KR20140034280A - 농도 불확실성 보상 - Google Patents

농도 불확실성 보상 Download PDF

Info

Publication number
KR20140034280A
KR20140034280A KR1020147000770A KR20147000770A KR20140034280A KR 20140034280 A KR20140034280 A KR 20140034280A KR 1020147000770 A KR1020147000770 A KR 1020147000770A KR 20147000770 A KR20147000770 A KR 20147000770A KR 20140034280 A KR20140034280 A KR 20140034280A
Authority
KR
South Korea
Prior art keywords
flow rate
diborane
precursor
processing chamber
gas mixture
Prior art date
Application number
KR1020147000770A
Other languages
English (en)
Inventor
가네쉬 바라수브라마니안
마틴 제이 시몬스
카우시크 알라야발리
광덕 더글라스 이
웬디 에이치. 예
수드하 패티
크리쉬나 비자야라그하반
치우 찬
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20140034280A publication Critical patent/KR20140034280A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0368By speed of fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

균일한 붕소-함유 필름들을 증착하기 위한 방법들 및 장치가 개시되어 있다. 제 1 전구체는 조성 센서와 제 1 유량 제어기를 가진 제 1 통로를 통해 챔버로 전달된다. 제 2 전구체는 제 2 유량 제어기를 포함하고 있는 제 2 통로를 통해, 상기 제 1 및 제 2 통로들을 유체적으로 커플링하는 혼합 지점으로 전달된다. 상기 진동 센서, 상기 제 1 유량 제어기 및 상기 제 2 유량 제어기에 제어기가 커플링된다. 상기 제 1 전구체는 디보란과 희석 가스의 혼합물일 수 있고, 상기 제 2 전구체는 통상적으로 희석 가스이다. 상기 제 1 전구체의 유량은, 상기 조성 센서의 측정값으로부터 제 1 전구체 내의 디보란 농도를 결정하고, 원하는 디보란 유량을 유지하도록 상기 제 1 전구체의 유량을 설정함으로써, 설정될 수 있다. 상기 챔버에 대해 원하는 흐름을 유지하도록 상기 제 2 전구체의 유량이 설정될 수 있다.

Description

농도 불확실성 보상{COMPENSATING CONCENTRATION UNCERTAINITY}
본 명세서에 기재된 실시예들은 일반적으로 붕소-함유 필름들을 증착하기 위한 방법들 및 장치에 관한 것이다. 보다 구체적으로, 본 명세서에 기재된 실시예들은 증착 장치에 증착 전구체들을 제공하기 위한 방법들 및 장치에 관한 것이다.
붕소는 반도체 제조에서 중요한 물질이다. 붕소-함유 필름들은 반도체 제조 프로세스들의 다양한 단계들에서 도핑 물질들, 마스킹 물질들 및 절연 물질들로서 사용된다. 붕소 필름은 도펀트 소오스로서 반도체 상에 증착될 수 있다. 붕소-질화물 필름은 마스크 물질 또는 절연 물질로서 증착될 수 있다. 붕소-탄소 필름들은 마스크 물질로서 사용될 수 있다.
붕소-함유 필름을 형성하기 위한 전형적인 프로세스는 붕소 소오스로서 디보란을 사용하는 단계를 포함한다. 디보란은 때때로 다른 전구체와 함께 프로세싱 영역에 제공되며, 디보란으로부터의 붕소가 기판상에 증착된다. 디보란은 디보란 분자의 특이한 에너지 구조를 활용하여 기판상에 붕소를 추출하도록 설계된 반응성 변형(reactive transformation)을 거치게 된다.
디보란은 보란의 2량체이고, 이 둘은 의사-평형 상태로 존재한다. 디보란은 저장과 운반이 용이하며 프로세싱 중 증발될 수 있기 때문에 증착 프로세스들을 위해 가장 일반적으로 사용된다. 그러나, 시간이 지남에 따라, 디보란은 어느 정도는 보란으로 평형화되고, 다른 보란 올리고머들로 평형화되어, 전구체 내에서 디보란의 양이 감소하게 된다. 전구체 내에서 디보란의 양이 감소함에 따라, 반응성 변형으로부터 이용가능한 붕소의 양이 변동되고, 증착 프로세스가 불균일하게 된다.
균일도는 미세한 크기의 반도체 장치들을 제조하는 프로세스들에서 점점 더 중요한 특징이기 때문에, 전구체 내에서 디보란의 농도가 변동할 때, 붕소 증착 프로세스들을 제어하는 방법들 및 장치가 요구되고 있다.
본 발명의 실시예들은 일반적으로 균일한 붕소-함유 필름들을 증착하기 위한 방법들 및 장치에 관한 것이다. 제 1 전구체는 조성 센서와 제 1 유량 제어기를 포함하는 제 1 통로를 통해 프로세싱 챔버로 전달된다. 제 2 전구체는 제 2 통로를 통해 상기 제 1 및 제 2 통로들을 유체적으로 커플링하는 혼합 지점으로 전달된다. 제 2 통로는 제 2 유량 제어기를 포함한다. 상기 조성 센서, 상기 제 1 유량 제어기 및 상기 제 2 유량 제어기에 제어기가 커플링된다. 상기 제 1 전구체는 통상적으로 디보란과 같은 붕소 소오스와 희석 가스의 가스 혼합물이고, 상기 제 2 전구체는 통상적으로 희석 가스이다. 상기 제 1 전구체의 유량은, 상기 조성 센서의 측정값으로부터 제 1 전구체 내의 붕소 농도를 결정하고, 원하는 붕소 유량을 유지하도록 상기 제 1 전구체의 유량을 설정함으로써, 설정될 수 있다. 그리고, 상기 프로세싱 챔버에 대해 일정한 가스 흐름을 유지하도록 상기 제 2 전구체의 유량이 설정될 수 있다.
상기 조성 센서는 적외선 센서 또는 질량 분광계와 같은 분광 센서, 또는 압력 또는 동작 센서와 같은, 음향 센서일 수 있는 진동 센서일 수 있으며, 예컨대, 피에조콘(Piezocon)과 같은 압전 센서일 수 있다. 전구체 유량들을 제어하기 위해 전자 제어기에 의해 원격 작동식 밸브들에 대해 신호가 제공될 수 있다.
본 발명의 전술한 특징들이 구체적으로 이해될 수 있도록, 첨부도면들에 그 일부가 도시된 실시예들을 참조하여 위에서 약술한 본 발명에 대해 보다 상세하게 설명한다. 그러나, 첨부도면들은 단지 본 발명의 전형적인 실시예들을 도시하고 있을 뿐이며, 본 발명은 다른 동등한 효과를 가진 실시예들을 포함할 수 있으므로, 그 범위를 제한하는 것으로 이해되어서는 아니됨을 유의하여야 한다.
도 1은 일 실시예에 따른 프로세싱 시스템을 도시한 공정도이다.
도 2는 다른 실시예에 따른 방법을 요약한 흐름도이다.
이해를 용이하게 하기 위하여, 도면들에서 공통되는 동일한 요소들은 가능한 한 동일한 참조번호들을 사용하여 표시하였다. 일 실시예의 요소들과 피처들이 다른 언급 없이 다른 실시예들에서도 유리하게 통합될 수 있을 것으로 생각된다.
도 1은 일 실시예에 따른 프로세싱 시스템(100)을 도시한 공정도이다. 도 1의 프로세싱 시스템(100)은 혼합물 내의 성분의 농도가 변할 때 전구체 혼합물의 특정 성분의 유량을 유지하는 것과 관련된 프로세스를 수행하는 데 유용하다. 프로세싱 시스템(100)은 임의의 적절한 프로세싱 챔버일 수 있는 프로세싱 챔버(102)와, 전구체 전달 시스템(104)을 포함한다. 예시적인 챔버들에는 캘리포니아주 산타 클라라에 소재한 어플라이드 머티어리얼스 인코포레이티드로부터 입수할 수 있는 PRODUCER® 챔버들이 모두 포함된다.
전구체 전달 시스템(104)은 제 1 전구체를 프로세싱 챔버(102)로 유동시키기 위한 제 1 통로(106)와, 제 2 전구체를 프로세싱 챔버로 유동시키기 위한 제 2 통로(108)를 포함한다. 제 1 통로(106)와 제 2 통로(108)는 혼합 지점(110)에서 결합되고, 제 1 및 제 2 전구체들은 이 혼합 지점에서 혼합되어 차단 밸브(112)를 통해 도관(114)을 경유하여 프로세싱 챔버(102)의 유입구(116)로 흐른다.
제 1 전구체 소오스(118)는, 제 1 전구체 소오스(118)로부터 제 1 제어 밸브(122)로 제 1 전구체를 유동시키는 도관(120)에 의해, 제 1 통로(106)에 커플링된다. 제 1 전구체 내의 원하는 성분의 농도를 검출하기 위해, 조성 센서(124)가 제 1 통로에 배치된다. 제 1 유량 제어기(126)는 제 1 전구체의 유량을 감지한다. 제 2 유량 제어기(132)는 제 2 전구체 소오스(미도시)에 커플링된 도관(128)으로부터 제 2 밸브(130)를 통과하는 제 2 전구체의 유량을 감지한다.
조성 센서(124)는 적외선 센서 또는 질량 분광계와 같은 분광 센서, 또는 압력 센서 또는 동작 센서일 수 있는 진동 센서일 수 있다. 압력 센서의 예는 피에조콘과 같은 압전 센서이다. 동작 센서의 예는 다이어프램 센서이다. 가스 크로마토그래프와 같은 크로마토그래픽 센서가 사용될 수도 있다. 대부분의 경우들에서, 조성 센서(124)는 프로세싱 챔버에서 수행되고 있는 화학적 프로세스에 대한 양호한 제어를 제공하기 위해 약 1%의 상대 정밀도를 가질 것이다. 예를 들어, 1%의 정밀도에 의하면, 조성 센서(124)는 10.0%의 농도 또는 10.1%의 농도 또는 9.9%의 농도를 등록할 수 있기 때문에, 작은 농도 변화를 정밀하게 추적할 수 있다.
조성 센서(124)는 제어기(134)에 신호를 송신하며, 상기 제어기는 조성 센서(124)로부터의 신호를 조성 센서(124)를 가로질러 흐르는 물질의 밀도와 연관시킨다. 제어기(134)는, 조성 센서(124)로부터의 신호를 프로세싱하여 제어기(134)의 다른 부분들로 조성 데이터를 전달하도록 전용화된 조성 신호 프로세서(135)를 가질 수 있다. 조성 센서(124)는 피에조콘이며, 조성 신호 프로세서(135)는 피에조콘 제어기일 수 있다. 그리고, 조성 센서(124)에 의해 등록된 조성으로부터, 물질의 밀도를 제 1 전구체의 공지된 성분들의 농도와 연관시킬 수 있다. 예컨대, 제 1 전구체가 헬륨에 디보란이 함유된 가스 혼합물인 경우, 혼합물의 전체 밀도의 약간의 변화는 헬륨 내에서 디보란 농도의 변동을 나타낸다.
유량 센서(126, 132)들은 제어기(134)에 대해 제 1 전구체와 제 2 전구체의유량들을 각각 등록한다. 조성 센서(124)에 의해 송신된 농도 신호에 기초하여, 제어기(134)는, 농도가 변할 때, 프로세스 챔버(102)에 대한 주요 성분, 예컨대, 디보란의 원하는 흐름을 유지하기 위해, 제어 밸브(122)를 조작함으로써 제 1 전구체의 흐름을 조정할 수 있다. 또한, 제어기(134)는 챔버(102)에 대한 원하는 전체 가스 흐름을 유지하기 위해 제 2 제어 밸브(130)를 조작함으로써 제 2 전구체의 흐름을 조정할 수도 있다. 도 1에서는 제어 밸브(122)가 전구체 소오스(118)와 조성 센서(124) 사이에 도시되어 있지만, 제어 밸브(122)는 제 1 통로(106)를 따라 임의의 개소에 배치될 수 있다. 제어 밸브(122)는, 제어기(134)에 대해 신호들을 송신하고 이 제어기로부터 신호들을 수신하여 제 1 전구체의 흐름을 제어하는 유량 제어기를 형성하도록 유량 센서(126)와 통합될 수도 있다. 마찬가지로, 제어 밸브(130)와 유량 센서(132)도 제어기(134)와 통신하여 제 2 전구체의 흐름을 제어하는 유량 제어기로 통합될 수 있다.
도 2는 다른 실시예에 따른 방법(200)을 요약한 흐름도이다. 이 방법(200)은 도 1의 장치(100)를 이용하여 실시될 수 있다. 단계(202)에서는, 디보란과 제 1 희석 가스를 포함하는 제 1 가스를 공급 라인을 통해 프로세싱 챔버로 제공한다. 단계(204)에서는, 제 2 희석 가스를 제 1 가스와 혼합되도록 상기 공급 라인으로 유동시킨다.
단계(206)에서는, 제 1 가스 내의 디보란의 농도를 조성 센서를 사용하여 측정한다. 조성 센서는, 도 1과 관련하여 전술한 바와 같이, 분광 센서 또는 진동 센서일 수 있다. 그리고, 신호를 가스의 밀도에 대해 공지된 관계에 기초하여 농도로 변환한 다음, 기체 법칙 관계들을 통해 농도로 변환한다.
가스가 조성 센서를 가로질러 흐를 때, 센서 신호가 일정한 간격으로 샘플링된다. 단계(208)에서는, 60초와 같은 장기간 동안 그리고 3초와 같은 단기간 동안 상기 센서 신호로부터 유도된 농도의 평균이 유지된다. 단계(210)에서는, 각각의 간격에서 검출된 농도와 장기간 평균의 차이를 제 1 가스 내에서의 디보란 농도 변화의 지표로서 산출한다.
단계(212)에서는, 제 1 가스의 유량을, 단계(210)에서 구한 차이에 따라, 농도의 장기간 평균 또는 단기간 평균에 기초하여 조정한다. 그 차이가 상대적으로 크면, 목표 유량으로부터 크게 또는 빠르게 벗어난다는 것을 의미하기 때문에, 그 차이가 어떤 역치를 초과할 때는, 빠르게 변화하는 농도를 추적하여 디보란의 유량을 원하는 수준으로 유지하기 위해, 농도의 단기간 평균을 이용하여 유량 세트 포인트들을 결정한다. 그 차이가 상대적으로 작고 역치 수준 미만이면, 장기간 평균을 이용하여 유량 변화를 최소화한다.
단계(214)에서는, 프로세스 챔버에 대한 원하는 전체 가스 유량을 유지하기 위해 제 1 가스의 유량에 기초하여 제 2 희석 가스의 유량을 조정한다.
일 예에서는, 농도를 모니터링하기 위한 압전 압력 센서를 구비한 도 1의 장치와 유사한 장치를 사용하여, 헬륨에 디보란이 함유된 전구체 혼합물을 제 1 통로를 통해 프로세스 챔버로 흐르게 한다. 헬륨 내에서 디보란의 농도는 명목상으로 약 10 중량%이지만, 본 명세서에 개시된 전구체 전달 시스템은 소오스 농도의 변화를 수용한다. 헬륨 가스는 제 2 통로를 통해 제공된다.
상기 전구체 내의 디보란 농도는 압전 센서를 이용하여 모니터링된다. 농도의 60초 이동 평균과 농도의 3초 이동 평균이 제어기에 의해 유지된다. 농도의 각 순간 측정값을 60초 이동 평균과 비교하고, 60초 이동 평균으로부터의 편차를 모니터링한다. 디보란 함유 전구체의 유량은 다음과 같이 결정된다:
Figure pct00001
여기서, FP는 디보란 함유 전구체의 원하는 유량이고, FT는 프로세싱 챔버에 대한 원하는 전체 가스 유량이며, XT는 프로세싱 챔버로 유동되는 가스 내에서의 디보란의 목표 농도이고, XP는 디보란 함유 전구체 내에서의 디보란 농도이다.
목표 유량(FP)을 결정하기 위해 제어기에 의해 사용되는 농도는 60초 이동 평균으로부터 순간 농도의 편차에 따라 좌우된다. 편차가 0.001보다 큰 경우, 전구체 내에서 급속하게 변화하는 농도를 보상하기 위해 제어기가 보다 빠르게 유량을 조정하도록, 3초 이동 평균이 사용된다. 편차가 0.001 미만인 경우, 유량 조정이 더 작아지도록, 60초 이동 평균이 사용된다. 전체 가스 유량이 목표 유량(FT) 또는 그 부근에 유지되도록, 디보란 함유 전구체에 대한 유량 조정들을 보상하기 위해, 제 2 통로를 통한 헬륨의 흐름이 조정된다.
이러한 제어 방법은, 디보란이 보란과 다른 보란 올리고머들로 분해될 때, 전구체의 디보란 농도 변동을 보상하는 데 유용하며, 통상적으로 디보란 농도가 변화하는 전구체 소오스 앰플들에서의 RF 타격들 및 변화들과 같은 파괴적 프로세스 이벤트들을 보상하는 데 유용하다. 이러한 방법들을 이용하면, 프로세싱 챔버 내에서 디보란의 농도 편차가 최소화되고, 균일한 프로세싱이 구현된다.
또한, 상술한 예에서는 프로세싱 챔버 속으로 디보란과 헬륨을 유동시키는 맥락에서 본 명세서에 개시된 장치 및 방법들의 사용을 논의하였으나, 이와 동일하거나 유사한 장치 및 방법들이 비정질 탄소와 같은 탄소 함유 필름들을 증착하기 위해 수소와 같은 희석제 내에서 프로세싱 챔버로 유동되는 탄화수소의 농도를 제어하기 위해 사용될 수 있음을 유의하여야 한다. 수소 또는 헬륨 희석 가스 내의 C1-C4 탄화수소들과 같은 탄화수소 종들, 예컨대, 아세틸렌, 에틸렌 및 프로필렌은 디보란과 같이 시간에 따라 불안정하지는 않지만, 본 명세서에 개시된 방법들 및 장치를 이용하여 소오스 농도 편차를 보상할 수 있다.
헬륨 이외의 희석 가스들이 본 명세서에 개시된 장치 및 방법들과 함께 사용될 수 있다. 전구체에 따라, 수소 가스, 아르곤 및 질소가 사용될 수 있다. 일반적으로, 농도를 정확하게 모니터링하기 위해서는 전구체와 희석 가스 사이에 상당한 분자량의 차이가 있는 것이 바람직하며, 희석 가스는 일반적으로 프로세싱 챔버 내에서 원하는 화학적 반응성 또는 비활성을 갖는다. 상술한 예에서, 제 1 전구체가 헬륨 내에서 흐르는 디보란인 경우, 제 2 전구체는 챔버 내의 프로세싱 조건들에 따라 질소 또는 수소와 같은 헬륨 이외의 희석제일 수 있다. 마찬가지로, 제 1 전구체를 위한 희석제도, 예컨대, 질소 또는 수소와 같은 헬륨 이외의 것일 수 있다.
이상의 설명은 본 발명의 실시예들에 관한 것이나, 본 발명의 기본적인 범위를 벗어나지 않고 다른 추가적인 실시예들이 안출될 수 있으며, 그 범위는 하기된 특허청구범위에 의해 결정된다.

Claims (15)

  1. 전구체 전달 장치로서,
    제 1 유량 제어기와 진동 센서를 포함하는 제 1 전구체 전달 통로;
    제 2 유량 제어기를 포함하는 제 2 전구체 전달 통로;
    상기 제 1 전구체 전달 통로와 상기 제 2 전구체 전달 통로를 유체적으로 커플링하는 혼합 지점; 및
    상기 제 1 유량 제어기, 상기 제 2 유량 제어기 및 상기 진동 센서에 커플링된 제어기를 포함하는,
    전구체 전달 장치.
  2. 제 1 항에 있어서,
    상기 진동 센서는 압력 센서인,
    전구체 전달 장치.
  3. 제 1 항에 있어서,
    상기 진동 센서는 압전 장치인,
    전구체 전달 장치.
  4. 제 1 항에 있어서,
    상기 혼합 지점에 유체적으로 커플링된 배압 조절기를 더 포함하는,
    전구체 전달 장치.
  5. 붕소-함유 필름을 형성하기 위한 장치로서,
    프로세싱 챔버; 및
    상기 프로세싱 챔버에 커플링된 전구체 전달 시스템을 포함하며,
    상기 전구체 전달 시스템은,
    제 1 유량 제어기와 조성 센서를 포함하는 제 1 전구체 전달 통로;
    제 2 유량 제어기를 포함하는 제 2 전구체 전달 통로;
    상기 제 1 전구체 전달 통로, 상기 제 2 전구체 전달 통로 및 상기 프로세싱 챔버를 유체적으로 커플링하는 혼합 지점; 및
    상기 제 1 유량 제어기, 상기 제 2 유량 제어기 및 진동 센서에 커플링된 제어기를 포함하는,
    붕소-함유 필름을 형성하기 위한 장치.
  6. 제 5 항에 있어서,
    상기 조성 센서는 압력 센서, 압전 장치, 진동 센서, 질량 분광계 또는 가스 크로마토그래프인,
    붕소-함유 필름을 형성하기 위한 장치.
  7. 제 5 항에 있어서,
    상기 조성 센서는 압전 장치인,
    붕소-함유 필름을 형성하기 위한 장치.
  8. 제 5 항에 있어서,
    상기 조성 센서는 진동 센서인,
    붕소-함유 필름을 형성하기 위한 장치.
  9. 프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법으로서,
    상기 프로세싱 챔버로 제 1 통로를 통해 디보란과 희석 가스를 포함한 가스 혼합물을 유동시키는 단계;
    상기 프로세싱 챔버로 상기 제 1 통로와 혼합 지점에서 교차하는 제 2 통로를 통해 희석 가스를 유동시키는 단계;
    상기 희석 가스와 상기 가스 혼합물의 유량을 감지하는 단계;
    상기 가스 혼합물의 밀도를 감지하여, 상기 가스 혼합물의 밀도로부터 상기 가스 혼합물 내의 디보란 농도를 결정하는 단계;
    원하는 디보란 유량에 기초하여 상기 가스 혼합물의 유량을 조정하는 단계; 및
    상기 프로세싱 챔버에 대한 원하는 전체 가스 유량에 기초하여 상기 희석 가스의 유량을 조정하는 단계를 포함하는,
    프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법.
  10. 제 9 항에 있어서,
    상기 가스 혼합물의 밀도를 감지하는 단계는 상기 제 1 통로의 진동을 감지하는 단계를 포함하는,
    프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법.
  11. 제 9 항에 있어서,
    상기 가스 혼합물의 유량을 조정하는 단계는 상기 농도의 장기간 평균과 상기 농도의 단기간 평균을 유지하는 단계를 포함하는,
    프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법.
  12. 제 11 항에 있어서,
    상기 가스 혼합물의 유량을 조정하는 단계는 상기 농도와 상기 장기간 평균 사이의 차이를 결정하는 단계를 더 포함하는,
    프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법.
  13. 제 12 항에 있어서,
    상기 가스 혼합물의 유량을 조정하는 단계는 상기 차이에 따라 상기 장기간 평균 또는 상기 단기간 평균에 기초하여 상기 가스 혼합물의 목표 유량을 결정하는 단계를 더 포함하는,
    프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법.
  14. 제 12 항에 있어서,
    상기 가스 혼합물의 유량을 조정하는 단계는 상기 장기간 평균과 상기 단기간 평균 사이의 차이를 산출하고, 상기 차이를 역치 값과 비교하는 단계를 더 포함하는,
    프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법.
  15. 제 14 항에 있어서,
    상기 가스 혼합물의 유량을 조정하는 단계는, 상기 차이가 상기 역치 값 미만이면, 상기 장기간 평균을 목표 값과 비교하고, 상기 차이가 상기 역치 값보다 크면, 상기 단기간 평균을 상기 목표 값과 비교하는 단계를 더 포함하는,
    프로세싱 챔버에 대한 디보란의 전달을 제어하기 위한 방법.
KR1020147000770A 2012-04-26 2013-04-23 농도 불확실성 보상 KR20140034280A (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261638958P 2012-04-26 2012-04-26
US201261638626P 2012-04-26 2012-04-26
US61/638,958 2012-04-26
US61/638,626 2012-04-26
US13/864,911 US20130284090A1 (en) 2012-04-26 2013-04-17 Compensating concentration uncertainity
US13/864,911 2013-04-17
PCT/US2013/037718 WO2013163132A1 (en) 2012-04-26 2013-04-23 Compensating concentration uncertainity

Publications (1)

Publication Number Publication Date
KR20140034280A true KR20140034280A (ko) 2014-03-19

Family

ID=49476221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147000770A KR20140034280A (ko) 2012-04-26 2013-04-23 농도 불확실성 보상

Country Status (5)

Country Link
US (1) US20130284090A1 (ko)
JP (1) JP2015523461A (ko)
KR (1) KR20140034280A (ko)
TW (1) TW201410910A (ko)
WO (1) WO2013163132A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2817791A1 (en) 2012-06-19 2013-12-19 Convergent Manufacturing Technologies Inc. Detection, monitoring and management of gas presence, gas flow and gas leaks in composites manufacturing
US11009455B2 (en) 2018-07-31 2021-05-18 Applied Materials, Inc. Precursor delivery system and methods related thereto
JP2023501600A (ja) 2019-11-12 2023-01-18 アプライド マテリアルズ インコーポレイテッド ガス伝達システム及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638161B2 (en) * 2001-07-20 2009-12-29 Applied Materials, Inc. Method and apparatus for controlling dopant concentration during BPSG film deposition to reduce nitride consumption
JP3973605B2 (ja) * 2002-07-10 2007-09-12 東京エレクトロン株式会社 成膜装置及びこれに使用する原料供給装置、成膜方法
US6772072B2 (en) * 2002-07-22 2004-08-03 Applied Materials, Inc. Method and apparatus for monitoring solid precursor delivery
US7296532B2 (en) * 2002-12-18 2007-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. Bypass gas feed system and method to improve reactant gas flow and film deposition
US20070254093A1 (en) * 2006-04-26 2007-11-01 Applied Materials, Inc. MOCVD reactor with concentration-monitor feedback
JP5103983B2 (ja) * 2007-03-28 2012-12-19 東京エレクトロン株式会社 ガス供給方法、ガス供給装置、半導体製造装置及び記憶媒体
JP5690498B2 (ja) * 2009-03-27 2015-03-25 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 基体上に膜を堆積する方法および気化前駆体化合物を送達する装置

Also Published As

Publication number Publication date
TW201410910A (zh) 2014-03-16
WO2013163132A1 (en) 2013-10-31
JP2015523461A (ja) 2015-08-13
US20130284090A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
US20210310125A1 (en) Multi-port gas injection system and reactor system including same
TWI525734B (zh) And a raw material gas supply device for a semiconductor manufacturing apparatus
US8205629B2 (en) Real time lead-line characterization for MFC flow verification
US5520969A (en) Method for in-situ liquid flow rate estimation and verification
US8151814B2 (en) Method for controlling flow and concentration of liquid precursor
CN103797563A (zh) 具备原料浓度检测结构的原料气化供给装置
US5968588A (en) In-situ liquid flow rate estimation and verification by sonic flow method
KR20140097011A (ko) 원료 가스 공급 장치, 성막 장치, 유량의 측정 방법 및 기억 매체
CN111394789A (zh) 化学气相沉积设备的进气结构、进气方法及设备
KR20140034280A (ko) 농도 불확실성 보상
JP2006241516A (ja) 混合ガスによる薄膜作製方法とその装置
JP2006324532A (ja) 薄膜堆積方法および薄膜堆積装置
JPH0653926B2 (ja) 化学蒸着装置
US8925481B2 (en) Systems and methods for measuring, monitoring and controlling ozone concentration
JP3219184B2 (ja) 有機金属供給装置および有機金属気相成長装置
US20220406599A1 (en) Control device and control method for single-wafer processing epitaxial growth apparatus, and epitaxial wafer production system
JPH0535225B2 (ko)
US11149358B2 (en) Vapor phase growth apparatus comprising n reactors, a primary gas supply path, a main secondary gas supply path, (n−1) auxiliary secondary gas supply paths, a first control circuit, and a second control circuit
US9695512B2 (en) Semiconductor manufacturing system and semiconductor manufacturing method
US20230029724A1 (en) System and method for monitoring precursor delivery to a process chamber
US5578746A (en) Apparatus for chemical vapor deposition and method of use
KR20220127830A (ko) 농도 측정을 이용한 펄스 가스 운반 방법 및 장치
EP4347918A1 (en) A system and method for mass flow measurement and control of process gases in a carrier stream using one or more quartz crystal microbalance sensors
WO2004048639A2 (en) Method and apparatus for controlling a deposition process
JP2012162414A (ja) ガラス微粒子堆積体の製造方法及び製造装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application