수 있다. 일 예로, 상기 도전 물질은, 도펀트로 도핑된 반도체(ex, 도프트 실리콘, 도프트 게르마늄, 도프트 실리콘-게르마늄 등), 금속(ex, 티타늄, 탄탈늄, 텅스텐 등) 및 도전성 금속질화물(ex, 질화티타늄, 질화탄탈늄 등) 중 적어도 하나일 수 있다.
상기 제1 유전막(110) 상에 제1 도전 구조체(10), 고정층(160), 터널 배리어층(170), 자유층(220), 및 제2 도전 구조체(50)가 차례로 적층될 수 있다. 상기 제1 도전 구조체(10)는 상기 하부 콘택 플러그(120)의 상부면에 전기적으로 접속될 수 있다. 상기 고정층(160), 상기 터널 배리어층(170), 및 상기 자유층(220)은 자기터널접합(magnetic tunnel junction, MTJ)에 포함될 수 있다. 상기 제1 도전 구조체(10), 상기 자기터널접합(MTJ), 및 상기 제2 도전 구조체(50)는 서로 정렬된 측벽들을 가질 수 있다. 일 예로, 상기 제1 도전 구조체(10), 상기 자기터널접합(MTJ), 및 상기 제2 도전 구조체(50)의 측벽들은 경사진 프로파일을 가질 수 있다.
상기 고정층(160)은, 상기 제1 도전 구조체(10) 상의 제1 수직 자성층(130), 상기 제1 수직 자성층(130) 상의 제2 수직 자성층(150), 및 상기 제1 수직 자성층(130)과 상기 제2 수직 자성층(150) 사이의 교환결합층(140)을 포함할 수 있다. 구체적으로, 상기 제1 수직 자성층(130)은 상기 제1 도전 구조체(10)와 상기 교환결합층(140) 사이에 배치될 수 있고, 상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 상기 터널 배리어층(170) 사이에 배치될 수 있다.
상기 자유층(220)은, 상기 터널 배리어층(170)상의 제3 수직 자성층(180), 상기 제3 수직 자성층(180) 상의 제4 수직 자성층(200), 상기 제3 수직 자성층(180)과 상기 제4 수직 자성층(200) 사이의 제1 층(190), 및 상기 제4 수직 자성층(200)과 상기 제2 도전 구조체(50) 사이의 제2 층(210)을 포함할 수 있다. 구체적으로, 상기 제3 수직 자성층(180)은 상기 터널 배리어층(170)과 상기 제1 층(190) 사이에 배치될 수 있고, 상기 제4 수직 자성층(200)은 상기 제1 층(190)과 상기 제2 층(210) 사이에 배치될 수 있다.
상기 고정층(160)은 상기 기판(100)의 상부면에 실질적으로 수직한 자화 방향을 가질 수 있다. 마찬가지로, 상기 자유층(220)의 자화 방향도 상기 기판(100)이 상부면에 실질적으로 수직할 수 있다.
구체적으로, 상기 제1 수직 자성층(130)은 상기 기판(100)의 상부면에 실질적으로 수직한 자화 용이축을 가질 수 있다. 이에 따라, 상기 제1 수직 자성층(130)은 상기 기판(100)의 상부면에 실질적으로 수직한 자화 방향을 가질 수 있다. 상기 제1 수직 자성층(130)의 자화 방향은 일 방향으로 고정될 수 있다. 마찬가지로, 상기 제2 수직 자성층(150)도 상기 기판(100)의 상부면에 실질적으로 수직한 자화 용이축을 가질 수 있다. 이에 따라, 상기 제2 수직 자성층(150)도 상기 기판(100)의 상부면에 실질적으로 수직한 자화 방향을 가질 수 있다. 상기 제2 수직 자성층(150)의 자화 방향은 상기 교환결합층(140)에 의해 상기 제1 수직 자성층(130)의 자화 방향에 반평행하게 고정될 수 있다. 프로그램 동작에 의해, 상기 제3 수직 자성층(180)의 자화 방향은 상기 제2 수직 자성층(150)의 자화 방향에 평행하거나 반평행하도록 변경될 수 있다. 상기 제4 수직 자성층(200)은 상기 제1 층(190)에 의해 상기 제3 수직 자성층(180)과 결합(couple)될 수 있고, 이에 따라, 상기 제4 수직 자성층(200)의 자화방향은 상기 제3 수직 자성층(180)의 자화방향에 평행하도록 변경될 수 있다.
상기 제1 도전 구조체(10)는 상기 자기터널접합(MTJ)을 형성하기 위한 시드층을 포함할 수 있고, 상기 스위칭 소자와 상기 자기터널접합(MTJ)을 전기적으로 연결하는 전극으로 기능할 수 있다. 일 실시예에 따르면, 상기 제1 도전 구조체(10)는 차례로 적층된 제1 도전막 및 제2 도전막을 포함할 수 있다. 일 예로, 상기 제1 도전막은 Ta 또는 CoHf를 포함할 수 있고, 상기 제2 도전막은 Ru를 포함할 수 있다. 상기 제2 도전 구조체(50)는 상기 자기터널접합(MTJ)을 덮는 캐핑막을 포함할 수 있고, 상기 자기터널접합(MTJ)과 배선(270)을 전기적으로 연결하는 전극으로 기능할 수 있다. 상기 제2 도전 구조체(50)는 귀금속막들, 자성 합금막들, 또는 금속막들 중의 적어도 하나를 포함하는 단층 또는 다층 구조일 수 있다. 일 예로, 상기 귀금속막은 Ru, Pt, Pd, Rh, 또는 Ir 중의 적어도 하나를 포함할 수 있고, 상기 자성 합금막은 Co, Fe, 또는 Ni 중의 적어도 하나를 포함할 수 있고, 상기 금속막은 Ta 또는 Ti 중 적어도 하나를 포함할 수 있다. 하지만, 상술한 물질들은, 본 발명의 기술적 사상에 대한 보다 나은 이해를 위해 예시되는 것일 뿐, 본 발명의 실시예들이 이에 한정되는 것은 아니다.
상기 제1 수직 자성층(130)은 수직 자성 물질을 포함할 수 있다. 일 예로, 상기 제1 수직 자성층(130)은 a) 터븀(Tb)의 함량비가 10% 이상인 코발트철터븀(CoFeTb), b) 가돌리늄(Gd)의 함량비가 10% 이상인 코발트철가돌리늄(CoFeGd), c) 코발트철디스프로슘(CoFeDy), d) L10 구조의 FePt, e) L10 구조의 FePd, f) L10 구조의 CoPd, g) L10 구조의 CoPt, h) 조밀육방격자(Hexagonal Close Packed Lattice) 구조의 CoPt, i) 상술한 a) 내지 h)의 물질들 중의 적어도 하나로 이루어진 합금을 포함할 수 있다. 또는, 상기 제1 수직 자성층(130)은 자성층들 및 비자성층들이 교대로 그리고 반복적으로 적층된 구조일 수 있다. 상기 자성층들 및 비자성층들이 교대로 그리고 반복적으로 적층된 구조는 일 예로, (Co/Pt)n, (CoFe/Pt)n, (CoFe/Pd)n, (Co/Pd)n, (Co/Ni)n, (CoNi/Pt)n, (CoCr/Pt)n 또는 (CoCr/Pd)n (n은 적층 횟수)의 구조일 수 있다.
상기 교환결합층(140)은, 루테늄, 이리듐, 및 로듐 중 적어도 하나를 포함할 수 있다. 상기 교환결합층(140)은 상기 제1 수직 자성층(130)과 상기 제2 수직 자성층(150)을 반강자성적으로 결합시킬 수 있다. 상기 교환결합층(140)에 의해 상기 제2 수직 자성층(150)은, 상기 제1 수직 자성층(130)의 자화 방향에 반평행한 수직 자화를 가질 수 있다.
상기 제2 수직 자성층(150)은, 일 예로, CoFeB, CoFeBTa, CoHf, Co, 또는 CoZr 중의 적어도 하나를 포함하는 단층 또는 다층 구조일 수 있다. 보다 구체적으로, 상기 제2 수직 자성층(150)은 Co막 및 CoHf막를 포함하는 복층 구조 또는 CoFeBTa막 및 CoFeB막를 포함하는 복층 구조로서 제공될 수 있다.
상기 터널 배리어층(170)은 유전 물질로 형성될 수 있다. 일 예로, 상기 터널 배리어층(170)은 산화마그네슘(MgO) 및/또는 산화알루미늄(AlO) 등으로 형성될 수 있다.
상기 제3 수직 자성층(180)은 보론(Boron, B)을 포함할 수 있다. 일 예로, 상기 제3 수직 자성층(180)은 CoFeB를 포함할 수 있다. 상기 제3 수직 자성층은 어닐링 공정에 의해 결정화되어, 상기 자기터널접합(MTJ)의 터널자기저항(Tunneling Magnetic Resistance, TMR) 특성을 나타낼 수 있다.
상기 제1 층(190)은 비자성 금속 물질을 포함할 수 있다. 상기 비자성 금속 물질은, 일 예로, Hf, Zr, Ti, Ta, 및 이들의 합금 중 적어도 하나일 수 있다. 상기 제1 층(190)에 의해, 상기 제4 수직 자성층(200)은 상기 제3 수직 자성층(180)과 결합(couple)될 수 있고, 이에 따라, 상기 제4 수직 자성층(200)은 상기 제3 수직 자성층(180)의 자화 방향에 평행한 수직 자화를 가질 수 있다. 상기 제1 층(190)은 약 10Å 이하의 두께를 가질 수 있다. 그러나, 본 발명의 다른 실시예에 따르면, 상기 제1 층(190)은 생략될 수 있다.
상기 제4 수직 자성층(200)은 상기 제3 수직 자성층(180)보다 보론(B) 함유량(content)이 낮을 수 있다. 즉, 상기 제4 수직 자성층(200) 내의 보론(B)의 원자 퍼센트(atomic percent, at%)은 상기 제3 수직 자성층(180) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 일 예로, 상기 제3 수직 자성층(180)의 보론(B) 함유량은 약 20 at%일 수 있고, 상기 제4 수직 자성층(200)의 보론(B) 함유량은 약 20 at%보다 작을 수 있다. 상기 제4 수직 자성층(200)은, 일 예로, ⅰ) Fe, Co, Ni, 또는 이들의 합금, 및 ⅱ) 비자성 금속 물질을 더 포함하는 Fe, Co, Ni, 또는 이들의 합금 중 적어도 하나를 포함할 수 있다. 상기 비자성 금속 물질은, 일 예로, Ta, Ti, Zr, Hf, B, 및 Cr 중 적어도 하나일 수 있다. 일 실시예에 따르면, 상기 제4 수직 자성층(200)은 Fe, 또는 Fe 합금들인 것이 바람직할 수 있다. 일 실시예에 따르면, 상기 제4 수직 자성층(200)은 상기 비자성 금속 물질을 포함하는 Fe, Co, 또는 Ni인 것이 바람직할 수 있다. 상기 제4 수직 자성층(200)의 포화 자화(Saturation Magnetization, Ms2)와 상기 제4 수직 자성층(200)의 두께(t2)를 곱한 값은, 상기 제3 수직 자성층(180)의 포화 자화(Ms1)와 상기 제3 수직 자성층(180)의 두께(t1)를 곱한 값보다 작을 수 있다. 상기 제4 수직 자성층(200)의 두께(t2)는 상기 제3 수직 자성층(180)의 두께(t1)보다 얇을 수 있다.
상기 제3 수직 자성층(180)은 비정질 구조를 가질 수 있다. 그러나, 어닐링 공정에 의해 상기 제3 수직 자성층(180) 내의 보론(B)이, 상기 제1 층(190) 및 상대적으로 보론(B) 함유량이 낮은 상기 제4 수직 자성층(200)으로 확산될 수 있고, 이에 따라, 상기 제3 수직 자성층(180)은 결정화될 수 있다. 상기 제3 수직 자성층(180)이 결정화됨으로써, 상기 터널 배리어층(170)과 상기 제3 수직 자성층(180)의 경계에서 상기 자기터널접합(MTJ)의 터널 자기 저항(TMR) 특성이 나타날 수 있다.
본 발명의 일 실시예에 따르면, 상기 자유층(220)은 보론(B) 함유량이 서로 다른 제3 및 제4 수직 자성층들(180 및 200)을 포함할 수 있다. 어닐링 공정에 의해, 상기 제3 수직 자성층(180) 내의 보론(B)은, 상대적으로 보론(B) 농도가 낮은 상기 제4 수직 자성층(200)으로 용이하게 확산될 수 있다. 이에 따라, 상기 어닐링 공정이 낮은 온도(일 예로, 300℃ 이하)에서 수행되는 경우에도, 상기 자성층들의 보론(B) 농도 차이에 의해 상기 제3 수직 자성층(180) 내의 보론(B)이 상기 제4 수직 자성층(200)으로 용이하게 확산되어, 상기 자기터널접합(MTJ)의 터널자기저항(TMR)이 높아질 수 있다.
상기 제2 층(210)은 금속 산화물을 포함할 수 있다. 상기 제2 층(210)은, 일 예로, 탄탈륨 산화물(tantalum oxide), 마그네슘 산화물(magnesium oxide), 티타늄 산화물(titanium oxide), 지르코늄 산화물(zirconium oxide), 하프늄 산화물(hafnium oxide), 및 아연 산화물(zinc oxide) 중 적어도 하나를 포함할 수 있다. 상기 제2 층(210)은, 상기 제4 수직 자성층(200)이 상기 기판(100)의 상부면에 수직한 자화를 갖는 것을 도울 수 있다. 상기 제2 층(210)의 저항은 상기 터널 배리어층(170)의 저항의 약 1/3 이하의 값을 가질 수 있다.
제2 유전막(260)이 상기 기판(100)의 전면 상에 배치되어 상기 제1 도전 구조체(10), 상기 자기터널접합(MTJ), 및 상기 제2 도전 구조체(50)를 덮을 수 있다. 상부 콘택 플러그(250)가 상기 제2 유전막(260)을 관통하여 상기 제2 도전 구조체(50)에 접속될 수 있다. 상기 제2 유전막(260)은 산화물, 질화물 및/또는 산화질화물 등을 포함할 수 있으며, 상기 상부 콘택 플러그(250)는 금속(ex, 티타늄, 탄탈늄, 구리, 알루미늄 또는 텅스텐 등) 및 도전성 금속질화물(ex, 질화티타늄 또는 질화탄탈늄 등) 중 적어도 하나를 포함할 수 있다. 상기 제2 유전막(260) 상에 배선(270)이 배치될 수 있다. 상기 배선(270)은 상기 상부 콘택 플러그(250)에 접속될 수 있다. 상기 배선(270)은 금속(ex, 티타늄, 탄탈늄, 구리, 알루미늄 또는 텅스텐 등) 및 도전성 금속질화물(ex, 질화티타늄 또는 질화탄탈늄 등) 중 적어도 하나를 포함할 수 있다. 일 실시예에 따르면, 상기 배선(270)은 비트 라인일 수 있다.
도 3은 본 발명의 일 실시예에 따른 자기 기억 소자의 변형예를 설명하기 위한 단면도이다. 도 2를 참조하여 설명한, 본 발명의 일 실시예에 따른 자기 기억 소자와 동일한 구성에 대하여는 동일한 참조번호가 제공되고, 설명의 간소화를 위해 중복되는 설명은 생략될 수 있다.
도 3을 참조하면, 기판(100) 상에 제1 유전막(110)이 배치될 수 있고, 상기 제1 유전막(110) 상에 제1 도전 구조체(10), 자유층(220), 터널 배리어층(170), 고정층(160), 및 제2 도전 구조체(50)가 차례로 적층될 수 있다. 즉, 도 2를 참조하여 설명된 본 발명의 일 실시예에 따른 자기 기억 소자와 달리, 상기 자유층(220)이 상기 터널 배리어층(170)과 상기 제1 도전 구조체(10) 사이에 배치될 수 있고, 상기 고정층(160)은 상기 터널 배리어층(170)과 상기 제2 도전 구조체(50) 사이에 배치될 수 있다.
상기 고정층(160)은, 상기 터널 배리어층(170) 상의 제1 수직 자성층(130), 상기 제1 수직 자성층(130)과 상기 터널 배리어층(170) 사이의 제2 수직 자성층(150), 및 상기 제1 수직 자성층(130)과 상기 제2 수직 자성층(150) 사이의 교환결합층(140)을 포함할 수 있다. 구체적으로, 상기 제1 수직 자성층(130)은 상기 제2 도전 구조체(50)와 상기 교환결합층(140) 사이에 배치될 수 있고, 상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 상기 터널 배리어층(170) 사이에 배치될 수 있다.
상기 자유층(220)은, 상기 제1 도전 구조체(10)와 상기 터널 배리어층(170) 사이의 제3 수직 자성층(180), 상기 제3 수직 자성층(180)과 상기 제1 도전 구조체(10) 사이의 제4 수직 자성층(200), 및 상기 제3 수직 자성층(180)과 상기 제4 수직 자성층(200) 사이의 제1 층(190)을 포함할 수 있다. 그러나, 다른 실시예에 따르면, 상기 제1 층(190)은 생략될 수 있다.
상기 제3 수직 자성층(180)은 보론(Boron, B)을 포함할 수 있고, 상기 제4 수직 자성층(200)은 상기 제3 수직 자성층(180)보다 보론(B) 함유량(content)이 낮을 수 있다. 즉, 상기 제4 수직 자성층(200) 내의 보론(B)의 원자 퍼센트(atomic percent, at%)은 상기 제3 수직 자성층(180) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 일 실시예에 따르면, 상기 제4 수직 자성층(200)은 Co, 또는 Co 합금들인 것이 바람직할 수 있다. 상기 제4 수직 자성층(200)의 포화 자화(Saturation Magnetization, Ms2)와 상기 제4 수직 자성층(200)의 두께(t2)를 곱한 값은, 상기 제3 수직 자성층(180)의 포화 자화(Ms1)와 상기 제3 수직 자성층(180)의 두께(t1)를 곱한 값보다 작을 수 있다. 상기 제4 수직 자성층(200)의 두께(t2)는 상기 제3 수직 자성층(180)의 두께(t1)보다 얇을 수 있다.
도 4는 본 발명의 다른 실시예에 따른 자기 기억 소자를 나타내는 단면도이다. 도 2를 참조하여 설명한, 본 발명의 일 실시예에 따른 자기 기억 소자와 동일한 구성에 대하여는 동일한 참조번호가 제공되고, 설명의 간소화를 위해 중복되는 설명은 생략될 수 있다.
도 4를 참조하면, 기판(100) 상에 차례로 적층된 고정층(160), 터널 배리어층(170), 및 자유층(220)을 포함하는 자기터널접합(MTJ)이 배치될 수 있다.
상기 고정층(160)은, 상기 기판(100)상에 배치되는 제1 도전 구조체(10) 상의 제1 수직 자성층(130), 상기 제1 수직 자성층(130) 상의 제2 수직 자성층(150), 및 상기 제1 수직 자성층(130)과 상기 제2 수직 자성층(150) 사이의 교환결합층(140)을 포함할 수 있다. 구체적으로, 상기 제1 수직 자성층(130)은 상기 제1 도전 구조체(10)와 상기 교환결합층(140) 사이에 배치될 수 있고, 상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 터널 배리어층(170) 사이에 배치될 수 있다.
상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 상기 터널 배리어층(170) 사이의 제1 서브 자성층(151), 상기 제1 서브 자성층(151)과 상기 교환결합층(140) 사이의 제2 서브 자성층(155), 및 상기 제1 서브 자성층(151)과 상기 제2 서브 자성층(155) 사이의 서브층(153)을 포함할 수 있다.
상기 제1 수직 자성층(130)은, 상기 기판(100)의 상부면에 실질적으로 수직하고 일 방향으로 고정된 자화 방향을 가질 수 있다. 마찬가지로, 상기 제2 서브 자성층(155)도 상기 기판(100)의 상부면에 실질적으로 수직하고 일 방향으로 고정된 자화 방향을 가질 수 있다. 상기 제2 서브 자성층(155)의 자화방향은 상기 교환결합층(140)에 의해 상기 제1 수직 자성층(130)의 자화방향에 반평행하게 고정될 수 있다. 상기 제1 서브 자성층(151)은, 상기 서브층(153)에 의해 상기 제2 서브 자성층(155)과 결합(couple)할 수 있고, 이에 따라, 상기 제1 서브 자성층(151)의 자화방향은 상기 제2 서브 자성층(155)의 자화방향에 평행하게 고정될 수 있다.
상기 제1 서브 자성층(151)은 보론(Boron, B)을 포함할 수 있다. 일 예로, 상기 제1 서브 자성층(151)은 CoFeB를 포함할 수 있다. 상기 제1 서브 자성층(151)은 어닐링 공정에 의해 결정화되어, 상기 자기터널접합(MTJ)의 터널자기저항(TMR) 특성을 나타낼 수 있다.
상기 서브층(153)은 비자성 금속 물질을 포함할 수 있다. 상기 비자성 금속 물질은, 일 예로, Hf, Zr, Ti, Ta, 및 이들의 합금 중 적어도 하나일 수 있다. 상기 서브층(153)에 의해, 상기 제1 서브 자성층(151)은 상기 제2 서브 자성층(155)과 결합될 수 있고, 이에 따라, 상기 제1 서브 자성층(151)은 상기 제2 서브 자성층(155)의 자화 방향에 평행한 수직 자화를 가질 수 있다. 상기 서브층(153)은 약 10Å 이하의 두께를 가질 수 있다. 그러나, 본 발명의 다른 실시예에 따르면, 상기 서브층(153)은 생략될 수 있다.
상기 제2 서브 자성층(155)은 상기 제1 서브 자성층(151)보다 보론(B) 함유량(content)이 낮을 수 있다. 즉, 상기 제2 서브 자성층(155) 내의 보론(B)의 원자 퍼센트는 상기 제1 서브 자성층(151) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 일 예로, 상기 제1 서브 자성층(151)의 보론(B) 함유량은 약 20 at%일 수 있고, 상기 제2 서브 자성층(155)의 보론(B) 함유량은 약 20 at%보다 작을 수 있다. 상기 제2 서브 자성층(155)은, 일 예로, ⅰ) Fe, Co, Ni, 또는 이들의 합금, 및 ⅱ) 비자성 금속 물질을 더 포함하는 Fe, Co, Ni, 또는 이들의 합금 중 적어도 하나를 포함할 수 있다. 다른 실시예에 따르면, 상기 제2 서브 자성층(155)은 Co, 또는 Co 합금들인 것이 바람직할 수 있다. 상기 제2 서브 자성층(155)의 포화 자화(Saturation Magnetization, Ms4)와 상기 제2 서브 자성층(155)의 두께(t4)를 곱한 값은, 상기 제1 서브 자성층(151)의 포화 자화(Ms3)와 상기 제1 서브 자성층(151)의 두께(t3)를 곱한 값보다 작을 수 있다. 상기 제2 서브 자성층(155)의 두께(t4)는 상기 제1 서브 자성층(151)의 두께(t3)보다 얇을 수 있다.
상기 제1 서브 자성층(151)은 비정질 구조를 가질 수 있다. 그러나, 어닐링 공정에 의해 상기 제1 서브 자성층(151) 내의 보론(B)이, 상기 서브층(153) 및 상대적으로 보론(B) 함유량이 낮은 상기 제2 서브 자성층(155)으로 확산될 수 있고, 이에 따라, 상기 제1 서브 자성층(151)은 결정화될 수 있다. 상기 제1 서브 자성층(151)이 결정화됨으로써, 상기 자기터널접합(MTJ)의 터널 자기 저항(TMR) 특성이 나타날 수 있다.
본 발명의 다른 실시예에 따르면, 상기 고정층(160)은 보론(B) 함유량이 서로 다른 제1 및 제2 서브 자성층들(151 및 155)을 포함할 수 있다. 어닐링 공정에 의해, 상기 제1 서브 자성층(151) 내의 보론(B)은, 상대적으로 농도가 낮은 상기 제2 서브 자성층(155)으로 용이하게 확산될 수 있다. 이에 따라, 상기 어닐링 공정이 낮은 온도(일 예로, 300℃ 이하)에서 수행되는 경우에도, 상기 자성층들의 보론(B) 농도 차이에 의해 상기 제1 서브 자성층(151) 내의 보론(B)이 상기 제2 서브 자성층(155)으로 용이하게 확산되어, 상기 자기터널접합(MTJ)의 터널자기저항(TMR)이 높아질 수 있다.
상기 자유층(220)은, 코발트, 철, 니켈, 또는 이들의 합금들 중의 적어도 하나를 포함하는 단층 또는 다층 구조를 통해 구현될 수 있다. 일 예로, 상기 자유층(220)은 Fe, Co, Ni, CoFe, NiFe, NiFeB, CoFeB, CoFeBTa, CoHf, 또는 CoZr 중의 적어도 하나를 포함하는 단층 또는 다층 구조일 수 있다.
도 5는 본 발명의 다른 실시예에 따른 자기 기억 소자의 변형예를 설명하기 위한 단면도이다. 도 4를 참조하여 설명한, 본 발명의 다른 실시예에 따른 자기 기억 소자와 동일한 구성에 대하여는 동일한 참조번호가 제공되고, 설명의 간소화를 위해 중복되는 설명은 생략될 수 있다.
도 5를 참조하면, 기판(100) 상에 차례로 적층된 자유층(220), 터널 배리어층(170), 및 고정층(160)을 포함하는 자기터널접합(MTJ)이 배치될 수 있다. 즉, 도 4를 참조하여 설명된 본 발명의 다른 실시예에 따른 자기 기억 소자와 달리, 상기 자유층(220)이 상기 터널 배리어층(170)과 상기 제1 도전 구조체(10) 사이에 배치될 수 있고, 상기 고정층(160)은 상기 터널 배리어층(170)과 상기 제2 도전 구조체(50) 사이에 배치될 수 있다.
상기 고정층(160)은, 상기 터널 배리어층(170)상의 제1 수직 자성층(130), 상기 제1 수직 자성층(130)과 상기 터널 배리어층(170) 사이의 제2 수직 자성층(150), 및 상기 제1 수직 자성층(130)과 상기 제2 수직 자성층(150) 사이의 교환결합층(140)을 포함할 수 있다. 구체적으로, 상기 제1 수직 자성층(130)은, 상기 교환결합층(140) 상에 배치되는 제2 도전 구조체(50)와 상기 교환결합층(140) 사이에 배치될 수 있고, 상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 터널 배리어층(170) 사이에 배치될 수 있다.
상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 상기 터널 배리어층(170) 사이의 제1 서브 자성층(151), 상기 제1 서브 자성층(151)과 상기 교환결합층(140) 사이의 제2 서브 자성층(155), 및 상기 제1 서브 자성층(151)과 상기 제2 서브 자성층(155) 사이의 서브층(153)을 포함할 수 있다. 그러나, 다른 실시예에 따르면, 상기 서브층(153)은 생략될 수 있다.
상기 제1 서브 자성층(151)은 보론(Boron, B)을 포함할 수 있고, 상기 제2 서브 자성층(155)은 상기 제1 서브 자성층(151)보다 보론(B) 함유량(content)이 낮을 수 있다. 즉, 상기 제2 서브 자성층(155) 내의 보론(B)의 원자 퍼센트는 상기 제1 서브 자성층(151) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 다른 실시예에 따르면, 상기 제2 서브 자성층(155)은 Fe, 또는 Fe 합금들인 것이 바람직할 수 있다. 상기 제2 서브 자성층(155)의 포화 자화(Saturation Magnetization, Ms4)와 상기 제2 서브 자성층(155)의 두께(t4)를 곱한 값은, 상기 제1 서브 자성층(151)의 포화 자화(Ms3)와 상기 제1 서브 자성층(151)의 두께(t3)를 곱한 값보다 작을 수 있다. 상기 제2 서브 자성층(155)의 두께(t4)는 상기 제1 서브 자성층(151)의 두께(t3)보다 얇을 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 자기 기억 소자를 나타내는 단면도이다. 도 2 및 도 4을 참조하여 설명한, 본 발명의 실시예들에 따른 자기 기억 소자와 동일한 구성에 대하여는 동일한 참조번호가 제공되고, 설명의 간소화를 위해 중복되는 설명은 생략될 수 있다.
도 6을 참조하면, 기판(100) 상에 차례로 적층된 고정층(160), 터널 배리어층(170), 및 자유층(220)을 포함하는 자기터널접합(MTJ)이 배치될 수 있다.
상기 고정층(160)은, 상기 기판(100) 상에 배치되는 제1 도전 구조체(10)상의 제1 수직 자성층(130), 상기 제1 수직 자성층(130) 상의 제2 수직 자성층(150), 및 상기 제1 수직 자성층(130)과 상기 제2 수직 자성층(150) 사이의 교환결합층(140)을 포함할 수 있다. 상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 상기 터널 배리어층(170) 사이의 제1 서브 자성층(151), 상기 제1 서브 자성층(151)과 상기 교환결합층(140) 사이의 제2 서브 자성층(155), 및 상기 제1 서브 자성층(151)과 상기 제2 서브 자성층(155) 사이의 서브층(153)을 포함할 수 있다.
상기 자유층(220)은, 상기 터널 배리어층(170)상의 제3 수직 자성층(180), 상기 제3 수직 자성층(180) 상의 제4 수직 자성층(200), 상기 제3 수직 자성층(180)과 상기 제4 수직 자성층(200) 사이의 제1 층(190), 및 상기 제4 수직 자성층(200)과, 상기 제4 수직 자성층(200) 상에 배치되는 제2 도전 구조체(50) 사이의 제2 층(210)을 포함할 수 있다.
상기 제3 수직 자성층(180)은 보론(Boron, B)을 포함할 수 있다. 일 예로, 상기 제3 수직 자성층(180)은 CoFeB를 포함할 수 있다. 상기 제1 층(190)은 비자성 금속 물질을 포함할 수 있다. 상기 비자성 금속 물질은, 일 예로, Hf, Zr, Ti, Ta, 및 이들의 합금 중 적어도 하나일 수 있다. 그러나, 본 발명의 다른 실시예에 따르면, 상기 제1 층(190)은 생략될 수 있다. 상기 제4 수직 자성층(200)은 상기 제3 수직 자성층(180)보다 보론(B) 함유량(content)이 낮을 수 있다. 즉, 상기 제4 수직 자성층(200) 내의 보론(B)의 원자 퍼센트는 상기 제3 수직 자성층(180) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 상기 제4 수직 자성층(200)은, 일 예로, ⅰ) Fe, Co, Ni, 또는 이들의 합금, 및 ⅱ) 비자성 금속 물질을 더 포함하는 Fe, Co, Ni, 또는 이들의 합금 중 적어도 하나를 포함할 수 있다. 상기 비자성 금속 물질은, 일 예로, Ta, Ti, Zr, Hf, B, 및 Cr 중 적어도 하나일 수 있다. 또 다른 실시예에 따르면, 상기 제4 수직 자성층(200)은 Fe, 또는 Fe 합금들인 것이 바람직할 수 있다. 상기 제4 수직 자성층(200)의 포화 자화(Saturation Magnetization, Ms2)와 상기 제4 수직 자성층(200)의 두께(t2)를 곱한 값은, 상기 제3 수직 자성층(180)의 포화 자화(Ms1)와 상기 제3 수직 자성층(180)의 두께(t1)를 곱한 값보다 작을 수 있다. 상기 제4 수직 자성층(200)의 두께(t2)는 상기 제3 수직 자성층(180)의 두께(t1)보다 얇을 수 있다.
상기 제3 수직 자성층(180)은 비정질 구조를 가질 수 있다. 그러나, 어닐링 공정에 의해 상기 제3 수직 자성층(180) 내의 보론(B)이, 상기 제1 층(190) 및 상대적으로 보론(B) 함유량이 낮은 상기 제4 수직 자성층(200)으로 확산될 수 있고, 이에 따라, 상기 제3 수직 자성층(180)은 결정화될 수 있다. 상기 제3 수직 자성층(180)이 결정화됨으로써, 상기 터널 배리어층(170)과 상기 제3 수직 자성층(180)의 경계에서 상기 자기터널접합(MTJ)의 터널 자기 저항(Tunneling Magnetic Rasistance, TMR) 특성이 나타날 수 있다.
상기 제1 서브 자성층(151)은 보론(Boron, B)을 포함할 수 있다. 일 예로, 상기 제1 서브 자성층(151)은 CoFeB를 포함할 수 있다. 상기 서브층(153)은 비자성 금속 물질을 포함할 수 있다. 상기 비자성 금속 물질은, 일 예로, Hf, Zr, Ti, Ta, 및 이들의 합금 중 적어도 하나일 수 있다. 그러나, 본 발명의 다른 실시예에 따르면, 상기 서브층(153)은 생략될 수 있다. 상기 제2 서브 자성층(155)은 상기 제1 서브 자성층(151)보다 보론(B) 함유량(content)이 낮을 수 있다. 즉, 상기 제2 서브 자성층(155) 내의 보론(B)의 원자 퍼센트은 상기 제1 서브 자성층(151) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 상기 제2 서브 자성층(155)은, 일 예로, ⅰ) Fe, Co, Ni, 또는 이들의 합금, 및 ⅱ) 비자성 금속 물질을 더 포함하는 Fe, Co, Ni, 또는 이들의 합금 중 적어도 하나를 포함할 수 있다. 상기 비자성 금속 물질은, 일 예로, Ta, Ti, Zr, Hf, B, 및 Cr 중 적어도 하나일 수 있다. 또 다른 실시예에 따르면, 제2 서브 자성층(155)은 Co, 또는 Co 합금들인 것이 바람직할 수 있다. 상기 제2 서브 자성층(155)의 포화 자화(Saturation Magnetization, Ms4)와 상기 제2 서브 자성층(155)의 두께(t4)를 곱한 값은, 상기 제1 서브 자성층(151)의 포화 자화(Ms3)와 상기 제1 서브 자성층(151)의 두께(t3)를 곱한 값보다 작을 수 있다. 상기 제2 서브 자성층(155)의 두께(t4)는 상기 제1 서브 자성층(151)의 두께(t3)보다 얇을 수 있다.
상기 제1 서브 자성층(151)은 비정질 구조를 가질 수 있다. 그러나, 어닐링 공정에 의해 상기 제1 서브 자성층(151) 내의 보론(B)이, 상기 서브층(153) 및 상대적으로 보론(B) 함유량이 낮은 상기 제2 서브 자성층(155)으로 확산될 수 있고, 이에 따라, 상기 제1 서브 자성층(151)은 결정화될 수 있다. 상기 제1 서브 자성층(151)이 결정화됨으로써, 상기 자기터널접합(MTJ)의 터널 자기 저항(TMR) 특성이 나타날 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 자유층(220) 및 상기 고정층(160)은 보론(B) 함유량이 서로 다른 자성층들을 포함할 수 있다. 어닐링 공정에 의해 상기 제3 수직 자성층(180) 및 제1 서브 자성층(151) 내의 보론(B)은, 상대적으로 농도가 낮은 상기 제4 수직 자성층(200) 및 상기 제2 서브 자성층(155)으로 각각 용이하게 확산될 수 있다. 이에 따라, 상기 어닐링 공정이 낮은 온도(일 예로, 300℃ 이하)에서 수행되는 경우에도, 상기 자성층들의 보론(B) 농도 차이에 의해 상기 제3 수직 자성층(180) 및 제1 서브 자성층(151) 내의 보론(B)이, 상기 제4 수직 자성층(200) 및 상기 제2 서브 자성층(155)으로 각각 용이하게 확산되어, 상기 자기터널접합(MTJ)의 터널자기저항(TMR)이 높아질 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 자기 기억 소자의 변형예를 나타내는 단면도이다. 도 6을 참조하여 설명한, 본 발명의 또 다른 실시예에 따른 자기 기억 소자와 동일한 구성에 대하여는 동일한 참조번호가 제공되고, 설명의 간소화를 위해 중복되는 설명은 생략될 수 있다.
도 7을 참조하면, 기판(100) 상에 차례로 적층된 자유층(220), 터널 배리어층(170), 및 고정층(160)을 포함하는 자기터널접합(MTJ)이 배치될 수 있다. 즉, 도 6을 참조하여 설명된 본 발명의 또 다른 실시예에 따른 자기 기억 소자와 달리, 상기 자유층(220)이 상기 터널 배리어층(170)과 상기 제1 도전 구조체(10) 사이에 배치될 수 있고, 상기 고정층(160)은 상기 터널 배리어층(170)과 상기 제2 도전 구조체(50) 사이에 배치될 수 있다.
상기 고정층(160)은, 상기 터널 배리어층(170)상의 제1 수직 자성층(130), 상기 제1 수직 자성층(130)과 상기 터널 배리어층(170) 사이의 제2 수직 자성층(150), 및 상기 제1 수직 자성층(130)과 상기 제2 수직 자성층(150) 사이의 교환결합층(140)을 포함할 수 있다. 구체적으로, 상기 제1 수직 자성층(130)은, 상기 교환결합층(140) 상에 배치되는 제2 도전 구조체(50)와 상기 교환결합층(140) 사이에 배치될 수 있고, 상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 터널 배리어층(170) 사이에 배치될 수 있다.
상기 제2 수직 자성층(150)은 상기 교환결합층(140)과 상기 터널 배리어층(170) 사이의 제1 서브 자성층(151), 상기 제1 서브 자성층(151)과 상기 교환결합층(140) 사이의 제2 서브 자성층(155), 및 상기 제1 서브 자성층(151)과 상기 제2 서브 자성층(155) 사이의 서브층(153)을 포함할 수 있다. 그러나, 다른 실시예에 따르면, 상기 서브층(153)은 생략될 수 있다.
상기 자유층(220)은, 상기 제1 도전 구조체(10)상의 제3 수직 자성층(180), 상기 제3 수직 자성층(180)과 상기 제1 도전 구조체(10) 사이의 제4 수직 자성층(200), 및 상기 제3 수직 자성층(180)과 상기 제4 수직 자성층(200) 사이의 제1 층(190)을 포함할 수 있다. 그러나, 다른 실시예에 따르면, 상기 제1 층(190)은 생략될 수 있다.
상기 제3 수직 자성층(180)은 보론(Boron, B)을 포함할 수 있고, 상기 제4 수직 자성층(200) 내의 보론(B)의 원자 퍼센트는 상기 제3 수직 자성층(180) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 또 다른 실시예에 따르면, 상기 제4 수직 자성층(200)은 Co, 또는 Co 합금들인 것이 바람직할 수 있다. 상기 제4 수직 자성층(200)의 포화 자화(Saturation Magnetization, Ms2)와 상기 제4 수직 자성층(200)의 두께(t2)를 곱한 값은, 상기 제3 수직 자성층(180)의 포화 자화(Ms1)와 상기 제3 수직 자성층(180)의 두께(t1)를 곱한 값보다 작을 수 있다.
상기 제1 서브 자성층(151)은 보론(Boron, B)을 포함할 수 있고, 상기 제2 서브 자성층(155) 내의 보론(B)의 원자 퍼센트는 상기 제1 서브 자성층(151) 내의 보론(B)의 원자 퍼센트보다 낮을 수 있다. 또 다른 실시예에 따르면, 상기 제2 서브 자성층(155)은 Fe, 또는 Fe 합금들인 것이 바람직할 수 있다. 상기 제2 서브 자성층(155)의 포화 자화(Saturation Magnetization, Ms4)와 상기 제2 서브 자성층(155)의 두께(t4)를 곱한 값은, 상기 제1 서브 자성층(151)의 포화 자화(Ms3)와 상기 제1 서브 자성층(151)의 두께(t3)를 곱한 값보다 작을 수 있다.
본 발명의 개념에 따르면, 상기 자유층(220) 및/또는 상기 고정층(160)은 보론(B) 함유량이 서로 다른 자성층들을 포함할 수 있다. 어닐링 공정에 의해, 상대적으로 보론(B) 함유량이 높은 자성층들 내의 보론(B)은, 상대적으로 보론(B) 함유량이 낮은 자성층들로 용이하게 확산될 수 있다. 이에 따라, 상기 어닐링 공정이 낮은 온도(일 예로, 300℃ 이하)에서 수행되는 경우에도, 상기 자성층들의 보론(B) 농도 차이에 의해 상대적으로 보론(B) 함유량이 높은 자성층들 내의 보론(B)이, 상대적으로 보론(B) 함유량이 낮은 자성층들로 각각 용이하게 확산되어, 상기 자기터널접합(MTJ)의 터널자기저항(TMR)이 높아질 수 있다.
도 8 및 도 9는 본 발명의 실시예들에 따른 반도체 장치를 포함하는 전자 장치들을 도식적으로 설명하기 위한 도면들이다.
도 8을 참조하면, 본 발명의 실시예들에 따른 반도체 장치를 포함하는 전자 장치(1300)는 PDA, 랩톱(laptop) 컴퓨터, 휴대용 컴퓨터, 웹 태블릿(web tablet), 무선 전화기, 휴대폰, 디지털 음악 재생기(digital music player), 유무선 전자 기기 또는 이들 중의 적어도 둘을 포함하는 복합 전자 장치 중의 하나일 수 있다. 전자 장치(1300)는 버스(1350)를 통해서 서로 결합한 제어기(1310), 키패드, 키보드, 화면(display) 같은 입출력 장치(1320), 메모리(1330), 무선 인터페이스(1340)를 포함할 수 있다. 제어기(1310)는 예를 들면 하나 이상의 마이크로프로세서, 디지털 신호 프로세서, 마이크로 컨트롤러, 또는 이와 유사한 것들을 포함할 수 있다. 메모리(1330)는 예를 들면 제어기(1310)에 의해 실행되는 명령어를 저장하는데 사용될 수 있다. 메모리(1330)는 사용자 데이터를 저장하는 데 사용될 수 있으며, 상술한 본 발명의 실시예들에 따른 반도체 장치를 포함할 수 있다. 전자 장치(1300)는 RF 신호로 통신하는 무선 통신 네트워크에 데이터를 전송하거나 네트워크에서 데이터를 수신하기 위해 무선 인터페이스(1340)를 사용할 수 있다. 예를 들어 무선 인터페이스(1340)는 안테나, 무선 트랜시버 등을 포함할 수 있다. 전자 장치(1300)는 CDMA, GSM, NADC, E-TDMA, WCDMA, CDMA2000, Wi-Fi, Muni Wi-Fi, Bluetooth, DECT, Wireless USB, Flash-OFDM, IEEE 802.20, GPRS, iBurst, WiBro, WiMAX, WiMAX-Advanced, UMTS-TDD, HSPA, EVDO, LTE-Advanced, MMDS 등과 같은 통신 시스템의 통신 인터페이스 프로토콜을 구현하는데 이용될 수 있다.
도 9를 참조하면, 본 발명의 실시예들에 따른 반도체 장치들은 메모리 시스템(memory system)을 구현하기 위해 사용될 수 있다. 메모리 시스템(1400)은 대용량의 데이터를 저장하기 위한 메모리 소자(1410) 및 메모리 컨트롤러(1420)를 포함할 수 있다. 메모리 컨트롤러(1420)는 호스트(1430)의 읽기/쓰기 요청에 응답하여 메모리 소자(1410)로부터 저장된 데이터를 독출 또는 기입하도록 메모리 소자(1410)를 제어한다. 메모리 컨트롤러(1420)는 호스트(1430), 가령 모바일 기기 또는 컴퓨터 시스템으로부터 제공되는 어드레스를 메모리 소자(1410)의 물리적인 어드레스로 맵핑하기 위한 어드레스 맵핑 테이블(Address mapping table)을 구성할 수 있다. 메모리 소자(1410)는 상술한 본 발명의 실시예들에 따른 반도체 장치를 포함할 수 있다.
본 발명의 실시예들에 따른 반도체 장치가 실장된 패키지는 상기 반도체 장치를 제어하는 컨트롤러 및/또는 논리 소자 등을 더 포함할 수도 있다.
본 발명의 실시예들에 대한 이상의 설명은 본 발명의 설명을 위한 예시를 제공한다. 따라서 본 발명은 이상의 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 기술 분야의 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.
10: 제1 도전 구조체 20: 제1 자성 구조체
30: 터널 배리어 40: 제2 자성 구조체
50: 제2 도전 구조체 60: 스위칭 소자
MTJ: 자기터널접합 70: 단위 메모리 셀
L1, L2, 270: 배선들 100: 기판
110: 제1 유전막 120: 하부 콘택 플러그
130: 제1 수직 자성층 140: 교환 결합층
150: 제2 수직 자성층 160: 고정층
170: 터널배리어층 180: 제3 수직 자성층
190: 제1 층 200: 제4 수직 자성층
210: 제2 층 220: 자유층
250: 상부 콘택 플러그 260: 제2 유전막

Claims (10)

  1. 자유층, 고정층, 및 이들 사이의 터널 배리어층을 포함하는 자기터널접합을 포함하되,
    상기 자유층 및 상기 고정층 중 적어도 하나는:
    상기 터널 배리어층 상에 배치되고, 보론(B)을 포함하는 제1 수직 자성층; 및
    상기 제1 수직 자성층 상에 배치되고, 상기 제1 수직 자성층보다 보론(B) 함유량(content)이 낮은 제2 수직 자성층을 포함하되,
    상기 제1 수직 자성층은 상기 터널 배리어층과 상기 제2 수직 자성층 사이에 있고, 상기 제2 수직 자성층의 두께는 상기 제1 수직 자성층의 두께보다 얇은 자기 기억 소자.
  2. 청구항 1에 있어서,
    상기 제2 수직 자성층의 포화 자화와 상기 제2 수직 자성층의 두께를 곱한 값은, 상기 제1 수직 자성층의 포화 자화와 상기 제1 수직 자성층의 두께를 곱한 값보다 작은 자기 기억 소자.
  3. 청구항 1에 있어서,
    상기 제2 수직 자성층은:
    철(Fe), 코발트(Co), 니켈(Ni), 또는 이들의 합금, 및
    각각 비자성 금속 물질을 더 포함하는 철, 코발트, 니켈, 또는 이들의 합금 중 적어도 하나를 포함하는 자기 기억 소자.
  4. 청구항 3에 있어서,
    상기 비자성 금속 물질은 Ta, Ti, Zr, Hf, B, 또는 Cr 중 적어도 하나를 포함하는 자기 기억 소자.
  5. 청구항 1에 있어서,
    상기 제1 수직 자성층과 상기 제2 수직 자성층 사이의 비자성 금속층을 더 포함하는 자기 기억 소자.
  6. 청구항 5에 있어서,
    상기 비자성 금속층은 Hf, Zr, Ti, Ta, 또는 이들의 합금 중 적어도 하나를 포함하는 자기 기억 소자.
  7. 청구항 5에 있어서,
    상기 비자성 금속층의 두께는 10Å이하인 자기 기억 소자.
  8. 청구항 1에 있어서,
    상기 제2 수직 자성층 상의 금속 산화층을 더 포함하되,
    상기 제2 수직 자성층은 상기 금속 산화층과 상기 터널 배리어층 사이에 배치되는 자기 기억 소자.
  9. 청구항 8에 있어서,
    상기 금속 산화층은 탄탈륨 산화물, 마그네슘 산화물, 티타늄 산화물, 지르코늄 산화물, 하프늄 산화물, 및 아연 산화물 중 적어도 하나를 포함하는 자기 기억 소자.
  10. 청구항 8에 있어서,
    상기 금속 산화층의 저항은 상기 터널 배리어층의 저항의 1/3 이하인 자기 기억 소자.
KR1020130061973A 2013-05-30 2013-05-30 자기 기억 소자 KR102105078B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130061973A KR102105078B1 (ko) 2013-05-30 2013-05-30 자기 기억 소자
US14/265,697 US9842987B2 (en) 2013-05-30 2014-04-30 Magnetic tunnel junction memory devices including crystallized boron-including first magnetic layer on a tunnel barrier layer and lower boron-content second magnetic layer on the first magnetic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130061973A KR102105078B1 (ko) 2013-05-30 2013-05-30 자기 기억 소자

Publications (2)

Publication Number Publication Date
KR20140140929A true KR20140140929A (ko) 2014-12-10
KR102105078B1 KR102105078B1 (ko) 2020-04-27

Family

ID=51984198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130061973A KR102105078B1 (ko) 2013-05-30 2013-05-30 자기 기억 소자

Country Status (2)

Country Link
US (1) US9842987B2 (ko)
KR (1) KR102105078B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102566954B1 (ko) 2016-08-04 2023-08-16 삼성전자주식회사 자기 메모리 소자 및 그 제조 방법
JP2018157161A (ja) * 2017-03-21 2018-10-04 東芝メモリ株式会社 磁気記憶装置及びその製造方法
KR20230012371A (ko) * 2021-07-15 2023-01-26 삼성전자주식회사 자기터널접합 소자 및 자기터널접합 소자를 포함하는 메모리 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096716A1 (en) * 2007-02-12 2010-04-22 Yadav Technology Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187103A3 (en) 2000-08-04 2003-01-08 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, head, and memory element
US6831312B2 (en) * 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US7449345B2 (en) 2004-06-15 2008-11-11 Headway Technologies, Inc. Capping structure for enhancing dR/R of the MTJ device
US7497007B2 (en) 2005-07-14 2009-03-03 Headway Technologies, Inc. Process of manufacturing a TMR device
US7595520B2 (en) 2006-07-31 2009-09-29 Magic Technologies, Inc. Capping layer for a magnetic tunnel junction device to enhance dR/R and a method of making the same
JP4496189B2 (ja) 2006-09-28 2010-07-07 株式会社東芝 磁気抵抗効果型素子および磁気抵抗効果型ランダムアクセスメモリ
JP4985006B2 (ja) 2007-03-20 2012-07-25 富士通株式会社 磁気抵抗効果素子、磁性積層構造体、及び磁性積層構造体の製造方法
CN102132434A (zh) 2008-09-01 2011-07-20 佳能安内华股份有限公司 磁阻元件及其制造方法、用于该制造方法的存储介质
WO2010026667A1 (en) 2008-09-03 2010-03-11 Canon Anelva Corporation Ferromagnetic preferred grain growth promotion seed layer for amorphous or microcrystalline mgo tunnel barrier
US8536669B2 (en) 2009-01-13 2013-09-17 Qualcomm Incorporated Magnetic element with storage layer materials
JP4903277B2 (ja) 2010-01-26 2012-03-28 株式会社日立製作所 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
KR101586380B1 (ko) 2010-03-29 2016-01-19 삼성전자주식회사 자기 메모리 소자 및 그 형성방법
KR101463948B1 (ko) 2010-11-08 2014-11-27 삼성전자주식회사 자기 기억 소자
JP5768498B2 (ja) 2011-05-23 2015-08-26 ソニー株式会社 記憶素子、記憶装置
KR101811315B1 (ko) 2011-05-24 2017-12-27 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
KR20130015928A (ko) 2011-08-05 2013-02-14 에스케이하이닉스 주식회사 자기 메모리 소자 및 그 제조 방법
US9214624B2 (en) * 2012-07-27 2015-12-15 Qualcomm Incorporated Amorphous spacerlattice spacer for perpendicular MTJs
US9379315B2 (en) * 2013-03-12 2016-06-28 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, and memory systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096716A1 (en) * 2007-02-12 2010-04-22 Yadav Technology Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy

Also Published As

Publication number Publication date
KR102105078B1 (ko) 2020-04-27
US20140353783A1 (en) 2014-12-04
US9842987B2 (en) 2017-12-12

Similar Documents

Publication Publication Date Title
KR102124361B1 (ko) 수직 자기터널접합을 포함하는 자기 기억 소자
US9356228B2 (en) Magnetic tunneling junction devices, memories, memory systems, and electronic devices
US9166144B2 (en) Magnetic devices having perpendicular magnetic tunnel junction
KR102245748B1 (ko) 자기 기억 소자 및 이의 제조 방법
JP6434688B2 (ja) 磁気メモリ素子及び磁性素子
KR20140135002A (ko) 자기 기억 소자 및 그 제조방법
KR102541481B1 (ko) 수직 자기터널접합을 포함하는 자기 기억 소자
CN104347796A (zh) 具有垂直磁隧道结的磁存储装置
US9299920B2 (en) Magnetic memory devices with magnetic tunnel junctions
KR20150094384A (ko) 자기 기억 소자
US10170690B2 (en) Hybrid-fl with edge-modified coupling
KR102466342B1 (ko) 자기 메모리 소자
US9299923B2 (en) Magnetic devices having perpendicular magnetic tunnel junction
KR102105078B1 (ko) 자기 기억 소자
JP6999122B2 (ja) 垂直磁気トンネル接合を含む磁気記憶素子
KR102017622B1 (ko) 수직 자기터널접합을 구비하는 자기 메모리 장치들

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant