KR20140042629A - 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치 - Google Patents

샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치 Download PDF

Info

Publication number
KR20140042629A
KR20140042629A KR1020130017350A KR20130017350A KR20140042629A KR 20140042629 A KR20140042629 A KR 20140042629A KR 1020130017350 A KR1020130017350 A KR 1020130017350A KR 20130017350 A KR20130017350 A KR 20130017350A KR 20140042629 A KR20140042629 A KR 20140042629A
Authority
KR
South Korea
Prior art keywords
catalyst
sample gas
particles
evaporator
volatile particles
Prior art date
Application number
KR1020130017350A
Other languages
English (en)
Inventor
바로우치 기차스킬
알렉산더 메르그만
Original Assignee
아베엘 리스트 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아베엘 리스트 게엠베하 filed Critical 아베엘 리스트 게엠베하
Publication of KR20140042629A publication Critical patent/KR20140042629A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

본 발명에 따르면, 최대 에너지 효율성과 단순한 디자인을 가진, 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치 특히 컴팩트한 장치를 위해, 증발기(7)와 촉매(8)를 포함하는 제거 장치(3)가 제공되는데, 상기 촉매(8)는 증발기(7)의 하류에 설치되고, 흐름-제한 장치(5)에 의해, 희석되지 않은 샘플 가스의 표준 체적유량(
Figure pat00008
)을 촉매(8)의 미리 정해진 촉매 효율성까지 추가로 조절된다.

Description

샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치{DEVICE FOR REMOVING VOLATILE PARTICLES FORM SAMPLE GAS}
본 발명은 휘발성 입자들과 고형 입자들로 채워진 희석되지 않은 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치에 관한 것이다.
위에서 언급한 타입의 장치들과 이 장치들이 제공되는 공정은 특히 내연기관의 배출 가스 내에 있는 에어로졸(aerosol)의 측정과 특성에 관하여 잘 알려져 있으며 상기 장치와 공정은 일부분 이상이 국내 뿐만 아니라 지자체 및 국제 테스트 명세서, 표준 등의 목적을 구성한다. 내연기관, 특히 디젤 엔진의 배출 가스가 통상적인 에어로졸(휘발성의 현탁 입자(suspended particle)의 의미에서) 뿐만 아니라 캐리어 가스(carrier gas) 내에 고형 입자(solid particle) 및 휘발성의 현탁 입자들의 혼합물을 함유하며, 배출 가스의 위해성(harmfulness)은 거의 전적으로 고형 입자들 때문이라는 사실이 잘 알려져 있다. 따라서, 내연기관의 배출 가스 내의 고형 입자들의 농도(concentration)는 정확한 규정(regulation)을 받아야 하며 적절한 측정 장치에 의해 이러한 규정들과의 컴플라이언스(compliance)의 증거(proof)가 제공되어야 한다. 이를 위하여, 근본적인 측정(ultimate measurement) 전에, 관련성이 없는 휘발성 입자들이 분석되어야 하는 배출 가스로부터 제거되어야 하는데; 이를 위하여, 상이한 구성(configuration)들이 알려져 있다.
예를 들어, EP 2 264 423 A2호는 샘플 흐름(sample flow)이 연속적으로 희석되고, 가열되며, 다시, 희석되는 구성을 기술하고 있다. 사전-희석기(pre-diluter)에서, 샘플 흐름 내에 있는 휘발성의 에어로졸 뿐만 아니라 고형 입자들의 농도가 감소된다. 가열된 증발기의 하류에서(downstream), 휘발성 물질들은 증기상(vapor phase)으로 변환되고, 적절한 사전-희석농도(pre-dilution)를 설정함으로써, 휘발성의 에어로졸의 농도가 감소될 수 있으며, 증발기 뒤에서 이러한 물질들의 증기 압력(vapor pressure)은 충분히 낮아서, 이에 따라 상기 물질들이 냉각될 때(cooled down) 이 물질들은 더 이상 응축되지 않으며, 이에 따라 냉각되어야 하는 샘플 흐름이 되고, 샘플 흐름 내에는 측정되어야 하는 고형 입자들만이 함유된다. 2차 희석기(secondary diluter)에 의해 냉각이 구현된다. 이러한 구성은 종래 기술에 휘발성 입자 제거기(volatile particle remover: VPR)로서 알려져 있다.
그 외에도, 샘플 흐름으로부터 휘발성 입자들을 제거하기 위해 열 박탈기(thermal denuder)(가스의 분리를 위해 확산 분리기(diffusion separator))와 촉매(소위, 촉매 스트리퍼(catalytic stripper))가 알려져 있는데, 예를 들어, "Evaluation of thermal denuder and catalytic stripper methods for solid particle measurements", J. Swanson, et al., Journal of Aerosol Science, 41 (2012), pp. 1313-1322를 참조하라. 열 박탈기는 에어로졸이 가열되고(heated up) 증발된 재료(evaporated material)가 캐리어 재료(carrier material)(통상 활성 카본(activated carbon))에 의해 흡수된다는 사실에 좌우된다. 여기서, 촉매는 희석된 샘플 흐름이 통과되는 황 트랩(sulfur trap)과 산화 촉매(oxidation catalyst)를 포함한다. 또한, "Nano particle formation in the exhaust of internal combustion engines", M. Stenitzer, Diploma thesis at Vienna Technical University, 2003을 참조하라.
US 6,796,165 B2호는, 촉매에 의해 샘플 흐름으로부터 휘발성의 구성요소들을 제거하는, 에어로졸 내에 함유된 고형 입자들의 농도를 측정하기 위한 또 다른 장치를 기술하고 있다. 또한, 희석되지 않은 샘플 가스도 촉매에 공급될 수 있다. 또한, 2차 희석기 뒤에 평행하게 적절한 센서 장치들을 제공함으로써 고형 입자들의 크기와 질량(mass)을 결정할 수 있게 한다. 개별 센서들을 공급하기 위해 충분한 질량 흐름(mass flow)이 제공되어야 한다. 이를 위해, 가스가 센서 장치들에 공급될 수 있기 전에 샘플 가스를 특정 온도까지 냉각시키기 위해 촉매 뒤에 2차 희석기가 설치되어야 한다. "Real time measurement of volatile and solid exhaust particles using a catalytic stripper", I.S. Abdul-Khalek, et al., SAE Paper 950236, 1995에서, 촉매 뒤와 입자 카운터(particle counter) 앞에 샘플 가스를 냉각시키기 위한 냉각 코일(cooling coil)이 제공된다.
알려져 있는 구성들은 모두 매우 복잡하고 다수의 개별 구성요소들을 필요로 하여, 이에 따라 전체 장치의 크기가 커지게 된다.
따라서, 본 발명의 목적은 샘플 가스(sample gas)로부터 휘발성 입자들을 제거하기 위한 장치를 제공하고, 상기 장치가 단순하게 설계되고 에너지 효율적이며 가능한 최대로 컴팩트한(compact) 형상을 가지게 하는 것이다.
상기 목적은 본 발명에 따라 증발기(evaporator)와 촉매(catalyst)를 포함하는 제거 장치를 제공함으로써 해결되며, 상기 촉매는 증발기의 하류에 배열되고, 희석되지 않은(undiluted) 샘플 가스의 표준 체적유량(standard volumetric flow rate)을 촉매의 미리 정해진 촉매 효율성(catalytic efficiency)까지 조절하는 흐름-제한 장치(flow-limiting device)가 추가로 제공된다. 이에 따라, 촉매의 촉매 효율성이 요청된 수준으로 샘플 가스로부터 휘발성 입자들을 제거하기에 충분하도록 표준 체적유량이 제거 장치에 의해 감소될 때, 촉매 앞에서는 어떠한 희석기도 필요 없다. 하지만, 이와 동시에, 샘플 가스를 냉각시키기 위해 촉매 뒤에서도 어떠한 희석기도 필요 없는데, 이는 제한된 표준 체적유량으로 인해 센서 장치에 유입되기 전에 심지어 희석 없이도 샘플 가스가 냉각되는 것이 가능하기 때문이다.
증발기와 촉매는 서로 직접 순차적으로(in direct succession of each other) 배열되며, 제거 장치는 보다 컴팩트한 디자인을 가질 수 있다. 이와 동시에, 증발기와 촉매 사이의 샘플 라인(sample line)에 바람직하지 않은 입자 증착(particle deposit)이 방지된다.
바람직한 구체예에서, 흐름-제한 장치의 구성은 표준 체적유량을 1 내지 5 리터/분으로 제한한다.
촉매는 산화 촉매(oxidation catalyst) 또는 황 트랩(sulfur trap) 또는 이들의 조합으로서 구현되는 것이 바람직하다. 이렇게 하여, 휘발성 입자들은 특히 효율적인 방식으로 샘플 가스로부터 제거될 수 있다.
산화 촉매와 황 트랩이 서로 임의의 순서대로 직접 순차적으로(in arbitrary order in direct succession of each other) 배열될 때, 한편으로는, 연결 라인(connecting line)에서의 입자 증착이 방지되고, 다른 한편으로는, 샘플 가스가 촉매의 필요한 작동 온도(start-up temperature) 밑으로 냉각되는 것이 안전하게 방지된다.
본 발명에 따른 장치의 에너지 효율성과 특히 컴팩트한 크기로 인해, 상기 장치는 이동시 적용분야(mobile application), 예컨대, 이동중인 차량 내에서 입자들로 채워진(loaded) 가스 흐름의 특정값(characteristic value)을 결정하기 위해 사용될 수 있으며, 이에 따라 상기 장치를 특히 유용하게 만들 수 있다.
본 발명은 본 발명의 바람직한 형상들을 대표적이고 개략적으로 보여주며 비-제한적인 방식으로 도시하는 도 1 내지 4에 관해 밑에서 보다 상세하게 설명된다.
도 1은 입자들로 채워진 가스 흐름의 특정값들을 결정하기 위한 배열장치를 도시한 도면이고,
도 2는 샘플 가스로부터 휘발성 입자들을 제거하기 위한 제거 장치를 예시한 도면이며,
도 3은 가능한 촉매 형상들을 도시한 도면이고,
도 4는 특히 컴팩트한 형상을 가진 제거 장치를 도시한 도면이다.
도 1은 입자들로 채워진(loaded) 가스 흐름의 특정값들, 가령, 예컨대, 고형 입자들의 농도(concentration), 고형 입자들의 입자 크기 분포, 고형 입자들의 질량(mass), 이들의 비표면적(specific surface) 등을 결정하기 위한 기본 형상을 도시한다. 가스 흐름(화살표에 의해 표시된), 가령, 예컨대, 내연기관으로부터 나온 배출 가스는 라인(1)을 통해 흐르고 휘발성의 현탁 입자(suspended particle)들과 고형 입자들을 포함하는 에어로졸(aerosol)이다. 샘플 파이프(2)에 의해, 샘플 가스 흐름이 가스 흐름의 부분 흐름(partial flow)으로서 변환되며(diverted) 제거 장치(3)를 통해 샘플 라인(9)으로 안내된다. 제거 장치(3)에서, 휘발성 입자들은 샘플 가스 흐름으로부터 제거된다. 그러면, 샘플 가스 흐름은 샘플 가스 흐름의 특별한 특정값들을 측정하기 위해 센서 장치(4) 위를 통과할 수 있다. 여기서, 모든 휘발성 입자들을 완전히 제거하는 것은 가능하지 않다는 사실을 유의해야 한다. 따라서, 용어 "제거(removing)"는, 여기서, 많은 양의 휘발성 입자들을 제거하여, 가령, 예컨대, 90% 이상 제거하여, 특정값들을 측정할 수 있게 하고, 그 다음 센서 장치(4) 내에 있는 샘플 가스 흐름을 정확하게 분석할 수 있게 하는 것을 가리킨다.
밑에서 보다 상세하게 설명되는 것과 같이, 제거 장치(3)를 통과하고 센서 장치(4)를 통과하는 표준 체적유동(volumetric flow)은 흐름-제한 장치(5), 예컨대, 스로틀 장치(throttle device)에 의해 설정되지만, 강제로 표준 체적유량(volumetric flow rate)을 일정하게 만들기 위해 펌프(6)가 사용될 수도 있다. 물론, 흐름-제한 장치(5)는 샘플 라인(9) 내의 또 다른 위치, 가령, 예를 들어, 제거 장치(3)와 센서 장치(4) 사이에 혹은 흐름 방향에서 제거 장치(3) 전방에 설치될 수 있다. 공통의 지식인 것과 같이, 표준 체적유량은 1013 mbar의 압력과 0℃의 표준 상태 하에서의 체적유량이다. 체적유량과 표준 체적유량은 일반적인 기체방정식을 사용하여 쉽게 전환될 수 있다(converted).
제거 장치(3)는 증발기(7)와 촉매(8)를 포함하며, 도 2에 도시된 것과 같이, 촉매(8)는 증발기(7)의 하류에(downstream) 설치된다. 증발기(7) 내에서, 샘플 가스는 150 내지 400℃의 온도(T1)로 가열되어 휘발성 입자들이 기체상(gas phase)으로 변환된다. 증발기(7)는 가열 장치(10)에 의해 가열되는 샘플 라인(9)의 한 세그먼트(segment)로서 단순하게 구현될 수 있다(implemented). 또한 상기 세그먼트는 단열재(14)에 의해 외부와 단열될 수 있다는 사실을 이해할 수 있다(도 4 참조). 촉매(8)도 가열 장치(11)에 의해 가열될 수 있는데, 바람직하게는, 150 내지 400℃의 온도(T2)로 가열될 수 있으며, T2 < T1인 것이 바람직하다.
도 3a에 도시된 것과 같이, 촉매(8)는 산화 촉매(12)로서 또는 황 트랩(sulfur trap)(13)으로서 구현될 수 있다. 하지만, 도 3b에 도시된 것과 같이, 촉매(8)는 임의의 순서대로 순차적으로(in any order one after the other) 배열될 수 있는 산화 촉매(12)와 황 트랩(13)을 포함할 수도 있다. 산화 촉매(12)와 황 트랩(13)은 개별 유닛일 수 있는데, 바람직하게는, 상기 산화 촉매와 황 트랩은 단일 유닛 내에 일체로 구성되고(integrated), 이에 따라 특히 컴팩트한 촉매(8)가 된다. 산화 촉매(12)는 증발기(7) 내에서 기체상으로 변환된 휘발성의 유기 입자들을 공지의 방식으로 연소시킨다. 황 트랩(13)은 휘발성의 황 입자들을 결합시켜(bind) 이에 따라 샘플 가스로부터 황 입자들을 제거한다. 이러한 촉매(8) 및 특히 산화 촉매(12)와 황 트랩(13)의 디자인과 제작공정은 잘 알려져 있어서 본 명세서에서는 상세하게 기술되지 않을 것이다.
바람직한 구체예에서, 증발기(7)와 촉매(8)는 도 4에 도시된 것과 같이 서로 직접 순차적으로(in direct succession of each other) 설치된다. 제거 장치(3)의 출구(exit)에 단열재(15)가 배열될 수 있으며 제거 장치(3)는 단열재(14)와도 꼭 맞을 수 있다(fit).
촉매(8)는 최대 표준 체적유량(
Figure pat00001
)의 형태로 비촉매 효율성(specific catalytic efficiency)를 가지는데, 이 비촉매 효율성에서 촉매(8)의 충분한 기능이 보장될 수 있다. 현재 사용가능한 촉매는 예를 들어 1 내지 5 리터/분의 표준 체적유량(
Figure pat00002
)을 가진다. 제거 장치(3)를 통과하는 표준 체적유량(
Figure pat00003
)이 흐름-제한 장치(5)에 의해 상기 촉매 효율성에 제한될 때, 제거 장치(3) 앞에는 어떠한 희석기(diluter)도 설치될 필요가 없으며 희석되지 않은 샘플 가스(undiluted sample gas)가 직접 공급될 수 있다. 표준 체적유량(
Figure pat00004
)은 적절한 컨트롤 장치에 의해 자동으로 또는 수동으로 제한될 수 있다. 이와 동시에, 이러한 제한적인 표준 체적유량(
Figure pat00005
)으로 인하여, 제거 장치(3) 뒤에는 어떠한 능동 냉각(active cooling)이 필요하지 않다. 샘플 가스가 센서 장치(4)에 유입되기 전에 샘플 가스를 충분히 냉각시키기 위해, 환경(environment)에 대한 샘플 라인(9)의 수동 대류 냉각(passive convection cooling)이면 충분하다. 이를 위해 단지 수 센티미터의 샘플 라인(9)이면 충분하다. 이를 뒷받침하는데 있어서, 냉각 표면(cooling surface)을 확대하기 위해, 예컨대, 도 4에 도시된 것과 같이, 냉각 리브(cooling rib) 형태로, 제거 장치(3) 뒤에서 샘플 라인(9) 위에 냉각 요소(16)가 설치될 수 있다.
도 4에 따른 바람직한 특히 컴팩트한 구체예에서는, 촉매(8)의 전체 길이를 수 센티미터 범위로, 가령, 예를 들어, 5-7cm로 구현하는 것이 가능하다. 증발기(7)의 길이는 5-10cm의 범위에 있을 수 있으며, 샘플 라인(9)의 그 다음 대류 세그먼트도 수 센티미터, 가령, 예컨대, 3-6cm 범위에 있을 수 있다. 이에 따라, 제거 장치(3)가 현저히 컴팩트해진다.
이렇게 컴팩트한 디자인과 그에 따른 에너지 효율성의 결과로서, 이동시 적용분야(mobile application), 예컨대, 이동중인 차량 내에서도 가스 분석을 위해 사용될 수 있다.
센서 장치(4)를 위해 매우 다양한 센서가 사용될 수 있는데, 예컨대, 광-음향 검댕 측정 셀(photo-acoustic soot measuring cell), 미광센서(stray light sensor), 미광광도계(stray light photometer), 응축핵카운터(condensation nuclei counter), 확산 전하 센서(diffusion charge sensor), 광입자카운터(optical particle counter) 등이 사용될 수 있다.

Claims (8)

  1. 휘발성 입자들과 고형 입자들로 채워진(loaded) 희석되지 않은 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치에 있어서,
    증발기(7)와 촉매(8)를 포함하는 제거 장치(3)가 제공되며, 상기 촉매(8)는 증발기(7)의 하류에 배열되고, 희석되지 않은 샘플 가스의 표준 체적유량(
    Figure pat00006
    )을 촉매(8)의 미리 정해진 촉매 효율성까지 조절하는 흐름-제한 장치(5)가 추가로 제공되는, 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치.
  2. 제1항에 있어서,
    증발기(7)와 촉매(8)는 서로 직접 순차적으로(in direct succession of each other) 설치되는 것을 특징으로 하는 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치.
  3. 제1항 또는 제2항에 있어서,
    흐름-제한 장치(5)는 표준 체적유량(
    Figure pat00007
    )을 1 내지 5 리터/분으로 제한하는 것을 특징으로 하는 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    촉매(8)는 산화 촉매(12)로서 구현되는 것을 특징으로 하는 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    촉매(8)는 황 트랩(sulfur trap)(13)으로서 구현되는 것을 특징으로 하는 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    촉매(8)는 산화 촉매(12)와 황 트랩(13)을 포함하는 것을 특징으로 하는 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치.
  7. 제6항에 있어서,
    산화 촉매(12)와 황 트랩(13)은 촉매(8) 내에서 임의의 순서대로 직접 순차적으로(in arbitrary order in direct succession of each other) 설치되는 것을 특징으로 하는 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치.
  8. 이동시 적용분야(mobile application)에서 입자들로 채워진 가스 흐름의 특정값을 결정하기 위해 제1항 내지 제7항 중 어느 한 항에 따른 제거 장치의 용도(use).
KR1020130017350A 2012-09-28 2013-02-19 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치 KR20140042629A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM386/2012U AT13239U1 (de) 2012-09-28 2012-09-28 Vorrichtung zur Entfernung der flüchtigen Partikel aus einem Probengas
ATGM386/2012 2012-09-28

Publications (1)

Publication Number Publication Date
KR20140042629A true KR20140042629A (ko) 2014-04-07

Family

ID=48051738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130017350A KR20140042629A (ko) 2012-09-28 2013-02-19 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치

Country Status (4)

Country Link
US (1) US20140093435A1 (ko)
KR (1) KR20140042629A (ko)
AT (1) AT13239U1 (ko)
DE (1) DE202013100053U1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8783090B2 (en) * 2011-11-28 2014-07-22 Southwest Research Institute Apparatus and methods for determination of total and solid carbon content of engine exhaust
GB201317744D0 (en) * 2013-10-08 2013-11-20 Twigg Scient & Technical Ltd Improvements in nanoparticle counting
AT513791B1 (de) 2014-04-25 2016-05-15 Avl List Gmbh Partikelmessgerät und ein Verfahren zum Betreiben des Partikelmessgerätes
AT517405B1 (de) * 2015-06-30 2017-04-15 Avl List Gmbh Verdünnerzelle zum Entfernen von flüchtigen Partikeln aus einem Probengas
AT517361B1 (de) * 2015-06-30 2017-01-15 Avl List Gmbh Vorrichtung und Verfahren zum Entfernen von flüchtigen Partikeln aus einem Probengas
JP6918927B2 (ja) * 2016-09-14 2021-08-11 ジェイソン・ポール・ジョンソン 受動型エアロゾル希釈器メカニズム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452401A (ja) * 1990-06-20 1992-02-20 Osaka Gas Co Ltd 脱硝装置を備える排熱回収装置
JPH05125930A (ja) * 1991-07-11 1993-05-21 Nippon Steel Corp エンジン排ガスの浄化装置及び浄化方法
DE19930040A1 (de) * 1999-06-30 2001-01-18 Messer Griesheim Gmbh Gasprobenahmebehälter mit Verdampfungseinrichtung
FR2796984B1 (fr) * 1999-07-28 2002-09-06 Renault Systeme de regeneration d'un piege a oxydes d'azote
US7326397B2 (en) * 2000-12-18 2008-02-05 Conocophillips Company Catalytic partial oxidation process for recovering sulfur from an H2S-containing gas stream
US6796165B2 (en) 2002-11-18 2004-09-28 Southwest Research Institute Apparatus and method for real-time measurement of mass, size and number of solid particles of particulate matter in engine exhaust
AT10541U3 (de) 2009-01-13 2009-11-15 Avl List Gmbh Vorrichtung zur bestimmung der konzentration von feststoffpartikeln

Also Published As

Publication number Publication date
DE202013100053U1 (de) 2013-03-04
US20140093435A1 (en) 2014-04-03
AT13239U1 (de) 2013-09-15

Similar Documents

Publication Publication Date Title
KR20140042629A (ko) 샘플 가스로부터 휘발성 입자들을 제거하기 위한 장치
Burtscher et al. Separation of volatile and non-volatile aerosol fractions by thermodesorption: instrumental development and applications
US7298486B2 (en) Aerosol mobility size spectrometer
KR101149621B1 (ko) 고체 입자들의 농도를 결정하기 위한 장치
CN103424286B (zh) 用于水蒸气管理的排气采样系统和方法
Giechaskiel et al. Engine exhaust solid sub-23 nm particles: II. feasibility study for particle number measurement systems
Wang et al. Measurement of real-world stack emissions with a dilution sampling system
Petrovic et al. The possibilities for measurement and characterization of diesel engine fine particles-A review
KR20110041512A (ko) 입자형상 물질 측정장치
US20080060457A1 (en) Residence time chamber and sampling apparatus
Kim et al. A new on-board PN analyzer for monitoring the real-driving condition
Rubino et al. Portable emission measurement system (PEMS) for heavy duty diesel vehicle PM measurement: the European PM PEMS program
Otsuki et al. The methodologies and instruments of vehicle particulate emission measurement for current and future legislative regulations
Khalek et al. Development of a solid exhaust particle number measurement system using a catalytic stripper technology
JP2014526679A (ja) 特に内燃機関の排ガスである高温ガスにおけるエアロゾルの濃度の検出のための方法及び装置
WO2018046619A1 (en) Apparatus and method for analysing a chemical composition of aerosol particles
Swanson et al. Alternatives to the gravimetric method for quantification of diesel particulate matter near the lower level of detection
Saarikoski et al. Evaluation of the performance of a particle concentrator for online instrumentation
JP7038037B2 (ja) 排ガス分析システム及び排ガス分析方法
Nussbaum et al. The in-plume emission test stand: An instrument platform for the real-time characterization of fuel-based combustion emissions
Bardwell et al. An approach to clean particulates from diesel emissions: EDPS baseline prototype testing equipment and methodology
Wang et al. A sampler for collecting fine particles into liquid suspensions
Bellivier et al. Comparison and assessment of particle mass concentration measurements in fire smokes with a microbalance, opacimeter and PPS devices
Andersson et al. DETR/SMMT/CONCAWE particle research programme: sampling and measurement experiences
JP4066989B2 (ja) エアロゾル分析装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application