KR20140037133A - 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법 - Google Patents

무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법 Download PDF

Info

Publication number
KR20140037133A
KR20140037133A KR1020137033785A KR20137033785A KR20140037133A KR 20140037133 A KR20140037133 A KR 20140037133A KR 1020137033785 A KR1020137033785 A KR 1020137033785A KR 20137033785 A KR20137033785 A KR 20137033785A KR 20140037133 A KR20140037133 A KR 20140037133A
Authority
KR
South Korea
Prior art keywords
user equipment
specific
rrc configuration
cell
pucch
Prior art date
Application number
KR1020137033785A
Other languages
English (en)
Other versions
KR102033020B1 (ko
Inventor
남영한
지안종 장
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020197029783A priority Critical patent/KR102301970B1/ko
Publication of KR20140037133A publication Critical patent/KR20140037133A/ko
Application granted granted Critical
Publication of KR102033020B1 publication Critical patent/KR102033020B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

사용자 장치는 적어도 하나의 기지국을 포함하는 셀로부터 통신을 수신할 수 있다. 사용자 장비는 PUCCH HARQ-ACK에 대한 셀 특정 자원 오프셋 매개 변수를 포함하는 셀 특정 무선 자원 제어(RRC) 구성, 및 UE 특정 RS 베이스 시퀀스 매개 변수와 PUCCH HARQ-ACK에 대한 UE 특정 자원 오프셋 매개 변수를 포함하는 UE 특정 RRC 구성의 둘 다를 기지국으로부터 수신하도록 구성된 수신기를 포함한다.

Description

무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법{SYSTEM AND METHOD FOR AN UPLINK CONTROL SIGNAL IN WIRELESS COMMUNICATION SYSTEMS}
본 출원은 일반적으로 무선 통신에 관한 것으로서, 특히 업링크 긍정 응답(acknowledgement) 전송을 위한 시스템 및 방법에 관한 것이다.
현대의 통신은 더욱 높은 데이터 속도 및 성능을 요구한다. 또한 다중 요소 안테나(MEA) 시스템으로 알려진 다중 입력, 다중 출력(MIMO) 안테나 시스템은 송신기 및 수신기의 둘 다, 또는 다른 경우에는 송수신기에서 공간 또는 안테나 다양성을 활용하여 할당된 무선 주파수(RF) 채널 대역폭에 대한 더욱 큰 스펙트럼 효율을 달성한다.
MIMO 시스템에서, 복수의 데이터 스트림의 각각은 상이한 물리적 안테나 또는 효율적인 안테나에 의해 프리코딩되고 전송되기 전에 개별적으로 매핑되고 변조된다. 그 다음, 조합된 데이터 스트림은 수신기의 다중 안테나에서 수신된다. 수신기에서, 각 데이터 스트림은 조합된 신호로부터 분리되고 추출된다. 이러한 프로세스는 일반적으로 최소 평균 제곱 오차(MMSE) 또는 MMSE 연속 간섭 제거(SIC) 알고리즘을 이용하여 수행된다.
3GPP(3rd Generation Partnership Project LTE(Long Term Evolution) 시스템에서, 기지국은 PDCCH(Physical Downlink Control Channel)에서 DL(Downlink) 승인을 가입자국으로 전송한다. 나중에 일부 프레임, 가입자국은 ACK(Acknowledgement 또는 NACK(Negative Acknowledgement)를 기지국으로 전송한다.
아래에 더욱 상세히 설명되는 바와 같이, 기지국의 수신기 또는 사용자 장비는 데이터 스트림의 강도 관련 특성에 기초하여 계산되는 각 데이터 스트림에 대한 디코딩 예측 메트릭에 기초하여 데이터 스트림에 대한 디코딩 순서를 결정하기 위해 동작할 필요가 있다.
적어도 하나의 기지국을 포함하는 복수의 셀을 포함하는 무선 통신 네트워크가 제공된다. 기지국은 하이브리드 자동 반복 요청(HARQ)-긍정 응답(ACK)을 반송하는 물리적 업링크 제어 채널(PUCCH)에 대한 셀 특정 자원 오프셋 매개 변수를 포함하는 셀 특정 무선 자원 제어(RRC) 구성, 및 사용자 장비(UE) 특정 RS 베이스 시퀀스 매개 변수와 PUCCH HARQ-ACK에 대한 UE 특정 자원 오프셋 매개 변수를 포함하는 UE 특정 RRC 구성의 둘 다를 사용자 장비로 전송하도록 구성되는 송신기를 포함한다. 기지국은 셀 특정 RRC 구성 또는 UE 특정 RRC 구성 중 하나에 기초하여 생성되는 HARQ-ACK 정보를 반송하는 PUCCH를 수신하도록 구성된 수신기를 추가로 포함한다.
적어도 하나의 기지국을 포함하는 셀로부터 통신을 수신할 수 있는 사용자 장비가 제공된다. 사용자 장비는 HARQ-ACK를 반송하는 PUCCH에 대한 셀 특정 자원 오프셋 매개 변수를 포함하는 셀 특정 무선 자원 제어(RRC) 구성, 및 UE 특정 RS 베이스 시퀀스 매개 변수와 HARQ-ACK를 반송하는 PUCCH에 대한 UE 특정 자원 오프셋 매개 변수를 포함하는 UE 특정 RRC 구성의 둘 다를 기지국으로부터 수신하도록 구성되는 수신기를 포함한다. 사용자 장비는 셀 특정 RRC 구성 또는 UE 특정 RRC 구성 중 하나에 기초하여 생성되는 HARQ-ACK 정보를 반송하는 PUCCH를 전송하도록 구성된 송신기를 추가로 포함한다.
간섭 완화를 위한 방법이 제공된다. 이러한 방법은 HARQ-ACK를 반송하는 PUCCH에 대한 셀 특정 자원 오프셋 매개 변수를 포함하는 셀 특정 무선 자원 제어(RRC) 구성, 및 UE 특정 RS 베이스 시퀀스 매개 변수와 HARQ-ACK를 반송하는 PUCCH에 대한 UE 특정 자원 오프셋 매개 변수를 포함하는 특정 RRC 구성의 둘 다를 사용자 장비로 전송하는 단계를 포함한다. 방법은 셀 특정 RRC 구성 또는 UE 특정 RRC 구성 중 하나에 기초하여 생성되는 PUCCH를 수신하는 단계를 추가로 포함한다.
본 발명에 따르면, 수신기의 디코딩 성능은 최적의 순서를 찾기 위해 가능한 모든 디코딩 순서를 검색하는 수신기만큼 복잡하지 않고 임의로 또는 미리 정해진 순서로 스트림을 디코딩하는 수신기에 비해 개선된다.
본 발명 및 이의 이점에 대한 더욱 완전한 이해를 위해, 이제 첨부된 도면과 함께 취해진 다음의 설명에 대한 참조가 행해지며, 여기서 동일한 참조 번호는 동일한 부분을 나타낸다.
도 1은 본 발명의 실시예에 따라 데이터 스트림을 디코딩할 수 있는 직교 주파수 분할 다중 접속(OFDMA) 무선 네트워크를 도시한다.
도 2a는 본 발명의 실시예에 따른 OFDMA 송신기의 높은 수준의 다이어그램이다.
도 2b는 본 발명의 실시예에 따른 OFDMA 수신기의 높은 수준의 다이어그램이다.
도 3은 본 발명의 실시예에 따른 LTE 시스템의 예시적인 OFDM 프레임을 도시한다.
도 4는 본 발명의 실시예에 따른 기지국 및 가입자국 사이의 메시지에 대한 흐름도를 도시한다.
도 5는 본 발명의 실시예에 따른 DL 반송파의 채널 제어 요소(CCE) 자원을 도시한다.
도 6은 본 발명의 실시예에 따라 업링크(UL) 반송파에서 RB에 있는LTE 물리적 업링크 제어 채널(PUCCH) 자원 파티션을 도시한다.
도 7은 본 발명의 실시예에 따라 데이터 스트림을 디코딩할 수 있는 무선 네트워크를 도시한다.
도 8a 및 도 8b는 본 발명의 실시예에 따라 간섭 가입자로 지정되는 PUCCH 물리적 자원 블록을 도시한다.
도 9는 향상된 PDCCH(E-PDCCH)가 본 발명의 실시예에 따라 물리적 다운링크 공유 채널(PDSCH) 영역에 배치되는 다운링크 자원을 도시한다.
아래의 발명의 상세한 설명에 착수하기 전에, 본 특허 문서에서 사용되는 어떤 단어 및 구에 대한 정의: 용어 "포함한다" 뿐만 아니라 이의 파생어는 제한 없이 포함을 의미하고; 용어 "또는"는 포괄적 의미 및/또는 이고; 구 "과 관련된(associated with)" 및 "이와 관련된(associated therewith)" 뿐만 아니라 이의 파생어는 포함하고, 내에 포함되고, 와 상호 연결하고, 에 연결하거나 와 연결하고, 에 결합하거나 와 결합하고, 와 통신할 수 있고, 와 협력하고, 인터리브하고, 병치하고, 에 근접하고, 에 바운드되거나 와 바운트되며, 의 속성을 가지며, 등을 의미할 수 있으며; 용어 "제어기"는 적어도 하나의 동작을 제어하는 임의의 장치, 시스템 또는 이의 부품을 의미하며, 이러한 장치는 하드웨어, 펌웨어, 소프트웨어, 또는 이들 중 적어도 둘의 어떤 조합으로 구현될 수 있다.
임의의 특정 제어기와 관련된 기능은 국부적으로든 원격적으로든 중앙 집중되거나 분산될 수 있다는 것이 주목되어야 한다. 어떤 단어 및 구에 대한 정의는 본 특허 문서에 제공되며, 당업자는 대다수의 경우는 아닐지라도 많은 경우에 이러한 정의가 이러한 정의된 단어 및 구의 이전 사용 뿐만 아니라 향후 사용에도 적용한다는 것을 이해해야 한다.
아래에서 논의된 도 1 내지 도 9, 및 본 특허 문서에서 본 발명의 원리를 설명하는 데 사용되는 다양한 실시예는 단지 예시적이며, 어떤 식으로든 본 발명의 범주를 제한하는 것으로 해석되지 않아야 한다. 당업자는 본 발명의 원리가 임의의 적절하게 배치된 무선 통신 네트워크에서 구현될 수 있다는 것을 이해할 것이다.
다음의 설명에 관해서는, 3GPP LTE(Long Term Evolution) 용어 "노드 B"는 아래에 사용되는 "기지국"에 대한 다른 용어인 것이 주목된다. 또한, LTE 용어 "사용자 장비" 또는 "UE"는 아래에 사용되는 "가입자국"에 대한 다른 용어이다.
다음의 표준 설명: 3GPP Technical Specification No. 36.211, 버전 10.1.0, "E-UTRA, Physical Channels And Modulation" ; .3GPP Technical Specification No. 36.212, 버전 10.1.0, "E-UTRA, Multiplexing And Channel Coding" ; 및 3GPP Technical Specification No. 36.213, 버전 10.1.0, "E-UTRA, Physical Layer Procedures"은 여기에 완전히 설명된 것처럼 본 발명에 결과적으로 통합된다.
도 1은 본 발명의 일 실시예에 따라 데이터 스트림을 디코딩할 수 있는 예시적인 무선 네트워크(100)를 도시한다. 도시된 실시예에서, 무선 네트워크(100)는 기지국(BS)(101), 기지국(BS)(102), 및 기지국(BS)(103)을 포함한다. 기지국(101)은 기지국(102) 및 기지국(103)과 통신한다. 기지국(101)은 또한 인터넷, 사설(proprietary) 인터넷 프로토콜(IP) 네트워크 또는 다른 데이터 네트워크와 같은 IP 네트워크(130)와 통신한다.
기지국(102)은 기지국(101)을 통해 네트워크(130), 및 기지국(102)의 커버리지 영역(120) 내의 제 1 복수의 사용자 장비에 무선 광대역 액세스를 제공한다. 제 1 복수의 사용자 장비는 사용자 장비(UE)(111), 사용자 장비(UE)(112), 사용자 장비(UE)(113), 사용자 장비(UE)(114), 사용자 장비(UE)(115) 및 사용자 장비(UE)(116)를 포함한다. 사용자 장비(UE)는 이동 전화, 모파일 PDA 및 임의의 이동국(MS )과 같은 임의의 무선 통신 장치일 수 있지만, 이에 제한되지 않는다. 예시적인 실시예에서, UE(111)는 소규모 기업(SB)에 위치될 수 있고, UE(112)는 엔터프라이즈(E)에 위치될 수 있고, UE(113)는 Wi-Fi 핫스팟(HS)에 위치될 수 있고, UE(114)는 제 1 레지던스(residence)에 위치될 수 있고, UE(115)는 제 2 레지던스에 위치될 수 있으며, UE(116)는 모바일(M) 장치일 수 있다.
기지국(103)은 기지국(101)을 통해 네트워크(130), 및 기지국(103)의 커버리지 영역(125) 내의 제 2 복수의 사용자 장비에 무선 광대역 액세스를 제공한다. 제 2 복수의 사용자 장비는 사용자 장비(115) 및 사용자 장비(116)를 포함한다. 대안적인 실시예에서, 기지국(102 및 103)은 간접적으로 기지국(101)을 통하기보다는 광섬유, DSL, 케이블 또는 T1/E1 라인과 같은 유선 광대역 연결에 의해 인터넷에 직접 연결될 수 있다.
다른 실시예에서, 기지국(101)은 다소의 기지국과 통신할 수 있다. 더욱이, 도 1에는 6개의 사용자 장비만이 도시되어 있지만, 무선 네트워크(100)는 7개 이상의 사용자 장비에 무선 광대역 액세스를 제공할 수 있다는 것이 이해된다. 사용자 장비(115) 및 사용자 장비(116)는 커버리지 영역(120) 및 커버리지 영역(125) 둘 다의 가장자리에 있다는 것이 주목된다. 사용자 장비(115) 및 사용자 장비(116)는 제각기 기지국(102) 및 기지국(103) 둘 다와 통신하고, 당업자에게 알려진 바와 같이 핸드오프 모드에서 동작하는 것으로 불리어질 수 있다.
예시적인 실시예에서, 기지국(101-103)은 예를 들어 IEEE-802.16e 표준과 같은 IEEE-802.16 무선 수도권(metropolitan area) 네트워크 표준을 사용하여 서로 통신하고 사용자 장비(111-116)와 통신할 수 있다. 그러나, 다른 실시예에서, 예를 들어, HIPERMAN 무선 수도권 네트워크 표준과 같이 상이한 무선 프로토콜이 채용될 수 있다. 기지국(101)은 무선 백홀(backhaul)에 사용되는 기술에 따라 기지국(102) 및 기지국(103)과 직접 가시선(line-of-sight) 또는 비가시선을 통해 통신할 수 있다. 기지국(102) 및 기지국(103)은 제각기 OFDM 및/또는 0FDMA 기술 사용자 장비를 사용하여 사용자 장비(111-116)와 비가시선을 통해 통신할 수 있다.
기지국(102)은 T1 수준의 서비스를 엔트프라이즈와 관련된 사용자 장비(112)에 제공하고, 부분 T1 수준의 서비스를 소기업과 관련된 사용자 장비(111)에 제공할 수 있다. 기지국(102)은 공항, 카페, 호텔 또는 대학 캠퍼스에 위치될 수 있는 Wi-Fi와 관련된 사용자 장비(113)에 무선 백홀을 제공할 수 있다. 기지국(102)은 디지털 가입자 회선(DSL) 수준의 서비스를 사용자 장비(114, 115 및 116)에 제공할 수 있다.
사용자 장비(111-116)는 음성, 데이터, 비디오, 비디오 화상 회의 및/또는 다른 광대역 서비스에 액세스하기 위해 네트워크(130)에 대한 광대역 액세스를 사용할 수 있다. 예시적인 실시예에서, 사용자 장비(111-116) 중 하나 이상은 Wi-Fi WLAN의 액세스 포인트(AP)와 관련될 수 있다. 사용자 장비(116)는 무선 가능 랩톱 컴퓨터, 개인 휴대 정보 UE기, 노트북, 핸드헬드 장치 또는 다른 무선 가능 장치를 포함하는 다수의 모바일 장치 중 어느 하나일 수 있다. 사용자 장비(114 및 115) 예를 들어, 무선 가능 개인용 컴퓨터, 랩톱 컴퓨터, 게이트웨이 또는 다른 장치일 수 있다.
점선은 예시적이고 설명만을 위해 거의 원형으로 도시되는 커버리지 영역(120 및 125)의 대략적인 범위를 나타낸다. 기지국과 관련된 커버리지 영역, 예를 들어, 커버리지 영역(120 및 125)은 자연 및 인공적인 장애물과 관련된 무선 환경의 변화 및 기지국의 구성에 따라 불규칙한 형상을 포함하는 다른 형상을 가질 수 있다는 것이 명백히 이해되어야 한다.
또한, 기지국과 관련된 커버리지 영역은 시간이 지남에 따라 일정하지 않으며, 기지국 및/또는 사용자 장비의 전송 전력 레벨, 기상 조건 및 다른 요인의 변경에 기초하여 (형상을 확장, 수축 또는 변경하는) 동적일 수 있다. 실시예에서, 기지국의 커버리지 영역, 예를 들어, 기지국(102 및 103)의 커버리지 영역(120 및 125)의 반경은 기지국으로부터 2미만 km 내지 약 50km의 범위 내에 연장할 수 있다.
본 기술 분야에 잘 알려져 있는 바와 같이, 기지국(101, 102 또는 103)과 같은 기지국은 커버리지 영역 내에서 복수의 섹터를 지원하기 위해 지향성 안테나를 채용할 수 있다. 도 1에서, 기지국(102 및 103)은 제각기 대략적으로 커버리지 영역(120 및 125)의 중심에 도시되어 있다. 다른 실시예에서, 지향성 안테나의 사용은 예를 들어 원뿔 형상 또는 배 형상의 커버리지 영역의 지점에서 커버리지 영역의 가장자리 근처에 기지국을 위치시킬 수 있다.
기지국(101)으로부터의 네트워크(130)에 대한 연결은 중앙 사무실 또는 다른 운영 회사의 POP(point-of-presence)에 위치된 서버에 대한 광대역 연결, 예를 들어, 광섬유 회선을 포함할 수 있다. 서버는 인터넷 프로토콜 기반의 통신을 위한 인터넷 게이트웨이와 음성 기반의 통신을 위한 공중 전화 교환 네트워크 게이트웨이에 통신을 제공할 수 있다. VoIP(voice-over-IP)의 형태의 음성 기반의 통신의 경우에, 트래픽은 PSTN 게이트웨이 대신에 인터넷 게이트웨이로 직접 전송될 수 있다. 서버, 인터넷 게이트웨이 및 공중 전화 교환 네트워크 게이트웨이는 도 1에 도시되지 않는다. 다른 실시예에서, 네트워크(130)에 대한 연결은 상이한 네트워크 노드 및 장비에 의해 제공될 수 있다.
본 발명의 실시예에 따르면, 기지국(101-103) 중 하나 이상 및/또는 사용자 장비(111-116) 중 하나 이상은 MMSE-SIC 알고리즘을 사용하여 복수의 전송 안테나로부터 조합된 데이터 스트림으로 수신된 복수의 데이터 스트림을 디코딩하기 위해 동작할 수 있는 수신기를 포함한다. 아래에 더욱 상세히 설명되는 바와 같이, 수신기는 데이터 스트림의 강도와 관련된 특성에 기초하여 계산되는 각 데이터 스트림에 대한 디코딩 예측 메트릭에 기초하여 데이터 스트림에 대한 디코딩 순서를 결정하기 위해 동작할 수 있다. 따라서, 일반적으로, 수신기는 먼저 가장 강력한 데이터 스트림을 디코딩하고 나서, 다음 강력한 데이터 스트림 순서로 디코딩할 수 있다. 결과적으로, 수신기의 디코딩 성능은 최적의 순서를 찾기 위해 가능한 모든 디코딩 순서를 검색하는 수신기만큼 복잡하지 않고 임의로 또는 미리 정해진 순서로 스트림을 디코딩하는 수신기에 비해 개선된다.
도 2a는 직교 주파수 분할 다중 접속(0FDMA) 송신 경로의 높은 수준의 다이어그램이다. 도 2b는 직교 주파수 분할 다중 접속(0FDMA) 수신 경로의 높은 수준의 다이어그램이다. 도 2a 및 2b에서, OFDMA 송신 경로는 기지국(BS)(102)에서 구현되고, OFDMA 수신 경로는 예시적이고 설명만을 위해 사용자 장비(UE)(116)에서 구현된다. 그러나, OFDMA 수신 경로는 또한 BS(102)에서 구현될 수 있고, OFDMA 전송 경로는 UE(116) 에서 구현 될 수 있다는 것이 당업자에 의해 이해 될 것이다.
BS(102)의 송신 경로는 채널 코딩 및 변조 블록(205), 직렬-병렬(S-P) 블록(210), 크기 N 역 고속 푸리에 변환(IFFT) 블록(215), 병렬-직렬(P-S) 블록(220), 추가의 주기적 프리픽스(add cyclic prefix) 블록(225), 상향 변환기(UC)(230)를 포함한다. UE(116)의 수신 경로는 하향 변환기(DC)(255), 제거의 주기적 프리픽스 블록(260), 직렬-병렬(S-P) 블록(265), 크기 N 고속 푸리에 변환(FFT) 블록(270), 병렬-직렬(P-S) 블록(275), 채널 디코딩 및 복조 블록(280)을 포함한다.
도 2a 및 2b의 구성 요소 중 적어도 일부는 소프트웨어로 구현될 수 있지만, 다른 구성 요소는 구성 가능한 하드웨어 또는 소프트웨어 및 구성 가능한 하드웨어의 혼합물에 의해 구현될 수 있다. 특히, 본 발명의 문서에 설명된 FFT 블록 및 IFFT 블록은 크기 N의 값이 구현에 따라 수정될 수 있는 구성 가능한 소프트웨어 알고리즘으로 구현될 수 있다는 것이 주목된다.
더욱이, 본 발명이 고속 푸리에 변환 및 역 고속 푸리에 변환을 구현하는 실시예에 대한 것이지만, 이것은 예시만을 위한 것이며, 본 발명의 범주를 제한하는 것으로 해석되지 않아야 한다. 본 발명의 대안적인 실시예에서, 고속 푸리에 변환 함수 및 역 고속 푸리에 변환 함수는 제각기 이산 푸리에 변환(DFT) 함수 및 역 이산 푸리에 변환(IDFT) 함수로 쉽게 대체될 수 있다는 것이 이해될 것이다. DFT 및 IDFT 함수에 대해, N 변수의 값은 임의의 정수(즉, 1, 2 , 3, 4 등)일 수 있지만, FFT 및 IFFT 함수에 대해 N 변수의 값은 2의 거듭 제곱(즉, 1, 2, 4, 8 , 16 등)일 수 있다는 것이 이해될 것이다.
BS(102)에서, 채널 코딩 및 변조 블록(205)은 정보 비트의 세트를 수신하고, 코딩(예를 들어, 터보(Turbo) 코딩)을 적용하며, 주파수 도메인의 변조 심볼의 시퀀스를 생성하기 위해 입력 비트를 변조시킨다(예를 들어, QPSK, QAM). 직렬-병렬 블록(210)은 N 병렬 심볼 스트림을 생성하기 위해 직렬 변조된 심볼을 병렬 데이터로 변환하며(즉, 역 다중화하며), N은 BS(102) 및 UE(116)에서 사용되는 IFFT/FFT 크기다. 그 후, 크기 N IFFT 블록(215)은 시간 도메인 출력 신호를 생성하기 위해 N의 병렬 심볼 스트림에 대한 IFFT 동작을 수행한다. 병렬-직렬 블록(220)은 직렬 시간 도메인 신호를 생성하기 위해 크기 N IFFT 블록(215)으로부터 병렬 시간 도메인 출력 심볼을 변환한다(즉, 다중화한다). 그 다음, 추가의 주기적 프리픽스 블록(225)은 주기적 프리픽스를 시간 도메인 신호에 삽입한다. 마지막으로, 상향 변환기(230)는 무선 채널을 통해 전송하기 위해 추가의 주기적 프리픽스 블록(225)의 출력을 RF 주파수로 변조한다(즉, 상향 변환한다). 신호는 또한 RF 주파수로 변환하기 전에 기저대에서 필터링될 수 있다.
전송된 RF 신호는 무선 채널을 통해 통과한 후에 UE(116)에 도달하며, BS(102)에서의 동작에 대한 역방향 동작이 수행된다. 하향 변환기(255)는 수신된 신호를 기저대 주파수로 하향 변환하고, 제거 주기적 프리픽스 블록(260)은 직렬 시간 도메인 기저대 신호를 생성하는 위해 주기적 프리픽스를 제거한다. 직렬-병렬 블록(265)은 시간 도메인 기저대 신호를 병렬 시간 도메인 신호로 변환한다. 그 다음, 크기 N FFT 블록(270)은 N 병렬 주파수 도메인 신호를 생성하기 위해 FFT 알고리즘을 수행한다. 병렬-직렬 블록(275)은 병렬 주파수 도메인 신호를 변조된 데이터 심볼의 시퀀스로 변환한다. 채널 디코딩 및 복조 블록(280)은 복조하여, 원래의 입력 데이터 스트림을 복구하기 위해 변조된 심볼을 디코딩한다.
기지국(101-103)의 각각은 다운링크에서 사용자 장비(111-116)로 전송하는 것과 유사한 전송 경로를 구현할 수 있고, 업링크에서 사용자 장비(111-116)로부터 수신하는 것과 유사한 수신 경로를 구현할 수 있다. 마찬가지로, 사용자 장비(111-116)의 각각은 업링크에서 기지국(101-103)으로 전송하기 위한 아키텍처에 상응하는 전송 경로를 구현할 수 있고, 다운링크에서 기지국(101-103)으로부터 수신하기 위한 아키텍처에 상응하는 수신 경로를 구현할 수 있다.
본 발명은 기지국 구성에 관련된 정보를 사용자 장비로 전달하는 방법 및 시스템을 나타내며, 특히, 기지국 안테나 구성을 사용자 장비로 중계하는 것에 관한 것이다. 이러한 정보는 안테나 구성을 직교 위상 시프트 키잉(QPSK) 성상(constellation)(예를 들어, n-직교 진폭 변조(QAM) 신호, n은 2^x임)에 배치하는 단계, 및 안테나 구성을 에러 정정 데이터(예를 들어, 주기적 중복 검사(CRC) 데이터)에 배치하는 단계를 포함하는 복수의 방법을 통해 전달될 수 있다. 안테나 정보를 QPSK 성상 또는 에러 정정 데이터 중 하나로 인코딩함으로써, 기지국(101-103)은 안테나 구성을 별도로 전송하지 않고 기지국(101-103)의 안테나 구성을 전달할 수 있다. 이러한 시스템 및 방법은 기지국(101-103)과 복수의 사용자 장비 사이에 신뢰성 있는 통신을 보장하면서 오버헤드를 감소시킬 수 있다.
여기에 개시된 일부 실시예에서, 데이터는 QAM을 사용하여 전송된다. QAM은 두 반송파의 진폭을 변조시켜 데이터를 전달하는 변조 방식이다. 이러한 두 반송파는 직교 반송파로 지칭되며, 일반적으로 90도만큼 서로 위상이 다르다. QAM은 2Λx 점을 포함하는 성상으로 나타낼 수 있으며, 여기서 x는 1보다 큰 정수이다. 여기에서 논의된 실시예에서, 논의된 성상은 4개의 점 성상(4-QAM)일 것이다. 4-QAM 성상에서, 2차원 그래프는 2차원 그래프의 각 사분면에서 하나의 점으로 나타낸다. 그러나, 여기에 논의된 혁신(innovation)은 성상의 많은 점과 함께 어떤 변조 방식으로 사용될 수 있다는 것이 명시적으로 이해된다. 5 이상의 점을 가진 성상으로, 기지국(101-103)의 구성에 관한 추가적인 정보(예를 들어, 기준 전력 신호)는 개시된 시스템 및 방법에 따라 전달될 수 있다는 것이 추가로 이해된다.
기지국(101-103) 내의 송신기는 실제로 데이터를 전송하기 전에 복수의 기능을 수행한다는 것이 이해된다. 4-QAM 실시예에서, QAM 변조된 심볼은 직렬-병렬 변환되고, 역 고속 푸리에 변환(IFFT)으로 입력된다. IFFT의 출력에서는, N 시간 도메인 샘플이 획득된다. 개시된 실시예에서, N은 OFDM 시스템에 의해 사용되는 IFFT/고속 푸리에 변환(FFT) 크기를 나타낸다. IFFT 후의 신호는 병렬-직렬 변환되고, 주기적 프리픽스(CP)는 신호 시퀀스에 추가된다. 생성된 샘플의 시퀀스는 OFDM 심볼이라고 한다.
사용자 장비 내의 수신기에서, 이러한 프로세스는 반대로 되고, 주기적 프리픽스가 먼저 제거된다. 그런 다음, 신호는 FFT에 공급되기 전에 직렬-병렬 변환된다. FFT의 출력은 병렬-직렬 변환되고, 생성된 QAM 변조 심볼은 QAM 복조기에 입력된다.
OFDM 시스템의 총 대역폭은 부반송파라고 하는 협대역 주파수 단위로 분할된다. 부반송파의 수는 시스템에 사용된 FFT/IFFT 크기 N과 동일하다. 일반적으로, 주파수 스펙트럼의 가장자리에서 일부 부반송파가 보호(guard) 부반송파로 예약되어 있기 때문에 데이터에 사용되는 부반송파의 수는 N보다 작다. 일반적으로, 정보는 보호 부반송파에서 전송되지 않는다.
도 3은 본 발명의 실시예에 따른 LTE 시스템의 예시적인 OFDM 프레임을 도시한다. 도 3에 도시된 프레임(300)의 실시예는 단지 예시를 위한 것이다. LTE 프레임의 다른 실시예는 본 발명의 범주에서 벗어나지 않고 사용될 수 있다.
LTE 시스템의 시간 자원은 10 밀리초(10 msec) 프레임(300)으로 분할된다. 각 프레임(300)은 추가로 10개의 서브프레임(310-319)으로 분할된다. 각 서브프레임(310-319)은 추가로 2개의 시간 슬롯(320, 325)으로 나누어진다. 2개의 시간 슬롯(320, 325)은 제각기 0.5 밀리초(0.5 msec)이다.
도 4는 본 발명의 실시예에 따라 기지국과 사용자 장비 사이의 메시지에 대한 흐름도를 도시한다. 도 4에 도시된 흐름도의 실시예는 단지 예시를 위한 것이다. 흐름도의 다른 실시예는 본 발명의 범주에서 벗어나지 않고 사용될 수 있다.
BS(102)는 UE(116)로의 DL 전송을 스케줄링하고 시작한다. DL 전송에서 각 서브프레임(310-319)에 대해, BS(102)는 DL 제어 정보(DCI)를 PDCCH의 UE(116)로 전송한다. DCI는 서브프레임(310-319)에서 처음 몇몇 OFDM 심볼 내에 위치된다. 예를 들면, DCI는 서브프레임(310, 311 및 312) 중 하나 이상에 위치될 수 있다. DCI는 (도 3에 도시된 바와 같이) 시간 슬롯(320, 325)에서, DL 반송파(330)로 사용되는 심볼 중 하나에 위치될 수 있다. DCI는 UE(116)에 대한 할당된 RB 뿐만 아니라 추가적인 정보를 나타낸다.
UE(116)를 타겟으로 하는 DL 승인의 수신 시에, UE(116)는 할당된 RB에 대해 전송된 메시지를 디코딩하기를 시도한다. 각 전송된 서브프레임(310-319)에 대한 디코딩 결과에 따라, UE(116)는 하이브리드 ARQ 비트(또는 업링크 ACK/NACK 비트)를 나중에 몇몇 서브프레임에 대해 BS(102)로 전송한다. 예를 들면, 주파수 분할 듀플렉스(FDD) 시스템에서, UE(116)는 서브프레임 n-4에서 수신된 DCI(410)에 대한 디코딩 결과에 응답하여 서브프레임 n에서 ACK/NACK 응답(405)을 전송한다.
도 5는 DL 반송파에서의 채널 제어 요소(CCE)를 도시한다. 도 5에 도시된 CCE(500)의 실시예는 단지 예시를 위한 것이다. CCE의 다른 실시예는 본 발명 의 범주에서 벗어나지 않고 사용될 수 있다.
DCI를 반송하는 PDCCH는 하나 이상의 연속 CCE(500)의 애그리게이션(aggregation)에서 전송된다. DL 반송파(330)에서 이용할 수 있는 CCE(500)는 0에서 NCCE-1까지 번호가 매겨진다.
CCE(500)는 다운링크 승인을 전송하기 위해 사용되는 제어 요소이다. UE(116)는 UE(116)에 할당된 다운링크 승인을 결정하기 위해 CCE(500)를 판독한다. 예를 들면, CCE('012)가 UE(116)로 전송되면, UE(116)는 CCE('012)가 UE(116)에 할당되는 것을 판단한다. 따라서, UE(116)는 CCE의 콘텐츠를 살필 뿐만 아니라 콘텐츠가 전송되는 위치도 살핀다. 따라서, 일부 실시예에서, UE(116)는 무슨 CCE가 다운링크 승인에 사용되는지에 기초하여 응답(예를 들어, ACK/NAC )하는 데 사용할 어떤 자원을 알고 있다.
도 6은 업링크(UL) 반송파에서 RB에 있는 LTE 물리적 업링크 제어 채널(PUCCH) 자원 파티션을 도시한다. 도 6에 도시된 PUCCH 파티션(600)의 실시예는 단지 예시를 위한 것이다. CCE의 다른 실시예는 본 발명의 범주에서 벗어나지 않고 사용될 수 있다.
UL ACK/NACK(AN) 비트는 PUCCH 포맷(1a 및 1b)에서 전송된다. PUCCH 포맷(1a/1b)의 전송에 사용되는 자원은 음이 아닌 인덱스
Figure pct00001
로 나타낸다. 하이브리드 자동 반복 요청(HARQ) - ACK/NCAK에 대한 PUCCH 자원 인덱스
Figure pct00002
는 직교 커버(605) 및 주기적 시프트(610)를 결정한다. 직교 커버(605) 및 주기적 시프트(610)는 고유 자원을 나타낸다. 예를 들면, 36(예를 들어, 3x12) PUCCH AN 자원은 하나의 RB에서 이용할 수 있다.
도 7은 본 발명의 실시예에 따라 데이터 스트림을 디코딩할 수 있는 네트워크(700)를 도시한다. 도 7에 도시된 네트워크(700)의 실시예는 단지 예시를 위한 것이다. 다른 실시예는 본 발명의 범주에서 벗어나지 않고 사용될 수 있다.
도시된 실시예에서, 사용자 장비(UE)(713 및 714)는 로컬 기지국(701a 및 701b)을 통해
Figure pct00003
의 셀 ID를 가진 기지국(BS)(701)에 연결된다. 사용자 장비(711)는 BS(701)에 직접 연결된다. 대안적으로, UE(712 및 715)는
Figure pct00004
의 셀 ID를 가진 BS(702)에 연결된다.
BS(701)에 연결된 UE(713 및 714)는 서로 떨어져 위치된다. 상이한 BS(702)에 연결된 UE(712 및 715)는 또한 서로 떨어져 위치된다. 그러나, UE(711 및 712)는 근접하여 위치되지만, 2개의 상이한 기지국에 연결되며, 즉, UE(711)는 BS(701)에 연결되고, SS(712)는 BS(702)에 연결된다.
지정된 임계값 위에서 다른 사용자 장비를 방해하도록 근접하여 위치되고, 제각기 다른 사용자 장비와 상이한 셀에 연결되는 사용자 장비는 본 발명에 대한 '높은 간섭 사용자 장비(high interfering user equipment)'로 나타낸다. 예를 들면, 도 7에 도시된 UE(711 및 712)는 높은 간섭 사용자 장비이다. 지정된 임계값은 서비스 제공자의 요구 사항을 충족하기 위해 다양한 수준에서 조정될 수 있다.
어떤 실시예에서, 네트워크(700)는 셀 특정 무선 자원 제어(RRC) 구성 및 UE 특정 RRC 구성의 둘 다를 사용자 장비로 전송할 수 있다. 셀 특정 RRC 구성은 PUCCH HARQ-ACK에 대한 셀 특정 자원 오프셋 매개 변수를 포함할 수 있다. UE 특정 구성은 UE 특정 RS 베이스 시퀀스 매개 변수 및 PUCCH HARQ-ACK 에 대한 UE 특정 자원 오프셋 매개 변수를 포함 할 수 있다.
UE 특정 RRC 구성이 사용자 장비에 적용 가능하면, 사용자 장비는 UE 특정 RS 베이스 시퀀스 매개 변수 및 PUCCH HARQ-ACK에 대한 UE 특정 자원 오프셋 매개 변수를 사용하여 생성된 UE 특정 RS로 생성되는 HARQ-ACK를 반송하는 UE 특정 PUCCH를 전송할 수 있다.
UE 특정 RRC 구성이 사용자 장비에 적용할 수 없다면, 사용자 장비는 PUCCH HARQ-ACK에 대한 셀 특정 자원 오프셋 매개 변수를 사용하여 생성된 셀 특정 기준 신호로 생성되는 HARQ-ACK를 반송하는 셀 특정 PUCCH를 전송할 수 있다.
어떤 실시예에서, 네트워크(700)는 동일한 UE 특정 RS 베이스 시퀀스 및 UE 특정 자원 오프셋 매개 변수를 간섭이 지정된 임계값보다 높은 UE(711 및 712)로 전송할 수 있다. 따라서, 높은 간섭 UE(711 및 712)는 동일한 UE 특정 RRC 구성을 사용하여 생성되는 HARQ-ACK 정보를 반송하는 조정된 PUCCH를 전송할 수 있다.
어떤 실시예에서, 네트워크(700)는 간섭이 지정된 임계값보다 낮은 UE(713, 714 및 715)와 같은 UE로 UE 특정 RRC 구성을 전송할 수 있다. 따라서, 낮은 간섭 UE는 UE 특정 RRC 구성에 기초하여 생성되는 HARQ-ACK 정보를 반송하는 UE 특정 PUCCH를 전송할 수 있다.
실시예에서, 네트워크(700)는 동일한 UE 특정 RS 구성 베이스 시퀀스 매개 변수를 UE(711 및 712)로 전송할 수 있다. UE(711 및 712)는 동일한 RS 베이스 시퀀스 1을 사용하여 HARQ-ACK를 반송하는 PUCCH를 전송한다. 따라서, UE(711 및 712)는 서로에 작은 UL 간섭을 유발시킨다. 반면에, UE(713, 714 및 715)는 제각기 RS 베이스 시퀀스 2, 3 및 4인 UE 특정 RS 베이스 시퀀스로 생성 된 UE 특정 PUCCH를 전송한다. 따라서, 사용자 장비로부터 전송된 PUCCH는 서로 직교할 수 있다. 상술한 바와 같이, 높은 간섭 또는 낮은 간섭을 결정하는 임계값은 서비스 제공자의 다양한 요구 사항을 충족하도록 조정될 수 있다.
도 8a 및 8b는 본 발명의 실시예에 따라 간섭 사용자 장비에 명시되는 PUCCH 물리적 자원 블록을 도시한다. 도 8a 및 8b에 도시된 PUCCH 물리적 자원 블록의 실시예는 단지 예시를 위한 것이다. 다른 실시예는 본 발명의 범주에서 벗어나지 않고 사용될 수 있다. UE(711 및 712)는 동일한 RS 베이스 시퀀스 1을 사용하여 HARQ-ACK를 반송하는 조정된 PUCCH를 전송한다. 따라서, UE(711 및 712)는 서로 UL 간섭을 감소시킬 수 있다.
어떤 실시예에서, PUCCH에 대한 자원 인덱스 수,
Figure pct00005
는 다음 식에 의해 결정된다:
Figure pct00006
식 1 에서,
Figure pct00007
은 PUCCH가 HARQ-ACK 정보를 반송하는 PDSCH를 스케줄링하는 상응하는 다운링크 제어 정보의 전송을 위해 사용되는 가장 작은 채널 제어 요소(CCE)의 수이고,
Figure pct00008
는 UE 특정 RRC 구성이 사용자 장비에 적용 가능할 경우에는 UE 특정 자원 오프셋 매개 변수이며, 그렇지 않으면
Figure pct00009
는 셀 특정 자원 오프셋 매개 변수이다._
어떤 실시예에서, UE 특정 RRC 구성은 UE 특정 RRC 구성 또는 셀 특정 RRC 구성이 사용자 장비에 적용할 수 있는지를 나타내는 표시 매개 변수를 포함할 수 있다. 표시 매개 변수는 TRUE 또는 FALSE의 값을 가질 수 있으며, TRUE은 UE 특정 RRC 구성이 사용자 장비에 적용할 수 있다는 것을 의미하고, FALSE은 셀 특정 RRC 구성이 사용자 장비에 적용할 수 있다는 것을 의미한다.
어떤 실시예에서,
Figure pct00010
는 Table 6.10.5.2-1 in 3GPP TS 36.211, version 10.1.0, "E-UTRA, Physical Channels And Modulation"에서 정의된 0이 아닌 CSI-RS 전송 전력과 관련된 CSI-RS 구성 수 중 적어도 하나로부터 도출될 수 있으며, 이의 내용은 결과적으로 참조로 통합되고, 다음과 같이 본 발명에 대한 NCSI-RS로 나타낸다:
NCSI-RS는 사용자 장비가 PDCCH를 수신하는 주요 기지국의 CSI-RS 구성 수일 수 있다.
NCSI-RS는 이러한 모든 CSI-RS 구성 수 중 가장 작은 CSI-RS 구성 수일 수 있고, NCSI-RS는 이러한 모든 CSI-RS 구성 수 중 가장 큰 CSI-RS 구성 수일 수 있거나, NCSI-RS는 가장 작은 서브프레임 구성을 가진 CSI-RS 구성 수, CSI-RS 서브프레임 주기를 구성하는 RRC 매개 변수일 수 있다. 가장 작은 서브프레임 구성을 가진 2 이상의 구성 수와의 관계는 가장 작은 또는 가장 큰 CSI-RS 구성 수로 나눌 수 있다.
어떤 실시예에서, 네트워크는 RRC 구성에 의해
Figure pct00011
에 대한 N 후보(candidates)의 세트를 반정적으로(semi-statically) 구성할 수 있으며, 네트워크는 동적 신호에 의해 N 후보 중에서 하나의
Figure pct00012
을 동적으로 나타낸다.
예를 들면, N 후보의 수는 4일 수 있으며, 2 비트 정보 요소(IE)는 예를 들어 넷(4) 후보
Figure pct00013
를 생성하도록 다운링크 승인에 상응하는 PDCCH에 포함된다.
Figure pct00014
는 예시적인 테이블 1에 따른 IE의 값에 따라 넷(4) 후보
Figure pct00015
에서 선택될 수 있다.
Figure pct00016
를 나타내는 2 비트 IE
나타낸
Figure pct00017
00 RRC에 의해 구성된 제1
Figure pct00018
01 RRC에 의해 구성된 제2
Figure pct00019
10 RRC에 의해 구성된 제3
Figure pct00020
11 RRC에 의해 구성된 제4
Figure pct00021
어떤 실시예에서, 후보의 수 N은 2일 수 있으며, 1 비트 정보 요소(IE)는 예를 들어 둘(2) 후보
Figure pct00022
를 생성하도록 다운링크 승인에 상응하는 PDCCH에 포함된다. 하나의
Figure pct00023
는 예시적인 테이블 2에 따른 IE의 값에 따라 둘(2) 후보
Figure pct00024
에서 선택될 수 있다.
Figure pct00025
를 나타내는 2 비트 IE
나타낸
Figure pct00026
0 RRC에 의해 구성된 제1
Figure pct00027
1 RRC에 의해 구성된 제2
Figure pct00028
어떤 실시예에서, PUCCH에 대한 자원 인덱스 수,
Figure pct00029
는 다음 식에 의해 결정된다:
Figure pct00030
식 2에서,
Figure pct00031
은 PUCCH가 HARQ-ACK 정보를 반송하는 PDSCH를 스케줄링하는 상응하는 다운링크 제어 정보의 전송을 위해 사용되는 가장 작은 채널 제어 요소(CCE)의 수이고,
Figure pct00032
는 UE 특정 RRC 구성이 사용자 장비에 적용 가능할 경우에는 UE 특정 자원 오프셋 매개 변수이며, 그렇지 않으면
Figure pct00033
는 셀 특정 자원 오프셋 매개 변수이다.
어떤 실시예에서,
Figure pct00034
는 다음과 같이 NCSI-RS 중 적어도 하나로부터 도출된다:
NCSI-RS는 사용자 장비가 PDCCH를 수신하는 주요 기지국의 CSI-RS 구성 수일 수 있고; NCSI-RS는 이러한 모든 CSI-RS 구성 수 중 가장 작은 CSI-RS 구성 수일 수 있으며; NCSI-RS는 이러한 모든 CSI-RS 구성 수 중 가장 큰 CSI-RS 구성 수일 수 있거나, NCSI-RS는 가장 작은 서브프레임 구성을 가진 CSI-RS 구성 수, CSI-RS 서브프레임 주기를 구성하는 RRC 매개 변수일 수 있다. 가장 작은 서브프레임 구성을 가진 2 이상의 구성 수와의 관계는 가장 작은 또는 가장 큰 CSI-RS 구성 수로 나눌 수 있다.
도 9는 향상된 PDCCH(E-PDCCH)가 PDSCH 영역에 배치되는 다운링크 자원을 도시한다. 도 9에 도시된 다운링크 자원의 실시예는 단지 예시를 위한 것이다. 다른 실시예는 본 발명의 범주에서 벗어나지 않고 사용될 수 있다.
E-PDCCH(905)는 기지국 내에서 다운링크(DL) 제어 능력을 증대시키고, 다운링크 제어를 위한 셀간 간섭을 완화한다. 어떤 실시예에서, PUCCH 포맷 1/la/lb 자원은 DL 승인의 위치에 따라, 즉 PDCCH 또는 E-PDCCH(905)가 HARQ-ACK 피드백과 관련된 DL 승인을 전달하는 데 사용되는지의 여부에 따라 기준 신호(RS) 베이스 시퀀스로 생성될 수 있다.
어떤 실시예에서, 사용자 장비가 예시적인 테이블 3에 도시된 바와 같이 E-PDCCH(905) 영역에서 반송된 상응하는 다운링크 제어 정보를 수신할 때 PUCCH 포맷 1/la/lb 에 대한 사용자 장비의 특정 RS 베이스 시퀀스를 생성한다. 사용자 장비가 E-PDCCH(905) 영역에서 DL 승인을 수신할 때
Figure pct00035
맵핑에 대해, 식 1 또는 2는 E-PDCCH(905) 영역에서 DL 승인을 반송하는 제 1 CCE 수인
Figure pct00036
와 함께 사용될 수 있다.
DL 승인 위치 베이스 시퀀스 생성 방법
Figure pct00037
맵핑
PDCCH 셀 특정 PDCCH 영역 내에서 도출된
Figure pct00038
E-PDCCH 사용자 장비 특정 E-PDCCH 영역 내에서 도출된
Figure pct00039
본 발명의 일 실시예에 따르면, 사용자 장비는 업링크(UL) 기준 신호(RS) 베이스 시퀀스
Figure pct00040
를 생성할 수 있으며, 여기서 v는 PUCCH에 대해 0과 동일하고, v는 RRC에 의한 SRS에 대해 0 또는 1이도록 구성되며, 시퀀스 그룹 수 u는 다음 식으로부터 유도된다:
Figure pct00041
식 3에서,
Figure pct00042
는 그룹 호핑 패턴이고,
Figure pct00043
는 시퀀스 시프트 패턴이다.
Figure pct00044
Figure pct00045
,
Figure pct00046
가 물리적 업링크 제어 채널(PUCCH)을 생성하는 데 사용될 때 PUCCH에 대한 시퀀스 시프트 패턴과 동일하거나,
Figure pct00047
Figure pct00048
,
Figure pct00049
가 물리적 업링크 공유 채널(PUSCH)을 생성하는 데 사용될 때 PUSCH에 대한 시퀀스 시프트 패턴과 동일하다.
그룹 호핑 패턴
Figure pct00050
는 PUSCH 및 PUCCH의 둘 다에 대해 동일하며, 다음에 의해 주어진다:
Figure pct00051
식 4에서, 의사 랜덤 시퀀스
Figure pct00052
는 section 7.2 in 3GPP TS No. 36.211, version 10.1.0, “E-UTRA, Physical Channels And Modulation”에 의해 정의되며, 이의 내용은 전체적으로 참조로 통합된다. 의사 램덤 시퀀스 생성기는 각 무선 프레임의 초기에
Figure pct00053
로 초기화되어야 한다. 시퀀스 호핑만은 길이
Figure pct00054
의 기준 신호에 적용한다.
Figure pct00055
의 기준 신호에 대해, 베이스 시퀀스 그룹 내의 베이스 시퀀스 수 v는 v = 0에 의해 주어진다.
Figure pct00056
의 기준 신호에 대해, 슬롯
Figure pct00057
의 베이스 시퀀스 그룹 내의 베이스 시퀀스 수 v는 다음에 의해 정의된다:
Figure pct00058
RRC에 의해 제공되는 매개 변수 시퀀스 호핑 가능은 시퀀스 호핑이 가능한지의 여부를 판단한다. PUSCH에 대한 시퀀스 호핑은 상위 계층 매개 변수를 통해 어떤 사용자 장비에 대해 불가능하게 될 수 있다. 그럼에도 불구하고 디스에이블(disable) 시퀀스 그룹 호핑은 셀 별로 가능해진다. 의사 랜덤 시퀀스 생성기는 각 무선 프레임의 초기에
Figure pct00059
로 초기화되어야 한다.
시퀀스 그룹 호핑(SGH)이 턴온되는 실시예에서, 시퀀스 호핑(SH) 초기화 시드(seed)는 다음에 의해 결정된다:
Figure pct00060
식 6에서,
Figure pct00061
는 PUSCH에 대한 시퀀스 시프트 패턴이고,
Figure pct00062
는 시퀀스 그룹 호핑(SGH)에 대한 랜덤 시드이다.
어떤 실시예에서, 시퀀스 그룹 호핑(SGH)에 대한 랜덤 시드 cinit는 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 구성될 수 있다.
시퀀스 그룹 호핑(SGH)이 턴온되는 실시예에서,
Figure pct00063
는 0과 동일하고, 시퀀스 그룹 수 u는
Figure pct00064
또는
Figure pct00065
만에 의해 결정된다. 본 발명의 다른 실시예에 따르면, 시퀀스 시프트 패턴 은 다음 식을 사용하여 구성된다:
물리적 업링크 제어 채널(PUCCH) 및 사운드 기준 신호(SRS)에 대해,
Figure pct00067
식 7에서, N은 UE 특정 RRC 구성이 사용자 장비에 적용 가능할 경우에 UE 특정 RS 베이스 시퀀스 매개 변수이고, 그렇지 않으면 N은 셀의 셀 식별이다. N은 RRC 구성에 의해 구성되는
Figure pct00068
Figure pct00069
의 합으로 대체될 수 있다.
물리적 업링크 공유 채널(PUSCH) 복조 기준 신호(DMRS)에 대해,
Figure pct00070
식 8에서,
Figure pct00071
은 PUCCH에 대한 시퀀스 시프트 패턴이고,
Figure pct00072
는 RRC 구성에 의해 구성된다.
어떤 실시예에서,
Figure pct00073
는 3GPP TS 36.211 버전 8.9.0에서 정의된 바와 같이
Figure pct00074
이도록 설정될 수 있으며, 이는 여기에 완전히 설명되는 것처럼 본 발명에 통합되며,
Figure pct00075
는 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 RRC 또는 동적 신호와 같은 RRC에 의해 구성될 수 있다.
본 발명의 다른 실시예에서,
Figure pct00076
는 0일 수 있고,
Figure pct00077
는 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 RRC 또는 동적 신호와 같은 RRC에 의해 사용자 장비 특별하게 구성될 수 있다. 결과적으로, PUCCH , PUSCH DM RS 및 SRS의 시퀀스 시프트 패턴은 사용자 장비에 대해 사용자 장비 특별하게 구성될 수 있다.
어떤 실시예에서,
Figure pct00078
Figure pct00079
는 둘 다 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스 매개 변수에 할당되도록 UE 특정 RRC 구성 또는 동적 신호에 의해 구성될 수 있다.
어떤 실시예에서,
Figure pct00080
값은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 RRC 또는 동적 신호에 의해 {0,1, ..., 29}로부터 구성될 수 있다.
어떤 실시예에서,
Figure pct00081
값은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 RRC 또는 동적 신호에 의해 {0,1, ..., 29}로부터 구성될 수 있다.
어떤 실시예에서,
Figure pct00082
는 업링크(UL) 승인, 예를 들어 다운링크 제어 표시(DCI) 포맷 0 또는 DCI 포맷 4에서 동적으로 신호화될 수 있다. 동적 신호는 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 N 후보
Figure pct00083
값 중 하나의
Figure pct00084
값을 선택한다.
어떤 실시예에서,
Figure pct00085
값은 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 RRC에 의해 {0,1, ..., 29}로부터 구성된다.
어떤 실시예에서, 네트워크는 RRC 구성에 의해
Figure pct00086
에 대한 N 후보의 세트를 반정적으로 구성할 수 있으며, 네트워크는 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 PDCCH 신호에 의해 N 후보 중에서 하나의
Figure pct00087
을 동적으로 선택한다.
예를 들면, 후보의 수 N은 4일 수 있으며, 2 비트 정보 요소(IE)는 다음의 예시적인 테이블 4에 설정된 바와 같이 업링크(UL) 승인에 포함될 수 있다.
Figure pct00088
를 나타내는 2비트 IE
나타낸
Figure pct00089
00 RRC에 의해 구성된 제1
Figure pct00090
01 RRC에 의해 구성된 제2
Figure pct00091
10 RRC에 의해 구성된 제3
Figure pct00092
11 RRC에 의해 구성된 제4
Figure pct00093
다른 실시예에서, 후보의 수 N은 2일 수 있으며, 1 비트 정보 요소(IE)는 다음의 예시적인 테이블 5에 설정된 바와 같이 UL 승인에 포함될 수 있다.
Figure pct00094
를 나타내는 1비트 IE
나타낸
Figure pct00095
0 RRC에 의해 구성된 제1
Figure pct00096
1 RRC에 의해 구성된 제2
Figure pct00097
어떤 실시예에서, 비주기적 SRS(A-SRS)에 대해, 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록
Figure pct00098
는 다운링크(DL) 승인 또는 업링크(UL) 승인 중 하나일 수 있는 전송 승인에 신호화된다.
N 후보
Figure pct00099
값은 RRC 또는 동적 신호와 같은 상위 계층에 의해 구성된다. 예를 들면, N 후보
Figure pct00100
값은 {0,1, ..., 29 )의 그룹을 가지거나, N 후보
Figure pct00101
Figure pct00102
가 테이블 4 또는 테이블 5에 나타낸 바와 같이 나타낼 수 있다.
SGH가 높은 간섭 사용자 장비의 PUCCH에 대한 RS 베이스 시퀀스를 정렬하기 위해 턴오프되는 어떤 실시예에서, 기지국(701)은 사용자 장비(711)에 대해
Figure pct00103
를 구성할 수 있고, 기지국(702)은 사용자 장비(712)에 대해
Figure pct00104
를 구성할 수 있다.
어떤 실시예에서, 시퀀스 시프트 패턴
Figure pct00105
은 다음의 식을 사용하여 구성된다:
물리적 업링크 제어 채널(PUCCH) 및 사운드 기준 신호(SRS)에 대해,
Figure pct00106
물리적 업링크 공유 채널(PUSCH) 복조 기준 신호(DM RS)에 대해,
Figure pct00107
Figure pct00108
은 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 RRC 또는 동적 신호에 의해 구성될 수 있다.
어떤 실시예에서, 시퀀스 시프트 패턴
Figure pct00109
Figure pct00110
중 적어도 하나는 RRC 또는 동적 신호에 의해 구성될 수 있으며, 여기서
Figure pct00111
Figure pct00112
는 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록 {0,1, ..., 29}로부터 구성될 수 있다.
어떤 실시예에서, 네트워크는 RRC 구성에 의해
Figure pct00113
에 대한 N 후보의 세트를 반정적으로 구성할 수 있으며, 네트워크는 높은 간섭 사용자 장비가 동일한 UL RS 베이스 시퀀스에 할당되도록 PDCCH 신호에 의해 N 후보 중에서 하나의
Figure pct00114
을 동적으로 선택한다. 예를 들면, 후보의 수 N은 4일 수 있으며, 2 비트 정보 요소(IE)는 다음의 테이블 8에 설정된 바와 같이 업링크(UL) 승인에 포함될 수 있다.
Figure pct00115
를 나타내는 2 비트 IE
나타낸
Figure pct00116
00 RRC에 의해 구성된 제 1
Figure pct00117
01 RRC에 의해 구성된 제 2
Figure pct00118
10 RRC에 의해 구성된 제 3
Figure pct00119
11 RRC에 의해 구성된 제 4
Figure pct00120
다른 예에서, 후보의 수 N은 2일 수 있으며, 1 비트 정보 요소(IE)는 다음의 테이블 9에 설정된 바와 같이 UL 승인에 포함될 수 있다.
Figure pct00121
를 나타내는 1 비트 IE
나타낸
Figure pct00122
0 RRC에 의해 구성된 제 1
Figure pct00123
1 RRC에 의해 구성된 제 2
Figure pct00124
다른 실시예에서, 비주기적 SRS(A-SRS)에 대해, 높은 간섭 사용자 장비가 동일한 업링크(UL) 기준 신호(RS) 베이스 시퀀스에 할당되도록
Figure pct00125
는 다운링크(DL) 승인 또는 업링크(UL) 승인 중 하나일 수 있는 전송 승인에 신호화된다. N 후보
Figure pct00126
값은 RRC 또는 동적 신호와 같은 상위 계층에 의해 구성될 수 있다. 예를 들면, N 후보
Figure pct00127
값은 {0,1, ..., 29 )의 그룹을 가지거나, N 후보
Figure pct00128
Figure pct00129
가 테이블 8 또는 테이블 9에 나타낸 바와 같이 나타낼 수 있다.
본 발명에 따르면, PUCCH 디코딩 성능이 향상된다. 즉, 동일한 전송 전력에 의한 디코딩 실패 확률은 감소된다. UE 특정 RS 베이스 시퀀스 구성 때문에 성능 이득은 주로 다음과 같은 양태에서 나온다: 이제 두 PUCCH 신호가 직교 다중화될 때 감소된 PUCCH 간섭, 및 두 셀이 동일한 RS 베이스 시퀀스로 생성된 PUCCH를 디코딩하도록 협력하는 어떤 경우의 UL 협력 멀티포인트(Cooperative Multi-Point)(CoMP) 수신의 경우의 협력 이득. 다수의 사용자 장비가 동일한 매크로 기지국에 연결되는 협력 멀티포인트(CoMP) 시나리오 4에서, 업링크 셀 분할 이득은 UE 특정 RRC 구성을 할당함으로써 증가될 수 있다.
본 발명에 사용된 바와 같이, 협력 멀티포인트(CoMP) 전송 포인트(TP)는 서브프레임에서의 사용자 장비(UE)에 대한 CoMP 전송과 관련된 송신기를 나타낸다. TP는 원격 무선 헤드(RRH), 매크로 eNodeB, 펨토 eNodeB, 피코 eNodeB, 기지국 등을 포함할 수 있다. 일부 실시예에서, CoMP TP는 상이한 셀 ID를 가질 수 있다. 다른 실시예에서, CoMP TP는 동일한 셀 ID를 공유할 수 있다. 협력 멀티포인트(CoMP) 수신 포인트(RP)는 서브프레임에서의 사용자 장비(UE)로부터의 CoMP 전송과 관련된 수신기를 나타낸다. RP는 원격 무선 헤드(RRH), 매크로 eNodeB, 펨토 eNodeB, 피코 eNodeB, 기지국 등을 포함할 수 있다. 일부 실시예에서, CoMP RP는 상이한 셀 ID를 가질 수 있다. 다른 실시예에서, CoMP RP는 동일한 셀 ID를 공유할 수 있다.
본 발명이 예시적인 실시예로 설명되었지만, 다양한 변경 및 수정이 당업자에게 제시될 수 있다. 본 발명은 첨부한 청구 범위의 범주 내에서 이러한 변경 및 수정을 포함하는 것으로 의도된다.
101: BS 102: BS
103: BS 111: SB
130: IP 네트워크

Claims (21)

  1. 적어도 하나의 기지국을 포함하는 셀로부터 통신을 수신할 수 있는 사용자 장비(UE)에 있어서,
    HARQ-ACK를 반송하는 PUCCH에 대한 셀 특정 자원 오프셋 매개 변수를 포함하는 셀 특정 무선 자원 제어(RRC) 구성, 및 UE 특정 RS 베이스 시퀀스 매개 변수와 상기 HARQ-ACK를 반송하는 상기 PUCCH에 대한 UE 특정 자원 오프셋 매개 변수를 포함하는 UE 특정 RRC 구성의 둘 다를 상기 기지국으로부터 수신하도록 구성된 수신기; 및
    상기 셀 특정 RRC 구성 또는 상기 UE 특정 RRC 구성 중 하나에 기초하여 생성되는 상기 HARQ-ACK를 반송하는 상기 PUCCH를 전송하도록 구성된 송신기를 포함하는데,
    상기 PUCCH에 대한 자원 인덱스 수,
    Figure pct00130
    는 다음 식에 의해 결정되며:
    Figure pct00131

    Figure pct00132
    은 상기 PUCCH가 상기 HARQ-ACK를 반송하는 PDSCH를 스케줄링하는 상응하는 다운링크 제어 정보의 전송을 위해 사용되는 가장 작은 채널 제어 요소(CCE)의 수이고,
    Figure pct00133
    는 상기 UE 특정 RRC 구성이 상기 사용자 장비에 적용할 수 있을 경우에 적용 가능성에 따라 상기 UE 특정 자원 오프셋 매개 변수이며, 그렇지 않으면
    Figure pct00134
    는 상기 셀 특정 자원 오프셋 매개 변수인 것을 특징으로 하는 사용자 장비.
  2. 제 1 항에 있어서,
    상기 UE 특정 RRC 구성은 상기 UE 특정 RRC 구성 또는 상기 셀 특정 RRC 구성이 상기 사용자 장비에 적용할 수 있는 지를 나타내는 표시 매개 변수를 포함하는 것을 특징으로 하는 사용자 장비.
  3. 제 1 항에 있어서,
    상기 UE 특정 RRC 구성은 상기 사용자 장비가 향상된 PDCCH에서 반송된 상응하는 다운링크 제어 정보를 수신하는 경우에 상기 사용자 장비에 적용할 수 있으며, 상기 셀 특정 RRC 구성은 상기 사용자 장비가 PDCCH 영역에서 반송된 상기 상응하는 다운링크 제어 정보를 수신하는 경우에 상기 사용자 장비에 적용할 수 있는 것을 특징으로 하는 사용자 장비.
  4. 제 1 항에 있어서,
    상기 사용자 장비가 지정된 임계값 위에서 다른 셀에 연결된 다른 사용자 장비를 방해하는 경우에, 동일한 UE 특정 RS 베이스 시퀀스 및 UE 특정 자원 오프셋 매개 변수는 상기 사용자 장비로 전송되는 것을 특징으로 하는 사용자 장비.
  5. 제 1 항에 있어서,
    상기 UE 특정 자원 오프셋 매개 변수는 0이 아닌 CSI-RS 전송 전력과 관련된 다수의 CSI-RS 구성 수 중 적어도 하나로부터 선택되는 것을 특징으로 하는 사용자 장비.
  6. 제 1 항에 있어서,
    상기 기준 신호(RS)는 다음의 식으로부터 유도되는 시퀀스 그룹 수 u에 의해 생성되며:
    Figure pct00135

    Figure pct00136
    는 그룹 호핑 패턴이고,
    Figure pct00137
    는 시퀀스 시프트 패턴인 것을 특징으로 하는 사용자 장비.
  7. 제 7 항에 있어서,
    Figure pct00138
    는 PUCCH
    Figure pct00139
    에 대한 시퀀스 시프트 패턴과 동일하며, 상기 PUCCH
    Figure pct00140
    에 대한 상기 시퀀스 시프트 패턴은 다음의 식에 의해 결정되며:
    Figure pct00141

    N은 상기 UE 특정 RRC 구성이 상기 사용자 장비에 적용 가능할 경우에 상기 UE 특정 RS 베이스 시퀀스 매개 변수이고, 그렇지 않으면 N은 상기 셀의 셀 식별인 것을 특징으로 하는 사용자 장비.
  8. 적어도 하나의 기지국을 포함하는 복수의 셀을 포함하는 무선 통신 네트워크에 사용하기 위해, 복수의 사용자 장비와 무선 통신할 수 있는 각각의 기지국에 있어서,
    HARQ-ACK를 반송하는 PUCCH에 대한 셀 특정 자원 오프셋 매개 변수를 포함하는 셀 특정 무선 자원 제어(RRC) 구성, 및 UE 특정 RS 베이스 시퀀스 매개 변수와 상기 HARQ-ACK를 반송하는 상기 PUCCH에 대한 UE 특정 자원 오프셋 매개 변수를 포함하는 UE 특정 RRC 구성의 둘 다를 상기 사용자 장비로 전송하도록 구성된 송신기; 및
    상기 셀 특정 RRC 구성 또는 상기 UE 특정 RRC 구성 중 하나에 기초하여 생성되는 상기 HARQ-ACK를 반송하는 상기 PUCCH를 수신하도록 구성된 수신기를 포함하는데,
    상기 PUCCH에 대한 자원 인덱스 수,
    Figure pct00142
    는 다음 식에 의해 결정되며:
    Figure pct00143

    Figure pct00144
    은 상기 PUCCH가 상기 HARQ-ACK를 반송하는 PDSCH를 스케줄링하는 상응하는 다운링크 제어 정보의 전송을 위해 사용되는 가장 작은 채널 제어 요소(CCE)의 수이고,
    Figure pct00145
    는 상기 UE 특정 RRC 구성이 상기 사용자 장비에 적용할 수 있을 경우에는 상기 UE 특정 자원 오프셋 매개 변수이며, 그렇지 않으면
    Figure pct00146
    는 상기 셀 특정 자원 오프셋 매개 변수인 것을 특징으로 하는 기지국.
  9. 제 8 항에 있어서,
    상기 UE 특정 RRC 구성은 상기 UE 특정 RRC 구성 또는 상기 셀 특정 RRC 구성이 상기 사용자 장비에 적용할 수 있는 지를 나타내는 표시 매개 변수를 포함하는 것을 특징으로 하는 기지국.
  10. 제 8 항에 있어서,
    상기 UE 특정 RRC 구성은 상기 사용자 장비가 향상된 PDCCH에서 반송된 상응하는 다운링크 제어 정보를 수신하는 경우에 상기 사용자 장비에 적용할 수 있으며, 상기 셀 특정 RRC 구성은 상기 사용자 장비가 PDCCH 영역에서 반송된 상기 상응하는 다운링크 제어 정보를 수신하는 경우에 상기 사용자 장비에 적용할 수 있는 것을 특징으로 하는 기지국.
  11. 제 8 항에 있어서,
    상기 사용자 장비가 지정된 임계값 위에서 다른 셀에 연결된 다른 사용자 장비를 방해하는 경우에, 동일한 UE 특정 RS 베이스 시퀀스 및 UE 특정 자원 오프셋 매개 변수는 상기 사용자 장비로 전송되는 것을 특징으로 하는 기지국.
  12. 제 8 항에 있어서,
    상기 UE 특정 자원 오프셋 매개 변수는 0이 아닌 CSI-RS 전송 전력과 관련된 다수의 CSI-RS 구성 수 중 적어도 하나로부터 선택되는 것을 특징으로 하는 기지국.
  13. 제 8 항에 있어서,
    상기 기준 신호(RS)는 다음의 식으로부터 유도되는 시퀀스 그룹 수 u에 의해 생성되며:
    Figure pct00147

    Figure pct00148
    는 그룹 호핑 패턴이고,
    Figure pct00149
    는 시퀀스 시프트 패턴인 것을 특징으로 하는 기지국.
  14. 제 8 항에 있어서,
    Figure pct00150
    는 PUCCH
    Figure pct00151
    에 대한 시퀀스 시프트 패턴과 동일하며, 상기 PUCCH
    Figure pct00152
    에 대한 상기 시퀀스 시프트 패턴은 다음의 식에 의해 결정되며:
    Figure pct00153

    N은 상기 UE 특정 RRC 구성이 상기 사용자 장비에 적용 가능할 경우에 상기 UE 특정 RS 베이스 시퀀스 매개 변수이고, 그렇지 않으면 N은 상기 셀의 셀 식별인 것을 특징으로 하는 기지국.
  15. 무선 통신 네트워크에 사용하기 위한 간섭 완화 방법에 있어서,
    HARQ-ACK를 반송하는 PUCCH에 대한 셀 특정 자원 오프셋 매개 변수를 포함하는 셀 특정 무선 자원 제어(RRC) 구성, 및 UE 특정 RS 베이스 시퀀스 매개 변수와 상기 HARQ-ACK를 반송하는 상기 PUCCH에 대한 UE 특정 자원 오프셋 매개 변수를 포함하는 특정 RRC 구성의 둘 다를 사용자 장비로 전송하는 단계; 및
    상기 셀 특정 RRC 구성 또는 상기 UE 특정 RRC 구성 중 하나에 기초하여 생성되는 상기 PUCCH를 수신하는 단계를 포함하는데,
    상기 PUCCH에 대한 자원 인덱스 수,
    Figure pct00154
    는 다음 식에 의해 결정되며:
    Figure pct00155

    Figure pct00156
    은 상기 PUCCH가 상기 HARQ-ACK를 반송하는 PDSCH를 스케줄링하는 상응하는 다운링크 제어 정보의 전송을 위해 사용되는 가장 작은 채널 제어 요소(CCE)의 수이고,
    Figure pct00157
    는 상기 UE 특정 RRC 구성이 상기 사용자 장비에 적용할 수 있을 경우에는 상기 UE 특정 자원 오프셋 매개 변수이며, 그렇지 않으면
    Figure pct00158
    는 상기 셀 특정 자원 오프셋 매개 변수인 것을 특징으로 하는 간섭 완화 방법.
  16. 제 15 항에 있어서,
    상기 UE 특정 RRC 구성은 상기 UE 특정 RRC 구성 또는 상기 셀 특정 RRC 구성이 상기 사용자 장비에 적용할 수 있는 지를 나타내는 표시 매개 변수를 포함하는 것을 특징으로 하는 간섭 완화 방법.
  17. 제 15 항에 있어서,
    상기 UE 특정 RRC 구성은 상기 사용자 장비가 향상된 PDCCH에서 반송된 상응하는 다운링크 제어 정보를 수신하는 경우에 상기 사용자 장비에 적용할 수 있으며, 상기 셀 특정 RRC 구성은 상기 사용자 장비가 PDCCH 영역에서 반송된 상기 상응하는 다운링크 제어 정보를 수신하는 경우에 상기 사용자 장비에 적용할 수 있는 것을 특징으로 하는 간섭 완화 방법.
  18. 제 15 항에 있어서,
    상기 사용자 장비가 지정된 임계값 위에서 다른 셀에 연결된 다른 사용자 장비를 방해하는 경우에, 동일한 UE 특정 RS 베이스 시퀀스 및 UE 특정 자원 오프셋 매개 변수는 상기 사용자 장비로 전송되는 것을 특징으로 하는 간섭 완화 방법.
  19. 제 15 항에 있어서,
    상기 UE 특정 자원 오프셋 매개 변수는 0이 아닌 CSI-RS 전송 전력과 관련된 다수의 CSI-RS 구성 수 중 적어도 하나로부터 선택되는 것을 특징으로 하는 간섭 완화 방법.
  20. 제 15 항에 있어서,
    상기 기준 신호(RS)는 다음의 식으로부터 유도되는 시퀀스 그룹 수 u에 의해 생성되며:
    Figure pct00159

    Figure pct00160
    는 그룹 호핑 패턴이고,
    Figure pct00161
    는 시퀀스 시프트 패턴인 것을 특징으로 하는 간섭 완화 방법.
  21. 제 15 항에 있어서,
    Figure pct00162
    는 PUCCH
    Figure pct00163
    에 대한 시퀀스 시프트 패턴과 동일하며, 상기 PUCCH
    Figure pct00164
    에 대한 상기 시퀀스 시프트 패턴은 다음의 식에 의해 결정되며:
    Figure pct00165

    N은 상기 UE 특정 RRC 구성이 상기 사용자 장비에 적용 가능할 경우에 상기 UE 특정 RS 베이스 시퀀스 매개 변수이고, 그렇지 않으면 N은 상기 셀의 셀 식별인 것을 특징으로 하는 간섭 완화 방법.
KR1020137033785A 2011-06-20 2012-06-20 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법 KR102033020B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197029783A KR102301970B1 (ko) 2011-06-20 2012-06-20 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161498989P 2011-06-20 2011-06-20
US61/498,989 2011-06-20
US13/525,095 US8718003B2 (en) 2011-06-20 2012-06-15 System and method for an uplink control signal in wireless communication systems
US13/525,095 2012-06-15
PCT/KR2012/004873 WO2012177046A2 (en) 2011-06-20 2012-06-20 System and method for an uplink control signal in wireless communication systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020197029783A Division KR102301970B1 (ko) 2011-06-20 2012-06-20 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법

Publications (2)

Publication Number Publication Date
KR20140037133A true KR20140037133A (ko) 2014-03-26
KR102033020B1 KR102033020B1 (ko) 2019-11-08

Family

ID=47353605

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137033785A KR102033020B1 (ko) 2011-06-20 2012-06-20 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법
KR1020197029783A KR102301970B1 (ko) 2011-06-20 2012-06-20 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020197029783A KR102301970B1 (ko) 2011-06-20 2012-06-20 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법

Country Status (9)

Country Link
US (3) US8718003B2 (ko)
EP (2) EP3998729A1 (ko)
JP (2) JP6026523B2 (ko)
KR (2) KR102033020B1 (ko)
CN (2) CN103688504B (ko)
AU (1) AU2012274241B2 (ko)
RU (1) RU2597006C2 (ko)
WO (1) WO2012177046A2 (ko)
ZA (1) ZA201309025B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123745A (ko) * 2016-07-18 2022-09-08 삼성전자주식회사 가변 송신 지속 기간을 갖는 반송파 집성

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643831B2 (ja) 2009-10-26 2014-12-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける受信確認送信方法及び装置
US8718003B2 (en) * 2011-06-20 2014-05-06 Samsung Electronics Co., Ltd. System and method for an uplink control signal in wireless communication systems
US9246656B2 (en) 2011-06-24 2016-01-26 Lg Electronics Inc. Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
US9544790B2 (en) * 2011-06-28 2017-01-10 Lg Electronics Inc. Method for monitoring downlink control information (DCI) and a user equipment using the same
EP2727299B1 (en) * 2011-06-30 2018-05-16 Telefonaktiebolaget LM Ericsson (publ) Method and device for handling base sequences in a communications network
JP2013017016A (ja) * 2011-07-04 2013-01-24 Sharp Corp 基地局装置、移動局装置、通信システムおよび通信方法
JP5895388B2 (ja) * 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
JP5811443B2 (ja) * 2011-07-22 2015-11-11 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
CN106658732B (zh) * 2011-08-15 2020-04-14 华为技术有限公司 控制信道资源的分配方法及装置
US9794955B2 (en) * 2011-08-15 2017-10-17 Texas Instruments Incorporated Configuration of CSI-RS for CoMP feedback
WO2013032202A2 (ko) * 2011-08-26 2013-03-07 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
US9497741B2 (en) * 2011-09-26 2016-11-15 Lg Electronics Inc. Method and apparatus for transmitting and receiving uplink control information in radio access system
US9526094B2 (en) * 2012-01-25 2016-12-20 Panasonic Intellectual Property Corporation Of America Terminal, base station, transmission method, and reception method
US9967069B2 (en) 2012-03-24 2018-05-08 Lg Electronics Inc. Method and apparatus for transmitting and receiving reference signal in wireless communication system
WO2013168341A1 (ja) * 2012-05-11 2013-11-14 パナソニック株式会社 端末装置及び送信方法
CN104854773B (zh) 2013-01-14 2018-05-11 英特尔Ip公司 无线网络中的能量采集设备
US10624075B2 (en) * 2013-03-16 2020-04-14 Qualcomm Incorporated Apparatus and method for scheduling delayed ACKs/NACKs in LTE cellular systems
CN105493596B (zh) * 2013-09-26 2019-01-15 夏普株式会社 终端、基站以及通信方法
KR102199693B1 (ko) * 2013-11-01 2021-01-07 후아웨이 테크놀러지 컴퍼니 리미티드 무선 통신 시스템에서 셀 간 간섭을 제거하는 장치 및 방법
US9641310B2 (en) * 2013-12-13 2017-05-02 Qualcomm Incorporated Network assisted interference cancellation signaling
CN104767595A (zh) * 2014-01-07 2015-07-08 中兴通讯股份有限公司 Harq-ack反馈信息的传输方法、系统及终端和基站
EP3119024B1 (en) * 2014-03-12 2021-02-17 LG Electronics Inc. Method for transmitting uplink control channel in wireless communication system that supports use change of radio resources, and apparatus therefor
EP3152849B1 (en) * 2014-06-24 2018-08-08 Huawei Technologies Co. Ltd. Method and apparatus for multiple access in a wireless communication system
US10554365B2 (en) 2014-08-15 2020-02-04 Interdigital Patent Holdings, Inc. Method and apparatus for supporting uplink transmission and MBMS for a WTRU with reduced bandwidth
US9629066B2 (en) * 2015-02-24 2017-04-18 Huawei Technologies Co., Ltd. System and method for transmission time intervals
KR102449803B1 (ko) * 2015-02-26 2022-10-04 애플 인크. 무선 액세스 기술 조정을 위한 시스템, 방법 및 디바이스
CN106059726B (zh) * 2015-04-17 2019-06-25 中国移动通信集团公司 一种上行控制信道资源确定方法及装置
US11026142B2 (en) * 2016-01-20 2021-06-01 Qualcomm Incorporated Techniques for providing uplink-based mobility
WO2018004631A1 (en) * 2016-06-30 2018-01-04 Intel IP Corporation Method for crc ambiguity avoidance in 5g dci decoding
EP3577827B1 (en) * 2017-02-01 2021-12-29 Telefonaktiebolaget LM Ericsson (publ) Methods and nodes for activation or deactivation of a carrier in a communication network supporting carrier aggregation
US11483810B2 (en) 2017-04-03 2022-10-25 Huawei Technologies Co., Ltd. Methods and systems for resource configuration of wireless communication systems
US10798704B2 (en) * 2017-04-28 2020-10-06 Qualcomm Incorporated Reference signal design for slot aggregation
CA3062526C (en) * 2017-05-05 2022-06-21 Telefonaktiebolaget Lm Ericsson (Publ) Allocation of acknowledgement resources
CN115642994A (zh) 2017-08-11 2023-01-24 韦勒斯标准与技术协会公司 发送或接收上行链路控制信道的方法、设备和系统
US11166274B2 (en) * 2017-08-24 2021-11-02 Qualcomm Incorporated User equipment-specific hybrid automatic repeat request timeline offset
US10644765B2 (en) * 2017-10-24 2020-05-05 Intel Corporation Enhanced acknowledgment and power saving for wireless communications
CN109802811B (zh) * 2017-11-17 2021-05-18 北京紫光展锐通信技术有限公司 物理层上行控制信道pucch资源的配置方法及用户终端
CN109818895B (zh) * 2017-11-17 2022-04-29 中兴通讯股份有限公司 确定序列组的方法及装置,确定循环移位的方法及装置
CN116827485A (zh) * 2018-01-05 2023-09-29 日本电气株式会社 用于无线通信系统中的上行链路信号传输和接收的方法和设备
US11627479B2 (en) 2018-01-31 2023-04-11 Beijing Xiaomi Mobile Software Co., Ltd. Methods and apparatuses for sending and reading configuration parameters, base station and user equipment
US11051331B2 (en) * 2018-05-11 2021-06-29 Qualcomm Incorporated Techniques and apparatuses for paired physical downlink shared channel and physical uplink shared channel scheduling
CN114257351A (zh) * 2018-08-08 2022-03-29 北京小米移动软件有限公司 混合自动重传请求harq反馈方法及装置
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
CN110932820B (zh) * 2018-09-19 2022-01-14 华为技术有限公司 发送和接收上行控制信息的方法以及通信装置
EP3911054A4 (en) * 2019-02-03 2021-12-29 Huawei Technologies Co., Ltd. Reference signal receiving and sending methods, apparatuses and systems
CN112398623B (zh) * 2019-08-16 2022-03-29 华为技术有限公司 混合自动重传请求确认harq-ack资源确定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100020411A (ko) * 2008-08-12 2010-02-22 엘지전자 주식회사 무선 통신 시스템에서 sr 전송 방법
KR20100048878A (ko) * 2008-10-30 2010-05-11 엘지전자 주식회사 무선 통신 시스템에서 제어 신호를 전송하는 방법 및 이를 위한 장치

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2A (en) * 1826-12-15 1836-07-29 mode of manufacturing wool or other fibrous materials
KR100735225B1 (ko) * 2003-07-12 2007-07-03 삼성전자주식회사 이동통신 시스템에서 보코더 자원 관리 방법
KR101376233B1 (ko) * 2007-10-02 2014-03-21 삼성전자주식회사 주파수 분할 다중 접속 방식의 시스템에서 제어 채널의자원 할당 장치 및 방법
BRPI0812800B1 (pt) * 2007-10-29 2020-11-17 Panasonic Corporation aparelho de comunicação de rádio, método de controle de constelação, aparelho de estação base e método de comunicação de rádio
CN101960736B (zh) * 2008-02-28 2013-07-31 Lg电子株式会社 复用数据及控制信息的方法
US9036564B2 (en) * 2008-03-28 2015-05-19 Qualcomm Incorporated Dynamic assignment of ACK resource in a wireless communication system
JP5089804B2 (ja) * 2008-04-21 2012-12-05 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御信号送信方法
KR20090112534A (ko) * 2008-04-23 2009-10-28 엘지전자 주식회사 상향링크 참조 신호 시퀀스 생성 방법
KR101589600B1 (ko) * 2008-08-05 2016-01-28 삼성전자주식회사 직교 주파수 분할 다중 접속 방식의 이동통신 시스템에서 하향링크 데이터 채널에 대한 상향링크 응답 채널 송수신 방법 및 장치
CA2742801C (en) * 2008-11-04 2016-07-26 Nortel Networks Limited Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
JP5538802B2 (ja) * 2008-11-04 2014-07-02 三菱電機株式会社 通信方法、移動体通信システム、移動端末および基地局制御装置
US8743783B2 (en) * 2008-11-14 2014-06-03 Lg Electronics Inc. Method and apparatus for information transmission in wireless communication system
WO2010070197A1 (en) * 2008-12-15 2010-06-24 Nokia Corporation Downlink control and physical hybrid arq indicator channel (phich) configuration for extended bandwidth system
WO2010123893A1 (en) 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums
CN101931961A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 实现中继系统回程链路控制信道传输的方法、系统和设备
CN101616360B (zh) * 2009-07-24 2012-05-09 中兴通讯股份有限公司 一种定位参考信号的发送方法及系统
WO2011019795A1 (en) * 2009-08-13 2011-02-17 Interdigital Patent Holdings, Inc. Multiplexing uplink l1/l2 control and data
US8467799B2 (en) 2009-08-20 2013-06-18 Samsung Electronics Co., Ltd. Method and system for assigning physical uplink control channel (PUCCH) resources
CN107104780B (zh) * 2009-10-01 2020-10-16 交互数字专利控股公司 上行链路控制数据传输
EP2491671B1 (en) 2009-10-19 2021-06-16 Samsung Electronics Co., Ltd. Transmission diversity and multiplexing for harq-ack signals in communication systems
CN101702644B (zh) * 2009-11-02 2014-08-13 中兴通讯股份有限公司 一种物理混合重传指示信道的传输方法和装置
US8576755B2 (en) * 2010-01-11 2013-11-05 Qualcomm Incorporated Apparatus and method for relay transition time
US8687584B2 (en) * 2010-03-11 2014-04-01 Lg Electronics Inc. Control channel allocation method, and apparatus for same
EP2553860B1 (en) * 2010-04-02 2016-06-01 InterDigital Patent Holdings, Inc. Uplink sounding reference signals configuration and transmission
WO2011137408A2 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Determination of carriers and multiplexing for uplink control information transmission
US9258092B2 (en) * 2010-09-17 2016-02-09 Blackberry Limited Sounding reference signal transmission in carrier aggregation
KR101799275B1 (ko) * 2010-09-19 2017-11-20 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
CN104954110A (zh) * 2010-10-01 2015-09-30 捷讯研究有限公司 正交资源选择发送分集和资源指派
EP2448167B1 (en) * 2010-11-02 2019-08-21 LG Electronics Inc. Method and apparatus for transmitting control information in radio communication system
US9413509B2 (en) * 2011-06-17 2016-08-09 Texas Instruments Incorporated Hybrid automatic repeat request acknowledge resource allocation for enhanced physical downlink control channel
US8718003B2 (en) * 2011-06-20 2014-05-06 Samsung Electronics Co., Ltd. System and method for an uplink control signal in wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100020411A (ko) * 2008-08-12 2010-02-22 엘지전자 주식회사 무선 통신 시스템에서 sr 전송 방법
KR20100048878A (ko) * 2008-10-30 2010-05-11 엘지전자 주식회사 무선 통신 시스템에서 제어 신호를 전송하는 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3gpp R1-074411* *
3GPP R1-091207 *
3GPP R1-105359 *
3gpp* *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123745A (ko) * 2016-07-18 2022-09-08 삼성전자주식회사 가변 송신 지속 기간을 갖는 반송파 집성
US20220321275A1 (en) * 2016-07-18 2022-10-06 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
US11799591B2 (en) 2016-07-18 2023-10-24 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations

Also Published As

Publication number Publication date
CN107257269B (zh) 2020-06-30
US20120320847A1 (en) 2012-12-20
US20140226581A1 (en) 2014-08-14
EP2721794B1 (en) 2021-09-22
AU2012274241A1 (en) 2013-10-31
CN103688504B (zh) 2017-06-20
WO2012177046A3 (en) 2013-04-04
JP6026523B2 (ja) 2016-11-16
JP2017063435A (ja) 2017-03-30
US20150131582A1 (en) 2015-05-14
EP2721794A4 (en) 2016-03-02
US8718003B2 (en) 2014-05-06
WO2012177046A2 (en) 2012-12-27
RU2013156689A (ru) 2015-06-27
EP2721794A2 (en) 2014-04-23
JP2014523677A (ja) 2014-09-11
KR102301970B1 (ko) 2021-09-15
US9357538B2 (en) 2016-05-31
JP6328720B2 (ja) 2018-05-23
EP3998729A1 (en) 2022-05-18
KR20190118686A (ko) 2019-10-18
ZA201309025B (en) 2015-06-24
CN103688504A (zh) 2014-03-26
US8902786B2 (en) 2014-12-02
KR102033020B1 (ko) 2019-11-08
AU2012274241B2 (en) 2016-07-07
RU2597006C2 (ru) 2016-09-10
CN107257269A (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
KR102033020B1 (ko) 무선 통신 시스템에서 업링크 제어 신호를 위한 시스템 및 방법
US10652874B2 (en) User equipment, network node and methods therein for determining transport block size in downlink transmissions in a telecommunications system
US9723603B2 (en) Radio base station apparatus, user terminal and radio communication method
EP2406897B1 (en) Method and apparatus for uplink transmissions and cqi reports with carrier aggregation
US10098073B2 (en) Radio base station, user terminal, radio communication method and radio communication system
US8565066B2 (en) System and method for an uplink acknowledgement transmission in carrier-aggregated wireless communication systems
CN105379391B (zh) 终端、基站以及通信方法
EP3386243B1 (en) Base station device, terminal device, and communication method
KR20170134442A (ko) 확인응답 정보에 대한 코드워드 결정
US20180063819A1 (en) Radio base station, user terminal and radio communication method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant