KR20140043045A - Mounting method and mounting device - Google Patents

Mounting method and mounting device Download PDF

Info

Publication number
KR20140043045A
KR20140043045A KR1020137017614A KR20137017614A KR20140043045A KR 20140043045 A KR20140043045 A KR 20140043045A KR 1020137017614 A KR1020137017614 A KR 1020137017614A KR 20137017614 A KR20137017614 A KR 20137017614A KR 20140043045 A KR20140043045 A KR 20140043045A
Authority
KR
South Korea
Prior art keywords
chip
substrate
electrode
filler
reaction force
Prior art date
Application number
KR1020137017614A
Other languages
Korean (ko)
Other versions
KR101821958B1 (en
Inventor
가쓰미 데라다
미키오 가와카미
Original Assignee
도레 엔지니아린구 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레 엔지니아린구 가부시키가이샤 filed Critical 도레 엔지니아린구 가부시키가이샤
Publication of KR20140043045A publication Critical patent/KR20140043045A/en
Application granted granted Critical
Publication of KR101821958B1 publication Critical patent/KR101821958B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13017Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/7592Load or pressure adjusting means, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

(과제)
필러범프 등의 미세한 솔더범프가 형성된 칩을 기판에 열압착하는 실장방법에 있어서, 필러범프가 기판의 전극에 양호하게 열압착되어 있는지 여부를 판정할 수 있는 실장방법 및 실장장치를 제공하는 것.
(해결수단)
칩을 열압착툴에 의하여 지지하여 기판측으로 하강시키는 공정과, 칩의 필러범프가 기판의 전극에 접촉한 후에, 칩을 지지하는 열압착툴의 온도를 솔더 용융온도로 승온하는 공정과, 미리 설정되어 있는 압입량만큼 칩을 기판측으로 압입하고, 압입이 완료되었을 때 기판의 전극으로부터의 반력을 측정하는 제1반력측정공정과, 필러범프에 형성된 솔더가 용융하였을 때의 기판의 전극으로부터의 반력을 측정하는 제2반력측정공정과, 상기 제1반력측정공정의 측정결과와, 상기 제2반력측정공정의 측정결과로부터, 용융된 필러범프와 전극의 얼라인먼트의 양부를 판정하는 반력판정공정을 구비하는 실장방법 및 실장장치를 제공한다.
(assignment)
A mounting method for thermocompression bonding chips having fine solder bumps, such as filler bumps, to a substrate, the method comprising: a mounting method and a mounting apparatus capable of determining whether or not the pillar bumps are well thermocompressed to an electrode of the substrate.
(Solution)
A step of supporting the chip with the thermocompression tool and lowering it to the substrate side; a step of raising the temperature of the thermocompression tool for supporting the chip to the solder melting temperature after the chip bumper contacts the electrode of the substrate; The first reaction force measuring step of injecting the chip into the substrate by the amount of indentation that has been made and measuring the reaction force from the electrode of the substrate when the indentation is completed, and the reaction force from the electrode of the substrate when the solder formed on the filler bump melts And a reaction force determination step of determining the alignment of the molten filler bump and the electrode from the measurement result of the second reaction force measurement step, the measurement result of the first reaction force measurement step, and the measurement result of the second reaction force measurement step. Provide a mounting method and a mounting apparatus.

Description

실장방법 및 실장장치{MOUNTING METHOD AND MOUNTING DEVICE}MOUNTING METHOD AND MOUNTING DEVICE

본 발명은, 플립칩(flip chip)에 형성된 기둥모양의 필러(pillar)의 선단(先端)에 솔더(solder)가 형성된 필러범프(pillar bump)가 부착된 플립칩을 기판에 열압착(熱壓着)하는 실장방법 및 실장장치에 관한 것이다.
According to the present invention, a flip chip having a pillar bump having solder formed thereon at a tip of a pillar-shaped pillar formed on a flip chip is thermo-compressed. The present invention relates to a mounting method and a mounting apparatus.

최근, 고밀도실장(高密度實裝)의 요구로부터 솔더범프(solder bump)도 전극간격을 좁히고, 범프의 구조도 둥근모양을 띤 볼범프(ball bump)로부터 기둥모양의 형상의 것이 사용되도록 되어 있다. 특허문헌1에는 범프피치(bump pitch)를 초미세(超微細)하게 한 기둥모양의 필러범프가 개시되어 있다. 필러범프는, 협피치(狹pitch)로 세워 형성한 Cu 등의 필러(원기둥모양)의 선단에 반구(半球)모양의 솔더를 형성하고 있다. 선단의 솔더는 반구모양의 경우도 있고 선단부를 타원모양으로 평탄화시킨 것도 있다. 그 때문에 범프피치를 종래의 솔더 볼 타입의 솔더범프에 비하여 미세하게 할 수 있다. 또 고밀도실장에 대응할 수 있다. 이들의 솔더 부분은 필러(원기둥)의 저면(底面)의 면적이 미소면적이기 때문에, 종래의 솔더 볼 타입의 솔더범프에 비하여 매우 적은 양의 솔더로 솔더 접합부분이 형성되어 있다.
In recent years, solder bumps have also narrowed the electrode spacing due to the demand for high-density mounting, and the bumps have a columnar shape from ball bumps having a round shape. . Patent Document 1 discloses a pillar-shaped pillar bump in which a bump pitch is made very fine. The filler bump forms a hemispherical solder at the tip of a pillar (cylindrical) such as Cu, which is formed at a narrow pitch. The solder at the tip is hemispherical in some cases, and the tip is flattened in an oval shape. Therefore, bump pitch can be made fine compared with the solder bump of the conventional solder ball type. Moreover, it can respond to high density mounting. Since these solder parts have a small area of the bottom surface of a pillar, the solder joint part is formed with a very small amount of solder compared with the conventional solder ball type solder bumps.

특허문헌1 : 일본국 공개특허 특개 2006-245288호 공보Patent Document 1: Japanese Unexamined Patent Publication No. 2006-245288

이러한 필러범프가 형성된 칩을 기판에 열압착하여 접합상태를 검사하려고 하면 다음과 같은 문제가 있다.When the chip formed with the filler bumps is thermally pressed onto the substrate to examine the bonding state, there are the following problems.

칩과 기판의 얼라인먼트는, 칩 및 기판에 형성된 얼라인먼트 마크(alignment mark)를 화상인식(畵像認識)하고, 화상인식 데이터에 의거하여 칩을 지지하는 열압착툴(熱壓着tool) 혹은 기판을 지지하는 기판 스테이지(基板stage)를 구동하여 얼라인먼트 하고 있다. 그 때문에 얼라인먼트 마크에 의거하여 칩과 기판이 얼라인먼트 되어 있어도, 필러범프와 기판의 전극의 센터 위치가 소정의 범위를 넘으면, 칩을 가압할 때에 필러범프가 전극으로부터 어긋나서 떨어지는 문제가 있다(특히, 범프피치가 미세화된 필러범프에서는 얼라인먼트의 마진이 좁고, 필러범프와 전극의 얼라인먼트가 곤란한 상황이 되어 있다). 필러범프가 전극으로부터 어긋나서 떨어진 상태의 칩과 기판의 접합은, 회로의 쇼트 등 불량을 초래하는 요인이 된다.Alignment of a chip and a board | substrate image-aligns the alignment mark formed in the chip | tip and board | substrate, and uses the thermocompression tool or board | substrate which supports a chip | tip based on image recognition data. The supporting substrate stage is driven and aligned. Therefore, even if the chip and the substrate are aligned based on the alignment mark, if the center position of the pillar bump and the electrode of the substrate exceeds a predetermined range, there is a problem that the pillar bump is displaced from the electrode when pressing the chip (in particular, Filler bumps with a fine bump pitch have a narrow margin of alignment and difficult alignment of filler bumps and electrodes). Bonding of the chip and the substrate in a state where the filler bump is shifted away from the electrode is a cause of defects such as short circuits.

또한 필러범프의 선단에 형성되어 있는 솔더의 양이 종래의 볼범프에 비해서 적기 때문에, 히터에 의한 솔더의 가열과 칩의 압력의 균형에 따라서는, 필러와 전극의 사이에서 용융(溶融)된 솔더가 눌려져 전극의 접합면에서 밀려나와 버리는 문제도 있다.In addition, since the amount of solder formed at the tip of the filler bump is less than that of the conventional ball bump, the solder melted between the filler and the electrode depending on the balance between the heating of the solder by the heater and the pressure of the chip. There is also a problem that is pressed and pushed out from the bonding surface of the electrode.

따라서, 본 발명의 과제는 필러범프 등의 미세한 솔더범프가 형성된 칩을 기판에 열압착하는 실장방법에 있어서, 필러범프가 기판의 전극에 양호하게 열압착되어 있는지의 여부를 판정할 수 있는 실장방법 및 실장장치를 제공하는 것으로 한다.
Accordingly, an object of the present invention is a mounting method in which a chip in which fine solder bumps such as filler bumps are formed is thermally compressed onto a substrate, and the mounting method capable of determining whether the filler bumps are well thermally compressed to the electrodes of the substrate. And a mounting apparatus.

상기 과제를 해결하기 위해서, 청구항1에 기재되어 있는 발명은,In order to solve the said subject, invention described in Claim 1 is

칩에 형성된 필러범프를 기판에 형성된 전극에 가압하면서 가열하여 열압착하는 실장방법으로서,As a mounting method for heating and thermally compressing the filler bump formed on the chip while pressing the electrode formed on the substrate,

칩을 열압착툴로 지지하여 기판측으로 하강시키는 공정과,Supporting the chip with a thermocompression tool and lowering the chip toward the substrate;

칩의 필러범프가 기판의 전극에 접촉한 후에,After the filler bumps of the chip contact the electrodes of the substrate,

칩을 지지하는 열압착툴의 온도를 솔더 용융온도로 승온(昇溫)하는 공정과,A step of raising the temperature of the thermocompression tool supporting the chip to the solder melting temperature,

미리 설정되어 있는 압입량만큼 칩을 기판측으로 압입하고, 압입이 완료되었을 때 기판의 전극으로부터의 반력(反力)을 측정하는 제1반력측정공정(第1反力測定工程)과,A first reaction force measuring step of injecting the chip into the substrate by a predetermined amount of indentation, and measuring the reaction force from the electrode of the substrate when the indentation is completed;

필러범프에 형성된 솔더가 용융하였을 때의 기판의 전극으로부터의 반력을 측정하는 제2반력측정공정과,A second reaction force measuring step of measuring a reaction force from the electrode of the substrate when the solder formed on the filler bump melts;

상기 제1반력측정공정의 측정결과와 상기 제2반력측정공정의 측정결과로부터, 용융된 필러범프와 전극의 얼라인먼트의 양부(良否)를 판정하는 반력판정공정(反力判定工程)을 구비하는 실장방법(實裝方法)이다.A mounting having a reaction force determination step of determining the alignment of the molten filler bump and the electrode from the measurement result of the first reaction force measurement step and the measurement result of the second reaction force measurement step. It is a method.

청구항2에 기재되어 있는 발명은, 청구항1의 발명에 있어서,The invention described in claim 2, in the invention of claim 1,

칩의 필러범프가 기판의 전극에 접촉한 후에,After the filler bumps of the chip contact the electrodes of the substrate,

칩을 지지하고 있는 열압착툴의 승강위치를 측정하는 제1높이측정공정과,A first height measuring step of measuring the lifting position of the thermocompression tool supporting the chip;

미리 설정되어 있는 압력으로 미리 설정되어 있는 시간 동안 칩을 기판측으로 가압한 후에,After pressing the chip to the substrate side for a preset time at a preset pressure,

칩을 지지하고 있는 열압착툴의 승강위치를 측정하는 제2높이측정공정과,A second height measuring step of measuring the lifting position of the thermocompression tool supporting the chip;

상기 제1높이측정공정의 측정결과와 상기 제2높이측정공정의 측정결과로부터, 칩을 가압한 것에 의한 칩과 기판의 간격의 변화를 구하고, 솔더 용융(solder 溶融)전의 필러범프와 전극의 얼라인먼트의 양부를 판정하는 침강량 판정공정(沈降量 判定工程)을 구비하는 실장방법이다.From the measurement results of the first height measurement step and the measurement results of the second height measurement step, the change of the gap between the chip and the substrate due to pressurization of the chip is obtained, and the alignment of the filler bumps and the electrodes before solder melting is obtained. It is a mounting method provided with the sedimentation amount determination process of determining the quality of this process.

청구항3에 기재되어 있는 발명은,The invention described in claim 3,

필러범프가 형성된 칩을 지지하는 열압착툴과,A thermocompression tool for supporting a chip on which a filler bump is formed,

칩의 필러범프가 접합되는 전극을 구비한 기판을 지지하는 기판 스테이지와,A substrate stage for supporting a substrate having an electrode to which the filler bumps of the chip are bonded;

칩을 지지한 열압착툴을 기판을 지지한 기판 스테이지 측으로 승강시키는 구동수단(驅動手段)과,Driving means for raising and lowering the thermocompression tool supporting the chip to the substrate stage side supporting the substrate;

칩을 지지한 열압착툴의 승강위치를 검출하는 높이검출수단과,Height detecting means for detecting a lifting position of the thermocompression tool supporting the chip;

칩을 지지한 열압착툴이 기판을 가압할 때의 압력을 검출하는 하중검출수단(荷重檢出手段)과,Load detecting means for detecting the pressure when the thermocompression tool supporting the chip presses the substrate,

열압착툴의 온도를 승온시키는 히터(heater)와,A heater for raising the temperature of the thermocompression tool,

상기 높이검출수단에 의하여 칩 높이위치정보를 측정하고, 상기 하중검출수단에 의하여 칩으로의 압력을 측정하고, 상기 구동수단과 상기 히터를 제어하는 제어수단(制御手段)을 구비한 실장장치(實裝裝置)로서,A mounting apparatus including a control means for measuring chip height position information by the height detecting means, a pressure to the chip by the load detecting means, and controlling the driving means and the heater; I)

상기 제어수단이,The control means,

상기 히터를 솔더 용융온도로 승온하고, 상기 구동수단을 구동하여 열압착툴을 기판측으로 미리 설정되어 있는 압입량만큼 압입했을 때의 상기 하중검출수단에 의하여 측정한 검출하중과, 필러범프에 형성된 솔더가 용융했을 때의 검출하중으로부터, 용융된 필러범프와 전극의 얼라인먼트의 양부를 판정하는 기능을 구비하는 실장장치이다.A detection load measured by the load detecting means when the heater is heated to a solder melting temperature, and the driving means is driven to press the thermocompression tool by a predetermined indentation amount to the substrate side, and the solder formed on the filler bump Is a mounting apparatus having a function of determining whether the alignment between the molten pillar bump and the electrode is corrected from the detection load when molten.

청구항4에 기재되어 있는 발명은, 청구항3의 발명에 있어서, The invention described in claim 4, in the invention of claim 3,

상기 제어수단이,The control means,

칩의 필러범프가 기판의 전극에 접촉한 후에,After the filler bumps of the chip contact the electrodes of the substrate,

미리 설정되어 있는 압력으로 미리 설정되어 있는 시간 동안 칩을 기판측으로 가압하고, 가압한 것에 의한 칩과 기판의 간격의 변화로부터, 용융전의 필러범프와 전극의 얼라인먼트의 양부를 판정하는 기능을 구비하는 실장장치다.
Mounting which has a function which presses a chip | tip toward a board | substrate side for the preset time by preset pressure, and determines the alignment of the filler bump and electrode before melting from the change of the space | interval of a chip and a board | substrate by pressurization. Device.

청구항1에 기재되어 있는 발명에 의하면, 필러범프를 구비한 칩을 열압착툴로 지지하여 기판측으로 하강하고 있다. 그리고 칩의 필러범프가 기판의 전극에 접촉한 후에, 칩을 지지하는 열압착툴의 온도를 솔더 용융온도로 승온하고 있다. 그리고 열압착툴의 온도가 필러범프에 전달되는 사이에, 칩을 기판측으로 미리 설정되어 있는 압입량만큼 압입하고 있다.According to the invention described in claim 1, the chip provided with the filler bump is supported by the thermocompression bonding tool and lowered to the substrate side. After the chip bumps of the chips are in contact with the electrodes of the substrate, the temperature of the thermocompression bonding tool supporting the chips is raised to the solder melting temperature. Then, while the temperature of the thermocompression tool is transmitted to the filler bump, the chip is press-fitted by a predetermined press-fit amount set to the substrate side.

그리고 칩의 압입이 완료되었을 때, 기판의 전극으로부터의 반력을 열압착툴에 설치된 하중검출수단에 의하여 측정하고, 제어수단에 제1반력측정결과로서 기억하고 있다(제1반력측정공정). 한편 열압착툴의 온도가 필러범프에 전달됨으로써 필러범프에 형성된 솔더의 용융이 진행되어 간다. 그 때문에 미리 설정된 압입량의 상태에서, 열압착툴이 승강위치를 지지하고 있어도 필러범프의 솔더가 용융하면, 기판의 전극으로부터의 반력은 조금씩 내려간다.When the press-fitting of the chip is completed, the reaction force from the electrode of the substrate is measured by the load detecting means provided in the thermocompression bonding tool, and stored in the control means as the first reaction force measurement result (first reaction force measuring step). Meanwhile, as the temperature of the thermocompression tool is transferred to the filler bump, melting of the solder formed on the filler bump proceeds. Therefore, even when the thermocompression tool supports the lifting position in the state of the preset press-fitting amount, if the solder of the filler bump melts, the reaction force from the electrode of the substrate decreases little by little.

그 때문에 청구항1의 발명에서는, 필러범프에 형성된 솔더가 용융할 때까지, 미리 설정되어 있는 시간(필러범프의 솔더의 용융이 완료하는 시간)이 경과한 후에 기판의 전극으로부터의 반력을 측정하고, 제어수단에 제2반력측정결과로서 기억하고 있다(제2반력측정공정). 그리고 제어수단에 기억된 제1반력측정결과와 제2반력측정결과로부터, 용융된 필러범프와 전극의 얼라인먼트의 양부를 판정하고 있다(반력판정공정).Therefore, in the invention of claim 1, the reaction force from the electrode of the substrate is measured after a predetermined time (time for melting of the solder of the filler bump is completed) until the solder formed on the filler bump melts, It stores in the control means as a second reaction force measurement result (second reaction force measurement step). From the first reaction force measurement result and the second reaction force measurement result stored in the control means, it is determined whether the alignment of the melted filler bump and the electrode is correct (reaction force determination step).

필러범프와 전극의 위치 어긋남이 발생하고 있으면, 용융된 필러범프의 솔더가 기판의 전극의 접합면에서 밀려나온 상태가 된다. 용융된 솔더 전체를 전극의 접합면에 의하여 지탱하는 경우에 비하여, 전극으로부터 밀려나와 있는 만큼 전극으로부터의 반력은 저하한다.When the position shift of a filler bump and an electrode generate | occur | produces, the solder of the melted filler bump will be in the state pushed out from the joining surface of the electrode of a board | substrate. As compared with the case where the entire molten solder is supported by the bonding surface of the electrode, the reaction force from the electrode decreases as much as it is pushed out of the electrode.

더 구체적으로는, 제1반력측정공정에서는 필러범프의 솔더는 완전하게 용융되어 있지 않기 때문에, 전극의 접촉면(필러범프가 접촉하는 면)에 필러범프가 얼라인먼트 되어 있으면, 전극의 접촉면에서 다소 밀려나와 있어도, 소정의 압입량만큼 칩을 압입해도 소정의 범위의 반력을 전극으로부터 받을 수 있다. 그러나 필러범프의 솔더가 용융된 상태에서는, 전극의 접촉면의 전체에 의하여, 필러범프의 솔더가 전극의 접합면 전체에 의하여 지탱되고 있는 경우와, 필러범프의 솔더의 일부가 전극으로부터 밀려나와 있는 경우에는 반력의 차이가 발생한다. 제2반력측정공정은 필러범프의 솔더가 용융된 상태가 되기 때문에, 전극의 접합면에서 솔더가 밀려나와 있는 경우에는, 칩을 압입하는 것에 의한 전극으로부터의 반력이 전극의 접촉면의 전체에 의하여 지탱하고 있는 경우에 비하여 저하되어 검출된다.More specifically, since the solder of the filler bump is not completely melted in the first reaction force measuring step, when the filler bump is aligned on the contact surface of the electrode (the surface where the filler bump contacts), the filler bump is slightly pushed away from the contact surface of the electrode. Even if it is, even if a chip is press-fitted by the predetermined pushing amount, reaction force of a predetermined range can be received from an electrode. However, when the solder of the filler bump is melted, the solder of the filler bump is supported by the whole joint surface of the electrode by the whole of the contact surface of the electrode, and the part of the solder of the filler bump is pushed out of the electrode. There is a difference in reaction force. In the second reaction force measuring step, the solder of the filler bump is in a molten state, and when the solder is pushed out from the joint surface of the electrode, the reaction force from the electrode by pressing the chip is supported by the entire contact surface of the electrode. It is lowered and detected compared with the case where it is.

이들의 반력의 측정결과(제1반력측정공정의 측정결과와 제2반력측정공정의 측정결과)로부터, 칩의 필러범프와 기판의 전극이 양호하게 얼라인먼트 되어 열압착되었는지를 판정할 수 있다(반력판정공정).From the measurement results of these reaction forces (measurement results of the first reaction force measurement step and the measurement result of the second reaction force measurement step), it is possible to determine whether the pillar bumps of the chip and the electrodes of the substrate are well aligned and thermally compressed. Judgment process).

청구항2에 기재되어 있는 발명에 의하면, 청구항1에 기재되어 있는 발명에 있어서, 필러범프를 구비한 칩을 열압착툴에 의하여 지지하여 기판측으로 더 하강하고, 칩의 필러범프가 기판의 전극에 접촉한 후에, 칩을 지지하고 있는 열압착툴의 승강위치를 측정하고 있다(제1높이측정공정).According to the invention described in claim 2, in the invention described in claim 1, the chip having the filler bump is supported by the thermocompression bonding tool and further lowered to the substrate side, and the filler bump of the chip contacts the electrode of the substrate. After that, the lifting position of the thermocompression tool holding the chip is measured (first height measurement step).

그리고 미리 설정되어 있는 압력에, 미리 설정되어 있는 시간만큼, 칩을 기판측으로 가압한 후에 칩을 지지하고 있는 열압착툴의 승강위치를 측정하고 있다(제2높이측정공정).Then, the pressure of the chip is pressed to the substrate side for a predetermined time to the preset pressure, and then the lifting position of the thermocompression tool holding the chip is measured (second height measuring step).

그리고 제1높이측정공정의 측정결과와 제2높이측정공정의 측정결과로부터, 가압한 것에 의한 칩과 기판의 간극의 변화를 구하여, 솔더 용융전의 필러범프와 전극의 얼라인먼트를 판정하고 있다(침강량 판정공정).From the measurement results of the first height measurement step and the measurement results of the second height measurement step, the change in the gap between the chip and the substrate due to the pressurization is obtained to determine the alignment of the filler bumps and the electrodes before solder melting (sedimentation amount). Judgment process).

칩의 필러범프가 기판의 전극에 접촉한 상태에서는, 열압착툴이 승온하고 있지 않기 때문에, 필러범프의 솔더는 용융하지 않은 고상상태(固相狀態)가 된다. 그 때문에 기판의 전극의 접합면의 범위에 필러범프의 솔더의 접촉위치가 얼라인먼트 되어 있으면, 필러범프의 선단의 솔더가 전극의 접합면에 접한 상태가 된다. 이 상태에서, 미리 설정되어 있는 압력과 미리 설정되어 있는 시간만큼 칩을 기판에 가압하여도, 가압에 따른 필러범프의 솔더의 변형분만이 칩과 기판의 간극 변화가 된다. 그러나 필러범프의 솔더의 접촉위치가 전극의 접촉면에서 벗어나게 되어 전극의 접촉면의 단부(端部)에 한쪽으로 치우쳐 접한 경우에는, 칩을 소정의 압력으로 소정의 시간 동안 가압하면, 전극의 접촉면에서의 반력이 충분하지 않기 때문에, 가압량에 따라 칩이 기판측으로 침강(沈降)하게 된다. 그 때문에 칩과 기판의 간극은, 필러범프의 선단의 솔더가 전극의 접합면 내에 얼라인먼트 되어 있는 경우에 비하여 좁아지게 된다.In the state where the chip bump of the chip is in contact with the electrode of the substrate, since the thermocompression bonding tool is not heated, the solder of the filler bump is in a solid state without melting. Therefore, when the contact position of the solder of a filler bump is aligned in the range of the joining surface of the electrode of a board | substrate, the solder of the front end of a filler bump will be in contact with the joining surface of an electrode. In this state, even if the chip is pressed against the substrate for a predetermined pressure and for a predetermined time, only the deformation of the solder of the filler bump due to the pressurization causes a change in the gap between the chip and the substrate. However, in the case where the contact point of the solder of the filler bump is out of the contact surface of the electrode and is in contact with the end of the contact surface of the electrode to one side, when the chip is pressed at a predetermined pressure for a predetermined time, the contact surface of the electrode Since the reaction force is not sufficient, the chip is settled to the substrate side according to the amount of pressurization. Therefore, the gap between the chip and the substrate becomes narrower than when the solder at the tip of the filler bump is aligned in the bonding surface of the electrode.

따라서, 필러범프가 전극에 접촉한 열압착툴의 승강위치인 제1높이측정공정의 측정결과와, 소정의 압력으로 소정의 시간 동안 칩을 가압한 후의 열압착툴의 승강위치인 제2높이측정공정의 측정결과로부터, 칩과 기판의 간극의 변화를 구함으로써 용융전의 필러범프의 솔더와 전극의 얼라인먼트가 양호하게 이루어지고 있는지 판정할 수 있다(침강량 판정공정).Therefore, the measurement result of the 1st height measuring process which is the lifting position of the thermocompression tool which the filler bump contacted the electrode, and the 2nd height measurement which is the lifting position of the thermocompression tool after pressurizing a chip for a predetermined time with predetermined pressure. From the measurement result of the step, it is possible to determine whether the alignment of the solder and the electrode of the filler bump before melting is satisfactory by determining the change in the gap between the chip and the substrate (sedimentation amount determination step).

청구항3에 기재되어 있는 발명에 의하면, 실장장치가 필러범프를 구비한 칩을 지지하는 열압착툴과, 기판을 지지하는 기판 스테이지와, 칩을 지지한 열압착툴을 기판을 지지한 기판 스테이지 측으로 승강시키는 구동수단과, 칩을 지지한 열압착툴의 승강위치를 검출하는 높이검출수단과, 칩을 지지한 열압착툴이 기판을 가압할 때의 압력을 검출하는 하중검출수단과, 열압착툴의 온도를 승온시키는 히터와, 높이검출수단에 의하여 검출된 칩 높이위치와 하중검출수단에 의하여 검출한 열압착툴의 압력에 의거하여 구동수단을 제어하는 제어수단을 구비하고 있다.According to the invention described in claim 3, the mounting apparatus includes a thermocompression tool for supporting a chip having a filler bump, a substrate stage for supporting a substrate, and a thermocompression tool for supporting a chip to a substrate stage side for supporting the substrate. Drive means for raising and lowering, height detecting means for detecting the lifting position of the thermocompression tool supporting the chip, load detecting means for detecting the pressure when the thermocompression tool supporting the chip presses the substrate, and the thermocompression tool And a heater for raising the temperature of the controller, and control means for controlling the driving means based on the chip height position detected by the height detecting means and the pressure of the thermocompression tool detected by the load detecting means.

또한 제어수단은, 히터를 솔더 용융온도로 승온하고, 미리 설정되어 있는 압입량만큼 구동수단을 구동하고, 기판의 전극에 접촉하고 있는 필러범프를 구비한 칩을 기판측으로 압입하고, 하중검출수단에 의하여 필러범프에 형성된 솔더가 용융하기 전의 전극으로부터의 반력과, 솔더가 용융한 후의 전극으로부터의 반력을 측정하고, 필러범프와 전극의 얼라인먼트의 양부를 판정하는 기능을 구비하고 있다.Further, the control means heats up the heater to the solder melting temperature, drives the driving means by a predetermined indentation amount, presses the chip with the filler bump in contact with the electrode of the substrate to the substrate side, and loads it into the load detecting means. The reaction force from the electrode before melting of the solder formed on the filler bump and the reaction force from the electrode after the melting of the solder are measured to determine whether the alignment between the filler bump and the electrode is aligned.

솔더 용융온도로 히터를 승온한 후, 열압착툴에 지지된 칩의 필러범프의 선단에 형성된 솔더가 용융되어 갈 때까지 시간경과를 필요로 한다. 그 사이, 높이검출수단의 검출 결과에 의거하여 정밀하게 칩을 압입하고, 압입에 따른 전극으로부터의 반력을 하중검출수단에 의하여 검출하고 있다. 필러범프의 솔더 부분이 전극의 접합면에 얼라인먼트 되어 있어도, 부분적으로 튀어나와있는 경우에는, 소정의 시간경과 후의 전극으로부터의 반력이 튀어나와있지 않는 경우에 비하여 적어진다. 이들의 반력의 미묘한 차이를 하중검출수단이 정확하게 검출함으로써 필러범프의 위치 어긋남을 검출할 수 있다.After the heater is heated to the solder melting temperature, a time lapse is required until the solder formed at the tip of the filler bump of the chip supported by the thermocompression tool is melted. Meanwhile, the chip is precisely press-fitted based on the detection result of the height detecting means, and the reaction force from the electrode due to the press-fitting is detected by the load detecting means. Even when the solder portions of the filler bumps are aligned with the joining surfaces of the electrodes, when they are partially protruded, the reaction force from the electrodes after a predetermined time elapses is less than that when the solder bumps are not protruded. By the load detection means accurately detecting the subtle differences in these reaction forces, the positional shift of the pillar bumps can be detected.

청구항4에 기재되어 있는 발명에 의하면, 제어수단이 칩의 필러범프가 기판의 전극의 접합면에 접촉한 후에, 소정의 압력으로 소정의 시간 동안 칩을 기판측으로 가압한다. 가압한 것에 의한 칩과 기판의 간극의 변화를 높이검출수단에 의하여 측정하고, 용융전의 필러범프의 솔더와 전극의 얼라인먼트의 양부를 판정하는 기능을 구비하고 있다.According to the invention described in claim 4, the control means presses the chip toward the substrate for a predetermined time at a predetermined pressure after the filler bumps of the chip contact the bonding surfaces of the electrodes of the substrate. It is equipped with the function which measures the change of the clearance gap of the chip | tip and board | substrate by pressurization with the height detection means, and judges the alignment of the solder of the filler bump before melting and the electrode.

열압착툴을 하강시킴으로써, 열압착툴에 지지된 칩의 필러범프가 접촉한 위치를 높이검출수단에 의하여 측정하고, 하중검출수단에 의하여 칩의 압력을 소정의 값으로 유지하면서 소정의 시간 동안 가압하고 있다. 가압이 완료되었을 때의 열압착툴의 위치를 높이검출수단에 의하여 측정함으로써 칩과 기판의 간극의 변화를 측정할 수 있다.By lowering the thermocompression tool, the position where the filler bumps of the chip supported by the thermocompression tool are in contact is measured by the height detecting means, and the pressure detecting means is pressed for a predetermined time while maintaining the chip pressure at a predetermined value. Doing. The change in the gap between the chip and the substrate can be measured by measuring the position of the thermocompression bonding tool when the pressing is completed by the height detecting means.

칩의 필러범프가 전극의 접합면에 얼라인먼트 되어 있으면, 솔더 용융전의 필러범프의 솔더는 고상상태이므로 가압량에 따라 변형하고, 변형량이 칩과 기판의 간극의 변화가 된다. 그러나 필러범프와 전극의 얼라인먼트에 있어서, 필러범프가 전극의 접합면의 끝에 위치되어 있으면, 압력에 따라 칩은 기판측으로 침강하여 버린다. 이러한 경우에, 가압 완료시에는 칩과 기판의 간극은 필러범프와 전극이 얼라인먼트 되어 있는 경우에 비하여 좁아져 버린다. 칩과 기판의 간극의 변화로부터 얼라인먼트의 양부를 판정하는 제어수단을 사용하고 있으므로, 용융전의 필러범프의 위치 어긋남을 양호하게 검출할 수 있다.If the filler bumps of the chip are aligned with the joining surface of the electrode, the solder of the filler bumps before the melting of the solder is in a solid state and deformed according to the amount of pressurization, and the amount of deformation is a change in the gap between the chip and the substrate. However, in the alignment of the pillar bump and the electrode, if the pillar bump is located at the end of the joining surface of the electrode, the chip is settled to the substrate side according to the pressure. In this case, at the completion of pressurization, the gap between the chip and the substrate becomes narrower than when the pillar bumps and the electrodes are aligned. Since control means for determining the alignment quality from the change of the gap between the chip and the substrate is used, the positional shift of the pillar bump before melting can be detected satisfactorily.

이와 같이 본 발명에 의하면, 솔더범프가 기판의 전극에 양호하게 열압착되어 있는지 여부를 판정할 수 있다.
As described above, according to the present invention, it is possible to determine whether or not the solder bumps are well thermally compressed to the electrodes of the substrate.

[도1]본 발명에 관한 실장장치의 개략적인 측면도이다.
[도2]칩과 기판의 관계를 나타내는 개략적인 측면도이다.
[도3]본 발명에 관한 실장방법을 설명하는 플로우차트이다.
[도4]Z축 헤드 높이와 검출하중을 나타내는 차트이다.
[도5]칩과 기판의 상태를 나타내는 측면도와, 검출하중, Z축 헤드 높이의 관계를 설명하는 도이다.
1 is a schematic side view of a mounting apparatus according to the present invention.
Fig. 2 is a schematic side view showing the relationship between a chip and a substrate.
3 is a flowchart for explaining a mounting method according to the present invention.
4 is a chart showing the Z-axis head height and detection load.
Fig. 5 is a side view showing the state of the chip and the substrate, and illustrating the relationship between the detection load and the Z-axis head height.

본 발명의 실시형태에 대해서 도면을 참조하여 설명한다. 도1은 본 발명의 실시형태의 실장장치의 측면도, 도2는 실장장치에서 사용하는 칩(2)과 기판(6)의 측면도이다. 도1에 있어서, 실장장치(1)를 향해서 좌우방향을 X축, 전후방향을 Y축, X축과 Y축으로 구성되는 XY평면에 직교하는 축을 Z축, Z축을 회전중심으로 하는 축을 θ축이라고 한다.Embodiments of the present invention will be described with reference to the drawings. 1 is a side view of the mounting apparatus of the embodiment of the present invention, and FIG. 2 is a side view of the chip 2 and the substrate 6 used in the mounting apparatus. In Fig. 1, the axis orthogonal to the Z-plane orthogonal to the y-plane consisting of the X-axis, the Y-axis, the Y-axis, the X-axis and the Y-axis toward the mounting apparatus 1 is the θ-axis. It is called.

실장장치(1)는 칩(2)을 흡착하여 지지하는 헤드(8), 기판(6)을 흡착하여 지지하는 기판 스테이지(11), 칩(2)과 기판(6)에 형성된 얼라인먼트 마크를 인식하는 2시야 카메라(2視野 camera)(13), 실장장치(1) 전체를 제어하는 제어부(20)로 구성되어 있다.The mounting apparatus 1 recognizes the head 8 which attracts and supports the chip 2, the board | substrate stage 11 which attracts and supports the board | substrate 6, and the alignment mark formed in the chip 2 and the board | substrate 6. It consists of a 2 field camera 13, and the control part 20 which controls the whole mounting apparatus 1. As shown in FIG.

헤드(8)에는 칩(2)에 부여되어 있는 가압력을 검출하는 로드셀(10)이 내장되어 있다. 헤드(8)의 하측(下側)에는 칩(2)을 흡착하여 지지하는 툴(9)이 장착되어 있다. 툴(9)에는 히터(16)와 열전대(18)가 내장되어 있으며, 제어부(20)로부터의 지령에 의거하여 칩(2)을 가열할 수 있도록 구성되어 있다(도1에서 히터(16)는 점선으로 표기하였다). 헤드(8)는 서보모터(14)와 서보모터(14)에 연결된 볼나사(15)를 구동제어함으로써 Z방향 상하로 승강한다. 본 발명의 구동수단은 서보모터(14)와 볼나사(15)로 구성되어 있다.The head 8 has a load cell 10 for detecting the pressing force applied to the chip 2. On the lower side of the head 8, a tool 9 for attracting and supporting the chip 2 is mounted. The tool 9 has a built-in heater 16 and a thermocouple 18, and is configured to heat the chip 2 based on instructions from the controller 20 (heater 16 in FIG. Notation with dotted lines). The head 8 is moved up and down in the Z direction by driving control of the servomotor 14 and the ball screw 15 connected to the servomotor 14. The drive means of the present invention is composed of a servomotor 14 and a ball screw 15.

또한 헤드(8)는, 제어부(20)로부터의 지령에 의거하여 압력을 제어하는 하중제어(荷重制御)와 Z축 높이위치를 제어하는 위치제어의 제어가 가능하도록 구성되어 있다. 본 발명의 열압착툴은 헤드(8)와 툴(9)로 구성되어 있다.Moreover, the head 8 is comprised so that load control which controls a pressure based on the instruction | command from the control part 20, and position control which controls a Z-axis height position are possible. The thermocompression tool of the present invention is composed of a head 8 and a tool 9.

헤드(8)의 압력은 모터의 토크에 의하여 제어되는 것이 바람직하지만, 보이스코일 모터(voice coil motor)나 공기압 실린더(空氣壓 cylinder) 등 가압력을 발생하는 것이면 어떤 수단이더라도 좋다.Although the pressure of the head 8 is preferably controlled by the torque of the motor, any means may be used as long as it generates a pressing force such as a voice coil motor or a pneumatic cylinder.

하중제어 중에 압력을 일정하게 유지하기 위해서 Z방향으로 상하로 변동한 이동량은, 서보모터(14)의 인코더(encoder)(19)에 의한 위치검출수단에 의하여 위치정보를 취득할 수 있도록 구성되어 있다. 위치검출수단은 Z방향의 위치를 측정할 수 있는 것이면, 외부에 리니어 스케일(linear scale) 등을 사용해도 좋다.In order to keep the pressure constant during the load control, the amount of movement fluctuating up and down in the Z direction is configured to acquire the position information by the position detecting means by the encoder 19 of the servomotor 14. . As long as the position detecting means can measure the position in the Z direction, a linear scale or the like may be used externally.

기판 스테이지(11)는, 도면에 나타내지 않고 있는 구동기구에 의하여 X, Y, θ방향으로 이동가능하고, 흡착하여 지지된 기판(6)을 소정의 위치에 위치결정할 수 있도록 구성되어 있다.The board | substrate stage 11 is comprised so that it may move to X, Y, (theta) direction by the drive mechanism not shown in figure, and can position the board | substrate 6 adsorbed and supported at the predetermined position.

2시야 카메라(13)는, 툴(9)에 흡착하여 지지된 칩(2)과 기판 스테이지(11)에 흡착하여 지지된 회로기판(6) 사이에 삽입되어, 칩(2) 및 기판(6)에 붙여진 얼라인먼트 마크의 화상(畵像)을 인식할 수 있다. 보통은, 대기위치(도1의 점선표기 부분)에서 대기하고 있으며, 화상인식시에 화상인식위치(칩(2)과 기판(6) 사이)로 이동할 수 있도록 되어 있다.The two-view camera 13 is inserted between the chip 2 adsorbed and supported by the tool 9 and the circuit board 6 adsorbed and supported by the substrate stage 11, and thus the chip 2 and the substrate 6. The image of the alignment mark attached to the parentheses can be recognized. Usually, the air is waiting at the standby position (dotted line in Fig. 1), and it is possible to move to the image recognition position (between the chip 2 and the substrate 6) at the time of image recognition.

도2(a)에 나타나 있는 바와 같이 칩(2)은, 칩 이면(chip 裏面)(2b)에 Cu제(銅製)의 필러(4)(구리로 만든 지주)가 형성되어 있다. 필러(4)의 선단에는 솔더(5)가 형성되어 있다. 필러(4)와 솔더(5)로 필러범프(3)를 형성하고 있다. 기판(6)에는 전극(7)이 형성되어 전극(7)의 표면은 솔더 도금(7a)이 실시되어 있다. 기판(6)의 전극(7) 주위에는 비도전성 열경화수지(非導電性 熱硬化樹脂)인 접착제(17)가 충전되어 있다. 전극(7)에는 필러범프(3)와 접합되는 평탄한 접합면(7b)이 형성되어 있다.As shown in Fig. 2 (a), the chip 2 is formed with a copper filler 4 (a pillar made of copper) on a chip back surface 2b. Solder 5 is formed at the tip of filler 4. The filler bump 3 is formed from the filler 4 and the solder 5. The electrode 7 is formed in the board | substrate 6, and the surface of the electrode 7 is solder-plated 7a. Around the electrode 7 of the board | substrate 6, the adhesive 17 which is a nonelectroconductive thermosetting resin is filled. The electrode 7 is formed with a flat bonding surface 7b to be joined to the pillar bump 3.

Cu제의 필러(4)의 형상은 원기둥모양의 것이 사용되고 있다. 또, 필러(4)는 원기둥모양에 한하지 않고 다각형의 기둥이나 원추모양의 기둥이더라도 좋고, 기둥의 선단에 솔더(5)가 형성된 것이면 좋다. 예를 들면 도2(b)와 같은 형상이더라도 좋다.As for the shape of the filler 4 made from Cu, the cylindrical thing is used. In addition, the pillar 4 may not only be a cylinder, but may be a polygonal pillar or a cone-shaped pillar, and the solder 5 may be formed in the tip of a pillar. For example, the shape may be as shown in Fig. 2B.

이러한 실장장치(1)를 사용해서 칩(2)을 기판(6)에 실장하는 실장방법에 대해서, 도3의 플로우차트와 도4의 실장상태를 설명하는 그래프를 사용하여 설명한다. 도4는 가로축에 시간을 표기하고, 세로축에 헤드(8)의 Z축 방향의 높이 및 로드셀(10)의 검출하중을 표기하고 있다.The mounting method for mounting the chip 2 on the substrate 6 using such a mounting apparatus 1 will be described using the flowchart of FIG. 3 and the graph illustrating the mounting state of FIG. 4. 4 shows the time on the horizontal axis and the height of the head 8 in the Z-axis direction and the detection load of the load cell 10 on the vertical axis.

우선, 헤드(8)의 툴(9)에 칩(2)이 흡착되어 지지되고 있으며, 기판 스테이지(11)에 기판(6)이 흡착되어 지지되고 있는 상태에서, 헤드(8)가 기판(6) 측에 소정의 높이(서치 높이(search 높이))로 하강한 상태로부터 시작한다. 미리 칩(2)의 얼라인먼트 마크와 기판(6)의 얼라인먼트 마크는 2시야 카메라에 의하여 화상이 인식되고, 화상인식 데이터에 의거하여 기판 스테이지(11)가 X, Y, θ방향으로 얼라인먼트 되어 있다. 또한 툴(9)의 히터(16)는 예열온도(T1)로 따뜻하게 되어 있다. 예열온도(T1)에서는 솔더가 고상상태에서 용융상태로 변하는 연화(軟化)된 상태가 된다(예를 들면 160도 등). 헤드(8)의 구동제어는, 높이검출수단인 인코더(19)의 검출위치에 의거하여 서보모터(14)가 구동되고 위치제어되고 있다(스텝(ST00)).First, in the state where the chip 2 is adsorbed and supported by the tool 9 of the head 8, and the substrate 6 is adsorbed and supported by the substrate stage 11, the head 8 is attached to the substrate 6. It starts from the state which descended by the predetermined height (search height (search height)) to the side. The alignment mark of the chip | tip 2 and the alignment mark of the board | substrate 6 are recognized beforehand by a 2-view camera, and the board | substrate stage 11 is aligned in the X, Y, and (theta) directions based on image recognition data. In addition, the heater 16 of the tool 9 is warmed by the preheating temperature T1. At the preheating temperature T1, the solder is in a softened state that changes from a solid state to a molten state (for example, 160 degrees, etc.). In the drive control of the head 8, the servomotor 14 is driven and the position is controlled based on the detection position of the encoder 19 which is the height detection means (step ST00).

다음에 헤드(8)를 저속으로 소정의 높이만큼 하강시킨다. 전극(7) 주위의 접착제(17)를 밀어 젖히면서 필러범프(3)가 하강한다. 이 상태는 도4의 t0의 타이밍이 된다. 필러범프(3)가 전극(7)의 근방까지 근접한 상태가 된다. 헤드(8)가 서서히 하강하고, 필러범프(3)의 선단의 솔더(5)가 전극(7)에 접촉하는 타이밍을 검출하는 서치동작(search동작)을 한다(스텝(ST01)).Next, the head 8 is lowered by a predetermined height at a low speed. The filler bump 3 is lowered while pushing down the adhesive 17 around the electrode 7. This state becomes the timing of t0 in FIG. The filler bumps 3 are in close proximity to the electrode 7. The head 8 gradually descends, and a search operation (search operation) is performed to detect a timing at which the solder 5 at the tip of the pillar bump 3 contacts the electrode 7 (step ST01).

다음에 로드셀(10)에 의하여 하중(P1)이 검출된다(스텝(ST02)). 하중(P1)을 서치하중(search 荷重)이라고 한다. 도4의 타이밍(t1)이 필러범프(3)의 솔더(5)가 전극(7)에 접촉한 타이밍이다. 헤드(8)의 구동제어를 로드셀(10)의 검출하중에 의거하는 하중제어로 전환한다.Next, the load P1 is detected by the load cell 10 (step ST02). The load P1 is called search load. The timing t1 of FIG. 4 is a timing at which the solder 5 of the pillar bump 3 contacts the electrode 7. The drive control of the head 8 is switched to the load control based on the detection load of the load cell 10.

필러범프(3)의 솔더(5)가 전극(7)에 접촉하면, 예열온도(T1)로 따뜻하게 되어 있는 툴(9)의 온도가 기판(6) 측에 전달되게 된다.When the solder 5 of the filler bump 3 contacts the electrode 7, the temperature of the tool 9, which is warmed to the preheating temperature T1, is transmitted to the substrate 6 side.

또한 기판(6)에 미리 충전되어 있는 접착제(17)는, 칩(2)이 기판(6)에 서치하중(P1)으로 눌리어지면 필러범프(3)와 전극(7)이 접촉한 부분으로부터 밀어내어진다. 이 공정은, 접착제(17)가 필러범프(3)와 전극(7)의 사이에 잔류하고 있으면 뒤의 공정에서 제품불량이 되기 때문에 이루어지고 있다.In addition, when the chip | tip 2 is pressed against the board | substrate 6 by the search load P1, the adhesive agent 17 previously filled in the board | substrate 6 will be removed from the part which the filler bump 3 and the electrode 7 contacted. Pushed out. This step is performed because if the adhesive 17 remains between the filler bumps 3 and the electrodes 7, product defects will occur in a later step.

다음에 소정의 시간(tm1)만큼 서치하중(P1)을 유지한다(스텝(ST03)). 칩(2)에는 복수의 필러범프(3)가 형성되어 있다. 각각의 필러범프(3)의 높이는 미묘하게 다르다. 그 때문에 소정의 시간(tm1)만큼 서치하중(P1)을 유지함으로써 필러범프(3) 전체를 전극(7)의 접합면(7b)에 접지시키도록 하고 있다.Next, the search load P1 is held for a predetermined time (tm1) (step ST03). A plurality of pillar bumps 3 are formed in the chip 2. The height of each pillar bump 3 is slightly different. Therefore, the filler bumps 3 are grounded to the joint surface 7b of the electrode 7 by maintaining the search load P1 for a predetermined time (tm1).

다음에 헤드(8)의 높이검출수단인 인코더(19)에 의하여, 헤드(8)의 높이위치(H1)를 계측하고 제어부(20)에 기억한다(스텝(ST04)). 계측은 도4의 타이밍(t2)에서 이루어진다. 높이위치(H1)의 계측은 본 발명의 제1높이측정공정에 대응한다.Next, the encoder 19, which is the height detecting means of the head 8, measures the height position H1 of the head 8 and stores it in the control unit 20 (step ST04). The measurement is made at timing t2 in FIG. The measurement of the height position H1 corresponds to the first height measurement process of the present invention.

다음에 헤드(8)의 설정하중을 P2로 변경한다(스텝(ST05)). 예열상태(예를 들면 160도 정도의 상태)에서는, 필러범프(3)의 선단에 형성된 솔더(5)는 용융하지 않는다. 솔더(5)는 고상상태에서 액상상태로 변하는 단계로서 연화된 상태가 된다. 그 때문에 헤드(8)가 설정하중(P2)으로 하중제어됨으로써, 연화된 솔더(5)가 전극(7)에 압입되어 형상이 변형한다.Next, the set load of the head 8 is changed to P2 (step ST05). In the preheated state (for example, about 160 degrees), the solder 5 formed at the tip of the pillar bump 3 does not melt. The solder 5 becomes a softened state by changing from a solid state to a liquid state. Therefore, the head 8 is load-controlled by the set load P2, whereby the softened solder 5 is pressed into the electrode 7 to deform the shape.

다음에 도4의 타이밍 t3에서 t4까지의 소정의 시간(tm2) 동안, 헤드(8)를 설정하중(P2)으로 하중제어 한다.Next, during the predetermined time (tm2) from timing t3 to t4 in Fig. 4, the head 8 is subjected to load control by the set load P2.

다음에 헤드(8)의 높이검출수단인 인코더(19)로 헤드(8)의 높이위치(H2)를 계측하고, 제어부(20)에 기억한다(스텝(ST06)). 높이위치(H2)의 계측은 본 발명의 제2높이측정공정에 대응한다.Next, the height position H2 of the head 8 is measured by the encoder 19 which is the height detection means of the head 8, and stored in the control part 20 (step ST06). The measurement of the height position H2 corresponds to the second height measurement process of the present invention.

헤드(8)의 하중제어의 설정하중 P1으로부터 P2로 변경함으로써 필러범프(3)가 전극(7)에 압입된다. 이때, 필러범프(3)와 전극(7)의 접합면(7b)이 위치 어긋남이 있을 경우에, 스텝(ST04)와 스텝(ST06)에서 계측된 헤드(8)의 높이 변위량(H1-H2)이, 미리 설정되어 있는 허용값(Ha)을 오버(over)하게 된다. 그 때문에 설정하중(P2)으로 소정의 시간(tm2) 동안 하중제어를 한 후에, 헤드(8)의 높이 변위량(H1-H2)이 허용값(Ha)의 범위내인가 아닌가 판정한다(스텝(ST07)). 판정은 도4의 타이밍(t4)에서 이루어진다. 헤드(8)의 높이 변위량(H1-H2)은 칩(2)과 기판(6)의 간극의 변화에 대응하고, 허용값(Ha)의 범위내인가 아닌가의 판정은, 본 발명의 용융전의 솔더범프와 전극의 얼라인먼트의 양부를 판정하는 침강량 판정공정에 대응한다. 허용값(Ha)을 넘는 헤드(8)의 높이 변위량(H1-H2)이 검출된 경우에는, 제어부(20)에 작업중 기판(6)에 솔더(5)와 전극(7)의 위치 어긋남 불량이 있는 것을 기억한다(스텝(ST07 NG)).The pillar bump 3 is press-fitted to the electrode 7 by changing from the set load P1 to the load P2 of the load control of the head 8. At this time, when the joint surface 7b of the filler bump 3 and the electrode 7 has a position shift, the height displacement amount H1-H2 of the head 8 measured by step ST04 and step 06 This preset allowable value Ha is over. Therefore, after carrying out load control for the predetermined time (tm2) by the set load P2, it is determined whether the height displacement amount H1-H2 of the head 8 is in the range of the allowable value Ha (step ST07) )). The determination is made at timing t4 in FIG. The height displacement amount H1-H2 of the head 8 corresponds to the change of the clearance gap between the chip | tip 2 and the board | substrate 6, and determination of whether it is in the range of the allowable value Ha is the solder before melting of this invention. Corresponds to the sedimentation amount determining step of determining whether the bumps and electrodes are aligned. In the case where the height displacement amount H1-H2 of the head 8 exceeding the allowable value Ha is detected, the position control failure of the solder 5 and the electrode 7 on the substrate 6 during the operation by the control unit 20 is caused. It is remembered that there exists (step (ST07 NB)).

허용값(Ha)은, 필러범프(3)의 솔더(5)가 전극(7)의 접합면(7b)의 중심 부근에 얼라인먼트 되어 있는 경우를 기준으로 설정된다. 솔더(5)와 접합면(7b)의 접촉위치에 어긋남이 발생하여 전극(7)의 단부에 한쪽으로 치우쳐 접한 경우는, 설정하중(P2)으로 소정의 시간(tm2)만큼 칩(2)을 가압하면 전극(7)으로부터의 반력이 충분하지 않기 때문에, 가압량에 따라 칩(2)이 기판(6) 측으로 침강하게 된다.The allowable value Ha is set on the basis of the case where the solder 5 of the filler bump 3 is aligned near the center of the bonding surface 7b of the electrode 7. In the case where a deviation occurs in the contact position between the solder 5 and the bonding surface 7b and is brought into contact with the end of the electrode 7 to one side, the chip 2 is held for a predetermined time (tm2) by the set load P2. When the pressure is applied, the reaction force from the electrode 7 is not sufficient, so that the chip 2 is settled toward the substrate 6 depending on the amount of pressure.

따라서, 허용값(Ha)을 넘는 헤드(8)의 높이 변위량을 검출함으로써 필러범프(3)의 솔더(5)와 전극(7)의 접합면(7b)의 얼라인먼트가 양호하게 이루어지고 있는지 판정할 수 있다.Therefore, by detecting the height displacement of the head 8 exceeding the allowable value Ha, it is determined whether the alignment of the solder 5 of the filler bump 3 and the bonding surface 7b of the electrode 7 is satisfactory. Can be.

또 설정하중(P2)은 미리 솔더(5)를 예열온도(T1)로 가열하여 연화된 상태에서 찌그러지는 경우가 없는 하중을 측정하여 제어부(20)에 기억시켜, 실제의 공정에서 사용하고 있다. 그 때문에 솔더(5)가 하중(P2)에 견디지 못하고 찌그러져 버리는 경우가 없다.In addition, the set load P2 measures the load which will not be crushed in the softened state by heating the solder 5 to the preheating temperature T1 in advance, and stores it in the control unit 20 to use it in the actual process. Therefore, the solder 5 does not endure the load P2 and does not become crushed.

다음에 헤드(8)의 구동제어를, 로드셀(10)의 검출하중에 의거하는 하중제어로부터 높이검출수단인 인코더(19)의 검출위치에 의거하는 위치제어로 전환한다. 이에 따라 필러범프(3)와 전극(7)의 간격이 일정하게 유지되도록 위치제어가 이루어진다. 다음에 히터(16)의 설정온도를 T2로 변경한다. 온도(T2)에서는 필러범프(3)의 선단부의 솔더(5)가 솔더 용융온도에 도달한다(예를 들면 240∼280도).Next, the drive control of the head 8 is switched from the load control based on the detection load of the load cell 10 to the position control based on the detection position of the encoder 19 which is the height detection means. Accordingly, the position control is performed so that the distance between the pillar bump 3 and the electrode 7 is kept constant. Next, the set temperature of the heater 16 is changed to T2. At the temperature T2, the solder 5 at the tip of the filler bump 3 reaches the solder melting temperature (for example, 240 to 280 degrees).

다음에 소정의 시간(tm3)이 경과한 후에, 헤드(8)를 압입량(Hb)만큼 기판(6) 측으로 더 하강하고, 필러범프(3)를 전극(7)에 압입한다(스텝(ST08)). 압입은 도4의 타이밍(t5)에서 이루어진다. 필러범프(3)가 전극(7)에 압입됨으로써 반력이 발생한다. 반력은 압입이 완료되었을 때(도4의 타이밍(t6)), 로드셀(10)에 의하여 헤드(8)의 검출하중(P3)으로서 측정된다(스텝(ST09)). 검출하중(P3)의 측정은 본 발명의 제1반력측정공정에 대응한다.Next, after the predetermined time (tm3) has elapsed, the head 8 is further lowered to the substrate 6 side by the amount of indentation Hb, and the filler bumps 3 are pressed into the electrodes 7 (step ST08). )). Indentation is made at the timing t5 of FIG. Reaction force is generated by the filler bump 3 being pressed into the electrode 7. The reaction force is measured as the detection load P3 of the head 8 by the load cell 10 when the press fitting is completed (timing t6 in FIG. 4) (step ST09). The measurement of the detection load P3 corresponds to the first reaction force measuring process of the present invention.

다음에 소정의 시간(tm4)이 경과 한 후에, 로드셀(10)에 의하여 헤드(8)의 검출하중(P4)을 측정한다. 검출하중(P4)의 측정은, 헤드(8)의 하중변동이 발생하여 안정된 단계(도4의 타이밍(t7))에서 솔더(5)가 용융된 단계에서 이루어진다(스텝(ST10)). 검출하중(P4)의 측정은 본 발명의 제2반력측정공정에 대응한다. 헤드(8)는 압입량(Hb)을 유지하도록 위치제어되어 있기 때문에, 필러범프(3)가 전극(7)에 압입됨으로써 발생한 반력(검출하중(P3))은 솔더(5)의 용융에 따라 저하한다. 솔더(5)는 온도(T2)로 가열되고 있으므로 솔더(5)가 용융온도에 도달하고 있다. 또한 칩(2)과 기판(6)의 사이에 충전되어 있는 접착제(17)가 경화한다.Next, after a predetermined time period m4 has elapsed, the detection load P4 of the head 8 is measured by the load cell 10. The detection load P4 is measured at the stage where the load variation of the head 8 occurs and the solder 5 is melted at a stable stage (timing t7 in Fig. 4) (step ST10). The measurement of the detection load P4 corresponds to the second reaction force measuring process of the present invention. Since the head 8 is positioned so as to maintain the indentation amount Hb, the reaction force (detection load P3) generated by the filler bump 3 being pressed into the electrode 7 depends on the melting of the solder 5. Lowers. Since the solder 5 is heated to the temperature T2, the solder 5 has reached the melting temperature. Moreover, the adhesive 17 filled between the chip 2 and the board | substrate 6 hardens.

필러범프(3)와 전극(7)의 얼라인먼트가 정밀하게 잘 이루어지고 있을 경우에, 용융된 솔더(5)와 전극(7)에서 발생하는 반력(검출하중(P4))은 소정의 값을 유지한다. 그러나 필러범프(3)와 전극(7)의 얼라인먼트에 어긋남이 발생하고 있을 경우에, 전극(7)으로부터의 반력이 필러범프(3)에 작용하지 않기 때문에, 검출하중(P4)은 얼라인먼트가 정밀하게 잘 이루어지고 있을 경우에 비해 낮아진다. 이 특성에 의거하여 검출하중(P3)과 검출하중(P4)으로부터, 그 차이(P3-P4)가 미리 설정되어 있는 허용값(Hb)의 범위내인가 아닌가를 판정한다(스텝(ST11)). P3-P4가 허용값(Hb)의 범위내이면 필러범프(3)와 전극(7)의 얼라인먼트는 정밀하게 잘 이루어지고 있다고 판정하고, 범위 밖이면 필러범프(3)와 전극(7)의 얼라인먼트에 어긋남이 발생하고 있다고 판정한다. 이 양부판정은, 본 발명의 용융된 필러범프(3)와 전극(7)의 얼라인먼트의 양부를 판정하는 반력판정공정에 대응한다. 허용값(Hb)을 넘는 경우에는, 제어부(20)에 필러범프(3)와 전극(7)의 위치 어긋남 불량이 있는 것을 기억한다(스텝(ST11 NG)).When the alignment of the filler bump 3 and the electrode 7 is precisely performed well, the reaction force (detection load P4) generated in the molten solder 5 and the electrode 7 maintains a predetermined value. do. However, when a misalignment occurs in the alignment between the pillar bump 3 and the electrode 7, the reaction force from the electrode 7 does not act on the pillar bump 3, so that the alignment of the detection load P4 is precise. It is lower than when done well. Based on this characteristic, it is determined from the detection load P3 and the detection load P4 whether or not the difference P3-P4 is within a range of a preset allowable value HV (step ST11). If P3-P4 is within the allowable value (HV) range, the alignment of the filler bump 3 and the electrode 7 is determined to be precise and well. If the range is out of the range, the alignment of the pillar bump 3 and the electrode 7 is performed. It is determined that a misalignment has occurred. This pass / fail determination corresponds to a reaction force judging step of judging pass / fail of the alignment of the molten filler bumps 3 and the electrodes 7 of the present invention. When the allowable value HV is exceeded, it is stored in the control unit 20 that the pillar bumps 3 and the electrodes 7 are out of position (step S11 NJ).

다음에 히터(16)를 OFF하고, 툴(9)에 의한 칩(2)의 흡착지지를 해제하고, 헤드(8)를 상승하고, 기판(6)에 대한 칩(2)의 실장을 종료한다(스텝(ST12)).Next, the heater 16 is turned off, the suction support of the chip 2 by the tool 9 is released, the head 8 is raised, and the mounting of the chip 2 on the substrate 6 is finished. (Step ST12).

반력판정공정에 대해서, 칩(2)의 솔더(5)와 기판(6)의 전극(7)의 상태를 도5를 사용해서 상세하게 설명한다. 스텝(ST01)로부터 스텝(ST10)까지의 공정에 있어서, 칩(2)과 기판(6)의 위치관계를 도5에 나타낸다. 칩(2)의 필러범프(3)가 전극(7)에 접촉한 상태(스텝(ST02))를 도5(a)에 나타내고 있다. 이 상태의 칩(2)의 이면(2b)과 기판(6)의 거리를 h0이라고 한다. 검출하중은 P1에서 헤드(8)의 높이(H1)가 유지되고 있다.About the reaction force determination process, the state of the solder 5 of the chip | tip 2 and the electrode 7 of the board | substrate 6 is demonstrated in detail using FIG. 5 shows the positional relationship between the chip 2 and the substrate 6 in the process from step ST01 to step ST10. 5A shows a state where the filler bump 3 of the chip 2 is in contact with the electrode 7 (step ST02). The distance between the back surface 2b of the chip 2 and the substrate 6 in this state is referred to as h0. The detection load maintains the height H1 of the head 8 at P1.

칩(2)의 필러범프(3)가 전극(7)에 소정의 하중(필러(4)와 전극(7)이 접촉하지 않은 하중)에서 가압된 상태(스텝(ST06))를 도5(b)에 나타내고 있다. 이 상태의 칩(2)의 이면(2b)과 기판(6)의 거리를 h1이라고 한다. 검출하중은 P2에서 헤드(8)의 높이(H2)가 유지되고 있다.Fig. 5 (b) shows a state in which the pillar bump 3 of the chip 2 is pressed against the electrode 7 under a predetermined load (a load in which the pillar 4 and the electrode 7 are not in contact) (step ST06). ). The distance between the back surface 2b of the chip 2 and the substrate 6 in this state is referred to as h1. The detection load is maintained at the height H2 of the head 8 at P2.

칩(2)의 필러범프(3)가 전극에 소정의 압입량(Hb)만큼 압입되고(스텝(ST09)), 솔더(5)가 용융온도에 도달한 상태(스텝(ST10))를 도5(c)에 나타내고 있다. 이 상태에서는 솔더(5)와 전극(7)의 얼라인먼트가 정밀하게 잘 이루어지고 있다. 그 때문에 솔더(5)와 전극(7)에서 발생하는 반력은, 솔더 용융상태에서도 소정치(所定値)를 유지한다.The filler bump 3 of the chip 2 is pressed into the electrode by a predetermined indentation amount Hb (step ST09), and the state in which the solder 5 reaches the melting temperature (step ST10) is shown in FIG. It shows in (c). In this state, the alignment of the solder 5 and the electrode 7 is precisely performed well. Therefore, the reaction force generated in the solder 5 and the electrode 7 maintains a predetermined value even in the solder molten state.

한편 솔더(5)와 전극(7)의 얼라인먼트에 어긋남이 발생하고 있는 경우를 도5(d)에 나타내고 있다. 용융된 솔더(5)와 전극(7)의 위치가 어긋나고 있기 때문에, 전극(7)으로부터의 반력이 솔더(5)에 전달되지 않는다. 그 때문에 검출하중(P4)이 정밀하게 잘 얼라인먼트 된 상태에 비해서 낮아진다.On the other hand, the case where the misalignment generate | occur | produces in the alignment of the solder 5 and the electrode 7 is shown in FIG. Since the positions of the molten solder 5 and the electrode 7 are shifted, the reaction force from the electrode 7 is not transmitted to the solder 5. As a result, the detection load P4 is lower than in a precisely aligned state.

구체적으로는, 칩(2)과 기판(6)의 생산 로트(生産 lot)별로, 압입량(Hb)에 대한 검출하중 P3 및 P4의 값이 제어부(20)에 미리 기억되어 있다. 또한 위치 어긋남이 발생하였을 경우의 검출하중(P4)에 대해서도 설정치(設定値)가 제어부(20)에 기억되어 있다. 이들의 데이터에 의거하여 칩(2)과 기판(6)의 접합별로 검출하중(P3, P4)을 비교하고 접합의 양부판단을 한다.
Specifically, the values of the detection loads P3 and P4 for the indentation amount Hb are stored in advance in the control unit 20 for each production lot of the chip 2 and the substrate 6. The setting value is also stored in the control unit 20 with respect to the detection load P4 when the position shift occurs. On the basis of these data, the detection loads P3 and P4 are compared for each junction between the chip 2 and the substrate 6, and both sides of the junction are judged.

1 : 실장장치
2 : 칩
2b : 칩 이면
3 : 필러범프
4 : 필러
5 : 솔더
6 : 기판
7 : 전극
7a : 솔더 도금
7b : 접합면
8 : 헤드
9 : 툴
10 : 로드셀
11 : 기판 스테이지
13 : 2시야 카메라
14 : 서보모터
15 : 볼나사
16 : 히터
17 : 접착제
18 : 열전대
19 : 인코더
20 : 제어부
T1 : 예열온도
T2 : 솔더 용융온도
1: Mounting device
2: chip
2b: If the chip
3: filler bump
4: filler
5: solder
6: substrate
7: electrode
7a: solder plating
7b: joint surface
8: head
9: tool
10: load cell
11: substrate stage
13: two-view camera
14: servo motor
15: Ball screw
16: heater
17: Adhesive
18: thermocouple
19: encoder
20:
T1: Preheating temperature
T2: solder melting temperature

Claims (4)

칩(chip)에 형성된 필러범프(pillar bump)를 기판에 형성된 전극에 가압하면서 가열하여 열압착하는 실장방법(實裝方法)으로서,
칩을 열압착툴(熱壓着tool)에 의하여 지지하여 기판측으로 하강시키는 공정과,
칩의 필러범프가 기판의 전극에 접촉한 후에, 칩을 지지하는 열압착툴의 온도를 솔더 용융온도로 승온하는 공정과,
미리 설정되어 있는 압입량만큼 칩을 기판측으로 압입하고, 압입이 완료되었을 때에, 기판의 전극으로부터의 반력을 측정하는 제1반력측정공정(第1反力測定工程)과,
필러범프에 형성된 솔더가 용융하였을 때에 기판의 전극으로부터의 반력을 측정하는 제2반력측정공정과,
상기 제1반력측정공정의 측정결과와 상기 제2반력측정공정의 측정결과로부터, 용융된 필러범프와 전극의 얼라인먼트(alignment)의 양부를 판정하는 반력판정공정(反力判定工程)을
구비하는 실장방법.
As a mounting method for heating and thermally compressing a pillar bump formed on a chip while pressing a pillar bump formed on a substrate,
Supporting the chip with a thermocompression tool and lowering the chip toward the substrate;
After the filler bumps of the chips are in contact with the electrodes of the substrate, the step of raising the temperature of the thermocompression tool supporting the chips to the solder melting temperature;
A first reaction force measuring step of measuring the reaction force from the electrode of the substrate when the chip is press-fitted to the substrate side by a predetermined press-fit amount;
A second reaction force measuring step of measuring a reaction force from the electrode of the substrate when the solder formed on the filler bump melts;
From the measurement result of the first reaction force measurement step and the measurement result of the second reaction force measurement step, a reaction force determination step of determining the alignment of the molten filler bump and the electrode is performed.
Mounting method.
제1항에 있어서,
칩의 필러범프가 기판의 전극에 접촉한 후에, 칩을 지지하고 있는 열압착툴의 승강위치를 측정하는 제1높이측정공정과,
미리 설정되어 있는 압력으로 미리 설정되어 있는 시간 동안 칩을 기판측으로 가압한 후에, 칩을 지지하고 있는 열압착툴의 승강위치를 측정하는 제2높이측정공정과,
상기 제1높이측정공정의 측정결과와 상기 제2높이측정공정의 측정결과로부터, 칩을 가압한 것에 의한 칩과 기판의 간격의 변화를 구하여, 솔더 용융전의 필러범프와 전극의 얼라인먼트의 양부를 판정하는 침강량 판정공정을
구비하는 실장방법.
The method of claim 1,
A first height measuring step of measuring the lifting position of the thermocompression tool holding the chip after the filler bump of the chip contacts the electrode of the substrate;
A second height measuring step of measuring the lifting position of the thermocompression tool holding the chip after pressurizing the chip toward the substrate for a predetermined time at a predetermined pressure;
From the measurement results of the first height measurement step and the measurement results of the second height measurement step, the change of the gap between the chip and the substrate due to pressurization of the chip is obtained, and the alignment of the filler bumps and the electrodes before solder melting is determined. Sedimentation determination process
Mounting method to be provided.
필러범프가 형성된 칩을 지지하는 열압착툴과,
칩의 필러범프가 접합되는 전극을 구비한 기판을 지지하는 기판 스테이지(基板 stage)와,
칩을 지지한 열압착툴을 기판을 지지한 기판 스테이지 측으로 승강시키는 구동수단(驅動手段)과,
칩을 지지한 열압착툴의 승강위치를 검출하는 높이검출수단과,
칩을 지지한 열압착툴이 기판을 가압할 때의 압력을 검출하는 하중검출수단(荷重檢出手段)과,
열압착툴의 온도를 승온시키는 히터(heater)와,
상기 높이검출수단에 의하여 칩 높이위치정보를 측정하고, 상기 하중검출수단에 의하여 칩으로의 압력을 측정하고, 상기 구동수단과 상기 히터를 제어하는 제어수단(制御手段)을
구비한 실장장치(實裝裝置)로서,
상기 제어수단이,
상기 히터를 솔더 용융온도로 승온하고, 상기 구동수단을 구동하여 열압착툴을 기판측으로 미리 설정되어 있는 압입량만큼 압입했을 때의, 상기 하중검출수단에 의하여 측정한 검출하중과, 필러범프에 형성된 솔더가 용융했을 때의 검출하중으로부터, 용융된 필러범프와 전극의 얼라인먼트의 양부를 판정하는 기능을
구비하는 실장장치.
A thermocompression tool for supporting a chip on which a filler bump is formed,
A substrate stage for supporting a substrate having an electrode to which the filler bumps of the chip are bonded,
Driving means for raising and lowering the thermocompression-tool which supported the chip to the side of the substrate stage which supported the board | substrate,
Height detecting means for detecting a lifting position of the thermocompression tool supporting the chip;
Load detecting means for detecting the pressure when the thermocompression tool supporting the chip presses the substrate,
A heater for raising the temperature of the thermocompression tool,
A control means for measuring chip height position information by the height detecting means, a pressure to the chip by the load detecting means, and controlling the driving means and the heater;
As a mounting apparatus provided,
The control means,
A detection load measured by the load detecting means and a filler bump formed when the heater is heated to a solder melting temperature and the driving means is driven to press the thermocompression tool by a predetermined indentation amount to the substrate side; From the detection load when the solder is molten, the function of determining the alignment of the molten filler bump and the electrode is determined.
Mounting apparatus provided.
제3항에 있어서,
상기 제어수단이,
칩의 필러범프가 기판의 전극에 접촉한 후에,
미리 설정되어 있는 압력으로 미리 설정되어 있는 시간 동안 칩을 기판측으로 가압하고, 가압한 것에 의한 칩과 기판의 간격의 변화로부터 용융전의 필러범프와 전극의 얼라인먼트의 양부를 판정하는 기능을
구비하는 실장장치.
The method of claim 3,
The control means,
After the filler bumps of the chip contact the electrodes of the substrate,
Presses the chip toward the substrate for a predetermined time at a preset pressure, and determines the alignment of the filler bump and the electrode before melting from the change in the gap between the chip and the substrate due to the pressing.
Mounting apparatus provided.
KR1020137017614A 2011-02-15 2012-02-02 Mounting method and mounting device KR101821958B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-030158 2011-02-15
JP2011030158A JP5877645B2 (en) 2011-02-15 2011-02-15 Mounting method and mounting apparatus
PCT/JP2012/052328 WO2012111439A1 (en) 2011-02-15 2012-02-02 Mounting method and mounting device

Publications (2)

Publication Number Publication Date
KR20140043045A true KR20140043045A (en) 2014-04-08
KR101821958B1 KR101821958B1 (en) 2018-01-25

Family

ID=46672370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137017614A KR101821958B1 (en) 2011-02-15 2012-02-02 Mounting method and mounting device

Country Status (4)

Country Link
JP (1) JP5877645B2 (en)
KR (1) KR101821958B1 (en)
TW (1) TWI580510B (en)
WO (1) WO2012111439A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130414A (en) * 2014-01-08 2015-07-16 東レエンジニアリング株式会社 Automatic bonding device
CN111213226B (en) * 2017-08-28 2023-07-07 株式会社新川 Device and method for linearly moving body relative to object
US11270968B2 (en) 2018-06-13 2022-03-08 National Institute Of Advanced Industrial Science And Technology Electronic circuit connection method and electronic circuit
JP2020080383A (en) * 2018-11-13 2020-05-28 株式会社ブイ・テクノロジー Manufacturing method and manufacturing device of display device
KR102252732B1 (en) 2019-06-11 2021-05-18 세메스 주식회사 Die bonding method and die bonding apparatus
JP7368962B2 (en) * 2019-07-09 2023-10-25 芝浦メカトロニクス株式会社 mounting equipment
US20230268312A1 (en) * 2022-02-18 2023-08-24 Bae Systems Information And Electronic Systems Integration Inc. Soft touch eutectic solder pressure pad

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271689A (en) * 1986-05-14 1987-11-25 オムロン株式会社 Part incorporator
US5686353A (en) * 1994-12-26 1997-11-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device and manufacturing method thereof
JP3176580B2 (en) * 1998-04-09 2001-06-18 太陽誘電株式会社 Electronic component mounting method and mounting device
JP2003023040A (en) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd Method of mounting electronic component having bump
JP2003332792A (en) * 2002-05-14 2003-11-21 Fuji Mach Mfg Co Ltd Electronic circuit component mounting head
JP2006054275A (en) * 2004-08-11 2006-02-23 Sony Corp Method for manufacturing semiconductor device and semiconductor manufacturing equipment
JP4324572B2 (en) * 2005-03-03 2009-09-02 カシオマイクロニクス株式会社 Bump formation method
US20090289098A1 (en) * 2005-12-06 2009-11-26 Katsumi Terada Chip Mounting Apparatus and Chip Mounting Method
JP4957193B2 (en) * 2006-11-07 2012-06-20 パナソニック株式会社 Thermocompression bonding apparatus and thermocompression bonding method
CN102349141B (en) * 2009-03-12 2015-07-01 纳美仕股份有限公司 Underfill material and method for mounting electronic component

Also Published As

Publication number Publication date
TW201233486A (en) 2012-08-16
KR101821958B1 (en) 2018-01-25
JP2012169495A (en) 2012-09-06
TWI580510B (en) 2017-05-01
JP5877645B2 (en) 2016-03-08
WO2012111439A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
KR20140043045A (en) Mounting method and mounting device
JP5014151B2 (en) Chip mounting apparatus and chip mounting method
EP1777738A1 (en) Component mounting method and component mounting apparatus
JP6639915B2 (en) Semiconductor mounting apparatus and semiconductor mounting method
JP5334250B2 (en) Reflow soldering method and apparatus
JP5797368B2 (en) Semiconductor chip bonding apparatus and bonding method
JP6325053B2 (en) Bonding system, bonding method, and semiconductor device manufacturing method
JP5847390B2 (en) Mounting apparatus and mounting method
JP5930563B2 (en) Mounting method and mounting apparatus
KR101591125B1 (en) Chip mounting apparatus
JP4260712B2 (en) Electronic component mounting method and apparatus
JP2012064711A (en) Apparatus and method for mounting electronic component
JP2014143442A (en) Chip mounting device
JP3893226B2 (en) Component mounting method and apparatus
JP6345819B2 (en) Chip mounting device
JP6636567B2 (en) Chip mounting equipment
JP2006508539A (en) Method for mounting miniaturized elements on a carrier plate
JP4377402B2 (en) Component mounting method and apparatus
JP6778676B2 (en) Bonding tool cooling device and bonding device equipped with this and bonding tool cooling method
KR20070022058A (en) Component mounting method and component mounting apparatus
CN114342052A (en) Apparatus and method for manufacturing semiconductor device
JP2017220614A (en) Soldering method and heating head
JP2005294296A (en) Flip-chip bonding method and apparatus thereof
JPH11330687A (en) Method and apparatus for mounting electronic component
JPH1187426A (en) Flip chip connection structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant