KR20140132343A - 판정 방법, 판정 장치, 판정 시스템 및 프로그램 - Google Patents

판정 방법, 판정 장치, 판정 시스템 및 프로그램 Download PDF

Info

Publication number
KR20140132343A
KR20140132343A KR1020147023805A KR20147023805A KR20140132343A KR 20140132343 A KR20140132343 A KR 20140132343A KR 1020147023805 A KR1020147023805 A KR 1020147023805A KR 20147023805 A KR20147023805 A KR 20147023805A KR 20140132343 A KR20140132343 A KR 20140132343A
Authority
KR
South Korea
Prior art keywords
median
value
spot
pixel group
detection intensity
Prior art date
Application number
KR1020147023805A
Other languages
English (en)
Other versions
KR102048599B1 (ko
Inventor
구니히사 나기노
히로미치 사사모토
시게루 스즈에
Original Assignee
도레이 카부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이 카부시키가이샤 filed Critical 도레이 카부시키가이샤
Publication of KR20140132343A publication Critical patent/KR20140132343A/ko
Application granted granted Critical
Publication of KR102048599B1 publication Critical patent/KR102048599B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30072Microarray; Biochip, DNA array; Well plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Multimedia (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 담체에 있어서의 검출 강도를 화상화한 화상 데이터에 있어서 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하고, 추출된 픽셀군에 있어서의 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값의 비 또는 차를 산출하고, 산출된 비 또는 차와, 소정의 기준값에 기초하여, 신뢰성의 양부를 판정한다.

Description

판정 방법, 판정 장치, 판정 시스템 및 프로그램{DETERMINATION METHOD, DETERMINATION DEVICE, DETERMINATION SYSTEM, AND PROGRAM}
본 발명은 판정 방법, 판정 장치, 판정 시스템 및 프로그램에 관한 것이다.
근년 마이크로어레이 실험이나 매크로어레이 실험 등의 기술 발전에 의해, 방대한 양의 유전자나 단백질 등을 망라적으로 해석하는 것이 가능하게 되었다. 예를 들어, DNA 마이크로어레이에서는 슬라이드 글래스 등의 담체 위에 수백 내지 수만의 DNA를 매트릭스상으로 정렬시키고 스폿으로서 고정화해 두고, 검사 대상의 세포로부터 추출·표식한 mRNA 또는 cDNA를 혼성화시킴으로써 유전자 발현 수준을 측정할 수 있다.
즉, 표식된 cDNA 등의 피검사 물질이 담체 상의 상보적 DNA에 선택적으로 결합하므로, 표식의 검출 강도를 취득함으로써 유전자 발현 수준을 추정할 수 있다. 여기서, 유전자 발현 수준 등의 피검사 물질의 선택적 결합량에는 데이터로서의 신뢰성이 요구되기는 하지만, 스폿으로서 담체 상에 고정화된 상보적 DNA 등의 선택 결합성 물질이 불균일하여 얼룩이 있는 경우나, 스폿 개소에 티끌이 부착되어 있는 경우 등과 같이 비생물학적인 요인에 의해 검출 강도가 변동될 우려가 있었다.
그로 인해, 종래 DNA 마이크로어레이 등에 있어서의 스폿의 균일성을 판정하는 방법이 개발되고 있다. 예를 들어, 특허문헌 1에 기재된 균일성 평가 방법은, (1) DNA 마이크로어레이의 단색 발광 이미지를 스캔하여 얻은 화상에 해석 소프트웨어를 적용하여, 각 스폿에 대응하는 백그라운드 데이터를 얻고, (2) 각 스폿에 대응하는 타깃 DNA의 플레이트 No.와 플레이트 위치를 구하고, (3) 각 백그라운드 데이터에 플레이트 No.와 플레이트 위치를 대응시키고, (4) 백그라운드 데이터를, 플레이트 No.와 플레이트 위치의 순서대로 배열한 수열 BG를 얻어, 수열 전체로부터 부분 수열을 추출하여 주기성 규칙을 검출한다.
또한, 특허문헌 2에 있어서는, CV(coefficient of variation: 변동 계수)의 값을 기준으로 변동을 평가하는 것이 개시되어 있다. 여기서 스폿의 변동 계수(CV)란, DNA 마이크로어레이 등의 스폿에 대하여 담체 상의 검출 강도를 스캔하여 측정했을 때에 얻어지는, 각 스폿의 형광 강도의 평균값에 대한 표준 편차(SD)의 비율(%)을 의미한다.
또한, 마이크로어레이의 해석 소프트웨어 GenePix Pro(몰레큘러 디바이스(Molecular Devices)사제)에서는, 스폿에 포함되는 픽셀의 각 강도의 값과 스폿 주위의 픽셀 강도의 평균값을 비교하여, 스폿에 포함되는 픽셀 중 소정 비율이 조건 「(스폿에 포함되는 각 픽셀의 강도)-(스폿 주위의 픽셀 강도 평균값)<0」을 만족시키는 경우, 그 스폿을 불량으로 판정하고 있다(비특허문헌 1 참조). 이에 따라 어떠한 이상, 예를 들어 티끌이 부착되거나, 칩이 더럽혀지거나 한 것에 의해 스폿 주변의 백그라운드가 높아진 경우를 검출한다.
일본 특허 공개 제2004-340574호 공보 일본 특허 공개 제2008-039584호 공보
가부시끼가이샤 인터메디컬, "GenePix Pro 7.0 Microarray Image Analysis", [online], Copyright 2006 InterMedical co., ltd., [2012년 3월 6일 검색], 인터넷<URL:http://www.intermedical.co.jp/homepage/products/axon/genepixpro7.html>
그러나, 종래법에 있어서의 스폿 균일성 판정 방법에서는 피검사 물질의 선택적 결합량의 신뢰성을 적절하게 판정할 수 없다는 문제가 있었다.
특히, 특허문헌 1에 기재된 균일성 평가 방법에서는 복수의 스폿간의 균일성을 평가할 수 있기는 하지만, 단일의 스폿 내의 균일성을 평가할 수 없다는 문제가 있다.
또한, 특허문헌 2에 기재된 CV값에 의한 평가 방법에서는, 스폿을 구성하는 픽셀군 중, 티끌의 부착 등에 의해 일부의 픽셀 강도가 극단적으로 높은 경우나 낮은 경우에는 표준 편차가 커져 CV값이 역치를 초과하기 때문에, 일부 픽셀 이외의 픽셀군에 대해서는 강도 데이터를 사용할 수 있음에도 불구하고, 당해 데이터를 배제하여 과검출이라는 문제가 있다.
즉, 일반적으로 DNA 칩 등의 스폿의 신호 강도의 대표값으로서는, 화상 중의 스폿 내의 픽셀군에 있어서의 메디안(중앙값)을 사용하고 있다. 예를 들어, 화상에 있어서 직경 100㎛의 원형의 스폿에서 위치 정렬을 행한 경우, 원형에 포함되는 약 70개(픽셀 크기: 10㎛ 사방(四方))의 픽셀군에 있어서 강도의 메디안(스폿 메디안)을 구한다.
이것은 픽셀군의 강도의 평균값을 사용하는 것보다도, 이상값에 의존하여 변동하는 것이 적기 때문이다. 즉, 스폿 내의 픽셀군의 검출 강도에 있어서 극단적으로 높은 값이나 극단적으로 낮은 값 등의 이상값이 있으면, 전체 평균이 이상값으로 끌려가기 때문이다.
여기서, 도 1은 2매의 DNA 칩에 있어서 동일한 피검사 물질을 혼성화시킨 경우의 검출 강도를 나타내는 산점도이다. 횡축은 한쪽의 DNA 칩에 있어서의 각 스폿의 검출 강도를 나타내고 있으며, 종축은 다른 쪽의 DNA 칩에 있어서의 각 스폿의 검출 강도를 나타내고 있다. 즉, 1개의 점의 좌표(X,Y)는 동일한 선택 결합성 물질을 고정한 스폿에 대하여, 한쪽의 DNA 칩에 있어서 측정된 검출 강도(X)와 다른 쪽의 DNA 칩에 있어서 측정된 검출 강도(Y)를 나타내고 있다.
이 예에서는, 2매의 DNA 칩에 있어서 동일한 피검사 물질을 혼성화시키고 있으므로, 이상적으로는 Y=X가 되어야 한다. 그러나, 도 1에 도시한 바와 같이, 스폿 1 및 2의 강도 플롯은 Y=X의 선으로부터 크게 벗어나 있어, 스폿 불량이라고 생각된다. 여기서, 도 2는 스폿 1의 강도 화상(좌측 도면)과, 스폿 1의 종단선에 있어서의 검출 강도의 변동 그래프(우측 도면)를 도시하는 도면이다. 또한, 도 3은 스폿 2의 강도 화상(좌측 도면)과, 스폿 2의 종단선에 있어서의 검출 강도의 변동 그래프(우측 도면)를 도시하는 도면이다. 또한, 강도 화상에 있어서, 파선의 원은 스폿 개소를 나타내고 있으며, 백색 계조값(階調値)에 의해 검출 강도가 표현되고 있다.
도 2 및 도 3의 좌측 도면에 도시한 바와 같이, 스폿 개소의 강도 화상에 있어서 검출 강도는 균일한 원으로 되어 있지 않고, 불균일한 얼룩으로 되어 있다. 변동 그래프(우측 도면)는 가로 1픽셀 세로 수십픽셀에 걸쳐 스폿 개소를 종단하는 선에 있어서의 검출 강도의 변동을 나타내고 있으며, 이상적으로는 일정한 강도이어야 하는 바이나, 크게 변동하고 있다. 불량의 원인은 주로 스폿의 불량(선택 결합성 물질의 고정시의 불량 등)이나 티끌의 부착이다.
특허문헌 2 등의 선행 기술에 있어서는, 이러한 불량 스폿을 배제하기 때문에, 이하의 수학식으로 구해지는 CV값을 사용하여 스폿의 양부(良否)를 판정하고 있다.
CV값=(픽셀군에 있어서의 강도의 표준 편차)/(픽셀군에 있어서의 강도의 평균값)
즉, CV값이 소정의 기준값 이상이면 불량 스폿으로서 데이터를 배제하고 있다. 그 경우, 티끌 등이 스폿의 일부에 부착되는 것 등에 의해, 상술한 예에서 70개의 픽셀군 중 5픽셀이 극단적으로 큰 값을 나타낸 경우, CV값이 기준값 이상이 되어 데이터가 배제된다.
그러나, 스폿의 신호 강도의 대표값으로서는 통상 스폿 내의 픽셀군에 있어서의 메디안을 사용하고 있는 것으로, 가령 스폿 내의 일부에 이상값이 포함되어 있어도 변동되는 경우가 적으므로, 데이터로서는 충분히 사용할 수 있을 가능성이 있다. 즉, CV값을 사용한 종래의 평가 방법에서는, 충분히 사용할 수 있음에도 불구하고 불량 스폿을 과검출하여 데이터를 배제해 버리고 있다는 문제점을 갖고 있었다.
본 발명은 상기를 감안하여 이루어진 것으로, 마이크로어레이 실험 등으로부터 얻어지는 데이터에 있어서, 비생물학적 영향을 고려하여 피검사 물질의 선택적 결합량의 신뢰성을 적절하게 평가할 수 있는, 판정 방법, 판정 장치, 판정 시스템 및 프로그램을 제공하는 것을 목적으로 한다.
이와 같은 목적을 달성하기 위하여, 본 발명의 판정 방법은 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 표식의 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는 판정 방법이며, 상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 단계와, 상기 픽셀군 추출 단계에서 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 단계와, 상기 메디안 산출 단계에서 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부를 판정하는 신뢰성 판정 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명의 판정 방법은, 상기 기재된 판정 방법에 있어서, 상기 메디안 산출 단계는, 이하의 수학식 1 및/또는 수학식 2에 의해 얻어지는 비의 값을 산출하고, 상기 신뢰성 판정 단계는, 상기 메디안 산출 단계에서 산출된 상기 비의 값이 상기 기준값 이상이면 불량으로 판정하는 것을 특징으로 한다.
|X-Xt|/X ...(수학식 1)
|X-Xb|/X ...(수학식 2)
(여기서, X는 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값이며, Xt는 당해 픽셀군으로부터 상위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값이며, Xb는 당해 픽셀군으로부터 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값임)
또한, 본 발명의 판정 방법은, 상기 기재된 판정 방법에 있어서, 상기 기준값이 이하의 수학식 3에 의해 얻어지는 값인 것을 특징으로 한다.
S=C+Z/X ...(수학식 3)
(여기서, S는 상기 기준값이며, C는 상수이며, Z는 상기 표식의 검출 강도를 검출하는 장치의 감도 설정에 따른 오프셋값이며, X는 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값임)
또한, 본 발명의 판정 방법은, 상기 기재된 판정 방법에 있어서, 상기 표식의 검출 강도를 검출하는 장치가 포토멀티플라이어(photomultiplier)이며, 상기 오프셋값은 이하의 수학식 4에 의해 얻어지는 값인 것을 특징으로 한다.
Z=X^(A)*B ...(수학식 4)
(여기서, Z는 상기 오프셋값이며, X는 상기 포토멀티플라이어의 게인 전압이며, A 및 B는 상수임)
또한, 본 발명의 판정 방법은, 상기 기재된 판정 방법에 있어서, 상기 담체가 마이크로어레이이며, 상기 표식은 형광 표식이며, 상기 검출 강도는 형광량이며, 상기 신뢰성 판정 단계는 상기 신뢰성의 양부로서 스폿의 양부를 판정하는 것을 특징으로 한다.
또한, 본 발명의 판정 장치는, 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 표식의 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는, 제어부를 적어도 구비한 판정 장치에 있어서, 상기 제어부는, 상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 수단과, 상기 픽셀군 추출 수단에 의해 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 수단과, 상기 메디안 산출 수단에 의해 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부를 판정하는 신뢰성 판정 수단을 구비한 것을 특징으로 한다.
또한, 본 발명의 판정 시스템은, 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 얻어지는 표식의 검출 강도를 판독하는 검출 장치와, 상기 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는 제어부를 적어도 구비한 판정 장치를 접속하여 구성한 판정 시스템에 있어서, 상기 판정 장치의 상기 제어부는, 상기 검출 장치를 통하여 판독된 상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터로서 취득하는 화상 데이터 취득 수단과, 상기 화상 데이터 취득 수단에 의해 취득된 상기 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 수단과, 상기 픽셀군 추출 수단에 의해 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 수단과, 상기 메디안 산출 수단에 의해 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부를 판정하는 신뢰성 판정 수단을 구비한 것을 특징으로 한다.
또한, 본 발명의 프로그램은, 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 표식의 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는 방법을, 제어부를 적어도 구비한 컴퓨터에 실행시키기 위한 프로그램이며, 상기 제어부에 있어서, 상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 단계와, 상기 픽셀군 추출 단계에서 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 단계와, 상기 메디안 산출 단계에서 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부를 판정하는 신뢰성 판정 단계를 포함하는 상기 방법을 실행시키는 것을 특징으로 한다.
또한, 본 발명은 기록 매체에 관한 것이고, 상기 기재된 프로그램을 기록한 것을 특징으로 한다.
본 발명의 판정 방법, 판정 장치, 판정 시스템 및 프로그램에 의하면, 마이크로어레이 실험 등으로부터 얻어지는 데이터에 있어서, 비생물학적 영향을 고려하여 피검사 물질의 선택적 결합량의 신뢰성을 적절하게 평가할 수 있다는 효과를 발휘한다.
도 1은 2매의 DNA 칩에 있어서 동일한 피검사 물질을 혼성화시킨 경우의 검출 강도를 나타내는 산점도이다.
도 2는 스폿 1의 강도 화상(좌측 도면)과, 스폿 1의 종단선에 있어서의 검출 강도의 변동 그래프(우측 도면)를 도시하는 도면이다.
도 3은 스폿 2의 강도 화상(좌측 도면)과, 스폿 2의 종단선에 있어서의 검출 강도의 변동 그래프(우측 도면)를 도시하는 도면이다.
도 4는 본 실시 형태에 있어서의 판정 시스템의 전체 구성의 일례를 나타내는 블록도이다.
도 5는 본 실시 형태에 있어서의 본 판정 장치(100)의 기본 처리의 일례를 나타내는 흐름도이다.
도 6은 스폿 메디안(X)과, 상위 소정 비율을 제외한 경우의 메디안(Xt: Top Cut Median)과, 하위 소정 비율을 제외한 경우의 메디안(Xb: Bottom Cut Median)의 관계를 도시하는 도면이다.
도 7은 신호 강도가 약한 영역에서의 화이트 노이즈와 보정 곡선을 도시하는 도면이다.
도 8은 동일한 피검사 물질을 제공한 동일한 담체를, PMT(광전자 증배관) 게인 전압(%)의 설정이 「40」(40%×1V)인 경우에 측정한 결과를 도시하는 도면이다.
도 9는 동일한 피검사 물질을 제공한 동일한 담체를, PMT 게인 전압(%)의 설정이 「55」(55%×1V)인 경우에 측정한 결과를 도시하는 도면이다.
도 10은 오프셋값과 PMT 게인 전압(증감 컨트롤 전압)을 플롯한 그래프도이다.
도 11은 2매의 DNA 칩에 있어서 동일한 피검사 물질을 혼성화시킨 경우의 검출 강도를 나타내는 산점도이다.
도 12는 내측이 불균일한 스폿의 강도 화상(상측 도면)과 스폿 횡단선에 있어서의 검출 강도의 변동 그래프(하측 도면)를 도시하는 도면이다.
도 13은 스폿마다 구한 수학식 1의 값을 오름차순으로 정렬한 결과를 도시하는 도면이다.
도 14는 스폿마다 구한 수학식 2의 값을 내림차순으로 정렬한 결과를 도시하는 도면이다.
도 15는 PMT 게인 전압 설정 40%인 경우의 결과를 나타내는 산점도이다.
도 16은 PMT 게인 전압 설정 55%인 경우의 결과를 나타내는 산점도이다.
도 17은 PMT 게인 전압 설정 70%인 경우의 결과를 나타내는 산점도이다.
도 18은 PMT 게인 전압 설정값과 오프셋값의 상관성을 나타내는 양쪽 대수 그래프이다.
이하에, 본 발명에 관한 본 발명의 판정 방법, 판정 장치, 판정 시스템 및 프로그램의 실시 형태를 도면에 기초하여 상세하게 설명한다. 특히, 이하에 나타내는 실시 형태는, 본 발명의 기술 사상을 구체화하기 위한 판정 시스템을 예시하는 것으로서, 본 발명을 이 판정 시스템에서 행해지는 것으로 한정하는 것은 아니고, 특허 청구 범위에 포함되는 그 밖의 실시 형태의 판정 방법이나 판정 장치에도 동등하게 적용할 수 있는 것이다. 예를 들어, 이하의 실시 형태에 있어서는, 판정 시스템에 있어서 실행되는 판정 방법에 대하여 설명하는 경우가 있지만, 이것에 한정되지 않으며, 판정 방법은 사람에 의해 수동으로 행하는 방법일 수도 있다. 또한, 이하의 실시 형태에 있어서 판정 장치는 화상 데이터 등을 취득하는 측정 장치 등의 입력 장치에 접속된 예에 대하여 설명하지만, 본 발명은 이것에 한정되지 않으며, 판정 장치는 입력 장치에 접속되지 않고, 미리 기억부에 화상 데이터를 기억해 둘 수도 있고, 통신에 의해 외부로부터 화상 데이터를 취득할 수도 있다.
[본 실시 형태의 개요]
이하, 본 실시 형태의 개요에 대하여 설명하고, 그 후, 본 실시 형태의 구성 및 처리 등에 대하여 도면을 참조하면서 상세하게 설명한다. 본원의 발명자들은 예의 검토한 결과, 일례로서 이하에 기재하는 본 실시 형태에 의한 판정 방법을 개발하기에 이르렀다.
즉, 본 실시 형태는 개략적으로 이하의 기본적 특징을 갖는다. 본 실시 형태는 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 표식의 검출 강도로서 얻어지는, 피검사 물질의 선택적 결합량의 신뢰성을 판정한다.
여기서 「피검사 물질」이란, 세포나 조직 등으로부터 직접적 또는 간접적으로 얻어지는 시료이며, 예를 들어 게놈 DNA, RNA, cDNA, aRNA(cDNA 또는 그의 상보 서열을 주형으로 하여 증폭된 RNA), 단백질, 당쇄, 지질 등이다. 또한 「표식」이란, 검출 수단에 의해 검출할 수 있는 물질이며, 형광 표식이나 생물 발광에 의한 표식, 방사성 동위체에 의한 표식 등이다. 또한 「선택 결합성 물질」이란, 어느 물질과 선택적으로 결합하는 물질이며, 예를 들어 DNA에 대한 상보적 DNA, DNA에 대한 상보적 RNA, 항원에 대한 항체, 화학 물질에 대한 효소 등이다.
또한, 「담체」는 일반적인 DNA 칩이나 마이크로어레이 등의 기판 이외에, 요철 구조를 갖는 폴리메틸메타크릴레이트제 DNA 칩 기판(3D-Gene(상품명), 제조 판매 도레이 가부시끼가이샤(회사명), 일본 특허 공개 제2004-264289호 참조)일 수도 있고, 그 경우에는 볼록부에 스폿을 행한다.
우선, 본 실시 형태는, 담체에 있어서의 검출 강도를 화상화한 화상 데이터에 있어서 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출한다. 즉, 화상 위의 1개의 스폿 개소를 구성하고 있는 1군의 픽셀을 스폿마다 추출한다.
그리고, 본 실시 형태는 추출된 픽셀군에 있어서의 검출 강도의 메디안값(X)과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값(Xt/Xb)의 비 또는 차를 산출한다. 예를 들어, 본 실시 형태는 이하의 수학식 1 및/또는 수학식 2에 기초하여 비를 산출할 수도 있다.
|X-Xt|/X ...(수학식 1)
|X-Xb|/X ...(수학식 2)
(여기서, X는 추출된 픽셀군에 있어서의 검출 강도의 메디안값이며, Xt는 당해 픽셀군으로부터 상위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값이며, Xb는 당해 픽셀군으로부터 하위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값임)
또한, 이하에 기재된 실시예에서는, Xt, Xb를 구할 때에 제외된 상위 소정 비율·하위 소정 비율을 모두 추출한 픽셀군의 30%로 했지만, 이것에 한정되지 않고, 예를 들어 20 내지 40%의 범위의 임의의 값으로 사용할 수도 있다.
그리고, 본 실시 형태는 산출된 비 또는 차와, 소정의 기준값 S에 기초하여, 신뢰성의 양부를 판정한다. 예를 들어, 본 실시 형태는 산출된 비 또는 차의 값이 기준값 S 이상이면 불량으로 판정할 수도 있다. 또한, 도 2의 스폿 1에 있어서, 수학식 1의 값(%)은 34%이며, 수학식 2의 값(%)은 22.2%였다. 또한, 도 3의 스폿 2에 있어서, 수학식 1의 값(%)은 30%이며, 수학식 2의 값(%)은 22.3%였다. 스폿 1 및 2의 양쪽에 있어서 충분한 데이터가 얻어지므로, 이들을 배제하지 않기 때문에 기준값 S는 25% 내지 30% 정도로 할 수도 있다.
여기서 기준값 S는 이하의 수학식 3에 의해 얻어지는 값일 수도 있다.
S=C+Z/X ...(수학식 3)
(여기서, S는 기준값이며, C는 상수이며, Z는 표식의 검출 강도를 검출하는 장치의 감도 설정에 따른 오프셋값이며, X는 픽셀군에 있어서의 검출 강도의 메디안값임)
여기서, 오프셋값 Z는 이하의 수학식 4에 의해 얻어지는 값일 수도 있다.
Z=X^(A)*B ...(수학식 4)
(여기서, Z는 오프셋값이며, X는 포토멀티플라이어의 게인 전압이며, A 및 B는 상수임)
이상이 본 실시 형태의 개요이다. 이에 의해, 마이크로어레이 실험 등으로부터 얻어지는 데이터에 있어서, 비생물학적 영향을 고려하여 피검사 물질의 선택적 결합량의 신뢰성을 적절하게 평가할 수 있다. 특히, 스폿 내의 일부에 이상값이 포함되어 있어도, 충분히 사용할 수 있는 데이터를 과검출하여 배제해 버리는 것을 방지할 수 있다.
[판정 시스템의 구성]
우선, 본 실시 형태에 있어서의 판정 시스템의 구성에 대하여 설명한다. 도 4는 본 실시 형태에 있어서의 판정 시스템의 전체 구성의 일례를 나타내는 블록도이다.
도 4에 도시한 바와 같이, 본 실시 형태에 있어서의 판정 시스템은, 개략적으로 표식의 검출 강도를 판독하는 검출 수단으로서 기능하는 입력 장치(112)와, 출력 장치(114)와, 판정 장치(100)를 구비한다.
판정 장치(100)는, 개략적으로, 판정 장치(100)의 전체를 통괄적으로 제어하는 CPU 등의 제어부(102), 통신 회선 등에 접속되는 라우터 등의 통신 장치(도시하지 않음)에 접속되는 통신 제어 인터페이스부(104), 입력 장치(112)나 출력 장치(114)에 접속되는 입출력 제어 인터페이스부(108) 및 각종 데이터베이스나 테이블 등을 저장하는 기억부(106)를 구비하여 구성되어 있고, 이들 각 부는 임의의 통신로를 통하여 통신 가능하도록 접속되어 있다. 여기서, 도 4에 도시한 바와 같이 판정 장치(100)는 라우터 등의 통신 장치 및 전용선 등의 유선 또는 무선의 통신 회선을 통하여 네트워크(300)에 접속될 수도 있고, 또한 네트워크(300)를 통하여 외부 시스템(200)에 접속될 수도 있다.
기억부(106)에 저장되는 각종 데이터베이스나 테이블(화상 데이터 파일(106a) 및 픽셀군 파일(106b))은, 고정 디스크 장치 등의 스토리지 수단일 수도 있다. 예를 들어, 기억부(106)는 각종 처리에 사용하는 각종 프로그램, 테이블, 파일, 데이터베이스 및 웹페이지 등을 저장할 수도 있다.
이들 기억부(106)의 각 구성 요소 중 화상 데이터 파일(106a)은 담체에 있어서의 검출 강도를 화상화한 화상 데이터를 기억하는 화상 데이터 기억 수단이다. 예를 들어, 화상 데이터 파일(106a)에 기억되는 화상 데이터는, 검출 수단에 의해 담체 평면 상의 검출 강도를 스캔함으로써 얻어진 화상 정보일 수도 있다. 또한, 화상 데이터 파일(106a)은 미리 화상 데이터를 기억할 수도 있고, 후술하는 검출 수단으로서 기능하는 입력 장치(112)로부터 입력된 화상 데이터일 수도 있고, 네트워크(300)를 통하여 외부 시스템(200)으로부터 수신한 화상 데이터일 수도 있다. 일례로서, 화상 데이터 파일(106a)은 화상 데이터로서 검출 강도를 계조값으로 한 그레이 스케일 화상 데이터를 기억한다.
또한, 픽셀군 파일(106b)은 스폿마다 픽셀군의 정보(강도 정보 등)를 기억하는 픽셀군 기억 수단이다. 예를 들어, 픽셀군 파일(106b)에 기억되는 정보는 스폿을 일의적으로 특정하는 식별 정보(담체의 블록 번호와 행 번호와 열 번호 등)에 대응시킨, 각 픽셀의 검출 강도의 값(계조값 등)이나 픽셀군의 메디안값 등이다. 예를 들어, 1매의 바이오칩에 4블록이 있고, 1블록당 64(8x8)스폿, 합계 256유전자의 발현 패턴을 검출할 수 있는 담체(바이오칩)를 사용했다고 하면, 픽셀군 파일(106b)은, 개개의 유전자에 대응하는 선택 결합성 물질(DNA 단편 등)이 배치된 위치(블록 번호와 스폿의 행 번호 및 열 번호)를 당해 스폿 내의 픽셀군의 계조값 등과 대응시켜서 기억한다.
또한, 도 4에 있어서 입출력 제어 인터페이스부(108)는 입력 장치(112)나 출력 장치(114)의 제어를 행한다. 여기서, 출력 장치(114)로서는, 모니터(가정용 텔레비전을 포함함) 외에, 프린터, 기록 매체 출력 장치 등을 사용할 수 있다. 또한, 입력 장치(112)로서는 키보드, 마우스 등 외에, 표식의 검출 강도를 판독하는 검출 장치(검출 수단)일 수도 있다.
여기서 「검출 수단」이란, 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 얻어지는 표식의 검출 강도를 판독하는 수단이다. 예를 들어, 검출 수단은 선택 결합성 물질이 스폿된 위치를 특정함과 동시에 검출 강도를 취득하기 위한 검사 수단, 예를 들어 형광 현미경 카메라 등일 수도 있다. 표식이 형광 표식이나 생물 발광에 의한 표식인 경우, 검출 수단은 포토멀티플라이어(광전자 증배관)일 수도 있다. 또한, 검출 수단은 형광 현미경 카메라와 같이 검출 강도를 화상화하는 수단에 한하지 않고, 검출 강도를 판독하는 수단이면 되고, 담체 평면을 따라 스캔(주사)시킴으로써, 판정 장치(100)측에서 화상화할 수도 있다. 선택 결합성 물질이 DNA인 경우, 미량의 이중쇄 DNA 결합성 형광 물질을 도입시켜 선택적 결합량을 검출할 수도 있다. 또한, 검출 수단은 DNA 고유의 흡수 파장을 검출할 수도 있다. 또한, 선택 결합성 물질이 단백질, 당쇄 등인 경우에도 선택 결합성 물질의 성질에 따라 흡수 파장, 형광 물질, 방사성 동위체(radioisotope), 혼성화, 항원 항체 반응 등의 기술을 사용하여 검출하도록 할 수도 있다.
또한, 도 4에 있어서 제어부(102)는 OS(Operating System) 등의 제어 프로그램, 각종 처리 순서 등을 규정한 프로그램 및 소요 데이터를 저장하기 위한 내부 메모리를 갖고, 이들 프로그램 등에 의해 다양한 처리를 실행하기 위한 정보 처리를 행한다. 제어부(102)는 기능 개념적으로 화상 데이터 취득부(102a), 픽셀군 추출부(102b), 메디안 산출부(102c), 신뢰성 판정부(102d), 기준값 결정부(102e)를 구비하여 구성되어 있다.
이 중, 화상 데이터 취득부(102a)는, 담체에 있어서의 검출 강도를 화상화한 화상 데이터를 취득하는 화상 데이터 취득 수단이다. 예를 들어, 화상 데이터 취득부(102a)는, 검출 수단으로서 기능하는 입력 장치(112)를 통하여 판독된 담체에 있어서의 검출 강도를 화상화한 화상 데이터로서 취득할 수도 있다. 여기서 화상 데이터 취득부(102a)는, 형광 현미경 카메라 등의 입력 장치(112)로부터 화상 데이터를 직접 취득할 수도 있고, 포토멀티플라이어 등의 입력 장치(112)를 담체 평면을 따라 스캔(주사)시킴으로써 얻어진 좌표마다의 검출 강도를 화상화할 수도 있다. 또한, 화상 데이터 취득부(102a)는 네트워크(300)를 통하여 외부 시스템(200)으로부터 화상 데이터를 수신할 수도 있다. 또한, 화상 데이터 취득부(102a)는, 취득한 화상 데이터를 화상 데이터 파일(106a)에 저장한다.
또한, 픽셀군 추출부(102b)는 화상 데이터 파일(106a)에 기억된 화상 데이터에 있어서 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 수단이다. 예를 들어, 픽셀군 추출부(102b)는 담체 상의 선택 결합성 물질이 배치된 위치(스폿 개소)의 배열(스폿 중심 좌표 및 픽셀 반경 등)에 기초하여 화상 상에서 각 스폿 개소를 구획화하고, 각 구획 내의 픽셀군을 추출할 수도 있다. 또한, 픽셀군 추출부(102b)는 화상 데이터 및 배열 패턴 데이터를 중첩적으로 출력 장치(114)에 표시하고, 마우스 등의 입력 장치(112)를 통하여 표시 상의 배열 패턴을 이동시키는 입력을 이용자에 의해 행하도록 함으로써, 위치 결정을 행할 수도 있다. 또한, 픽셀군 추출부(102b)는 스폿마다 픽셀군의 정보(강도 정보 등)를 픽셀군 파일(106b)에 저장한다. 예를 들어, 픽셀군 추출부(102b)는 스폿을 일의적으로 특정하는 식별 정보(담체의 블록 번호와 행 번호와 열 번호 등)에 대응시키고, 각 픽셀의 검출 강도의 값(계조값 등)을 픽셀군 파일(106b)에 저장할 수도 있다.
또한, 메디안 산출부(102c)는 픽셀군 파일(106b)에 저장된 픽셀군에 있어서의 검출 강도의 메디안값(X)과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값(Xt/Xb)의 비 또는 차를 산출하는 메디안 산출 수단이다. 예를 들어, 본 실시 형태는 이하의 수학식 1 및/또는 수학식 2에 기초하여 비를 산출할 수도 있다. 예를 들어, 메디안 산출부(102c)는 픽셀군 파일(106b)에 저장된 어떤 스폿의 픽셀군의 검출 강도(계조값 등)를 오름차순 또는 내림차순으로 정렬함으로써 재배열하고, 상위 소정 비율(x%)을 제외한 군에 있어서의 중위의 검출 강도 및 하위 소정 비율(y%)을 제외한 군에 있어서의 중위의 검출 강도를 얻을 수도 있다.
|X-Xt|/X ...(수학식 1)
|X-Xb|/X ...(수학식 2)
(여기서, X는 추출된 픽셀군에 있어서의 검출 강도의 메디안값이며, Xt는 당해 픽셀군으로부터 상위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값이며, Xb는 당해 픽셀군으로부터 하위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값임)
또한, 신뢰성 판정부(102d)는 메디안 산출부(102c)에 의해 산출된 비 또는 차와, 소정의 기준값에 기초하여, 신뢰성의 양부를 판정하는 신뢰성 판정 수단이다. 예를 들어, 신뢰성 판정부(102d)는 메디안 산출부(102c)에 의해 산출된 비 또는 차가 기준값 S 이상이면 불량으로 판정할 수도 있다. 신뢰성 판정부(102d)는 신뢰성의 판정 결과에 기초하여, 불량 스폿의 데이터를 분석으로부터 제외할 수도 있고, 신뢰성의 판정 결과를 출력 장치(114)에 출력할 수도 있다. 또한, 제어부(102)는 신뢰성 판정부(102d)에 의한 신뢰성의 판정 결과에 기초하여 처리(불량 스폿 데이터의 제외 등)를 행하여, 데이터 분석 결과를 출력 장치(114)에 출력할 수도 있다. 또한, 출력은 출력 장치(114)로서 모니터에 출력하는 것에 한정되지 않고, 프린터나, 기록 매체 출력 장치를 통하여 기록 매체 등에 출력할 수도 있다. 또한, 신뢰성 판정부(102d) 등의 제어부(102)는 통신 제어 인터페이스(104)를 제어하고, 네트워크(300)를 통하여 외부 시스템(200)에 신뢰성의 판정 결과나 분석 결과의 데이터를 송신할 수도 있다.
또한, 기준값 결정부(102e)는 신뢰성 판정부(102d)에 의한 신뢰성 판정의 기준으로 하는 기준값을 결정하는 기준값 결정 수단이다. 예를 들어, 기준값 결정부(102e)는 이하의 수학식 3에 의해 기준값 S를 결정할 수도 있다.
S=C+Z/X ...(수학식 3)
(여기서, S는 기준값이며, C는 상수이며, Z는 표식의 검출 강도를 검출하는 장치의 감도 설정에 따른 오프셋값이며, X는 픽셀군에 있어서의 검출 강도의 메디안값임)
여기서, 기준값 결정부(102e)는 이하의 수학식 4에 기초하여 수학식 3에 있어서의 오프셋값 Z를 결정할 수도 있다.
Z=X^(A)*B ...(수학식 4)
(여기서, Z는 오프셋값이며, X는 포토멀티플라이어의 게인 전압이며, A 및 B는 상수임)
또한, 도 4에 있어서 통신 제어 인터페이스부(104)는 판정 장치(100)와 네트워크(300)(또는 라우터 등의 통신 장치) 사이에 있어서의 통신 제어를 행한다. 즉, 통신 제어 인터페이스부(104)는 다른 단말기와 통신 회선을 통하여 데이터를 통신하는 기능을 갖는다. 네트워크(300)는 판정 장치(100)와 외부 시스템(200)을 서로 접속하는 기능을 갖고, 예를 들어 인터넷 등이다. 외부 시스템(200)은 네트워크(300)를 통하여 판정 장치(100)와 서로 접속되고, 표식의 검출 강도 데이터 등에 관한 외부 데이터베이스나 외부 프로그램 등을 제공하는 기능을 갖는다.
여기서, 외부 시스템(200)은 WEB 서버나 ASP 서버 등의 서버 장치나, 단말 장치로서 구성되어 있을 수도 있고, 그의 하드웨어 구성은 일반적으로 시판되는 워크스테이션, 퍼스널 컴퓨터 등의 정보 처리 장치 및 그의 부속 장치에 의해 구성되어 있을 수도 있다. 또한, 외부 시스템(200)의 각 기능은 외부 시스템(200)의 하드웨어 구성 중의 CPU, 디스크 장치, 메모리 장치, 입력 장치, 출력 장치, 통신 제어 장치 등 및 그들을 제어하는 프로그램 등에 의해 실현된다. 또한, 판정 장치(100)의 이용자는 네트워크(300)를 통하여, 외부 시스템(200)이 제공하는 DNA 칩 등에 관한 검출 강도 데이터베이스나, 유전자 배치 데이터베이스 등의 외부 데이터베이스 또는 판정 방법을 실행시키기 위한 프로그램 등의 외부 프로그램을 제공하는 웹 사이트에 접속함으로써 검출 강도값 데이터나, 배치 데이터, 프로그램 등을 입수하도록 할 수도 있다. 이것으로, 본 실시 형태의 판정 시스템 및 판정 장치(100)의 구성 설명을 마친다.
[판정 장치(100)의 처리]
이어서, 이와 같이 구성된 본 실시 형태에 있어서의 판정 장치(100)의 처리 일례에 대하여, 이하에 도 5 및 도 6을 참조하면서 상세하게 설명한다. 도 5는 본 실시 형태에 있어서의 본 판정 장치(100)의 기본 처리의 일례를 나타내는 흐름도이다.
먼저, 도 5에 도시한 바와 같이 본 판정 장치(100)에 있어서, 화상 데이터 취득부(102a)는 담체에 있어서의 검출 강도를 화상화한 화상 데이터를 취득하고, 화상 데이터 파일(106a)에 저장한다(단계 SA-1). 예를 들어, 화상 데이터 취득부(102a)는, 검출 수단으로서 기능하는 입력 장치(112)를 통하여 판독된 담체에 있어서의 검출 강도를 화상화한 화상 데이터로서 취득할 수도 있다. 여기서 화상 데이터 취득부(102a)는, 형광 현미경 카메라 등의 입력 장치(112)로부터 화상 데이터를 직접 취득할 수도 있고, 포토멀티플라이어 등의 입력 장치(112)를 담체 평면을 따라 스캔(주사)시킴으로써 얻어진 좌표마다의 검출 강도를 화상화할 수도 있다. 여기서, 화상 데이터 취득부(102a)는 입출력 제어 인터페이스부(108)를 통하여, 검출 강도 데이터 또는 화상 데이터를 저장한 외부 기록 매체로부터 데이터를 읽어들일 수도 있다.
그리고, 픽셀군 추출부(102b)는 화상 데이터 파일(106a)에 기억된 화상 데이터에 있어서 스폿의 위치를 결정하여 당해 스폿에 대응하는 픽셀군을 추출하고, 추출된 픽셀군의 정보를 픽셀군 파일(106b)에 저장한다(단계 SA-2). 예를 들어, 픽셀군 추출부(102b)는, 담체 상의 선택 결합성 물질이 배치된 위치(스폿 개소)의 배열(스폿 중심 좌표 및 픽셀 반경 등)에 기초하여, 화상 상에서 각 스폿 개소를 구획화하고, 각 구획 내의 픽셀군을 추출할 수도 있다. 또한, 픽셀군 추출부(102b)는, 스폿마다 픽셀군의 정보(강도 정보 등)를 픽셀군 파일(106b)에 저장한다. 예를 들어, 픽셀군 추출부(102b)는 스폿을 일의적으로 특정하는 식별 정보(담체의 블록 번호와 행 번호와 열 번호 등)에 대응시키고, 각 픽셀의 검출 강도의 값(계조값 등)을 픽셀군 파일(106b)에 저장할 수도 있다.
그리고, 메디안 산출부(102c)는 픽셀군 파일(106b)에 저장된 픽셀군에 있어서의 검출 강도의 메디안값(X)을 취득한다(단계 SA-3). 예를 들어, 메디안 산출부(102c)는, 어떤 스폿의 픽셀군의 검출 강도(계조값 등)를 오름차순 또는 내림차순으로 정렬함으로써 재배열하고, 중위(등급으로 중앙의 위치)의 검출 강도값을 취득함으로써 메디안값(X)을 얻을 수도 있다.
그리고, 메디안 산출부(102c)는 픽셀군 파일(106b)에 저장된 픽셀군으로부터 상위 소정 비율(x%)의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값(Xt) 및/또는 당해 픽셀군으로부터 하위 소정 비율(y%)의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값(Xb)을 취득한다(단계 SA-4). 상위 소정 비율(x%) 및 하위 소정 비율(y%)은, 예를 들어 30%일 수도 있다. 일례로서, 메디안 산출부(102c)는, 어떤 스폿의 픽셀군의 검출 강도(계조값 등)를 오름차순 또는 내림차순으로 정렬함으로써 재배열하고, 상위 소정 비율(x%)을 제외한 군에 있어서의 중위의 검출 강도(Xt) 및 하위 소정 비율(y%)을 제외한 군에 있어서의 중위의 검출 강도(Xb)를 얻을 수도 있다. 여기서, 도 6은 스폿 메디안(X)과, 상위 소정 비율을 제외한 경우의 메디안(Xt: Top Cut Median)과, 하위 소정 비율을 제외한 경우의 메디안(Xb: Bottom Cut Median)의 관계를 도시하는 도면이다. 막대 그래프의 하나는 1개의 픽셀에 대응하고 있으며, 길이는 당해 픽셀의 계조값에 대응하는 검출 강도이다. 또한, 횡축을 따라 당해 스폿에 있어서의 픽셀군을 강도로 내림차순으로 정렬하고 있다.
도 6에 도시한 바와 같이, 스폿 메디안(X)은 픽셀군의 강도의 등급으로 중위(중앙의 위치)의 값이다. 이 픽셀군으로부터 상위 소정 비율(이 예에서는 4픽셀)을 제외한 군에 있어서 중앙의 위치값을 구한 것이 메디안 Xt(Top Cut Median)이다. 또한, 동일 픽셀군으로부터 하위 소정 비율(이 예에서는 4픽셀)을 제외한 군에 있어서 중앙의 위치값을 구한 것이 메디안 Xb(Bottom Cut Median)로 된다.
다시 도 5로 되돌아가, 메디안 산출부(102c)는 스폿 메디안 X와 상위 소정 비율을 제외한 메디안 Xt의 비 또는 차, 및/또는 스폿 메디안 X와 하위 소정 비율을 제외한 메디안 Xb의 비 또는 차를 산출한다(단계 SA-5). 또한, 도 6의 양쪽 화살표는, 스폿 메디안 X와 상위 소정 비율을 제외한 메디안 Xt의 차, 및 스폿 메디안 X와 하위 소정 비율을 제외한 메디안 Xb의 차를 나타내고 있다. 여기서, 메디안 산출부(102c)는 이하의 수학식 1 및/또는 수학식 2에 기초하여 비를 산출할 수도 있다.
|X-Xt|/X ...(수학식 1)
|X-Xb|/X ...(수학식 2)
(여기서, X는 추출된 픽셀군에 있어서의 검출 강도의 메디안값이며, Xt는 당해 픽셀군으로부터 상위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값이며, Xb는 당해 픽셀군으로부터 하위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값임)
그리고, 신뢰성 판정부(102d)는 메디안 산출부(102c)에 의해 산출된 비 또는 차와, 소정의 기준값에 기초하여, 신뢰성의 양부를 판정한다(단계 SA-6). 예를 들어, 신뢰성 판정부(102d)는, 메디안 산출부(102c)에 의해 산출된 비 또는 차(차의 절댓값 등)가 소정의 기준값 S(%) 이상이면 불량으로 판정할 수도 있다. 여기서, 기준값 S(%)는 일정값 C(%)일 수도 있고, 신호 강도가 약한 영역에서 전기 회로계 등으로부터의 화이트 노이즈를 무시하지 못하는 경우에는 기본 C(%)를 기준값 결정부(102e)에 의해 보정할 수도 있다(상세를 후술한다).
이상이, 판정 장치(100)의 기본 처리의 일례이다.
[기준값의 보정 처리]
상술한 판정 장치(100)의 기본 처리에 있어서 기준값 S는 일정값 C로 했지만, 기준값 결정부(102e)가 기준값을 보정하여 결정하는 보정 처리의 일례에 대하여 이하에 설명한다. 여기서, 도 7은 신호 강도가 약한 영역에서의 화이트 노이즈와 보정 곡선을 도시하는 도면이다. 도 7에 있어서, 횡축은 신호 강도를 대표하는 스폿 메디안 X이며, 종축은 수학식 1 및 수학식 2에 의해 얻어진 비의 값이다. 또한, 이 예에서는 수학식 1 및 수학식 2에 있어서 절댓값을 구하지 않으므로, 종축의 양의 영역은 수학식 2에 의해 구한 값, 음의 영역은 수학식 1에 의해 구한 값이 플롯되어 있다.
도 7에 도시한 바와 같이 신호 강도가 약해질수록 이산적으로 되어, 화이트 노이즈의 영향을 무시할 수 없게 되어 산출되는 비의 절댓값은 커진다. 따라서, 기준값 S(%)는 일정값 C(%)보다도 적절하게 보정하는 편이 바람직하다. 예의 검토한 결과, 본원 발명자들은 이것을 보정하기 위한 보정 곡선(Y=10+13/X 및 Y=-10-13/X)을 발견했다. 이것을 일반화한 수학식을 이하에 나타낸다. 즉, 기준값 결정부(102e)는, 이하의 수학식 3에 기초하여 기본 C(%)를 보정하여 기준값 S를 결정할 수도 있다.
S=C+Z/X ...(수학식 3)
(여기서, S는 기준값이며, C는 상수이며, Z는 표식의 검출 강도를 검출하는 장치의 감도 설정에 따른 오프셋값이며, X는 픽셀군에 있어서의 검출 강도의 메디안값임)
여기서, 오프셋값 Z는 동일한 설정에 있어서는 일정하지만, 스캔시의 포토멀티플라이어의 게인 설정을 변경하면 변화하는 값이다. 여기서, 도 8 및 도 9는 동일한 피검사 물질을 제공한 동일한 담체를, 게인 전압(%)의 설정이 「40」(이 경우, 광전자 증배관의 컨트롤 전압이 40%×1V=0.4V)인 경우와 「55」(55%×1V=0.55V)인 경우에 측정한 결과를 도시하는 도면이다.
도 8 및 도 9에 도시한 바와 같이, 게인 전압(증감 컨트롤 전압)을 변경하면 산포 상태도 변화하므로, 그에 따라 역치 곡선을 변경할 필요가 있다. 그 변화는 역치 곡선 S=C+Z/X의 오프셋값 Z에 의존적이며, 도 8의 예에서는 오프셋값을 13으로, 도 9의 예에서는 오프셋값을 80으로 설정하면 적합한 역치 곡선이 얻어진다.
여기서, 도 10은 오프셋값과 게인 전압(증감 컨트롤 전압)을 플롯한 그래프도이다. 횡축은 포토멀티플라이어(PMT)의 게인 전압의 대수값을 나타내고, 종축은 오프셋값의 대수값을 나타낸다.
도 10에 도시한 바와 같이, 오프셋값은 게인 전압에 의존적으로 변화하고, 표식의 종류(cy3 및 cy5)에 비의존적이다. 또한, 오프셋값의 대수값과 게인 전압의 대수값은 선형식으로 표시된다(도 10 중의 수학식). 또한, 기울기와 절편은, 스캐너 기체(포토멀티플라이어)에 고유한 값이었다. 이 오프셋값과 게인 전압의 관계식을 일반화하면 이하의 수학식 4로 된다. 즉, 기준값 결정부(102e)는 이하의 수학식 4에 기초하여 오프셋값 Z를 결정할 수도 있다.
Z=X^(A)*B ...(수학식 4)
여기서, Z는 오프셋값이며, X는 포토멀티플라이어의 게인 전압이며, A 및 B는 상수이다. 도 10의 예에서 그래프의 기울기는 5.1639 내지 5.12552 정도이고, 절편은 -7.1363 내지 -7.2711 정도이다. 즉, A의 범위는 -7.1363 내지 -7.2711 정도이고, B의 범위는 5.1639 내지 5.12552 정도이다.
이상에서, 기준값의 보정 처리의 설명을 마친다.
[실시예 1]
적절한 역치에 관한 검토를 행한 실시예 1에 대하여 이하에 설명한다. 먼저, 2매의 DNA 칩에 있어서 동일한 피검사 물질을 혼성화시켜, 검출 강도에 큰 차이가 없는 것을 확인했다. 도 11은 2매의 DNA 칩에 있어서 동일한 피검사 물질을 혼성화시킨 경우의 검출 강도를 나타내는 산점도이다. 횡축은 한쪽의 DNA 칩에 있어서의 각 스폿의 검출 강도를 나타내고 있으며, 종축은 다른 쪽의 DNA 칩에 있어서의 각 스폿의 검출 강도를 나타내고 있다.
그 결과, 도 11에 도시한 바와 같이, 2매의 DNA 칩에 있어서 검출 강도에 큰 차이는 없어 정상적인 것을 확인할 수 있었다. 또한, 도 12에 도시한 바와 같이 스폿의 내측이 불균일한 것도 있었지만, 메디안을 사용하는 경우에는 데이터로서 충분히 사용할 수 있다고 생각하고, 배제하지 않았다.
다음에, 이들 스폿 중 검출 강도가 게인 전압 설정값 「40」(광전자 증배관의 컨트롤 전압이 40%×1V임)이고, 스폿 메디안이 2000 이상인 스폿에 대하여, 이하의 수학식 1 및 수학식 2의 값을 산출했다. 또한, 스폿 메디안이 2000 이상인 스폿에 대하여 검토한 이유는, 상술한 바와 같이 신호가 약한 부분에서는 전기 회로 등의 화이트 노이즈를 무시할 수 없기 때문이다(예를 들어, 도 7, 도 8 참조).
(X-Xt)/X*100(%) ...(수학식 1)
(X-Xb)/X*100(%) ...(수학식 2)
(여기서, X는 픽셀군에 있어서의 검출 강도의 메디안값이며, Xt는 당해 픽셀군으로부터 상위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값이며, Xb는 당해 픽셀군으로부터 하위 소정 비율의 픽셀을 제외한 군에 있어서의 검출 강도의 메디안값임)
도 13은 스폿마다 구한 수학식 1의 값을 오름차순으로 정렬한 결과를 도시하는 도면이다. 또한, 도 14는 스폿마다 구한 수학식 2의 값을 내림차순으로 정렬한 결과를 도시하는 도면이다. 또한, Block은 블록 번호, Column은 행 번호, Row는 열 번호를 나타내고 있으며, 이들에 의해 스폿이 일의적으로 특정된다. 또한, S_532_메디안의 항목에서 스폿 메디안을 나타낸다.
도 13 및 도 14에 도시한 바와 같이, 수학식 1의 값에서든 수학식 2의 값에서든, 절댓값이 25% 이하이면 스폿의 형상 불량에 의한 편차는 발생하지 않는다고 판단할 수 있다. 따라서, 신뢰성의 양부를 판단하는 기준값은, 절댓값으로 25% 정도가 바람직하다고 생각된다.
[실시예 2]
적절한 오프셋값에 관한 검토를 행한 실시예 2에 대하여 이하에 설명한다. 실시예 2에 있어서는, 담체로서 3D-Gene(등록 상표) Human Ver1.1(도레이제)의 칩을 2매 사용했다. 또한, 피검사 물질로서, 스트라타진(Stratagene)사제 휴먼 레퍼런스(Human Reference) RNA를 사용하여, 프로토콜에 기재된 대로 혼성화까지 행했다. 또한, 검출 수단으로서, 3D-Gene(등록 상표) Scanner(도레이제)를 사용했다.
혼성화를 행한 2매의 칩 중 1매에 대하여, 3D-Gene(등록 상표) Scanner(도레이제)의 포토멀티플라이어(PMT)의 설정을 40%, 55%, 70%로 바꾸어서 측정하고, 각각의 스폿에 대하여 수학식 1 및 수학식 2의 값을 산출했다. PMT의 설정을 바꾸면, PMT의 컨트롤 전압이 비례하여 변화한다. 따라서, 광전자 증배관 게인도 변화한다. 여기서, 도 15는 PMT 설정 40%의 경우의 결과를 나타내는 산점도이며, 도 16은 PMT 설정 55%의 경우의 결과를 나타내는 산점도이며, 도 17은 PMT 설정 70%의 경우의 결과를 나타내는 산점도이다. 커트값은 30%이며, 횡축에 스폿 메디안, 종축에 절댓값의 계산을 제외한 수학식 1 및 수학식 2에 의한 2개의 값을 플롯했다.
그리고, 도 15 내지 도 17 각각에 대하여 Y=±10±Z/X(X는 스폿 메디안, Z는 상수)의 곡선을 묘화하고, 그 곡선이 수학식 1 및 수학식 2의 2개의 값의 범위의 밑단에 오도록, PMT의 3조건에 있어서의 오프셋값 Z를 구했다. 그 결과, 도 15 내지 도 17에 도시한 바와 같이, PMT 설정 40%의 경우에는 오프셋값 13이며, PMT 설정 55%의 경우에는 오프셋값 80이며, PMT 설정 70%의 경우에는 오프셋값 230이었다.
계속해서, PMT값과 오프셋값의 상관을 조사한 바, 도 18에 도시한 바와 같이 그 관계는 양쪽 대수 그래프에 있어서 직선이 되는 것으로 나타났다. 상관 계수 0.99 이상으로, 이 보정의 타당성이 나타났다. 오프셋값 보정용의 수학식 4를 이하에 나타낸다.
Z=X^(A)*B ...(수학식 4)
여기서, Z는 오프셋값이며, X는 포토멀티플라이어의 게인 전압이다. 본 실시예 2에 있어서, A는 -7.13이며, B는 5.16이었다.
이상에서, 본 실시예 2의 설명을 마친다.
이상 상세한 설명에 설명한 바와 같이, 본 실시 형태에 의하면, 마이크로어레이 실험 등으로부터 얻어지는 데이터에 있어서, 비생물학적 영향을 고려하여 피검사 물질의 선택적 결합량의 신뢰성을 적절하게 평가할 수 있는 판정 방법, 판정 장치, 판정 시스템 및 프로그램을 제공할 수 있으므로, 특히 의료나 제약이나 창약(創藥)이나 생물학 연구나 임상 검사 등의 분야나, 바이오 산업 분야 등에 이용 가능하다.
[다른 실시 형태]
그런데, 지금까지 본 발명의 실시 형태에 대하여 설명했지만, 본 발명은 상술한 실시 형태 이외에도 상기 특허 청구 범위에 기재한 기술적 사상의 범위 내에 있어서 다양한 상이한 실시 형태로 실시될 수도 있는 것이다.
특히, 본 발명의 실시 형태에 대해서는, 선택 결합성 물질로서 DNA를 사용한 예에 대하여 설명했지만, 이것에 한정되지 않고, 선택 결합성 물질에는 항체 등의 단백질 라이브러리나, 화합물의 라이브러리 등을 배치할 수도 있다. 또한, 「담체」의 재료는 유리에 한정되지 않고, 멤브레인이나 플라스틱일 수도 있다.
또한, 상술한 실시 형태에 있어서는 표식으로서 형광 화학 물질(예를 들어 Cy3, Cy5)을 사용했지만, 이것에 한정되지 않고, 표식에는 형광 특성을 갖지 않는 색소나, 방사성 동위체, GFP·GRP 등의 단백질, His 태그, 비오틴화 등을 사용할 수 있다.
또한, 판정 장치(100)가 스탠드얼론(stand alone)의 형태로 처리를 행하는 경우를 일례로 들어 설명했지만, 판정 장치(100)와는 별도의 하우징으로 구성되는 클라이언트 단말기로부터의 요구에 따라 처리를 행하고, 그 처리 결과를 당해 클라이언트 단말기로 반환하도록 구성할 수도 있다.
또한, 실시 형태에 있어서 설명한 각 처리 중 자동으로 행해지는 것으로서 설명한 처리의 전부 또는 일부를 수동적으로 행할 수도 있고, 또는 수동적으로 행해는 것으로서 설명한 처리의 전부 또는 일부를 공지의 방법으로 자동으로 행할 수도 있다. 이 외에, 상기 문헌 중이나 도면 중에서 나타낸 처리 순서, 제어 순서, 구체적 명칭, 각 처리의 등록 데이터 등을 포함하는 정보, 데이터베이스 구성에 대해서는, 특기하는 경우를 제외하고 임의로 변경할 수 있다.
또한, 판정 장치(100)에 관해서, 도시한 각 구성 요소는 기능 개략적인 것이며, 반드시 물리적으로 도시된 바와 같이 구성되어 있을 것을 필요로 하지는 않는다.
예를 들어, 판정 장치(100)의 각 장치가 구비하는 처리 기능, 특히 제어부(102)에서 행해지는 각 처리 기능에 대해서는, 그의 전부 또는 임의의 일부를, CPU(Central Processing Unit) 및 당해 CPU에서 해석 실행되는 프로그램으로 실현할 수도 있고, 또한 와이어드 로직(wired logic)에 의한 하드웨어로서 실현할 수도 있다. 또한, 프로그램은 후술하는 기록 매체에 기록되어 있으며, 필요에 따라 판정 장치(100)로 기계적으로 판독된다. 즉, ROM 또는 HD 등의 기억부(106) 등은 OS(Operating System)로서 협동하여 CPU에 명령을 내리고, 각종 처리를 행하기 위한 컴퓨터 프로그램이 기록되어 있다. 이 컴퓨터 프로그램은 RAM에 로딩됨으로써 실행되고, CPU와 협동하여 제어 장치를 구성한다.
또한, 이 컴퓨터 프로그램은 판정 장치(100)에 대하여 임의의 네트워크(300)를 통하여 접속된 어플리케이션 프로그램 서버에 기억되어 있을 수도 있고, 필요에 따라 그의 전부 또는 일부를 다운로드하는 것도 가능하다.
또한, 본 발명에 관한 프로그램을 컴퓨터 판독 가능한 기록 매체에 저장할 수도 있다. 여기서 이 「기록 매체」란, 메모리 카드, USB 메모리, SD 카드, 플렉시블 디스크, 광자기 디스크, ROM, EPROM, EEPROM, CD-ROM, MO, DVD 및 블루레이(Blu-ray)(등록 상표) 디스크 등의 임의의 「가반용(可搬用)의 물리 매체」를 포함하는 것으로 한다.
또한, 「프로그램」이란, 임의의 언어나 기술 방법으로 기술된 데이터 처리 방법이며, 소스 코드나 이진 코드 등의 형식에 상관하지 않는다. 또한, 「프로그램」은 반드시 단일적으로 구성되는 것으로 한정되지는 않으며, 복수의 모듈이나 라이브러리로서 분산 구성되는 것이나, OS(Operating System)로 대표되는 별개의 프로그램과 협동하여 그의 기능을 달성하는 것도 포함한다. 또한, 실시 형태에 나타낸 각 장치에 있어서 기록 매체를 판독하기 위한 구체적인 구성, 판독하는 순서, 또는 판독 후의 인스톨 순서 등에 대해서는, 주지의 구성이나 순서를 사용할 수 있다.
기억부(106)에 저장되는 각종 데이터베이스 등(화상 데이터 파일(106a) 내지 픽셀군 파일(106b))은 RAM, ROM 등의 메모리 장치, 하드 디스크 등의 고정 디스크 장치, 플렉시블 디스크 및 광 디스크 등의 스토리지 수단이며, 각종 처리나 웹 사이트 제공에 사용하는 각종 프로그램, 테이블, 데이터베이스 및 웹페이지용 파일 등을 저장한다.
또한, 판정 장치(100)는 기지의 퍼스널 컴퓨터, 워크스테이션 등의 정보 처리 장치로서 구성할 수도 있고, 또한 해당 정보 처리 장치에 임의의 주변 장치를 접속하여 구성할 수도 있다. 또한, 판정 장치(100)는 해당 정보 처리 장치에 본 발명의 방법을 실현시키는 소프트웨어(프로그램, 데이터 등을 포함함)를 실장함으로써 실현할 수도 있다.
또한, 장치의 분산·통합의 구체적 형태는 도시하는 것에 한정되지 않고, 그의 전부 또는 일부를 각종 부가 등에 따라 또는 기능 부하에 따라, 임의의 단위로 기능적 또는 물리적으로 분산·통합하여 구성할 수 있다. 즉, 상술한 실시 형태를 임의로 조합하여 실시할 수도 있고, 실시 형태를 선택적으로 실시할 수도 있다.
100 판정 장치
102 제어부
102a 화상 데이터 취득부
102b 픽셀군 추출부
102c 메디안 산출부
102d 신뢰성 판정부
102e 기준값 결정부
104 통신 제어 인터페이스부
106 기억부
106a 화상 데이터 파일
106b 픽셀군 파일
108 입출력 제어 인터페이스부
112 입력 장치
114 출력 장치
200 외부 시스템
300 네트워크

Claims (8)

  1. 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 표식의 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는 판정 방법이며,
    상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 단계와,
    상기 픽셀군 추출 단계에서 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 단계와,
    상기 메디안 산출 단계에서 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부(良否)를 판정하는 신뢰성 판정 단계
    를 포함하는 것을 특징으로 하는, 피검사 물질의 선택적 결합량의 신뢰성의 판정 방법.
  2. 제1항에 있어서, 상기 메디안 산출 단계는,
    이하의 수학식 1 및/또는 수학식 2에 의해 얻어지는 비의 값을 산출하고,
    |X-Xt|/X ...(수학식 1)
    |X-Xb|/X ...(수학식 2)
    (여기서, X는 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값이며, Xt는 당해 픽셀군으로부터 상위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값이며, Xb는 당해 픽셀군으로부터 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값임)
    상기 신뢰성 판정 단계는,
    상기 메디안 산출 단계에서 산출된 상기 비의 값이 상기 기준값 이상이면 불량으로 판정하는 것을 특징으로 하는 판정 방법.
  3. 제1항 또는 제2항에 있어서, 상기 기준값은 이하의 수학식 3에 의해 얻어지는 값인 것을 특징으로 하는 판정 방법.
    S=C+Z/X ...(수학식 3)
    (여기서, S는 상기 기준값이며, C는 상수이며, Z는 상기 표식의 검출 강도를 검출하는 장치의 감도 설정에 따른 오프셋값이며, X는 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값임)
  4. 제3항에 있어서, 상기 표식의 검출 강도를 검출하는 장치는 포토멀티플라이어(photomultiplier)이며,
    상기 오프셋값은 이하의 수학식 4에 의해 얻어지는 값인 것을 특징으로 하는 판정 방법.
    Z=X^(A)*B ...(수학식 4)
    (여기서, Z는 상기 오프셋값이며, X는 상기 포토멀티플라이어의 게인 전압이며, A 및 B는 상수임)
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 담체는 마이크로어레이이며,
    상기 표식은 형광 표식이며,
    상기 검출 강도는 형광량이며,
    상기 신뢰성 판정 단계는, 상기 신뢰성의 양부로서 스폿의 양부를 판정하는 것을 특징으로 하는 판정 방법.
  6. 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 표식의 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는, 제어부를 적어도 구비한 판정 장치에 있어서,
    상기 제어부는,
    상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 수단과,
    상기 픽셀군 추출 수단에 의해 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 수단과,
    상기 메디안 산출 수단에 의해 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부를 판정하는 신뢰성 판정 수단
    을 구비한 것을 특징으로 하는, 피검사 물질의 선택적 결합량의 신뢰성의 판정 장치.
  7. 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 얻어지는 표식의 검출 강도를 판독하는 검출 장치와, 상기 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는 제어부를 적어도 구비한 판정 장치를 접속하여 구성한 판정 시스템에 있어서,
    상기 판정 장치의 상기 제어부는,
    상기 검출 장치를 통하여 판독된 상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터로서 취득하는 화상 데이터 취득 수단과,
    상기 화상 데이터 취득 수단에 의해 취득된 상기 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 수단과,
    상기 픽셀군 추출 수단에 의해 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 수단과,
    상기 메디안 산출 수단에 의해 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부를 판정하는 신뢰성 판정 수단
    을 구비한 것을 특징으로 하는, 피검사 물질의 선택적 결합량의 신뢰성의 판정 시스템.
  8. 담체 상에 스폿으로서 고정화된 선택 결합성 물질에, 표식된 피검사 물질이 결합됨으로써 표식의 검출 강도로서 얻어지는, 상기 피검사 물질의 선택적 결합량의 신뢰성을 판정하는 방법을, 제어부를 적어도 구비한 컴퓨터에 실행시키기 위한 프로그램이며,
    상기 제어부에 있어서,
    상기 담체에 있어서의 상기 검출 강도를 화상화한 화상 데이터에 있어서 상기 스폿의 위치를 결정하고, 당해 스폿에 대응하는 픽셀군을 추출하는 픽셀군 추출 단계와,
    상기 픽셀군 추출 단계에서 추출된 상기 픽셀군에 있어서의 상기 검출 강도의 메디안값과, 당해 픽셀군으로부터 상위 소정 비율 및/또는 하위 소정 비율의 픽셀을 제외한 군에 있어서의 상기 검출 강도의 메디안값의 비 또는 차를 산출하는 메디안 산출 단계와,
    상기 메디안 산출 단계에서 산출된 상기 비 또는 상기 차와, 소정의 기준값에 기초하여, 상기 신뢰성의 양부를 판정하는 신뢰성 판정 단계
    를 포함하는 상기 방법을 실행시키기 위한 것인, 프로그램.
KR1020147023805A 2012-03-08 2013-03-05 판정 방법, 판정 장치, 판정 시스템 및 프로그램 KR102048599B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012052311A JP5895613B2 (ja) 2012-03-08 2012-03-08 判定方法、判定装置、判定システム、および、プログラム
JPJP-P-2012-052311 2012-03-08
PCT/JP2013/056020 WO2013133283A1 (ja) 2012-03-08 2013-03-05 判定方法、判定装置、判定システム、および、プログラム

Publications (2)

Publication Number Publication Date
KR20140132343A true KR20140132343A (ko) 2014-11-17
KR102048599B1 KR102048599B1 (ko) 2019-11-25

Family

ID=49116758

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147023805A KR102048599B1 (ko) 2012-03-08 2013-03-05 판정 방법, 판정 장치, 판정 시스템 및 프로그램

Country Status (7)

Country Link
US (1) US9519822B2 (ko)
EP (1) EP2824444B1 (ko)
JP (1) JP5895613B2 (ko)
KR (1) KR102048599B1 (ko)
CN (1) CN104160265B (ko)
BR (1) BR112014021383A2 (ko)
WO (1) WO2013133283A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023912B1 (fr) * 2014-07-18 2020-05-08 Thales Calcul de performance pour aeronef
JP6492501B2 (ja) * 2014-10-03 2019-04-03 ニプロ株式会社 判定装置、判定方法及びコンピュータプログラム
JP6609954B2 (ja) * 2015-03-26 2019-11-27 東洋製罐グループホールディングス株式会社 Dnaチップ画像のスポット有効性判定装置、dnaチップ画像のスポット有効性判定方法、及びdnaチップ画像のスポット有効性判定プログラ
CN110443787B (zh) * 2019-07-30 2023-05-26 云谷(固安)科技有限公司 矫正装置和矫正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038812A1 (en) * 2000-10-24 2003-02-27 Affymetrix, Inc. A Corporation Organized Under The Laws Of Delaware Computer software system, method, and product for scanned image alignment
JP2004340574A (ja) 2001-07-31 2004-12-02 Toagosei Co Ltd アレイにおけるスポットの均一性評価方法
JP2008039584A (ja) 2006-08-07 2008-02-21 Toray Ind Inc 帯電防止性カバーを有するマイクロアレイ
US20100130372A1 (en) * 2008-10-13 2010-05-27 Roche Molecular Systems, Inc. Algorithms for classification of disease subtypes and for prognosis with gene expression profiling

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251601B1 (en) * 1999-02-02 2001-06-26 Vysis, Inc. Simultaneous measurement of gene expression and genomic abnormalities using nucleic acid microarrays
US7031844B2 (en) 2002-03-18 2006-04-18 The Board Of Regents Of The University Of Nebraska Cluster analysis of genetic microarray images
JP4244788B2 (ja) 2002-11-22 2009-03-25 東レ株式会社 選択結合性物質が固定化された基材
JP2006084281A (ja) * 2004-09-15 2006-03-30 Hitachi Software Eng Co Ltd スポット画像認識方法及びスポット画像認識システム
US7796804B2 (en) 2007-07-20 2010-09-14 Kla-Tencor Corp. Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer
JP4979516B2 (ja) * 2007-08-31 2012-07-18 三菱レイヨン株式会社 画像読み取り方法および装置
JP5433159B2 (ja) * 2008-03-26 2014-03-05 東洋鋼鈑株式会社 マイクロアレイの測定方法
JP5765841B2 (ja) * 2009-05-27 2015-08-19 富士フイルム株式会社 核酸マイクロアレイの品質検査方法
US20100304997A1 (en) * 2009-05-27 2010-12-02 Fujifilm Corporation Method for detecting abnormal spots of nucleic acid microarray
US20140307931A1 (en) * 2013-04-15 2014-10-16 Massachusetts Institute Of Technology Fully automated system and method for image segmentation and quality control of protein microarrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038812A1 (en) * 2000-10-24 2003-02-27 Affymetrix, Inc. A Corporation Organized Under The Laws Of Delaware Computer software system, method, and product for scanned image alignment
JP2004340574A (ja) 2001-07-31 2004-12-02 Toagosei Co Ltd アレイにおけるスポットの均一性評価方法
JP2008039584A (ja) 2006-08-07 2008-02-21 Toray Ind Inc 帯電防止性カバーを有するマイクロアレイ
US20100130372A1 (en) * 2008-10-13 2010-05-27 Roche Molecular Systems, Inc. Algorithms for classification of disease subtypes and for prognosis with gene expression profiling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
가부시끼가이샤 인터메디컬, "GenePix Pro 7.0 Microarray Image Analysis", [online], Copyright 2006 InterMedical co., ltd., [2012년 3월 6일 검색], 인터넷<URL:http://www.intermedical.co.jp/homepage/products/axon/genepixpro7.html>

Also Published As

Publication number Publication date
EP2824444A1 (en) 2015-01-14
WO2013133283A1 (ja) 2013-09-12
BR112014021383A2 (pt) 2018-05-08
EP2824444A4 (en) 2016-01-06
US20150098611A1 (en) 2015-04-09
US9519822B2 (en) 2016-12-13
JP2013186007A (ja) 2013-09-19
KR102048599B1 (ko) 2019-11-25
EP2824444B1 (en) 2018-04-18
CN104160265A (zh) 2014-11-19
JP5895613B2 (ja) 2016-03-30
CN104160265B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6970234B2 (ja) 細胞分泌プロファイルの分析およびスクリーニング
US9719929B2 (en) Microarray analysis method and microarray reading device
TWI425443B (zh) 解析處理方法及裝置
BE1025903B1 (nl) Overspraakcorrectie bij multiplexing-analyse van biologisch monster
KR102048599B1 (ko) 판정 방법, 판정 장치, 판정 시스템 및 프로그램
US20180315187A1 (en) Methods and systems for background subtraction in an image
JP3537752B2 (ja) バイオチップを用いたハイブリダイゼーション反応の実験結果表示方法及び実験誤差評価方法
US7068828B2 (en) Biochip image analysis system and method thereof
US20080232659A1 (en) Analysis Processing Method and Device
JP3880361B2 (ja) 蛍光シグナル処理方法及びハイブリダイゼーション反応結果表示方法
Gopal et al. Segmentation‐based analysis of single‐cell immunoblots
JP2019052932A (ja) データ解析装置、プログラム及び記録媒体、並びにデータ解析方法
JP4271688B2 (ja) バイオチップ
KR20050048729A (ko) 바이오칩 촬영영상 품질 분석 시스템 및 그 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant