KR20140071438A - 영상 복호화 장치 - Google Patents

영상 복호화 장치 Download PDF

Info

Publication number
KR20140071438A
KR20140071438A KR20147010213A KR20147010213A KR20140071438A KR 20140071438 A KR20140071438 A KR 20140071438A KR 20147010213 A KR20147010213 A KR 20147010213A KR 20147010213 A KR20147010213 A KR 20147010213A KR 20140071438 A KR20140071438 A KR 20140071438A
Authority
KR
South Korea
Prior art keywords
mode
unit
quantization
intra prediction
quantization parameter
Prior art date
Application number
KR20147010213A
Other languages
English (en)
Inventor
오수미
양문옥
Original Assignee
인포브릿지 피티이 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48191357&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20140071438(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 인포브릿지 피티이 엘티디 filed Critical 인포브릿지 피티이 엘티디
Publication of KR20140071438A publication Critical patent/KR20140071438A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction

Abstract

현재 예측 유닛의 인트라 예측 모드를 이용하여 예측블록을 생성하고, 1차원의 양자화 계수 성분들을 역스캔하여 양자화 블록을 생성하고, 상기 양자화 블록을 양자화 파라미터를 이용하여 역양자화하고, 역변환하여 잔차 블록을 생성하여 복원블록을 생성하고, 인트라 예측 모드는 좌측 및 상측 인트라 예측모드를 이용하여 결정되는 3개의 인트라 예측모드 후보자들을 포함하는 MPM 그룹을 생성하여 복원하고, 양자화 파라미터는 좌측, 상측 및 이전 양자화 파라미터들 중 미리 정해진 순서에 따라 결정되는 이용 가능한 2개를 이용하여 생성되는 양자화 파라미터 예측자를 이용하여 복원하는 장치가 개시된다. 따라서, 인트라 예측모드의 부호화/복호화 성능을 향상시키고, 양자화 파라미터에 유사한 양자화 파라미터 예측자를 생성함으로서 양자화 파라미터의 부호화 및 복호화 성능을 향상시킬 수 있다.

Description

영상 복호화 장치{APPARATUS OF DECODING AN IMAGE}
본 발명은 영상 복호화 장치에 관한 것으로, 보다 상세하게는 3개의 인트라 예측모드를 포함하는 MPM을 이용하여 복원되는 인트라 예측 모드를 이용하여 예측 블록을 생성하고, 좌측, 상측 및 이전 양자화 파라미터들 중 미리 정해진 순서의 2개를 이용하여 복원되는 양자화 파라미터를 이용하여 잔차 블록을 복원하는 영상 복호화 장치를 제공하는데 있다.
H.264/MPEG-4 AVC에서는 하나의 픽쳐가 복수개의 매크로블록으로 분할되고, 인트라 예측 또는 인터 예측을 이용하여 예측 블록을 생성함으로써 각각의 매크로블록을 부호화한다. 원본 블록과 예측 블록의 차분값이 변환되어 변환블록이 생성되고, 양자화 파라미터 및 양자화 매트릭스를 이용하여 상기 변환 블록이 양자화된다. 상기 양자화 파라미터는 매크로블록마다 조정되고, 양자화 파라미터 예측자로서 이전 양자화 파라미터를 이용하여 부호화된다.
한편, 현재 표준화가 진행중인 HEVC(High Efficiency Video Coding)에서는 2배의 압축 효율을 얻기 위해 다양한 사이즈의 코딩 유닛들이 소개되고 있다. 상기 코딩 유닛은 H.264의 매크로블록과 유사한 역할을 갖는다.
그러나, 양자화 파라미터가 코딩 유닛마다 조정되면, 코딩 유닛의 사이즈가 작아질수록 부호화해야 할 양자화 파라미터들의 수가 증가하게 된다. 따라서, 코딩 유닛 단위로 양자화 파라미터를 조정하면, 양자화 파라미터를 부호화하는데 소요되는 비트들의 양이 증가하게 되어 압축 효율을 떨어뜨린다. 또한, 다양한 사이즈의 코딩 유닛들이 사용되기 때문에 양자화 파라미터와 이전 양자화 파라미터 사이의 연관성(correlation)이 H.264에서의 연관성보다 약해지게 되므로, 다양한 사이즈의 코딩 유닛을 사용함에 따라 양자화 파라미터를 부호화 및 복호화하는 새로운 방법들이 요구된다.
본 발명이 이루고자 하는 목적은 3개의 인트라 예측모드를 포함하는 MPM을 이용하여 복원되는 인트라 예측 모드를 이용하여 예측 블록을 생성하고, 좌측, 상측 및 이전 양자화 파라미터들 중 미리 정해진 순서의 2개를 이용하여 복원되는 양자화 파라미터를 이용하여 잔차 블록을 복원하는 영상 복호화 장치를 제공하는데 있다.
본 발명에 따른 영상 복호화 장치는 현재 예측 유닛의 인트라 예측 모드를 이용하여 예측블록을 생성하고, 양자화 계수 성분들을 역스캔, 역양자화 및 역변환하여 잔차 블록을 생성하여 복원블록을 생성하고, 인트라 예측 모드는 좌측 및 상측 인트라 예측모드를 이용하여 결정되는 3개의 인트라 예측모드 후보자들을 포함하는 MPM 그룹을 생성하여 복원하고, 양자화 파라미터는 좌측, 상측 및 이전 양자화 파라미터들 중 미리 정해진 순서에 따라 결정되는 이용 가능한 2개를 이용하여 생성되는 양자화 파라미터 예측자를 이용하여 복원한다. 따라서, 인트라 예측모드의 부호화/복호화 성능을 향상시키고, 양자화 파라미터에 유사한 양자화 파라미터 예측자를 생성함으로서 양자화 파라미터의 부호화 및 복호화 성능을 향상시킬 수 있다.
본 발명에 따른 장치에서는 현재 예측 유닛의 인트라 예측 모드를 이용하여 예측블록을 생성하고, 1차원의 양자화 계수 성분들을 역스캔하여 양자화 블록을 생성하고, 상기 양자화 블록을 양자화 파라미터를 이용하여 역양자화하고, 역변환하여 잔차 블록을 생성하여 복원블록을 생성하고, 인트라 예측 모드는 좌측 및 상측 인트라 예측모드를 이용하여 결정되는 3개의 인트라 예측모드 후보자들을 포함하는 MPM 그룹을 생성하여 복원하고, 양자화 파라미터는 좌측, 상측 및 이전 양자화 파라미터들 중 미리 정해진 순서에 따라 결정되는 이용 가능한 2개를 이용하여 생성되는 양자화 파라미터 예측자를 이용하여 복원한다. 따라서, 인트라 예측모드의 부호화/복호화 성능을 향상시키고, 양자화 파라미터에 유사한 양자화 파라미터 예측자를 생성함으로서 양자화 파라미터의 부호화 및 복호화 성능을 향상시킬 수 있다.
도 1은 본 발명에 따른 영상 부호화 장치를 나타내는 블록도이다.
도 2는 본 발명에 따른 인트라 예측 모드들을 설명하는 개념적 블록도이다.
도 3은 본 발명에 따른 양자화 파라미터를 부호화하는 방법을 설명하는 순서도이다.
도 4은 본 발명에 따른 영상 복호화 장치를 나타내는 블록도이다.
도 5는 본 발명에 따른 인트라 예측모드에서의 예측 블록을 생성하는 방법을 설명하는 순서도이다.
도 6는 본 발명에 따른 인트라 예측 모드를 복원하는 과정을 설명하는 순서도이다.
도 7은 본 발명에 따른 현재 블록의 참조화소들의 위치를 설명하는 블록도이다.
도 8은 본 발명에 따른 인트라 예측에서의 예측 블록을 생성하는 장치를 설명하는 블록도이다.
도 9는 본 발명에 따른 양자화 파라미터를 복호화하는 방법을 설명하는 순서도이다.
이하, 본 발명의 여러가지 실시예들을 예시적인 도면을 참조하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
도 1은 본 발명에 따른 영상 부호화 장치(100)를 나타내는 블록도이다.
도 1을 참조하면, 본 발명에 따른 영상 부호화 장치(100)는 픽쳐 분할부(101), 변환부(103), 양자화부(104), 스캐닝부(105), 엔트로피 부호화부(106), 역양자화부(107), 역변환부(108), 후처리부(110), 픽쳐 저장부(111), 인트라 예측부(112), 인터 예측부(113), 감산부(102) 및 가산부(109)를 포함한다.
픽쳐 분할부(101)는 픽쳐 또는 슬라이스를 복수개의 LCU(Largest Coding Unit)들로 분할하고, 상기 각각의 LCU를 하나 이상의 코딩 유닛으로 분할한다. 픽쳐 분할부(101)는 각 코딩 유닛의 예측 모드, 예측 유닛의 사이즈 및 변환 유닛의 사이즈를 결정한다.
하나의 LCU는 하나 또는 복수개의 코딩 유닛(coidng unit)을 포함한다. 상기 LCU는 분할 구조를 나타내기 위해 재귀적 쿼드 트리 구조(recursive quadtree structure)를 갖는다. 코딩 유닛의 최대 사이즈 및 최소 사이즈를 나타내는 정보가 시퀀스 파라미터 셋(sequence parameter set)에 포함된다. 상기 분할 구조는 하나 또는 복수개의 분할 코딩 유닛 플래그(split_cu_flag)들을 이용하여 표현된다. 코딩 유닛은 2Nx2N의 사이즈를 갖는다.
코딩 유닛은 하나 또는 복수개의 예측 유닛(prediction unit)을 포함한다. 인트라 예측에서는 상기 예측 유닛의 사이즈는 2Nx2N 또는 NxN이다. 인터 예측에서는 상기 예측 유닛의 사이즈는 2Nx2N, 2NxN, Nx2N 또는 NxN이다. 인터 예측에서 예측 유닛이 비대칭 파티션(asymmetric partition)이면, 상기 예측 유닛의 사이즈는 hNx2N, (2-h)Nx2N, 2NxhN 및 2Nx(2-h)N 중의 하나일 수 있다. 여기서 h는 1/2이다.
코딩 유닛은 하나 또는 복수개의 변환 유닛(transform unit)을 포함한다. 변환 유닛은 분할 구조를 나타내기 위해 재귀적 쿼드 트리 구조(recursive quadtree structure)를 갖는다. 분할 구조는 하나 또는 복수개의 분할 변환 유닛 플래그(split_tu_flag)들에 의해 표현된다. 변환 유닛의 최대 사이즈 및 최소 사이즈를 나타내는 정보가 시퀀스 파라미터 셋에 포함된다.
인트라 예측부(112)는 현재 예측 유닛의 인트라 예측모드를 결정하고, 상기 인트라 예측 모드를 이용하여 하나 또는 복수개의 예측 블록을 생성한다. 예측 블록은 변환 유닛과 동일한 사이즈를 갖는다. 인트라 예측부(112)는 현재 블록의 이용가능하지 않는 참조화소들이 존재하면 참조화소들을 생성하고, 현재 블록의 사이즈 및 인트라 예측 모드에 따라 현재 블록의 참조화소들을 적응적으로 필터링하고, 현재 블록의 예측 블록을 생성한다. 현재 블록은 상기 예측 블록과 동일한 사이즈를 갖는다.
도 2는 본 발명에 따른 인트라 예측 모드들을 설명하는 개념적 블록도이다. 도 2에 도시된 바와 같이, 인트라 예측 모드들의 수는 35개이다. DC 모드와 플래너(Planar) 모드는 비방향성 인트라 예측모드들이고, 나머지들은 방향성 모드들이다.
인터 예측부(113)는 픽쳐 저장부(111)에 저장되어 있는 하나 이상의 참조 픽쳐들을 이용하여 현재 예측 유닛의 움직임 정보들을 결정하고, 상기 예측 유닛의 예측 블록을 생성한다. 상기 움직임 정보들은 하나 이상의 참조 픽쳐 인덱스들과 하나 이상의 움직임 벡터들을 포함한다.
변환부(103)는 원본 블록과 예측 블록을 이용하여 생성되는 잔차 신호들을 변환하여 변환 블록을 생성한다. 잔차 신호들은 변환 유닛 단위로 변환된다. 변환 타입은 예측 모드 및 변환 유닛의 사이즈에 따라 결정된다. 변환 타입은 DCT 기반 정수 변환 또는 DST 기반 정수 변환이다.
양자화부(104)는 상기 변환 블록을 양자화하기 위한 양자화 파라미터를 결정한다. 양자화 파라미터는 양자화 스텝 사이즈이다. 양자화 파라미터는 기준 사이즈보다 크거나 같은 코딩 유닛의 사이즈를 갖는 양자화 유닛마다 결정된다. 상기 기준 사이즈는 양자화 유닛의 최소 사이즈이다. 코딩 유닛의 사이즈가 양자화 유닛의 최소 사이즈보다 크거나 같으면, 상기 코딩 유닛이 양자화 유닛이 된다. 복수개의 코딩 유닛이 최소 양자화 유닛에 포함될 수도 있다. 상기 양자화 유닛의 최소 사이즈는 코딩 유닛의 허용 가능한 사이즈들 중의 하나이다.
양자화부(104)는 양자화 파라미터 예측자를 생성하고, 양자화 파라미터로부터 양자화 파라미터 예측자를 빼서 차분 양자화 파라미터를 생성한다. 상기 차분 양자화 파라미터는 부호화되어 복호기로 전송된다. 코딩 유닛 내에 전송될 잔차 신호가 존재하지 않으면, 상기 코딩 유닛의 차분 양자화 파라미터는 전송되지 않을 수 있다.
상기 양자화 파라미터 예측자는 인접 코딩 유닛들의 양자화 파라미터들 및/또는 이전 코딩 유닛의 양자화 파라미터를 이용하여 생성된다.
일실시예로서, 양자화부(104)는 좌측 양자화 파라미터, 상측 양자화 파라미터 및 좌상측 양자화 파라미터 순서로 검색하고, 하나 또는 2개의 이용 가능한 양자화 파라미터들을 이용하여 상기 양자화 파라미터 예측자를 생성한다. 예를 들어, 적어도 2개의 양자화 파라미터들이 이용 가능한 경우에는 상기 순서로 검색된 이용 가능한 처음 2개의 양자화 파라미터들의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 하나의 양자화 파라미터만이 이용 가능한 경우에는 상기 이용 가능한 양자화 파라미터가 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터는 좌측의 인접한 코딩 유닛의 양자화 파라미터이다. 상기 상측 양자화 파라미터는 상측에 인접한 코딩 유닛의 양자화 파라미터이다. 상기 좌상측 양자화 파라미터는 좌상측에 인접한 코딩 유닛의 양자화 파라미터이다.
다른 실시예로서, 양자화부(104)는 좌측 양자화 파라미터, 상측 양자화 파라미터 및 이전 양자화 파라미터를 상기 순서대로 검색하고, 하나 또는 2개의 이용 가능한 양자화 파라미터들을 이용하여 상기 양자화 파라미터 예측자를 생성한다. 적어도 2개의 양자화 파라미터들이 이용가능한 경우, 상기 순서로 검색되는 처음 2개의 이용 가능한 양자화 파라미터의 평균값을 양자화 파라미터 예측자로 설정한다. 하나의 양자화 파라미터만이 이용 가능한 경우에는 상기 이용 가능한 양자화 파라미터가 양자화 파라미터 예측자로 설정된다. 즉, 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터가 모두 이용 가능하면, 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터 중에서 하나만이 이용 가능하면, 상기 이용 가능한 양자화 파라미터와 상기 이전 양자화 파라미터의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터가 모두 이용 가능하지 않으면, 상기 이전 양자화 파라미터가 상기 양자화 파라미터 에측자로 설정된다. 상기 이전 양자화 파라미터는 부호화 순서상 바로 이전의 코딩 유닛의 양자화 파라미터이다. 상기 평균값은 반올림한 평균값이다.
양자화부(104)는 양자화 매트릭스 및 양자화 파라미터를 이용하여 변환 블록을 양자화하여 양자화 블록을 생성한다. 양자화 블록은 역양자화부(107)와 스캐닝부(105)로 제공된다.
스캐닝부(105)는 스캔 패턴을 결정하고, 상기 스캔 패턴을 상기 양자화 블록에 적용한다. 엔트로피 부호화를 위해 CABAC(Context adaptive bianry arithmetic coding)이 사용될 경우, 상기 스캔 패턴은 다음과 같이 결정된다.
인트라 예측에서는, 양자화된 변환 계수들의 분포가 인트라 예측 모드 및 변환 유닛의 사이즈에 의해 변한다. 따라서, 스캔 패턴은 상기 인트라 예측 모드 및 상기 변환 유닛의 사이즈에 의해 결정된다. 대각선 스캔(diagonal scan), 수직 스캔(vertical scan) 및 수평 스캔(horizontal scan) 중에서 스캔 패턴이 결정된다. 양자화 블록의 양자화된 변환 계수들은 중요 플래그들(significant flags), 계수 부호들(coefficient signs) 및 계수 레벨들(coefficient levels)로 분리된다. 상기 스캔 패턴이 중요 플래그들, 계수 부호들 및 계수 레벨들에 각각 적용된다.
변환 유닛의 사이즈가 제1 사이즈보다 작거나 같으면, 수직 모드 및 상기 수직 모드에 인접한 미리 정해진 개수의 인트라 예측 모드들에서는 수평 스캔이 선택되고, 수평 모드 및 상기 수평 모드에 인접한 미리 정해진 개수의 인트라 예측 모드들에서는 수직 스캔이 선택되고, 나머지의 인트라 예측 모드들에서는 대각선 스캔이 선택된다. 상기 제1 사이즈는 8x8이다.
변환 유닛의 사이즈가 상기 제1 사이즈보다 크면, 모든 인트라 예측 모드들에 대각선 스캔이 적용된다.
인터 예측에서는 대각선 스캔이 사용된다.
변환 유닛의 사이즈가 제2 사이즈보다 크면, 상기 양자화 블록은 복수개의 서브셋들로 분할되어 스캔된다. 상기 제2 사이즈는 4x4이다. 서브셋들을 스캔하기 위한 스캔 패턴은 상기 각 서브셋의 양자화된 변환 계수들을 스캔하기 위한 스캔 패턴과 동일하다. 각 서브셋의 양자화된 변환 계수들은 역방향으로 스캔된다. 상기 서브셋들도 역방향으로 스캔된다.
0이 아닌 마지막 계수 위치(last non-zero position)가 부호화되어 복호기로 전송된다. 0이 아닌 마지막 계수 위치는 변환 유닛 내에서의 0이 아닌 마지막 양자화된 변환 계수의 위치를 나타낸다.
넌제로 서브셋 플래그들(non-zero subset flags)이 결정되어 부호화된다. 넌제로 서브셋 플래그는 서브셋이 0이 아닌 계수들을 포함하는지 여부를 나타낸다. 넌제로 서브셋 플래그는 DC 계수를 포함하는 서브셋과 0이 아닌 마지막 계수를 포함하는 서브셋에서는 정의되지 않는다.
역양자화부(107)는 양자화 블록의 양자화된 변환 계수들을 역양자화한다.
역변환부(108)는 역양자화 블록을 역변환하여 공간 영역이 잔차 신호들을 생성한다.
가산부(109)는 잔차 블록과 예측 블록을 더하여 복원 블록을 생성한다.
후처리부(110)는 복원된 픽쳐에서 발생하는 블록킹 아티펙트를 제거하기 위한 디블록킹 필터링 과정을 수행한다.
픽쳐 저장부(111)는 후처리부(110)로부터 후처리된 영상을 수신하고, 픽쳐 단위로 상기 영상을 저장한다. 픽쳐는 프레임 또는 필드일 수 있다.
엔트로피 부호화부(106)는 스캐닝부(105)로부터 수신되는 1차원 계수 정보, 인트라 예측부(112)로부터 수신되는 인트라 예측 정보, 인터 예측부(113)로부터 수신되는 움직임 정보 등을 엔트로피 부호화한다.
도 3은 본 발명에 따른 양자화 파라미터를 부호화하는 방법을 설명하는 순서도이다.
양자화 유닛의 최소 사이즈가 결정된다(S110). 상기 양자화 유닛의 최소 사이즈는 LCU 의 사이즈 또는 LCU의 서브블록의 사이즈와 동일하다. 상기 양자화 유닛의 최소 사이즈는 픽쳐마다 결정된다.
양자화 파라미터가 결정된다(S120). 상기 양자화 파라미터는 양자화 유닛마다 결정된다. 현재 코딩 유닛의 사이즈가 양자화 유닛의 최소 사이즈보다 크거나 같으면, 현재 코딩 유닛이 양자화 유닛이 된다. 최소 양자화 유닛이 복수개의 코딩 유닛을 포함하면, 상기 양자화 파라미터는 상기 최소 양자화 유닛 내의 모든 코딩 유닛에 대해 결정된다.
양자화 파라미터 예측자가 생성된다(S130). 상기 양자화 파라미터 예측자도 양자화 유닛마다 결정된다. 현재 코딩 유닛의 사이즈가 양자화 유닛의 최소 사이즈보다 크거나 같으면, 현재 코딩 유닛의 양자화 파라미터 예측자가 생성된다. 최소 양자화 유닛이 복수개의 코딩 유닛을 포함하면, 부호화 순서상 첫번째 코딩 유닛에 대한 양자화 파라미터 예측자가 결정되고, 상기 결정된 양자화 파라미터 예측자가 상기 최소 양자화 유닛 내의 나머지 코딩 유닛들에 대해서도 사용된다.
상기 양자화 파라미터는 인접 코딩 유닛들의 양자화 파라미터들과 이전 코딩 유닛의 양자화 파라미터를 이용하여 생성된다.
일실시예로서, 좌측 양자화 파라미터, 상측 양자화 파라미터 및 좌상측 양자화 파라미터가 상기 순서로 검색되어, 하나 또는 2개의 이용 가능한 양자화 파라미터들을 이용하여 상기 양자화 파라미터 예측자가 생성된다. 예를 들어, 적어도 2개의 양자화 파라미터들이 이용 가능한 경우에는 상기 순서로 검색된 이용 가능한 처음 2개의 양자화 파라미터들의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 하나의 양자화 파라미터만이 이용 가능한 경우에는 상기 이용 가능한 양자화 파라미터가 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터는 좌측의 인접한 코딩 유닛의 양자화 파라미터이다. 상기 상측 양자화 파라미터는 상측에 인접한 코딩 유닛의 양자화 파라미터이다. 상기 좌상측 양자화 파라미터는 좌상측에 인접한 코딩 유닛의 양자화 파라미터이다.
다른 실시예로서, 좌측 양자화 파라미터, 상측 양자화 파라미터 및 이전 양자화 파라미터가 상기 순서대로 검색되고, 하나 또는 2개의 이용 가능한 양자화 파라미터들을 이용하여 상기 양자화 파라미터 예측자가 생성된다. 적어도 2개의 양자화 파라미터들이 이용가능한 경우, 상기 순서로 검색되는 처음 2개의 이용 가능한 양자화 파라미터의 평균값을 양자화 파라미터 예측자로 설정한다. 하나의 양자화 파라미터만이 이용 가능한 경우에는 상기 이용 가능한 양자화 파라미터가 양자화 파라미터 예측자로 설정된다. 즉, 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터가 모두 이용 가능하면, 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터 중에서 하나만이 이용 가능하면, 상기 이용 가능한 양자화 파라미터와 상기 이전 양자화 파라미터의 평균값이 상기 양자화 파라미터 예측자로 설정된다. 상기 좌측 양자화 파라미터 및 상기 상측 양자화 파라미터가 모두 이용 가능하지 않으면, 상기 이전 양자화 파라미터가 상기 양자화 파라미터 예측자로 설정된다. 상기 이전 양자화 파라미터는 부호화 순서상 바로 이전의 코딩 유닛의 양자화 파라미터이다. 상기 평균값은 반올림한 평균값이다.
차분 양자화 파라미터는 엔트로피 부호화된다(S150). 상기 차분 양자화 파라미터(dQP)는 dQP의 절대값과 dQP의 부호를 나타내는 부호 플래그(sign flag)로 변환된다. dQP의 절대값은 트렁케이티드 유너리(truncated unary)로 이진화된다. 그리고, 상기 절대값과 부호 플래그는 산술적으로 부호화된다. 상기 절대값이 0이면 상기 부호 플래그가 존재하지 않는다.
한편, 양자화 유닛의 회소 사이즈도 복호화 장치로 전송된다.
현재 표준화가 진행중인 HM(HEVC Test Model)에서는 양자화 유닛의 최소 사이즈를 전송하기 위해 2단계가 요구된다. 첫번째 단계로 양자화 파라미터가 LCU마다 조정되는지 LCU의 서브블록마다 조정되는지를 시퀀스 레벨에서 결정하고, 만약 시퀀스 레벨에서 상기 양자화 파라미터가 LCU의 서브블록마다 조정되는 것으로 결정되면, 양자화 유닛의 최소 사이즈가 픽쳐 레벨에서 결정된다. 양자화 파라미터가 LCU마다 조정되는지 LCU의 서브블록마다 조정되는지를 나타내는 첫번째 파라미터(cu_qp_delta_enabled_flag)가 시퀀스 파라미터 셋(sequence parameter set)에 포함된다. 상기 첫번째 파라미터가 양자화 파라미터가 LCU의 서브블록마다 조정되는 것을 나타내면, 두번째 파라미터(max_cu_qp_delta_depth)가 픽쳐 파라미터 셋(picture paramter set)에 포함된다. 상기 두번째 파라미터는 LCU보다 작은 사이즈의 양자화 유닛 사이즈를 특정한다. 따라서, 양자화 유닛의 최소 사이즈가 적어도 하나의 픽쳐에서 사용되면, 부호화 과정에서의 복잡도가 증가하게 되고, 2개의 파라미터가 전송되어야 한다.
본 발명에서는 시퀀스 레벨에서 행해지는 상기 양자화 유닛의 최소 사이즈가 LCU 보다 작은지 여부를 판단하는 것이 생략된다. 즉, 양자화 유닛의 최소 사이즈는 픽쳐마다 결정된다. 따라서, 상기 양자화 유닛의 최소 사이즈를 특정하기 위해 하나의 파라미터(예를 들어, cu_qp_delta_enabled_info)가 사용될 수도 있다. 상기 파라미터는 최소 양자화 유닛의 깊이를 특정한다. 양자화 유닛의 최소 사이즈는 LCU의 사이즈이거나 LCU의 서브블록의 사이즈일 수 있다. 따라서, 양자화 유닛의 최소 사이즈를 전송하기 위해 요구되는 비트량과 부호화 과정에서의 복잡도가 감소된다.
상기 변환 블록을 양자화하기 위해 미리 정해진 양자화 매트릭스 및 사용자 정의 양자화 매트릭스가 사용될 수 있다. 하나 이상의 사용자 정의 매트릭스가 사용되면, 상기 하나 이상의 사용자 정의 매트릭스가 시퀀스 파라미터 셋 또는 픽쳐 파라미터 셋에 포함되어야 한다. 상기 사용자 정의 양자화 매트릭스의 시그널링 비트수를 줄이기 위해, 상기 사용자 정의 양자화 매트릭스의 계수들은 DPCM(differential pulse code modulation) 방식을 이용하여 부호화된다. 상기 DPCM 방식에 대해 대각선 스캔(diagonal scan)이 적용된다.
상기 사용자 정의 양자화 매트릭스의 사이즈가 미리 정해진 크기보다 크면, 상기 시그널링 비트수를 줄이기 위해 상기 사용자 정의 양자화 매트릭스의 계수들은 다운 샘플링된 후 DPCM을 이용해 부호화된다. 상기 미리 정해진 크기는 8x8일 수 있다. 예를 들어, 사용자 정의 양자화 매트릭스의 사이즈가 16x16이면, 상기 사용자 정의 양자화 매트릭스의 DC 계수 이외의 계수들이 4:1 다운 샘플링을 이용하여 다운 샘플링된다. DC 계수는 상기 다운 샘플링된 매트릭스와 별도로 시그널링된다.
도 4는 본 발명에 따른 영상 복호화 장치(200)를 나타내는 블록도이다.
본 발명에 따른 영상 복호화 장치(200)는 엔트로피 복호화부(201), 역스캐닝부(202), 역양자화부(203), 역변환부(204), 가산부(205), 후처리부(206), 픽쳐 저장부(207), 인트라 예측부(208) 및 인터 예측부(209)를 포함한다.
엔트로피 복호화부(201)는 수신된 비트 스트림에서 인트라 예측 정보, 인터 예측 정보 및 1차원 계수 정보를 추출한다. 엔트로피 복호화부(201)는 인터 예측 정보를 인터 예측부(209)로 전송하고, 인트라 예측 정보를 인트라 예측부(208)로 전송하고, 상기 계수 정보를 역스캐닝부(202)로 전송한다.
역스캐닝부(202)는 역스캔 패턴을 사용하여 2차원의 양자화 블록을 생성한다. CABAC이 엔트로피 부호화 방법으로 사용된 것으로 가정하고 설명한다. 역스캔 패턴은 대각선 스캔, 수직 스캔 및 수평 스캔 중 하나이다.
인트라 예측에서는, 인트라 예측 모드 및 변환 유닛의 사이즈에 의해 역스캔 패턴이 결정된다. 역스캔 패턴은 대각선 스캔, 수직 스캔 및 수평 스캔 중에서 선택된다. 상기 선택된 역스캔 패턴이 중요 플래그들, 계수 부호들 및 계수 레벨들에 각각 적용되어 양자화 블록을 생성한다.
변환 유닛의 사이즈가 상기 제1 사이즈보다 작거나 같으면, 수직 모드 및 상기 수직 모드에 인접한 미리 정해진 개수의 인트라 예측 모드들에서는 수평 스캔이 선택되고, 수평 모드 및 상기 수평 모드에 인접한 미리 정해진 개수의 인트라 예측 모드들에서는 수직 스캔이 선택되고, 나머지의 인트라 예측 모드들에서는 대각선 스캔이 선택된다. 상기 제1 사이즈는 8x8이다.
변환 유닛의 사이즈가 상기 제1 사이즈보다 크면, 모든 인트라 예측 모드들에 대각선 스캔이 적용된다.
인터 예측에서는 대각선 스캔이 사용된다.
변환 유닛의 사이즈가 제2 사이즈보다 크면, 중요 플래그들, 계수 부호들 및 계수 레벨들(levels)이 서브셋 단위로 역스캔되어 서브셋들을 생성한다. 서브셋들은 역스캔되어 양자화 블록을 생성한다. 상기 제2 사이즈는 4x4이다.
각 서브셋을 생성하기 위해 사용되는 역스캔 패턴은 양자화 블록을 생성하기 위해 사용되는 역스캔 패턴과 동일한다. 중요 플래그들, 계수 부호들 및 계수 레벨들은 역방향으로 역스캔된다. 서브셋들도 역방향으로 역스캔된다.
0이 아닌 마지막 계수 위치(last non-zero position) 및 넌제로 서브셋 플래그들이 부호화기로부터 수신된다. 0이 아닌 마지막 계수 위치는 생성될 서브셋들의 수를 결정하기 위해 사용된다. 넌제로 서브셋 플래그는 역스캔 패턴을 적용하여 생성될 서브셋을 결정하기 위해 사용된다. DC 계수를 포함하는 서브셋과 0이 아닌 마지막 계수를 포함하는 서브셋에 대한 넌제로 서브셋 플래그들은 부호기로부터 전송되지 않으므로, 역스캔 패턴을 사용하여 상기 DC 계수를 포함하는 서브셋과 0이 아닌 마지막 계수를 포함하는 서브셋을 생성해야 한다.
역양자화부(203)는 엔트로피 복호화부(201)로부터 차분 양자화 파라미터를 수신하고, 양자화 파라미터 예측자를 생성한다. 양자화 파라미터 예측자는 도 1의 양자화부(104)에 의한 동작과 동일한 과정을 통해 생성된다. 그리고나서, 역양자화부(203)는 상기 차분 양자화 파라미터와 상기 양자화 파라미터 예측자를 더하여 현재 코딩 유닛의 양자화 파라미터를 생성한다. 현재 코딩 유닛이 최소 양자화 유닛보다 크거나 같고, 현재 코딩 유닛의 차분 양자화 파라미터가 부호기로부터 수신되지 않으면, 상기 차분 양자화 파라미터는 0으로 설정된다.
역양자화부(203)는 양자화 블록을 역양자화한다.
역변환부(204)는 상기 역양자된 블록을 역변환하여 잔차 블록을 복원한다. 역변환 타입은 예측 모드 및 변환 유닛이 사이즈에 따라 결정된다. 역 변환 타입은 DCT 기반 정수 변환 또는 DST 기반 정수 변환이다.
인트라 예측부(208)는 수신된 인트라 예측 정보를 이용하여 현재 예측 유닛의 인트라 예측 모드를 복원하고, 상기 복원된 인트라 예측 모드에 따라 예측 블록을 생성한다. 상기 예측 블록은 변환 유닛과 동일한 사이즈를 갖는다. 인트라 예측부(250)는 현재 블록의 이용 가능하지 않은 참조 화소들이 존재하면 참조화소들을 생성하고, 현재 블록의 사이즈 및 인트라 예측 모드에 따라서 현재 블록의 참조화소들을 적응적으로 필터링한다. 현재 블록은 변환 유닛의 사이즈를 갖는다.
인터 예측부(209)는 수신된 인터 예측 정보를 이용하여 현재 예측 유닛의 움직임 정보를 복원하고, 상기 움직임 정보를 이용하여 예측 블록을 생성한다.
후처리부(206)는 도 1의 후처리부(110)와 동일하게 동작한다.
픽쳐 저장부(207)는 후처리부(206)로부터 후처리된 영상을 수신하고, 픽쳐 단위로 상기 영상을 저장한다. 픽쳐는 프레임 또는 필드일 수 있다.
가산부(205)는 복원된 잔차 블록과 예측 블록을 더하여 복원 블록을 생성한다.
도 5는 본 발명에 따른 양자화 파라미터의 복호화 방법을 설명하는 순서도이다.
양자화 유닛의 최소 사이즈가 유도된다(S210). 최소 양자화 유닛의 깊이를 특정하는 파라미터(cu_qp_delta_enabled_info)가 PPS로부터 추출된다. 양자화 윤닛의 최소 사이즈는 픽쳐마다 다음과 같이 유도된다.
Log2(MinQUSize) = Log2(MaxCUSize)-cu_qp_deltal_enabled_info
MinQUSize는 양자화 유닛의 최소 사이즈이다. MaxCUSize는 LCU의 사이즈이다.
현재 코딩 유닛의 차분 양자화 파라미터(dQP)가 복원된다(S220). dQP는 양자화 유닛마다 복원된다. 예를 들어, 현재 코딩 유닛의 사이즈가 상기 양자화 유닛의 최소 사이즈보다 크거나 같으면, 현재 코딩 유닛에 대해 dQP가 복원된다. 현재 코딩 유닛이 부호화된 dQP를 포함하지 않으면, dQP는 0으로 설정된다. 양자화 유닛이 복수개의 코딩 유닛을 포함하면, 복호화 순서에서 0이 아닌 계수를 적어도 하나 갖는 최초의 코딩 유닛이 부호화된 dQP를 포함한다.
상기 부호화된 dQP는 산술복호화되어 dQP의 절대값과 dQP의 부호를 나타내는 부호 플래그를 생성한다. dQP의 절대값은 트렁케이티디 유너리(truncated unary) 방식으로 이진화된 빈 스트링이다. 상기 절대값과 부호 플래그의 빈 스트링으로부터 dQP가 복원된다. 상기 절대값이 0이면, 상기 부호 플래그는 존재하지 않는다.
현재 코딩 유닛의 상기 양자화 파라미터 예측자가 생성된다(S230). 상기 양자화 파라미터 예측자는 도 3의 S130에서와 동일하게 생성된다. 양자화 유닛이 복수개의 코딩 유닛을 포함하면, 복호화 순서상 첫번째 코딩 유닛의 양자화 파라미터 예측자가 생성되고, 상기 생성된 양자화 파라미터 예측자가 상기 양자화 유닛내의 모든 양자화 유닛들에 사용된다.
dQP와 상기 양자화 파라미터 예측자를 이용하여 양자화 파라미터가 생성된다(S240).
한편, 사용자 정의 양자화 매트릭스도 복원된다. 사용자 정의 양자화 매트릭스들의 셋이 부호기로부터 시퀀스 파라미터 셋 또는 픽쳐 파라미터 셋을 통해 수신된다. 상기 사용자 정의 양자화 매트릭스는 역 DPCM을 이용하여 복원된다. 상기 DPCM에 대각선 스캔이 사용된다. 상기 사용자 정의 양자화 매트릭스의 크기가 8x8보다 크면, 상기 사용자 정의 양자화 매트릭스는 수신된 8x8 양자화 매트릭스의 계수들을 업 샘플링하여 복원된다. 상기 사용자 정의 양자화 매트릭스의 DC 계수는 시퀀스 파라미터 셋 또는 픽쳐 파라미터 셋으로부터 추출될 수 있다. 예를 들어, 상기 사용자 정의 양자화 매트릭스의 사이즈가 16x16이면, 수신된 8x8 양자화 매트릭스의 계수들이 1:4 업샘플링을 사용하여 업샘플링된다.
도 6은 본 발명에 따른 인트라 예측모드에서의 예측 블록을 생성하는 방법을 설명하는 순서도이다.
현재 예측 유닛의 인트라 예측 정보가 엔트로피 복호화된다(S310).
상기 인트라 예측 정보는 모드 그룹 지시자 및 예측 모드 인덱스를 포함한다. 상기 모드 그룹 지시자는 현재 예측 유닛의 인트라 예측 모드가 MPM 그룹(most probable mode group)에 속하는지를 나타내는 플래그이다. 상기 플래그가 1이면, 현재 예측 유닛의 인트라 예측 모드가 MPM 그룹에 속한다. 상기 플래그가 0이면, 현재 예측 유닛의 인트라 예측 모드가 잔여 모드 그룹(residual mode group)에 속한다. 상기 잔여 모드 그룹은 상기 MPM 그룹에 속하는 인트라 예측 모드들 이외의 모드 인트라 예측 모드들을 포함한다. 상기 예측 모드 인덱스는 상기 모드 그룹 지시자에 의해 특정되는 그룹 내에서의 현재 예측 유닛의 인트라 예측 모드를 특정한다.
상기 인트라 예측 정보를 이용하여 현재 예측 유닛의 인트라 예측 모드가 복원된다(S320).
도 7은 본 발명에 따른 인트라 예측 모드를 복원하는 과정을 설명하는 순서도이다. 현재 예측 유닛의 인트라 예측 모드는 다음의 순서대로 복원된다.
인접 예측 유닛들의 인트라 예측 모드들을 이용하여 MPM 그룹이 구성된다(S321). 상기 MPM 그룹의 인트라 예측 모드들은 좌측 인트라 예측 모드 및 상측 인트라 예측 모드들에 의해 적응적으로 결정된다. 상기 좌측 인트라 예측 모드는 좌측에 인접한 예측 유닛의 인트라 예측 모드이고, 상기 상측 인트라 예측 모드는 상측에 인접한 예측 유닛의 인트라 예측 모드이다. 상기 MPM 그룹은 3개의 인트라 예측 모드들로 구성된다.
상기 좌측 또는 상측에 인접한 예측 유닛이 존재하지 않으면, 상기 좌측 또는 상측의 인접 예측 유닛들의 인트라 예측 모드는 이용 가능하지 않은 것으로 설정된다. 예를 들어, 현재 예측 유닛이 픽쳐의 좌측 또는 상측 경계에 위치하면, 좌측 또는 상측에 인접한 예측 유닛이 존재하지 않는다. 좌측 또는 상측에 인접한 예측 유닛이 다른 슬라이스 또는 다른 타일에 속하면, 좌측 또는 상측에 인접한 예측 유닛의 인트라 예측 모드들은 이용 가능하지 않은 것으로 설정된다. 좌측 또는 상측에 인접한 예측 유닛이 인터 부호화되면, 좌측 또는 상측에 인접한 예측 유닛의 인트라 예측 모드가 이용 가능하지 않은 것으로 설정된다. 상측 예측 유닛이 다른 LCU에 속하면, 상기 상측 예측에 인접한 예측 유닛의 인트라 예측 모드가 이용 가능하지 않은 것으로 설정된다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드가 모두 이용 가능하고 서로 다른 경우에는, 상기 좌측 인트라 예측 모드 및 상기 상측 인트라 예측 모드가 상기 MPM 그룹에 포함되고 1개의 추가 인트라 예측 모드가 상기 MPM 그룹에 추가된다. 둘 중 모드 번호가 작은 인트라 예측 모드에 인덱스 0이 할당하고, 나머지 하나에 인덱스 1이 할당된다. 또는, 좌측 인트라 예측 모드에 인덱스 0이 할당되고 상측 인트라 예측 모드에 인덱스 1이 할당될 수도 있다. 상기 추가 인트라 예측 모드는 상기 좌측 및 상측 인트라 예측 모드들에 의해 다음과 같이 결정된다.
좌측 및 상측 인트라 예측 모드들 중 하나가 비방향성 모드(non-directional mode)이고 다른 하나가 방향성 모드(directional mode)이면, 나머지 하나의 비방향성 모드가 상기 MPM 그룹에 추가된다. 예를 들어, 상기 좌측 및 상측 인트라 예측 모드들 중 하나가 DC 모드이면, 플래너 모드가 상기 MPM 그룹에 추가되고, 상기 좌측 및 상측 인트라 예측 모드들 중 하나가 플래너 모드이면, DC 모드가 상기 MPM 그룹에 추가된다. 좌측 및 상측 인트라 예측 모드들이 모두 비방향성 모드들이면, 수직 모드가 상기 MPM 그룹에 추가된다. 좌측 및 상측 인트라 예측 모드들이 모두 방향성 모드들이면, DC 모드 또는 플래너 모드가 상기 MPM 그룹에 추가된다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드들 중 하나만 이용 가능한 경우에는, 상기 이용 가능한 인트라 예측 모드가 상기 MPM 그룹에 포함되고, 2개의 추가 인트라 예측 모드들이 상기 MPM 그룹에 추가된다. 상기 2개의 추가 인트라 예측 모드들은 상기 이용 가능한 인트라 예측 모드에 의해 다음과 같이 결정된다.
상기 이용 가능한 인트라 예측 모드가 비방향성 모드이면, 나머지 하나의 비방향성 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 예를 들어, 상기 이용 가능한 인트라 예측 모드가 DC 모드이면, 플래너 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 플래너 모드이면, DC 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 방향성 모드이면, 2개의 비방향성 모드(DC 모드 및 플래너 모드)가 상기 MPM 그룹에 추가된다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드가 모두 이용 가능하고 서로 같으면, 상기 이용 가능한 인트라 예측 모드가 MPM 그룹에 포함되고, 2개의 추가 인트라 예측 모드들이 상기 MPM 그룹에 추가된다. 상기 추가되는 2개의 인트라 예측 모드는 상기 이용 가능한 인트라 예측 모드에 의해 다음과 같이 결정된다.
상기 이용 가능한 인트라 예측 모드가 방향성 모드이면, 2개의 인접 방향성 모드들이 상기 MPM 그룹에 추가된다. 예를 들어, 상기 이용 가능한 인트라 예측 모드가 모드 23이면, 좌측 인접 모드(모드 1)와 우측 인접 모드(모드 13)이 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 모드 30이면, 2개의 인접 모드들(모드 2와 모드 16)이 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 비방향성 모드이면, 나머지 하나의 비방향성 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 예를 들어, 상기 이용 가능한 인트라 예측 모드가 DC 모드이면, 플래너 모드와 수직 모드가 상기 MPM 그룹에 추가된다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드가 모두 이용가능하지 않는 경우에는, 3개의 추가 인트라 예측 모드들이 상기 MPM 그룹에 추가된다. 상기 3개의 인트라 예측 모드들은 DC 모드, 플래너 모드 및 수직 모드이다. DC 모드, 플래너 모드 및 수직 모드의 순서 또는 플래너 모드, DC 모드 및 수직 모드의 순서로 인덱스 0, 1 및 2가 상기 3개의 인트라 예측 모드에 할당된다.
상기 모드 그룹 지시자가 MPM 그룹을 나타내는지를 결정한다(S322).
상기 모드 그룹 지시자가 상기 MPM 그룹을 나타내면, 상기 예측 모드 인덱스에 의해 특정되는 MPM 그룹 내의 인트라 예측 모드가 현재 예측 유닛의 인트라 예측 모드로 설정된다(S323).
상기 모드 그룹 지시자가 상기 MPM 그룹을 나타내지 않으면, 상기 예측 모드 인덱스에 의해 특정되는 상기 잔여 모드 그룹 내의 인트라 예측 모드가 현재 예측 유닛의 인트라 예측 모드로 설정된다(S324). 현재 예측 유닛의 인트라 예측 모드는 상기 예측 모드 인덱스 및 상기 MPM 그룹의 인트라 예측 모드들을 이용하여 다음의 순서로 유도된다.
MPM 그룹 내의 3개의 인트라 예측 모드들 중에서, 가장 작은 모드 번호를 갖는 인트라 예측 모드가 첫번째 후보자로 설정되고, 중간 모드 번호를 갖는 인트라 예측 모드가 두번째 후보자로 설정되고, 가장 큰 모드 번호를 갖는 인트라 예측 모드가 세번째 후보자로 설정된다.
1) 상기 예측 모드 인덱스를 첫번째 후보자와 비교한다. 상기 예측 모드 인덱스가 상기 MPM그룹 내의 첫번째 후보자의 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값이 1만큼 증가한다. 그렇지 않으면, 상기 예측 모드 인덱스의 값은 유지된다.
2) 상기 예측 모드 인덱스를 두번째 후보자와 비교한다. 상기 예측 모드 인덱스가 상기 MPM그룹 내의 두번째 후보자의 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값이 1만큼 증가한다. 그렇지 않으면, 상기 예측 모드 인덱스의 값은 유지된다.
3) 상기 예측 모드 인덱스를 세번째 후보자와 비교한다. 상기 예측 모드 인덱스가 상기 MPM그룹 내의 세번째 후보자의 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값이 1만큼 증가한다. 그렇지 않으면, 상기 예측 모드 인덱스의 값은 유지된다.
4) 상기 최종 예측 모드 인덱스가 현재 예측 유닛의 인트라 예측 모드의 모드 번호로 설정된다.
상기 예측 블록의 사이즈는 상기 변환 유닛의 사이즈를 나타내는 변환 사이즈 정보에 기초하여 결정된다(S330). 변환 사이즈 정보는 상기 변환 유닛의 사이즈를 특정하기 위한 하나 또는 복수개의 분할 변환 플래그(split_transform_flag)들일 수 있다.
변환 유닛의 사이즈가 현재 예측 유닛이 사이즈와 같으면, 예측 블록의 사이즈는 현재 예측 유닛의 사이즈와 같다.
변환 유닛의 사이즈가 현재 예측 유닛의 사이즈보다 작으면, 예측 블록의 사이즈는 변환 유닛의 사이즈와 같다. 이 경우, 복원 블록을 생성하는 과정은 현재 예측 유닛의 각 서브블록마다 수행된다. 즉, 현재의 서브블록의 예측 블록 및 잔차 블록이 생성되고, 상기 예측 블록 및 잔차 블록을 더하여 복원 블록을 생성한다. 그리고나서, 복호화 순서상 다음에 위치하는 서브블록의 예측 블록, 잔차 블록 및 복원 블록이 생성된다. 상기 복원된 인트라 예측 모드가 모든 서브블록의 예측 블록들을 생성하는데 사용된다. 현재 서브블록의 복원 브록의 일부 화소들이 다음 서브블록의 참조화소들로 사용된다. 따라서, 원본 서브블록에 더 유사한 예측 블록을 생성하는 것이 가능하다.
다음으로, 현재 블록의 참조 화소들이 모두 이용가능한지를 판단하고, 하나 이상의 참조화소들이 이용가능하지 않으면 참조화소들을 생성한다(S340). 현재 블록은 현재 예측 유닛 또는 현재 서브블록이다. 상기 현재 블록의 사이즈는 변환 유닛의 사이즈이다.
도 8은 본 발명에 따른 현재 블록의 참조화소들의 위치를 설명하는 블록도이다. 도 8에 도시된 바와 같이, 현재 블록의 참조화소들은 (x=0, ..., 2N-1_, y=-1)에 위치하는 상측 참조화소들과, (x=-1, y=0, ..., 2M-1)에 위치하는 좌측 참조화소들과, (x=-1, y=-1)에 위치하는 코너 참조화소로 구성된다. N은 현재 블록의 가로의 길이이고, M은 현재 블록의 세로의 길이이다.
복원된 화소들이 대응하는 위치에 존재하지 않거나 다른 슬라이스에 위치하면, 상기 참조화소들은 이용 가능하지 않는 것으로 설정된다. CIP 모드(constrained intra prediction mode)에서는 인터 모드의 복원 화소들이 이용 가능하지 않는 것으로 설정된다.
하나 이상이 참조화소들이 이용 가능하지 않으면, 상기 화소들을 대해 참조화소들이 다음과 같이 생성된다.
모든 참조화소들이 이용 가능하지 않으면, 모든 참조화소들이 2L-1의 값으로 대체된다. L의 값은 휘도 화소의 값을 표현하는데 사용되는 비트들의 수이다.
이용 가능한 참조화소들이 이용 가능하지 않은 참조화소의 한쪽 방향에만 존재하면, 상기 이용 가능하지 않은 참조화소의 값은 상기 이용 가능하지 않은 참조화소에 가장 가까운 위치의 참조 화소의 값으로 대체된다.
이용 가능한 참조화소들이 이용 가능하지 않은 참조화소의 양쪽 방향에 모두 존재하면, 상기 이용 가능하지 않은 참조화소의 값은 상기 이용 가능하지 않는 참조화소에 각 방향으로 가장 가까운 위치의 참조화소들의 평균값 또는 미리 정해진 방향의 가장 가까운 위치의 참조화소의 값으로 대체된다.
다음으로, 상기 인트라 예측 모드 및 현재 블록의 사이즈에 기초하여 상기 참조화소들이 적응적으로 필터링된다(S350). 현재 블록의 사이즈는 변환 블록의 사이즈이다.
*DC 모드에서는 참조화소들이 필터링되지 않는다. 수직 모드 및 수평 모드에서도 참조화소들이 필터링되지 않는다. 상기 수직 모드 및 수평 모드 이외의 방향성 모드들에서는 참조화소들이 상기 현재 블록의 사이즈에 따라 적응적으로 필터링된다.
현재 블록의 사이즈가 4x4이면, 모든 인트라 예측 모드들에서 상기 참조화소들이 필터링되지 않는다. 8x8, 16x16 및 32x32의 사이즈에서는, 참조화소가 필터링되어야 하는 인트라 예측 모드의 수가 현재 블록의 사이즈가 커질수록 증가한다. 예를 들어, 수직 모드 및 상기 수직모드에 인접하는 미리 정해진 개수의 인트라 예측 모드들에서는 참조화소들이 필터링되지 않는다. 수평 모드 및 상기 수평 모드에 인접한 상기 미리 정해진 개수의 인트라 예측모드드에서는 참조화소들이 필터링되지 않는다. 상기 미리 정해진 개수는 0에서 7 중 하나이고 현재 블록의 사이즈가 커질수록 감소한다.
다음으로, 상기 복원된 인트라 예측 모드에 따라 참조 화소들을 이용하여 현재 블록의 예측 블록이 생성된다(S360).
DC 모드에서는 참조화소에 접하지 않는 예측 블록의 예측 화소는 (x=0, ..., N-1, y=-1)에 위치하는 N개의 참조 화소들과, (x=-1, y=0, ..., M-1)에 위치하는 M개의 참조화소들을 평균하여 생성된다. 참조화소에 접하는 예측 화소는 상기 평균값과 하나 또는 2개의 접하는 참조화소들을 이용하여 생성된다.
수직 모드에서는 좌측 참조화소에 접하지 않는 예측 화소들은 수직 참조 화소의 값을 복사하여 생성된다. 좌측 참조화소에 접하는 예측 화소들은 수직 참조화소 및 상기 좌측 인접 참조화소와 코너 참조 화소 사이의 변화량을 이용하여 생성된다.
수평 모드에서도 상기와 동일한 방식으로 참조화소들이 생성된다.
도 9은 본 발명에 따른 인트라 예측에서의 예측 블록을 생성하는 장치(300)를 설명하는 블록도이다.
본 발명에 따른 장치(300)는 파싱부(310), 예측모드 복호화부(320), 예측 사이즈 결정부(330), 참조화소 유효성 검사부(340), 참조화소 생성부(350), 참조화소 필터링부(360) 및 예측 블록 생성부(370)를 포함한다.
파싱부(310)는 비트스트림으로부터 현재 예측 유닛의 인트라 예측 정보를 복원한다.
상기 인트라 예측 정보는 모드 그룹 지시자와 예측 모드 인덱스를 포함한다. 상기 모드 그룹 지시자는 현재 예측 유닛의 인트라 예측 모드가 MPM 그룹에 속하는지 여부를 나타내는 플래그이다. 상기 플래그가 1이면, 현재 예측 유닛의 인트라 예측 모드는 MPM 그룹에 속한다. 상기 플래그가 0이면, 현재 예측 유닛의 인트라 예측 모드가 잔여 모드 그룹에 속한다. 상기 잔여 모드 그룹은 상기 MPM 그룹에 속하는 인트라 예측 모드들 이외의 모든 인트라 예측 모드들을 포함한다. 예측 모드 인덱스는 상기 모드 그룹 지시자에 의해 특정되는 그룹 내에서의 현재 예측 유닛의 인트라 예측 모드를 특정한다.
예측 모드 복호화부(320)는 MPM 그룹 구성부(321) 및 예측 모드 복원부(322)를 포함한다.
MPM 그룹 구성부(321)는 현재 예측 유닛의 MPM 그룹을 구성한다. 상기 MPM 그룹은 인접 예측 유닛들의 인트라 예측 모드들을 이용하여 구성한다. 상기 MPM 그룹의 인트라 예측 모드들은 좌측 인트라 예측 모드 및 상측 인트라 예측 모드들에 의해 적응적으로 결정된다. 상기 좌측 인트라 예측 모드는 좌측에 인접한 예측 유닛의 인트라 예측 모드이고, 상기 상측 인트라 예측 모드는 상측에 인접한 예측 유닛의 인트라 예측 모드이다. 상기 MPM 그룹은 3개의 인트라 예측 모드들로 구성된다.
MPM 그룹 구성부(321)는 상기 좌측 인트라 예측 모드 및 상기 상측 인트라 예측 모드의 유효성을 검사한다. 상기 좌측 또는 상측에 인접한 예측 유닛이 존재하지 않으면, 상기 좌측 또는 상측의 인접 예측 유닛들의 인트라 예측 모드는 이용 가능하지 않은 것으로 설정된다. 예를 들어, 현재 예측 유닛이 픽쳐의 좌측 또는 상측 경계에 위치하면, 좌측 또는 상측에 인접한 예측 유닛이 존재하지 않는다. 좌측 또는 상측에 인접한 예측 유닛이 다른 슬라이스 또는 다른 타일에 속하면, 좌측 또는 상측에 인접한 예측 유닛의 인트라 예측 모드들은 이용 가능하지 않은 것으로 설정된다. 좌측 또는 상측에 인접한 예측 유닛이 인터 부호화되면, 좌측 또는 상측에 인접한 예측 유닛의 인트라 예측 모드가 이용 가능하지 않은 것으로 설정된다. 상측 예측 유닛이 다른 LCU에 속하면, 상기 상측 예측에 인접한 예측 유닛의 인트라 예측 모드가 이용 가능하지 않은 것으로 설정된다.
MPM 그룹 구성부(321)는 MPM 그룹을 다음과 같이 구성한다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드가 모두 이용 가능하고 서로 다른 경우에는, 상기 좌측 인트라 예측 모드 및 상기 상측 인트라 예측 모드가 상기 MPM 그룹에 포함되고 1개의 추가 인트라 예측 모드가 상기 MPM 그룹에 추가된다. 둘 중 모드 번호가 작은 인트라 예측 모드에 인덱스 0이 할당하고, 나머지 하나에 인덱스 1이 할당된다. 또는, 좌측 인트라 예측 모드에 인덱스 0이 할당되고 상측 인트라 예측 모드에 인덱스 1이 할당될 수도 있다. 상기 추가 인트라 예측 모드는 상기 좌측 및 상측 인트라 예측 모드들에 의해 다음과 같이 결정된다.
좌측 및 상측 인트라 예측 모드들 중 하나가 비방향성 모드(non-directional mode)이고 다른 하나가 방향성 모드(directional mode)이면, 나머지 하나의 비방향성 모드가 상기 MPM 그룹에 추가된다. 예를 들어, 상기 좌측 및 상측 인트라 예측 모드들 중 하나가 DC 모드이면, 플래너 모드가 상기 MPM 그룹에 추가되고, 상기 좌측 및 상측 인트라 예측 모드들 중 하나가 플래너 모드이면, DC 모드가 상기 MPM 그룹에 추가된다. 좌측 및 상측 인트라 예측 모드들이 모두 비방향성 모드들이면, 수직 모드가 상기 MPM 그룹에 추가된다. 좌측 및 상측 인트라 예측 모드들이 모두 방향성 모드들이면, DC 모드 또는 플래너 모드가 상기 MPM 그룹에 추가된다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드들 중 하나만 이용 가능한 경우에는, 상기 이용 가능한 인트라 예측 모드가 상기 MPM 그룹에 포함되고, 2개의 추가 인트라 예측 모드들이 상기 MPM 그룹에 추가된다. 상기 2개의 추가 인트라 예측 모드들은 상기 이용 가능한 인트라 예측 모드에 의해 다음과 같이 결정된다.
상기 이용 가능한 인트라 예측 모드가 비방향성 모드이면, 나머지 하나의 비방향성 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 예를 들어, 상기 이용 가능한 인트라 예측 모드가 DC 모드이면, 플래너 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 플래너 모드이면, DC 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 방향성 모드이면, 2개의 비방향성 모드(DC 모드 및 플래너 모드)가 상기 MPM 그룹에 추가된다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드가 모두 이용 가능하고 서로 같으면, 상기 이용 가능한 인트라 예측 모드가 MPM 그룹에 포함되고, 2개의 추가 인트라 예측 모드들이 상기 MPM 그룹에 추가된다. 상기 추가되는 2개의 인트라 예측 모드는 상기 이용 가능한 인트라 예측 모드에 의해 다음과 같이 결정된다.
상기 이용 가능한 인트라 예측 모드가 방향성 모드이면, 2개의 인접 방향성 모드들이 상기 MPM 그룹에 추가된다. 예를 들어, 상기 이용 가능한 인트라 예측 모드가 모드 23이면, 좌측 인접 모드(모드 1)와 우측 인접 모드(모드 13)이 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 모드 30이면, 2개의 인접 모드들(모드 2와 모드 16)이 상기 MPM 그룹에 추가된다. 상기 이용 가능한 인트라 예측 모드가 비방향성 모드이면, 나머지 하나의 비방향성 모드와 수직 모드가 상기 MPM 그룹에 추가된다. 예를 들어, 상기 이용 가능한 인트라 예측 모드가 DC 모드이면, 플래너 모드와 수직 모드가 상기 MPM 그룹에 추가된다.
좌측 인트라 예측 모드 및 상측 인트라 예측 모드가 모두 이용가능하지 않는 경우에는, 3개의 추가 인트라 예측 모드들이 상기 MPM 그룹에 추가된다. 상기 3개의 인트라 예측 모드들은 DC 모드, 플래너 모드 및 수직 모드이다. DC 모드, 플래너 모드 및 수직 모드의 순서 또는 플래너 모드, DC 모드 및 수직 모드의 순서로 인덱스 0, 1 및 2가 상기 3개의 인트라 예측 모드에 할당된다.
예측 모드 복원부(322)는 상기 모드 그룹 지시자와 상기 예측 모드 인덱스를 이용하여 현재 예측 유닛의 인트라 예측 모드를 다음과 같이 유도한다.
예측 모드 복원부(322)는 상기 모드 그룹 지시자가 MPM 그룹을 나타내는지를 결정한다.
상기 모드 그룹 지시자가 상기 MPM 그룹을 나타내면, 예측 모드 복원부(322)는 상기 예측 모드 인덱스에 의해 특정되는 MPM 그룹 내의 인트라 예측 모드를 현재 예측 유닛의 인트라 예측 모드로 결정한다.
상기 모드 그룹 지시자가 상기 MPM 그룹을 나타내지 않으면, 예측 모드 복원부(322)는 상기 예측 모드 인덱스에 의해 특정되는 상기 잔여 모드 그룹 내의 인트라 예측 모드를 현재 예측 유닛의 인트라 예측 모드로 결정한다. 현재 예측 유닛의 인트라 예측 모드는 상기 예측 모드 인덱스 및 상기 MPM 그룹의 인트라 예측 모드들을 이용하여 다음의 순서로 유도된다.
MPM 그룹 내의 3개의 인트라 예측 모드들 중에서, 가장 작은 모드 번호를 갖는 인트라 예측 모드가 첫번째 후보자로 설정되고, 중간 모드 번호를 갖는 인트라 예측 모드가 두번째 후보자로 설정되고, 가장 큰 모드 번호를 갖는 인트라 예측 모드가 세번째 후보자로 설정된다.
1) 상기 예측 모드 인덱스를 첫번째 후보자와 비교한다. 상기 예측 모드 인덱스가 상기 MPM그룹 내의 첫번째 후보자의 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값이 1만큼 증가한다. 그렇지 않으면, 상기 예측 모드 인덱스의 값은 유지된다.
2) 상기 예측 모드 인덱스를 두번째 후보자와 비교한다. 상기 예측 모드 인덱스가 상기 MPM그룹 내의 두번째 후보자의 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값이 1만큼 증가한다. 그렇지 않으면, 상기 예측 모드 인덱스의 값은 유지된다.
3) 상기 예측 모드 인덱스를 세번째 후보자와 비교한다. 상기 예측 모드 인덱스가 상기 MPM그룹 내의 세번째 후보자의 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값이 1만큼 증가한다. 그렇지 않으면, 상기 예측 모드 인덱스의 값은 유지된다.
4) 상기 최종 예측 모드 인덱스가 현재 예측 유닛의 인트라 예측 모드의 모드 번호로 설정된다.
예측 사이즈 결정부(330)는 변환 유닛의 사이즈를 특정하는 변환 사이즈 정보에 기초하여 예측 블록의 사이즈를 결정한다. 상기 변환 사이즈 정보는 변환 유닛의 사이즈를 특정하는 하나 또는 복수개의 분할 변환 플래그(split_transform_flag)들일 수 있다.
변환 유닛의 사이즈가 현재 예측 유닛이 사이즈와 같으면, 예측 블록의 사이즈는 현재 예측 유닛의 사이즈와 같다.
변환 유닛의 사이즈가 현재 예측 유닛의 사이즈보다 작으면, 예측 블록의 사이즈는 변환 유닛의 사이즈와 같다. 이 경우, 복원 블록을 생성하는 과정은 현재 예측 유닛의 각 서브블록마다 수행된다. 즉, 현재의 서브블록의 예측 블록 및 잔차 블록이 생성되고, 상기 예측 블록 및 잔차 블록을 더하여 복원 블록을 생성한다. 그리고나서, 복호화 순서상 다음에 위치하는 서브블록의 예측 블록, 잔차 블록 및 복원 블록이 생성된다. 상기 복원된 인트라 예측 모드가 모든 서브블록의 예측 블록들을 생성하는데 사용된다. 현재 서브블록의 복원 블록의 일부 화소들이 다음 서브블록의 참조화소들로 사용된다. 따라서, 원본 서브블록에 더 유사한 예측 블록을 생성하는 것이 가능하다.
다음으로, 현재 블록의 참조 화소들이 모두 이용가능한지를 판단하고, 하나 이상의 참조화소들이 이용가능하지 않으면 참조화소들을 생성한다(S140). 현재 블록은 현재 예측 유닛 또는 현재 서브블록이다. 상기 현재 블록의 사이즈는 변환 유닛의 사이즈이다.
참조화소 유효성 검사부(340)는 현재 블록의 모든 참조화소들이 이용 가능한지 여부를 결정한다. 현재 블록은 상기 현재 예측 유닛 또는 상기 현재 서브 블록이다. 현재 블록의 사이즈는 변환 유닛의 사이즈이다.
참조화소 생성부(350)는 하나 이상의 참조화소들이 이용 가능하지 않으면 참조화소들을 생성한다.
모든 참조화소들이 이용 가능하지 않으면, 모든 참조화소들이 2L-1의 값으로 대체된다. L의 값은 휘도 화소의 값을 표현하는데 사용되는 비트들의 수이다.
이용 가능한 참조화소들이 이용 가능하지 않은 참조화소의 한쪽 방향에만 존재하면, 상기 이용 가능하지 않은 참조화소의 값은 상기 이용 가능하지 않은 참조화소에 가장 가까운 위치의 참조 화소의 값으로 대체된다.
이용 가능한 참조화소들이 이용 가능하지 않은 참조화소의 양쪽 방향에 모두 존재하면, 상기 이용 가능하지 않은 참조화소의 값은 상기 이용 가능하지 않는 참조화소에 각 방향으로 가장 가까운 위치의 참조화소들의 평균값 또는 미리 정해진 방향의 가장 가까운 위치의 참조화소의 값으로 대체된다.
참조화소 필터링부(360)는 상기 인트라 예측 모드 및 현재 블록의 사이즈에 기초하여 상기 참조화소들을 적응적으로 필터링한다.
DC 모드에서는 참조화소들이 필터링되지 않는다. 수직 모드 및 수평 모드에서도 참조화소들이 필터링되지 않는다. 상기 수직 모드 및 수평 모드 이외의 방향성 모드들에서는 참조화소들이 상기 현재 블록의 사이즈에 따라 적응적으로 필터링된다.
현재 블록의 사이즈가 4x4이면, 모든 인트라 예측 모드들에서 상기 참조화소들이 필터링되지 않는다. 8x8, 16x16 및 32x32의 사이즈에서는, 참조화소가 필터링되어야 하는 인트라 예측 모드의 수가 현재 블록의 사이즈가 커질수록 증가한다. 예를 들어, 수직 모드 및 상기 수직모드에 인접하는 미리 정해진 개수의 인트라 예측 모드들에서는 참조화소들이 필터링되지 않는다. 수평 모드 및 상기 수평 모드에 인접한 상기 미리 정해진 개수의 인트라 예측모드드에서는 참조화소들이 필터링되지 않는다. 상기 미리 정해진 개수는 0에서 7 중 하나이고 현재 블록의 사이즈가 커질수록 감소한다.
예측블록 생성부(370)는 상기 복원된 인트라 예측 모드에 따라 참조 화소들을 이용하여 현재 블록의 예측 블록을 생성한다.
DC 모드에서는, 참조화소들에 접하지 않은 예측 블록의 예측 화소는 (x=0, ..., N-1, y=-1)에 위치하는 N개의 참조 화소들과, (x=-1, y=0, ..., M-1)에 위치하는 M개의 참조화소들을 평균하여 예측 블록의 예측 화소들을 생성한다. 그리고, 참조 화소에 접하는 예측 화소들은 상기 평균값과 하나 또는 두개의 접하는 참조화소들을 이용하여 생성된다.
수직 모드에서는, 좌측 참조화소에 접하지 않는 예측 화소들은 수직 참조 화소의 값을 복사하여 생성된다. 그리고, 좌측 참조화소에 접하는 예측 화소들은 수직 참조 화소 및 좌측 인접 참조화소와 코너 참조 화소의 변화량을 이용하여 생성된다.
수평 모드에서는 수직 모드와 동일한 방법으로 예측 화소들이 생성된다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
104 : 양자화부

Claims (10)

  1. 영상 복호화 장치에 있어서,
    현재 예측 유닛의 인트라 예측 모드를 이용하여 예측블록을 생성하는 인트라 예측부;
    1차원의 양자화 계수 성분들을 역스캔하여 양자화 블록을 생성하는 역스캐닝부;
    상기 양자화 블록을 양자화 파라미터 및 양자화 매트릭스를 이용하여 역양자화하여 변환 블록을 생성하는 역양자화부;
    상기 변환 블록을 역변환하여 잔차 블록을 생성하는 역변환부; 및
    상기 예측 블록과 상기 잔차 블록을 이용하여 복원블록을 생성하는 가산부를 포함하고,
    상기 인트라 예측 모드는 현재 예측 유닛의 이용 가능한 좌측 및 상측 인트라 예측모드를 이용하여 결정되는 3개의 인트라 예측모드 후보자들을 포함하는 MPM 그룹을 생성하여 복원되고,
    현재 코딩 유닛의 좌측 양자화 파라미터, 상측 양자화 파라미터 및 이전 양자화 파라미터 중에서 2개 이상이 이용 가능하면, 상기 양자화 파라미터는 미리 정해진 순서에 따라 결정되는 이용 가능한 2개의 양자화 파라미터들을 이용하여 생성되는 양자화 파라미터 예측자를 이용하여 복원되는 것을 특징으로 하는 장치.
  2. 제1항에 있어서, 하나의 양자화 파라미터만 이용 가능하면, 상기 이용 가능한 양자화 파라미터가 양자화 파라미터 예측자로 설정되는 것을 특징으로 하는 장치.
  3. 제1항에 있어서, 상기 이용 가능한 2개의 양자화 파라미터는 상기 좌측, 상측 및 이전 양자화 파라미터들 순서로 검색하여 결정되는 것을 특징으로 하는 장치.
  4. 제1항에 있어서, 상기 양자화 파라미터는 양자화 유닛마다 복원되고, 상기 양자화 유닛의 최소 사이즈는 픽쳐 파라미터 셋에 의해서만 조정되는 것을 특징으로 하는 장치.
  5. 제4항에 있어서, 상기 양자화 유닛의 최소 사이즈는 상기 양자화 유닛의 최소 사이즈의 깊이를 특정하는 파라미터와 최대 코딩 유닛의 사이즈를 이용하여 유도되는 것을 특징으로 하는 장치.
  6. 제1항에 있어서, 상기 좌측 및 상측 양자화 파라미터들이 이용 가능하면, 상기 좌측 및 상측 양자화 파라미터들의 평균값이 상기 양자화 파라미터 예측자로 설정되는 것을 특징으로 하는 장치.
  7. 제1항에 있어서, 상기 좌측 양자화 파라미터가 이용 가능하지 않으면, 상기 상측 및 이전 양자화 파라미터들의 평균값이 상기 양자화 파라미터 예측자로 설정되는 것을 특징으로 하는 장치.
  8. 제1항에 있어서, 상기 인트라 예측부는 예측 모드 그룹 지시자 및 예측 모드 인덱스를 복원하고,
    상기 예측 모드 그룹 지시자가 상기 MPM 그룹을 나타내지 않으면, 상기 예측 모드 인덱스가 MPM 그룹의 인트라 예측 모드들 중 가장 작은 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값을 1만큼 증가시키는 단계;
    상기 예측 모드 인덱스가 MPM 그룹의 인트라 예측 모드들 중 중간의 모드번호보다 크거나 같으면 제2 후보자보다 크거나 같으면, 상기 예측 모드 인덱스의 값을 1만큼 증가시키는 단계; 및
    상기 예측 모드 인덱스가 MPM 그룹의 인트라 예측 모드들 중 가장 큰 모드번호보다 크거나 같으면, 상기 예측 모드 인덱스의 값을 1만큼 증가시키는 단계를 순차적으로 수행하여 인트라 예측 모드를 결정하는 것을 특징으로 하는 장치.
  9. 제1항에 있어서, 상기 좌측 및 상측 인트라 예측 모드들 중 하나만이 이용 가능하고, 상기 이용 가능한 인트라 예측 모드가 플래너 모드 및 DC 모드 중 하나이면, 상기 MPM 그룹은 플래너 모드, DC 모드 및 수직 모드를 포함하는 것을 특징으로 하는 장치.
  10. 제1항에 있어서, 상기 좌측 및 상측 인트라 예측 모드들 중 하나만이 이용 가능하고, 상기 이용 가능한 인트라 예측 모드가 방향성 모드이면, 상기 MPM 그룹은 상기 방향성 모드, 플래너 모드 및 DC 모드를 포함하는 것을 특징으로 하는 장치.
KR20147010213A 2011-11-04 2012-11-02 영상 복호화 장치 KR20140071438A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110114607 2011-11-04
KR20110114607A KR20130049523A (ko) 2011-11-04 2011-11-04 인트라 예측 블록 생성 장치
PCT/CN2012/083978 WO2013064095A1 (en) 2011-11-04 2012-11-02 Method of deriving quantization parameter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020147010207A Division KR101472974B1 (ko) 2011-11-04 2012-11-02 양자화 블록 역양자화 방법

Publications (1)

Publication Number Publication Date
KR20140071438A true KR20140071438A (ko) 2014-06-11

Family

ID=48191357

Family Applications (6)

Application Number Title Priority Date Filing Date
KR20110114607A KR20130049523A (ko) 2011-11-04 2011-11-04 인트라 예측 블록 생성 장치
KR20147010213A KR20140071438A (ko) 2011-11-04 2012-11-02 영상 복호화 장치
KR1020147010207A KR101472974B1 (ko) 2011-11-04 2012-11-02 양자화 블록 역양자화 방법
KR1020147010214A KR20140066239A (ko) 2011-11-04 2012-11-02 영상 복호화 방법
KR20147010216A KR20140074350A (ko) 2011-11-04 2012-11-02 영상 부호화 장치
KR1020147010215A KR20140066240A (ko) 2011-11-04 2012-11-02 영상 부호화 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR20110114607A KR20130049523A (ko) 2011-11-04 2011-11-04 인트라 예측 블록 생성 장치

Family Applications After (4)

Application Number Title Priority Date Filing Date
KR1020147010207A KR101472974B1 (ko) 2011-11-04 2012-11-02 양자화 블록 역양자화 방법
KR1020147010214A KR20140066239A (ko) 2011-11-04 2012-11-02 영상 복호화 방법
KR20147010216A KR20140074350A (ko) 2011-11-04 2012-11-02 영상 부호화 장치
KR1020147010215A KR20140066240A (ko) 2011-11-04 2012-11-02 영상 부호화 장치

Country Status (14)

Country Link
US (11) US9264723B2 (ko)
EP (6) EP3843392A1 (ko)
JP (8) JP5841264B2 (ko)
KR (6) KR20130049523A (ko)
CN (8) CN103096070B (ko)
BR (5) BR122020014035B1 (ko)
CA (4) CA3217419A1 (ko)
ES (1) ES2784007T3 (ko)
HU (1) HUE048753T2 (ko)
MX (6) MX345037B (ko)
PL (1) PL3402191T3 (ko)
SG (9) SG10202002041XA (ko)
TW (7) TWI615016B (ko)
WO (1) WO2013064095A1 (ko)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9445129B2 (en) 2010-04-13 2016-09-13 Sun Patent Trust Image coding method and image decoding method
KR20130049525A (ko) * 2011-11-04 2013-05-14 오수미 잔차 블록 복원을 위한 역변환 방법
KR20130049522A (ko) 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 방법
KR20130049523A (ko) 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 장치
US10277915B2 (en) * 2011-11-07 2019-04-30 Qualcomm Incorporated Signaling quantization matrices for video coding
JP6120490B2 (ja) * 2011-11-07 2017-04-26 キヤノン株式会社 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム
KR20130050407A (ko) 2011-11-07 2013-05-16 오수미 인터 모드에서의 움직임 정보 생성 방법
KR20130058524A (ko) * 2011-11-25 2013-06-04 오수미 색차 인트라 예측 블록 생성 방법
JP6064581B2 (ja) * 2011-12-21 2017-01-25 株式会社Jvcケンウッド 動画像復号装置、動画像復号方法及び動画像復号プログラム、並びに受信装置、受信方法及び受信プログラム
JP6064580B2 (ja) * 2011-12-21 2017-01-25 株式会社Jvcケンウッド 動画像符号化装置、動画像符号化方法及び動画像符号化プログラム、並びに送信装置、送信方法及び送信プログラム
US11323747B2 (en) * 2013-06-05 2022-05-03 Qualcomm Incorporated Residual differential pulse code modulation (DPCM) extensions and harmonization with transform skip, rotation, and scans
JP6587046B2 (ja) * 2013-07-08 2019-10-09 サン パテント トラスト 画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置
CN104427338B (zh) * 2013-09-07 2019-11-05 上海天荷电子信息有限公司 一种使用块匹配的图像编码以及图像解码的方法和装置
US20180027236A1 (en) * 2015-02-17 2018-01-25 Lg Electronics Inc. Method and device for encoding/decoding video signal by using adaptive scan order
WO2016205999A1 (en) * 2015-06-23 2016-12-29 Mediatek Singapore Pte. Ltd. Adaptive coding group for image/video coding
JP6535744B2 (ja) * 2015-08-20 2019-06-26 日本放送協会 画像符号化装置、画像復号化装置、及びこれらのプログラム
US11095911B2 (en) * 2016-02-16 2021-08-17 Samsung Electronics Co., Ltd. Method and apparatus for encoding image
JP6660868B2 (ja) * 2016-11-15 2020-03-11 Kddi株式会社 動画像符号化装置及び動画像復号装置並びにプログラム
CN108805943B (zh) * 2017-04-27 2022-12-09 腾讯科技(深圳)有限公司 图片转码方法和装置
WO2019050300A1 (ko) * 2017-09-06 2019-03-14 가온미디어 주식회사 효과적인 차분양자화 파라미터 전송 기반 영상 부/복호화 방법 및 장치
IL273437B1 (en) 2017-10-18 2024-02-01 Samsung Electronics Co Ltd Method and device for video decoding, and method and device for video encoding
US11262088B2 (en) 2017-11-06 2022-03-01 International Business Machines Corporation Adjusting settings of environmental devices connected via a network to an automation hub
KR20230025504A (ko) * 2018-01-02 2023-02-21 삼성전자주식회사 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
US10491914B2 (en) * 2018-03-29 2019-11-26 Tencent America LLC Transform information prediction
KR102030384B1 (ko) 2018-06-19 2019-11-08 광운대학교 산학협력단 잔차 계수 부호화/복호화 방법 및 장치
CN112262576A (zh) 2018-06-11 2021-01-22 光云大学校产学协力团 残差系数编码/解码方法和装置
KR20210021036A (ko) 2018-06-30 2021-02-24 가부시키가이샤 후지킨 다이어프램 밸브 및 그 감시 방법
CN117729327A (zh) * 2018-09-03 2024-03-19 华为技术有限公司 用于帧内预测的方法和装置
US11516506B2 (en) * 2018-10-05 2022-11-29 Lg Electronics Inc. Method and apparatus for processing image service
CN111050169B (zh) * 2018-10-15 2021-12-14 华为技术有限公司 图像编码中量化参数的生成方法、装置及终端
CN109688409B (zh) * 2018-12-28 2021-03-02 北京奇艺世纪科技有限公司 一种视频编码方法及装置
CN109831670B (zh) * 2019-02-26 2020-04-24 北京大学深圳研究生院 一种反量化方法、系统、设备及计算机可读介质
CN113748675A (zh) * 2019-04-10 2021-12-03 北京达佳互联信息技术有限公司 使用改进的基于矩阵的帧内预测编解码模式的视频编解码方法和装置
JP7337952B2 (ja) 2019-04-17 2023-09-04 エルジー エレクトロニクス インコーポレイティド Bdpcmを用いた画像符号化/復号化方法、装置、及びビットストリームを伝送する方法
EP3942799A4 (en) * 2019-05-01 2022-06-08 ByteDance Inc. INTRACODED VIDEO USING QUANTIZED RESIDUAL PULSE CODE MODULATION ENCODING
CN112004084B (zh) * 2019-05-27 2022-03-29 北京君正集成电路股份有限公司 一种利用量化参数排序的码率控制优化方法及系统
JP2022537426A (ja) * 2019-06-21 2022-08-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 幾何学的分割モードのためのクロマサンプル重みの導出
CN110464326B (zh) * 2019-08-19 2022-05-10 上海联影医疗科技股份有限公司 一种扫描参数推荐方法、系统、装置及存储介质
US11800110B2 (en) * 2021-04-20 2023-10-24 Tencent America LLC Adaptive scanning with multiple transform selection
US20230069984A1 (en) * 2021-08-24 2023-03-09 Tencent America LLC Hardware friendly design for intra mode coding
US11917144B2 (en) 2021-09-29 2024-02-27 Mediatek Inc. Efficient in-loop filtering for video coding
CN116095316B (zh) * 2023-03-17 2023-06-23 北京中星微人工智能芯片技术有限公司 视频图像处理方法及装置、电子设备及存储介质

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625665B2 (en) * 1996-09-20 2014-01-07 At&T Intellectual Property Ii, L.P. Video coder providing implicit coefficient prediction and scan adaptation for image coding and intra coding of video
EP0944261A3 (en) 1998-03-17 1999-10-06 Matsushita Electric Industrial Co., Ltd. Video signal processing apparatus
JP2001298368A (ja) * 2000-04-14 2001-10-26 Sakai Yasue 圧縮方法及び装置、伸長方法及び装置、圧縮伸長システム、記録媒体
JP3561485B2 (ja) * 2000-08-18 2004-09-02 株式会社メディアグルー 符号化信号分離・合成装置、差分符号化信号生成装置、符号化信号分離・合成方法、差分符号化信号生成方法、符号化信号分離・合成プログラムを記録した媒体および差分符号化信号生成プログラムを記録した媒体
CN1941910B (zh) * 2001-11-27 2015-03-11 三星电子株式会社 编码坐标内插符、解码比特数据流的装置及方法
CN1206864C (zh) * 2002-07-22 2005-06-15 中国科学院计算技术研究所 结合率失真优化的码率控制的方法及其装置
EP1453004A2 (en) * 2003-02-28 2004-09-01 NTT DoCoMo, Inc. Image encoding apparatus and method
JP2006005438A (ja) * 2004-06-15 2006-01-05 Sony Corp 画像処理装置およびその方法
CN100348051C (zh) * 2005-03-31 2007-11-07 华中科技大学 一种增强型帧内预测模式编码方法
WO2007032600A1 (en) * 2005-07-21 2007-03-22 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding video signal by extending application of directional intra-prediction
JP2007089035A (ja) * 2005-09-26 2007-04-05 Toshiba Corp 動画像符号化方法、装置及びプログラム
US20070274385A1 (en) * 2006-05-26 2007-11-29 Zhongli He Method of increasing coding efficiency and reducing power consumption by on-line scene change detection while encoding inter-frame
JP4254867B2 (ja) 2007-01-31 2009-04-15 ソニー株式会社 情報処理装置および方法、プログラム、並びに記録媒体
EP1983759A1 (en) * 2007-04-19 2008-10-22 Matsushita Electric Industrial Co., Ltd. Estimation of separable adaptive interpolation filters for hybrid video coding
CN100493198C (zh) * 2007-05-31 2009-05-27 北京中星微电子有限公司 算术编码中的概率模型存储方法
US8571104B2 (en) * 2007-06-15 2013-10-29 Qualcomm, Incorporated Adaptive coefficient scanning in video coding
US8428133B2 (en) * 2007-06-15 2013-04-23 Qualcomm Incorporated Adaptive coding of video block prediction mode
CN100551075C (zh) * 2007-10-15 2009-10-14 中兴通讯股份有限公司 一种低复杂度的帧内预测模式选择方法
KR100940444B1 (ko) * 2007-12-18 2010-02-10 한국전자통신연구원 공간적 에지 검출을 이용한 인트라 예측 모드 구성 방법
US20090161757A1 (en) * 2007-12-21 2009-06-25 General Instrument Corporation Method and Apparatus for Selecting a Coding Mode for a Block
US8542730B2 (en) 2008-02-22 2013-09-24 Qualcomm, Incorporated Fast macroblock delta QP decision
CN101262603B (zh) * 2008-03-27 2011-08-31 方春 一种自适应码率控制方法
CN100596202C (zh) * 2008-05-30 2010-03-24 四川虹微技术有限公司 一种快速帧内模式选择方法
US8897359B2 (en) * 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding
BRPI0904324A2 (pt) * 2008-06-27 2015-06-30 Sony Corp Dispositivo de processamento de imagem, e, método de processamento de imagem
KR101501568B1 (ko) * 2008-07-04 2015-03-12 에스케이 텔레콤주식회사 영상 부호화 및 복호화 장치 및, 방법
CN101729886B (zh) * 2008-10-24 2011-09-28 安凯(广州)微电子技术有限公司 一种视频解码方法、系统和设备
CN101494776B (zh) * 2009-02-13 2011-01-05 北京邮电大学 一种h.264码率控制方法
JP5174737B2 (ja) * 2009-05-05 2013-04-03 国立大学法人広島大学 画像配信システム、符号装置及び復号装置
KR101507344B1 (ko) * 2009-08-21 2015-03-31 에스케이 텔레콤주식회사 가변 길이 부호를 이용한 인트라 예측모드 부호화 방법과 장치, 및 이를 위한기록 매체
JP5649296B2 (ja) * 2009-10-26 2015-01-07 キヤノン株式会社 画像符号化装置
KR101457894B1 (ko) * 2009-10-28 2014-11-05 삼성전자주식회사 영상 부호화 방법 및 장치, 복호화 방법 및 장치
EA021750B1 (ru) 2009-10-30 2015-08-31 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Способ декодирования, декодирующее устройство, способ кодирования и кодирующее устройство
KR101441905B1 (ko) * 2009-11-18 2014-09-24 에스케이텔레콤 주식회사 후보 예측 움직임 벡터 집합 선택을 이용한 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
US20110274162A1 (en) * 2010-05-04 2011-11-10 Minhua Zhou Coding Unit Quantization Parameters in Video Coding
US8588297B2 (en) * 2009-12-23 2013-11-19 Oracle America, Inc. Quantization parameter prediction
KR101768207B1 (ko) * 2010-01-19 2017-08-16 삼성전자주식회사 축소된 예측 움직임 벡터의 후보들에 기초해 움직임 벡터를 부호화, 복호화하는 방법 및 장치
WO2011096770A2 (ko) * 2010-02-02 2011-08-11 (주)휴맥스 영상 부호화/복호화 장치 및 방법
JP2011160359A (ja) * 2010-02-03 2011-08-18 Sharp Corp ブロックノイズ量予測装置、ブロックノイズ量予測方法、画像処理装置、プログラム、及び、記録媒体
US8588303B2 (en) * 2010-03-31 2013-11-19 Futurewei Technologies, Inc. Multiple predictor sets for intra-frame coding
US8929440B2 (en) * 2010-04-09 2015-01-06 Sony Corporation QP adaptive coefficients scanning and application
EP2947878B1 (en) * 2010-04-23 2017-02-15 M&K Holdings Inc. Apparatus for encoding an image
CN102238376B (zh) * 2010-04-28 2014-04-23 鸿富锦精密工业(深圳)有限公司 图像处理系统及方法
US8902978B2 (en) * 2010-05-30 2014-12-02 Lg Electronics Inc. Enhanced intra prediction mode signaling
EP2580911A1 (en) * 2010-06-10 2013-04-17 Thomson Licensing Methods and apparatus for determining quantization parameter predictors from a plurality of neighboring quantization parameters
CN101888550A (zh) * 2010-06-28 2010-11-17 中兴通讯股份有限公司 一种slice头信息中量化参数编码方法和装置
KR20120012385A (ko) * 2010-07-31 2012-02-09 오수미 인트라 예측 부호화 장치
KR101373814B1 (ko) * 2010-07-31 2014-03-18 엠앤케이홀딩스 주식회사 예측 블록 생성 장치
WO2012122495A1 (en) 2011-03-10 2012-09-13 Huawei Technologies Co., Ltd. Using multiple prediction sets to encode extended unified directional intra mode numbers for robustness
CN102685478B (zh) 2011-03-11 2015-04-29 华为技术有限公司 编码方法以及装置、解码方法以及装置
BR122020013607B1 (pt) 2011-03-11 2023-10-24 Sony Corporation Aparelho e método de processamento de imagem
CN102685485B (zh) * 2011-03-11 2014-11-05 华为技术有限公司 编码方法以及装置、解码方法以及装置
CN102685484B (zh) * 2011-03-11 2014-10-08 华为技术有限公司 编码方法以及装置、解码方法以及装置
CN102685483B (zh) * 2011-03-11 2014-12-03 华为技术有限公司 解码方法
CN102137258B (zh) * 2011-03-22 2013-04-24 宁波大学 一种立体视频码率控制方法
GB2491391B (en) * 2011-06-02 2014-09-03 Canon Kk Encoding mode values representing prediction modes
US9654785B2 (en) 2011-06-09 2017-05-16 Qualcomm Incorporated Enhanced intra-prediction mode signaling for video coding using neighboring mode
CN103609110B (zh) * 2011-06-13 2017-08-08 太阳专利托管公司 图像解码方法、图像编码方法、图像解码装置、图像编码装置及图像编码解码装置
US9112526B2 (en) * 2011-06-15 2015-08-18 Sony Corporation Binarization of DQP using separate absolute value and sign (SAVS) in CABAC
RS56760B1 (sr) * 2011-06-28 2018-04-30 Samsung Electronics Co Ltd Ureðaj za dekodiranje videa korištenjem intra predikcije
KR20110111339A (ko) * 2011-08-23 2011-10-11 한국전자통신연구원 화면내 예측 시스템에서 최적 모드를 예측하는 장치 및 방법
GB2494468B (en) 2011-09-12 2014-01-15 Canon Kk Method and device for encoding or decoding information representing prediction modes
PL3139596T3 (pl) 2011-09-13 2020-03-31 Hfi Innovation Inc. Sposób i urządzenie do kodowania wewnątrzklatkowego w HEVC
CN107181962B (zh) 2011-10-07 2020-03-27 英迪股份有限公司 对当前块的帧内预测模式进行解码的方法
CN104935942B (zh) * 2011-10-24 2016-08-24 英孚布瑞智有限私人贸易公司 对帧内预测模式进行解码的方法
RS61146B1 (sr) * 2011-10-24 2020-12-31 Innotive Ltd Postupak i aparat za dekodiranje slike
KR20130049522A (ko) * 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 방법
KR20130049523A (ko) * 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 장치
KR20130050407A (ko) * 2011-11-07 2013-05-16 오수미 인터 모드에서의 움직임 정보 생성 방법
KR20130050405A (ko) * 2011-11-07 2013-05-16 오수미 인터 모드에서의 시간 후보자 결정방법
KR20130050404A (ko) * 2011-11-07 2013-05-16 오수미 인터 모드에서의 복원 블록 생성 방법
KR20130058524A (ko) * 2011-11-25 2013-06-04 오수미 색차 인트라 예측 블록 생성 방법
AR092786A1 (es) * 2012-01-09 2015-05-06 Jang Min Metodos para eliminar artefactos de bloque
RU2686010C2 (ru) * 2012-01-17 2019-04-23 Инфобридж Пте. Лтд. Устройство применения краевого смещения
CN102658478B (zh) 2012-05-11 2014-11-05 山东海华汽车部件有限公司 一种板簧流水装配线

Also Published As

Publication number Publication date
MX2014005327A (es) 2014-08-08
US9264723B2 (en) 2016-02-16
TW201711460A (zh) 2017-03-16
TW202333500A (zh) 2023-08-16
TW201907709A (zh) 2019-02-16
BR122020014035B1 (pt) 2023-12-12
TWI572189B (zh) 2017-02-21
JP7192045B2 (ja) 2022-12-19
BR122020014037A8 (pt) 2022-10-04
TW202205859A (zh) 2022-02-01
EP3402191B1 (en) 2020-01-01
CA3085029C (en) 2023-12-12
US20220279182A1 (en) 2022-09-01
JP6648315B2 (ja) 2020-02-14
EP2774377A1 (en) 2014-09-10
CN108184120A (zh) 2018-06-19
BR112014010639B1 (pt) 2022-04-12
TW202032979A (zh) 2020-09-01
CN108184119A (zh) 2018-06-19
CN108347614B (zh) 2021-09-07
TW201334547A (zh) 2013-08-16
KR20140066240A (ko) 2014-05-30
US9699460B2 (en) 2017-07-04
TW201813381A (zh) 2018-04-01
EP3843393A1 (en) 2021-06-30
CA2989193A1 (en) 2013-05-10
JP5841264B2 (ja) 2016-01-13
SG10202002042VA (en) 2020-05-28
MX340478B (es) 2016-07-08
CA2853706C (en) 2018-01-23
CN108495133B (zh) 2021-06-18
US20150381985A1 (en) 2015-12-31
PL3402191T3 (pl) 2020-10-05
SG11201401926RA (en) 2014-05-29
US9912950B2 (en) 2018-03-06
BR122020014038A2 (ko) 2020-10-06
EP3843400A1 (en) 2021-06-30
BR122020014035A2 (ko) 2020-10-06
US20150381983A1 (en) 2015-12-31
JP6101774B2 (ja) 2017-03-22
SG10201600414RA (en) 2016-02-26
US9712824B2 (en) 2017-07-18
BR122020014036B1 (pt) 2023-12-12
ES2784007T3 (es) 2020-09-21
HUE048753T2 (hu) 2020-08-28
TWI742656B (zh) 2021-10-11
TWI696380B (zh) 2020-06-11
CA2989193C (en) 2020-08-18
JP2016036178A (ja) 2016-03-17
BR122020014037A2 (ko) 2020-10-06
CN108259907B (zh) 2021-09-03
BR122020014035A8 (pt) 2022-10-04
US10313671B2 (en) 2019-06-04
US20180152706A1 (en) 2018-05-31
CA3217419A1 (en) 2013-05-10
US20140301449A1 (en) 2014-10-09
EP3843392A1 (en) 2021-06-30
CN108495133A (zh) 2018-09-04
BR122020014038B1 (pt) 2023-12-12
US10742983B2 (en) 2020-08-11
US11825092B2 (en) 2023-11-21
TWI615016B (zh) 2018-02-11
JP2021177634A (ja) 2021-11-11
KR20140066239A (ko) 2014-05-30
JP6469265B2 (ja) 2019-02-13
CN108184119B (zh) 2022-06-17
JP2018078636A (ja) 2018-05-17
KR20140074350A (ko) 2014-06-17
JP2020074565A (ja) 2020-05-14
CN108259907A (zh) 2018-07-06
BR122020014037B1 (pt) 2023-12-12
US9712825B2 (en) 2017-07-18
JP7192044B2 (ja) 2022-12-19
BR122020014036A2 (ko) 2020-10-06
EP3402191A1 (en) 2018-11-14
BR122020014036A8 (pt) 2022-10-04
TWI803958B (zh) 2023-06-01
US20240048706A1 (en) 2024-02-08
CN108366260A (zh) 2018-08-03
US20150381984A1 (en) 2015-12-31
CN103096070A (zh) 2013-05-08
CN108259906A (zh) 2018-07-06
WO2013064095A1 (en) 2013-05-10
KR101472974B1 (ko) 2014-12-19
BR122020014038A8 (pt) 2022-10-04
CN108366260B (zh) 2020-10-16
CA2853706A1 (en) 2013-05-10
JP2017130947A (ja) 2017-07-27
MX339983B (es) 2016-06-20
KR20140074349A (ko) 2014-06-17
CA3085029A1 (en) 2013-05-10
US20200344477A1 (en) 2020-10-29
MX340480B (es) 2016-07-08
SG10202002041XA (en) 2020-05-28
TWI645708B (zh) 2018-12-21
SG10201600413TA (en) 2016-02-26
US20150381982A1 (en) 2015-12-31
JP6906070B2 (ja) 2021-07-21
US11290719B2 (en) 2022-03-29
JP6275897B2 (ja) 2018-02-07
JP2019071668A (ja) 2019-05-09
US20190253713A1 (en) 2019-08-15
EP2774377A4 (en) 2015-09-16
JP2021177635A (ja) 2021-11-11
JP2014534749A (ja) 2014-12-18
MX345037B (es) 2017-01-16
EP3843401A1 (en) 2021-06-30
EP3402191B8 (en) 2020-02-26
CN103096070B (zh) 2018-02-27
MX340479B (es) 2016-07-08
CN108259906B (zh) 2022-02-08
SG10201600412WA (en) 2016-02-26
BR112014010639A2 (pt) 2017-04-25
SG10202001287TA (en) 2020-04-29
CN108347614A (zh) 2018-07-31
BR112014010639A8 (pt) 2020-10-06
US9204151B2 (en) 2015-12-01
US20150117523A1 (en) 2015-04-30
KR20130049523A (ko) 2013-05-14
SG10202001375VA (en) 2020-04-29
SG10201600418XA (en) 2016-02-26
CN108184120B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7192045B2 (ja) イントラ予測における予測ブロックを生成する方法
JP7445793B2 (ja) 画像符号化方法
KR101472971B1 (ko) 양자화 블록을 생성하는 방법
KR101452195B1 (ko) 인트라 예측 모드를 유도하는 방법 및 장치
KR20140088099A (ko) 색차 영상 복호화 장치
KR20140070598A (ko) 복원 블록 생성 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application