KR20140020543A - Shot fibers cement complex materials for decrease of carbon and life cycle cost - Google Patents

Shot fibers cement complex materials for decrease of carbon and life cycle cost Download PDF

Info

Publication number
KR20140020543A
KR20140020543A KR20120087208A KR20120087208A KR20140020543A KR 20140020543 A KR20140020543 A KR 20140020543A KR 20120087208 A KR20120087208 A KR 20120087208A KR 20120087208 A KR20120087208 A KR 20120087208A KR 20140020543 A KR20140020543 A KR 20140020543A
Authority
KR
South Korea
Prior art keywords
weight
parts
cement
fiber
composite material
Prior art date
Application number
KR20120087208A
Other languages
Korean (ko)
Other versions
KR101371380B1 (en
Inventor
정영한
Original Assignee
주식회사 아워엠알오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아워엠알오 filed Critical 주식회사 아워엠알오
Priority to KR1020120087208A priority Critical patent/KR101371380B1/en
Publication of KR20140020543A publication Critical patent/KR20140020543A/en
Application granted granted Critical
Publication of KR101371380B1 publication Critical patent/KR101371380B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0683Polyesters, e.g. polylactides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to short fiber cement complex materials for decrease of carbon and life cycle cost, and more specifically, to short fiber cement complex materials which save limestone resources by minimizing the amount of cement used for construction and repair and preventing the deterioration of durability, provide cement materials capable of reducing the emission of carbon dioxide, and decrease life cycle cost by improving durability by adding short fiber made from PP or PET. [Reference numerals] (AA) Flow(mm); (BB) Comparative example; (CC) Example 1; (DD) Example 2; (EE) Example 3; (FF) Specimen type

Description

탄소와 LCC의 저감을 위한 단섬유 시멘트 복합재료{SHOT FIBERS CEMENT COMPLEX MATERIALS FOR DECREASE OF CARBON AND LIFE CYCLE COST}SHORT FIBERS CEMENT COMPLEX MATERIALS FOR DECREASE OF CARBON AND LIFE CYCLE COST}

본 발명은 탄소와 LCC의 저감을 위한 단섬유 시멘트 복합재료에 관한 것으로, 더 상세하게는 신규 타설 또는 보수에 사용되는 시멘트재료에서 시멘트의 첨가량을 최소화하면서 내구성이 저하되는 것을 방지해 석회석자원을 절약하고 이산화탄소 배출량을 저감시키는 탄소저감형 시멘트 재료를 제공하고, PP나 PET 로부터 생산된 단섬유를 첨가하여 내구연한을 향상시켜 LCC를 저감시킬 수 있는 단섬유 시멘트 복합재료에 관한 것이다.
The present invention relates to a short fiber cement composite material for reducing carbon and LCC, and more particularly, to minimize the amount of cement added in the cement material used for new casting or repair, to prevent the degradation of durability and save limestone resources. The present invention relates to a short-fiber cement composite material capable of providing a carbon-lowering cement material for reducing carbon dioxide emissions and improving the durability by adding short fibers produced from PP or PET.

일반적으로 철근콘크리트 구조물은 시공된 후 일정기간이 경과하면 구조물이 노화되어 콘크리트 구조물의 인장강도가 낮아져 구조물에서 점차 박리 및 탈락이 이루어지며, 상기 파손부위는 보수 및 보강에 의해 구조물의 수명을 연장시키고 있다.In general, reinforced concrete structures are aging after a certain period of time after construction, the tensile strength of the concrete structure is lowered and the peeling and dropping is gradually removed from the structure, and the damaged part is extended to repair and reinforce the life of the structure have.

이러한 콘크리트 구조물의 파손은 현재 제공되고 있는 압축성능만 향상시킨 콘크리트 자체 성질에 의해 이루어지는 것이다. The failure of such concrete structures is caused by the properties of the concrete itself, which only improves the compression performance that is currently provided.

즉, 대부분의 콘크리트 및 모르타르와 같은 시멘트계 재료는 압축성능을 향상시키기 위한 개발만 진행되어 매우 높은 압축강도를 발현할 수 있는 고강도의 모르타르 및 콘크리트의 제조가 가능하게 되었다. That is, most cement-based materials, such as concrete and mortar, have been developed only to improve compressive performance, thereby enabling the production of high strength mortar and concrete capable of expressing very high compressive strength.

하지만 휨강도 및 인장강도가 매우 낮고, 강한 취성적 성질로 인해 파괴시 균열발생 후 급격한 응력저하가 발생하며, 철근 등에 의해 보강된 경우에도 박리 탈락 등 구조물에서 분리되는 경우는 낮으나 잦은 균열에 의한 구조물의 구조성능 및 내구성이 약해지는 문제점이 발생된다. However, the flexural strength and tensile strength are very low, and due to the strong brittleness, a sudden stress drop occurs after fracture, and even when reinforced by rebar, it is rarely separated from structures such as peeling and dropping. There is a problem of weak structural performance and durability.

이를 보완하기 위해 최근에는 다양한 섬유보강콘크리트가 개발되고 있으나 대부분이 휨성능의 향상, 균열억제만을 목적으로 하고 있어 구조물에 높은 휨 및 인장인성을 부여하지 못하며, 시공성 저하, 복잡한 제조공정 등의 이유로 일부에만 국한되어 사용되고 있는 실정이다. 또한, 최근에는 탄소배출량에 대한 관심이 지대해지고 있어 시멘트복합재료에 대해서도 탄소배출량을 최소화하여 환경에 대한 부하를 저감시킬 수 있는데 관심이 지대해지고 있다. Recently, various fiber-reinforced concretes have been developed to compensate for this, but most of them are for the purpose of improving the bending performance and suppressing the cracks, and thus do not impart high bending and tensile toughness to the structure. The situation is limited to only being used. In addition, in recent years, interest in carbon emissions has been increasing, and interest in reducing the environmental load by minimizing the amount of carbon emissions in cement composite materials is also increasing.

기 출원된 대한민국 특허공개 10-2005-0122153호(탄소섬유 및 폴리프로필렌 섬유보강 고인성 시멘트복합재료의 제조방법 및 그 제품;2005년 12월 28일 공개)에서는 단섬유인 피치계 탄소섬유 또는 폴리프로필렌 섬유를 혼합하여 인성을 향상시키고 있으며, 혼합비는 시멘트페이스트 또는 시멘트모르타르에 대해 1.5~3.5 vol%이다.Korean Patent Publication No. 10-2005-0122153 (Preparation method of carbon fiber and polypropylene fiber-reinforced high toughness cement composite material and its products; published on December 28, 2005) is a short fiber pitch carbon fiber or poly Propylene fibers are mixed to improve toughness, and the mixing ratio is 1.5 to 3.5 vol% based on cement paste or cement mortar.

상기 종래 시멘트복합재료는 기존 시멘트보다는 인성을 향상시키는 효과는 제공하나, 탄소저감소재인 산업부산물 및 섬유의 혼합량은 미비함으로 탄소배출량이 큰 시멘트페이스트 또는 시멘트모르타르의 혼합량을 감량도 미비하여 여전히 탄소저감형과는 차이가 있으므로, 탄소배출량을 최소화할 수 있는 복합재료에 대한 연구가 필요한 실정이다.
The conventional cement composite material provides the effect of improving toughness than conventional cement, but the amount of industrial by-products and fibers, which are carbon reducing materials, is insignificant, and thus the amount of cement paste or cement mortar with large carbon emissions is still insufficient to reduce carbon. Since there is a difference from the mold, research on a composite material that can minimize carbon emissions is required.

이에 본 발명에 따른 시멘트 복합재료는, The cement composite material according to the present invention,

시멘트 함량보다 많은 산업부산물을 혼합하여 탄소배출량을 저감시키고, 배합에 섬유재를 혼합해 인성을 향상시켜 내구연한을 증대시켜 LCC(LIFE CYCLE COST;생애주기비용)을 저감시키는 탄소와 LCC를 저감시키는 복합재료의 제공을 목적으로 한다.
It reduces carbon emissions by mixing more industrial by-products than cement content, and improves toughness by increasing the toughness by mixing fiber materials in the formulation to reduce carbon and LCC, which reduces LCC (LIFE CYCLE COST). To provide a composite material.

상기 과제를 해소하기 위한 본 발명의 시멘트 복합재료는,
Cement composite material of the present invention for solving the above problems,

시멘트 복합재료에 있어서, 바인더로 시멘트 100중량부, 산업부산물 400~500 중량부, 석고 25~35 중량부, 팽창제 25~35 중량부, 알카리자극제 25~35 중량부; 잔골재 300~400 중량부; 혼화제로 폴리머 1.5~2.5 중량부, HPMC(hydoroxy propyl methyl cellulose) 0.005~0.015 중량부, 감수제 0.2~0.4 중량부; 섬유재 0.5~2 중량부 를 혼합하고, 바인더 100중량부에 대해 물 22~24중량부로 혼합조성된다. In the cement composite material, 100 parts by weight of cement, 400 to 500 parts by weight of industrial by-products, 25 to 35 parts by weight of gypsum, 25 to 35 parts by weight of expanding agent, 25 to 35 parts by weight of alkaline stimulant; Fine aggregate 300 to 400 parts by weight; 1.5 to 2.5 parts by weight of a polymer as a admixture, 0.005 to 0.015 parts by weight of hydoroxy propyl methyl cellulose (HPMC), and 0.2 to 0.4 parts by weight of a water reducing agent; 0.5-2 weight part of fiber materials are mixed, and it mixes and consists of 22-24 weight part of water with respect to 100 weight part of binders.

상기 산업부산물은 고로슬래그 또는 플라이애시로부터 일종 또는 이종 선택사용하고, 상기 알카리자극제는 규산나트륨(Na2SiO3), 수산화나트륨(NaOH), 소석회(Ca(OH)2), 황산나트륨(Na2SO4), 수산화칼륨(KOH)으로부터 일종 또는 이종이상 선택사용하고, 상기 섬유재는 재생섬유, PVA(Polyvinyl alcohol)섬유, PP(Polypropylene)섬유로부터 일종 또는 이종이상 선택 사용한다. The industrial by-product is to use one kinds or different kinds selected from blast furnace slag or fly ash, and the alkali stimulant is sodium silicate (Na 2 SiO 3), sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2), sodium sulfate (Na 2 SO 4 ), one kind or two or more kinds are selected from potassium hydroxide (KOH), and the fiber material is one kind or two or more kinds selected from regenerated fibers, polyvinyl alcohol (PVA) fibers, and polypropylene (PP) fibers.

또한, 상기 재생섬유는, PP를 길이 30mm, 폭과 두께 0.5~1.0mm로 형성하고, 길이방향으로는 0.1~0.2mm 깊이의 홈인 리브를 0.03mm 간격으로 형성하여 인장강도 400 Mpa, 탄성계수 5.6Gpa, 인장신도 max 15% 인 것을 사용한다.
In addition, the regenerated fiber is formed of PP 30mm in length, 0.5 ~ 1.0mm in width and thickness, and a groove rib having a depth of 0.1 ~ 0.2mm in the longitudinal direction at intervals of 0.03mm, tensile strength 400 Mpa, modulus of elasticity 5.6 Gpa and tensile elongation max 15% are used.

이상에서 상세히 기술한 바와 같이 본 발명의 시멘트 복합재료는, As described in detail above, the cement composite material of the present invention,

산업부산물을 다량 혼합하여 시멘트의 사용량을 대폭적으로 절감시킴으로써 석회석 자원을 절약하여 이산화탄소의 배출량을 저감시켜 지구 온난화방지에 이바지할 수 있으며, 섬유재 첨가에 따라 휨성능과 인장성능을 증가시키고 수축균열을 저감시키는 내구수명을 향상시키는 등 탄소저감형과 LCC저감형 복합재료의 제공이 가능하게 되었다.
By greatly reducing the amount of cement used by mixing a large amount of industrial by-products, it saves limestone resources and reduces carbon dioxide emissions, thus contributing to the prevention of global warming. It has become possible to provide carbon-reducing and LCC-reducing composite materials by improving the durability life to be reduced.

도 1과 도 2는 본 발명에 따른 플로우 실험 결과를 나타낸 그래프.
도 3과 도 4는 본 발명에 따른 압축강도 실험 결과를 나타낸 그래프.
도 5와 도 6은 본 발명에 따른 휨강도 실험 결과를 나타낸 그래프.
1 and 2 are graphs showing the results of a flow experiment according to the present invention.
3 and 4 are graphs showing the results of compressive strength experiments according to the present invention.
5 and 6 are graphs showing the results of flexural strength test according to the present invention.

이하 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다. 그러나 첨부된 도면은 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the accompanying drawings. It should be understood, however, that the appended drawings illustrate only the contents and scope of technology of the present invention, and the technical scope of the present invention is not limited thereto. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention based on these examples.

본 발명의 시멘트 복합재료는 바인더로 시멘트 100중량부, 산업부산물 400~500 중량부, 석고 25~35 중량부, 팽창제 25~35 중량부, 알카리자극제 25~35 중량부; 잔골재 300~400 중량부; 혼화제로 폴리머 1.5~2.5 중량부, HPMC(hydoroxy propyl methyl cellulose) 0.005~0.015 중량부, 감수제 0.2~0.4 중량부; 섬유재 0.5~2 중량부 를 혼합하고, 바인더 100중량부에 대해 물 22~24중량부로 혼합조성된다.
Cement composite material of the present invention as a binder 100 parts by weight of cement, 400 to 500 parts by weight of industrial by-products, 25 to 35 parts by weight of gypsum, 25 to 35 parts by weight of expanding agent, 25 to 35 parts by weight of alkaline stimulant; Fine aggregate 300 to 400 parts by weight; 1.5 to 2.5 parts by weight of a polymer as a admixture, 0.005 to 0.015 parts by weight of hydoroxy propyl methyl cellulose (HPMC), and 0.2 to 0.4 parts by weight of a water reducing agent; 0.5-2 weight part of fiber materials are mixed, and it mixes and consists of 22-24 weight part of water with respect to 100 weight part of binders.

상기 시멘트는 포틀랜드 시멘트를 사용하고, 산업부산물로는 고로슬래그 또는 플라이애시로부터 일종 또는 이종 선택 사용한다. 상기 석고도 산업부산물로부터 수취하여 사용할 수 있다. The cement is used as a portland cement, and as an industrial by-product, a kind or heterogeneous selection from blast furnace slag or fly ash is used. The gypsum can also be obtained from industrial by-products.

상기 산업부산물은 시멘트 100중량부에 대해 400~500 중량부로 혼합 사용되는 것으로, 상기 범위 이상으로 혼합되면 재료간의 결합력이 떨어지고, 상기 혼합량 이하로 사용하면 탄소저감효율이 낮아지므로 상기 범위로 혼합하는 것이 바람직하다. The industrial by-products are used to be mixed at 400 to 500 parts by weight with respect to 100 parts by weight of cement, and when mixed in the above range, the bonding strength between materials is lowered, and when used below the mixing amount, the carbon reduction efficiency is lowered, so mixing in the above range is performed. desirable.

상기 산업부산물의 혼합량 증가로 시멘트의 사용량이 대폭적으로 저감되어 석회석 자원을 절약할 수 있고, 자원개발 지연으로 인해 자연환경을 유지할 수 있다. 또한, 시멘트는 1톤당 약 857kg의 CO2 배출량을 갖고 있으므로, 시멘트 사용량을 저감시키는 것만으로 탄소배출량을 저감하는 환경친화적인 복합재료의 제공이 가능하다.
The amount of cement used may be drastically reduced due to an increase in the amount of mixed industrial by-products, thereby saving limestone resources and maintaining a natural environment due to resource development delays. In addition, about 857 kg of CO 2 per tonne of cement Since it has an emission amount, it is possible to provide an environmentally friendly composite material which reduces carbon emissions only by reducing the amount of cement used.

상기 산업부산물의 혼합량이 증가함에 따라 결합력이 낮아지므로 본 발명에서는 알카리자극제를 혼합하여 각 재료간의 결합력을 향상시킨다. As the amount of mixing of the industrial by-products increases, the bonding strength is lowered. In the present invention, the alkaline stimulant is mixed to improve the bonding strength between the materials.

상기 알카리자극제의 혼합량으로는 산업부산물 400~500 중량부에 대해 25~35중량부로 혼합되며, 상기 범위 이상 또는 이하로 혼합할 경우 복합재료의 결합력을 낮춰 강도가 저하되므로 상기 범위내로 혼합하는 것이 바람직하다. 또한, 알카리 자극제의 종류로는 규산나트륨(Na2SiO3), 수산화나트륨(NaOH), 소석회(Ca(OH)2), 황산나트륨(Na2SO4), 수산화칼륨(KOH)으로부터 일종 또는 이종 이상 선택 사용할 수 있다. The mixing amount of the alkaline stimulant is 25 to 35 parts by weight based on 400 to 500 parts by weight of the industrial by-products, and when mixed in the above or less than the range, the strength of the composite material is lowered, so the strength is lowered. Do. In addition, the type of alkali stimulant is one or more types of sodium silicate (Na 2 SiO 3 ), sodium hydroxide (NaOH), calcined lime (Ca (OH) 2 ), sodium sulfate (Na 2 SO 4 ), potassium hydroxide (KOH) Optionally available.

이러한 알카리자극제는 알루미노 규산염계(슬래그, 플라이애쉬, 규산염, 알루미염등)와, 알루미노 규산염계(슬래그, 플라이애쉬, 소성 암석이나 점토 등), 또는 칼슘 함유계(석회, OPC, 알루미나 시멘트, 고로슬래그 미분말, 고칼슘 함유 슬래그나 애쉬 등)와 같이 공존하면 수경성 결합을 생성하여 고온이 아닌 200℃ 이하의 수중 혹은 증기 양생이나 오토클레이브 처리 하에서 고결화가 이루어짐으로 시멘트 없이도 재료간의 결합력을 향상시킬 수 있다. 따라서, 산업부산물의 함량이 증가하면서 낮아지는 재료 결합력을 알카리자극제 첨가에 의해 산업부산물의 결합력을 향상시켜 구조물강도가 저하되는 것을 방지할 수 있다. These alkali stimulants include aluminosilicates (slag, fly ash, silicates, aluminates, etc.), aluminosilicates (slag, fly ash, calcined rocks or clays), or calcium-containing systems (lime, OPC, alumina cement). , Coarse blast furnace slag, high calcium-containing slag or ash, etc.), it creates hydraulic bonds and solidifies under water or steam curing or autoclave treatment at temperatures below 200 ° C, not at high temperatures. have. Therefore, it is possible to prevent the strength of the structure from being lowered by improving the binding strength of the industrial by-products by adding an alkali stimulant to the material binding force that decreases as the content of the industrial by-products increases.

또한, 상기 잔골재로는 골재번호 #7인 입자가 5~13mm 범위인 규사 또는 순환골재(재생골재)를 사용한다. In addition, the fine aggregate uses a silica or circulating aggregate (regenerated aggregate) having a particle number # 7 in the range of 5 ~ 13mm.

아울러 상기 섬유재로는 재생섬유, PVA(Polyvinyl alcohol)섬유, PP(Polypropylene)섬유로부터 일종 또는 이종이상 선택 사용할 수 있다. 상기 섬유재는 시멘트 100 중량부에 대해 0.5중량부 이하로 혼합되면 섬유재 혼합으로 인한 인성증가 효율이 낮으며, 2중량부 이상으로 혼합되면 인성은 증가되나 강도가 낮아지는 단점이 있으므로, 시멘트 100 중량부에 대해 0.5~2 중량부로 혼합 사용되는 것이 바람직하다. In addition, the fiber material may be selected from one kind or two or more kinds from recycled fiber, PVA (Polyvinyl alcohol) fiber, PP (Polypropylene) fiber. When the fiber material is mixed at 0.5 parts by weight or less with respect to 100 parts by weight of cement, the toughness increase efficiency due to the mixing of the fiber material is low, and when mixed at 2 parts by weight or more, the toughness is increased but the strength is lowered. It is preferable to mix and use in 0.5-2 weight part with respect to a part.

또한 사용되는 재생섬유는, PP를 길이 30mm, 폭과 두께 0.5~1.0mm로 형성하고, 길이방향으로는 0.1~0.2mm 깊이의 홈인 리브를 0.03mm 간격으로 형성하여 인장강도 400 Mpa, 탄성계수 5.6Gpa, 인장신도 max 15% 인 것을 사용할 수 있다. 상기 리브를 형성하는 것은 재생섬유에 대해 휨력을 향상시키기 위한 것이다.
In addition, the regenerated fiber used is formed of PP with a length of 30 mm, a width and a thickness of 0.5 to 1.0 mm, and a rib having a groove having a depth of 0.1 to 0.2 mm in the longitudinal direction with a spacing of 0.03 mm, a tensile strength of 400 Mpa, an elastic modulus of 5.6. Gpa and tensile elongation max 15% can be used. Forming the rib is to improve the bending force for the regenerated fiber.

이하, 실시 예를 통해 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

- 배합설계-Mix design

1)실시예1의 시멘트 복합재료는 1) The cement composite material of Example 1

바인더로 시멘트 100중량부, 산업부산물 440 중량부, 석고 30 중량부, 팽창제(CSA) 30 중량부, 알카리자극제 30 중량부를 혼합하였다. The binder was mixed with 100 parts by weight of cement, 440 parts by weight of industrial by-products, 30 parts by weight of gypsum, 30 parts by weight of expansion agent (CSA), and 30 parts by weight of alkali stimulant.

또한, 잔골재로는 입자 5~13mm인 규사를 350 중량부 투입하였고, 혼화제로 폴리머 2 중량부, HPMC(hydoroxy propyl methyl cellulose) 0.01 중량부, 감수제 0.3 중량부를 투입하였고, 섬유재로는 재생섬유를 1중량부를 혼합하였다.(재생섬유 : PP를 길이 30mm, 폭과 두께 0.8mm로 형성하고, 길이방향으로는 0.1~0.2mm 깊이의 홈인 리브를 0.03mm 간격으로 형성한 것)In addition, 350 parts by weight of silica sand particles 5 ~ 13mm was added as fine aggregate, 2 parts by weight of polymer, 0.01 parts by weight of HPMC (hydoroxy propyl methyl cellulose), 0.3 parts by weight of water reducing agent, and recycled fiber as a fiber material. 1 part by weight was mixed. (Regenerated fiber: PP having a length of 30 mm, a width and a thickness of 0.8 mm, and a rib having a groove having a depth of 0.1 to 0.2 mm in the longitudinal direction formed at 0.03 mm intervals)

바인더 100중량부에 대해 물 22중량부로 혼합하여 W/B를 22%로 하였다. It mixed with 22 weight part of water with respect to 100 weight part of binder, and made W / B 22%.

2) 실시예2 - 상기 실시예1과 동일하게 배합하되, 섬유재는 재생섬유 대신 PVA섬유를 1중량부 혼합하였다. 2) Example 2-Blended in the same manner as in Example 1, the fiber material was mixed with 1 part by weight of PVA fibers instead of recycled fibers.

3) 실시예3 - 상기 실시예1과 동일하게 배합하되, 섬유재는 재생섬유 대신 PP섬유를 1중량부 혼합하였다.3) Example 3-Formulated in the same manner as in Example 1, 1 part by weight of PP fibers instead of recycled fibers.

4) 실시예4 - 상기 실시예1과 동일하게 배합하되, 섬유재는 재생섬유를 0.5중량부 혼합하였다. 4) Example 4-Formulated in the same manner as in Example 1, the fiber material was mixed 0.5 parts by weight of recycled fibers.

5) 실시예5 - 상기 실시예1과 동일하게 배합하되, 섬유재는 재생섬유 대신 PVA섬유를 0.5중량부 혼합하였다. 5) Example 5-Formulated in the same manner as in Example 1, the fiber material was mixed 0.5 parts by weight of PVA fibers instead of recycled fibers.

6) 실시예6 - 상기 실시예1과 동일하게 배합하되, 섬유재는 재생섬유 대신 PP섬유를 1중량부 혼합하였다.6) Example 6-Blended in the same manner as in Example 1, the fiber material was mixed with 1 part by weight of PP fibers instead of recycled fibers.

7)비교예 - 바인더에서 시멘트 300중량부, 산업부산물 300 중량부로 혼합하고, 섬유재는 혼합하지 않았으면 다른 조성물은 실시예1과 동일하게 하였다. 7) Comparative Example-If the binder was mixed with 300 parts by weight of cement and 300 parts by weight of industrial by-product, and the fiber material was not mixed, the other composition was the same as in Example 1.

상기 실시예와 비교예의 혼합비를 하기 표 1로 정리하였다. The mixing ratio of the said Example and a comparative example was put together in following Table 1.

Figure pat00001
Figure pat00001

- 공시체 제조-Specimen preparation

상기 배합을 갖는 실시예 및 비교예의 시멘트복합재료로 공시체를 제작하였다. The specimens were prepared from the cement composite materials of Examples and Comparative Examples having the above formulation.

Figure pat00002
Figure pat00002

공시체 제조시 재료혼합은 바인더와 잔골재 섬유재와 물을 투입하여 고속믹서로 10분간 혼합해 충분히 교반이 이루어지도록 하고, 혼합물을 몰드 타설 후 3시간이 경과한 다음 탈형하여 재령 7일까지 상온에서 양생을 실시하였다.
In the preparation of the specimen, the material mixture is mixed with a binder, fine aggregate fiber, and water for 10 minutes using a high speed mixer for sufficient agitation.The mixture is demoulded after 3 hours after casting, and cured at room temperature until 7 days of age. Was carried out.

- 플로우 실험Flow experiment

각 실시예와 비교예로 조성된 복합재료의 유동성을 측정하기 위해 플로우실험을 실행하여 그 결과그래프를 도 1과 도 2에 나타내었다.Flow experiments were carried out to measure the fluidity of the composite material prepared in each example and the comparative example, and the results are shown in FIGS. 1 and 2.

참조한 바와같이 실시예1 내지 실시예6의 유동성은 비교 예보다는 낮음을 알 수 있다. As can be seen that the fluidity of Examples 1 to 6 is lower than the comparative example.

또한, 섬유재의 투입량이 높을수록 플로우가 낮았으며, 섬유재 종류 중 PP섬유를 사용한 실시예3이 가장 낮은 플로우 수치가 나타남을 알 수 있다.
In addition, the higher the input amount of the fiber material, the lower the flow, it can be seen that Example 3 using the PP fiber among the types of fiber material has the lowest flow value.

- 압축강도 실험-Compressive strength test

각 실시예와 비교예로 조성된 복합재료로 제조된 공시체를 이용하여 압축실험을 실행하고 그 결과는 도 3과 도 4에 나타내었다. Compression experiments were carried out using specimens made of the composite material of each example and comparative example, and the results are shown in FIGS. 3 and 4.

참조한 바와같이 투입되는 산업부산물량 대비 시멘트의 혼합량을 낮추고 섬유재를 일부 혼합하여도 유사한 압축강도가 제공됨을 알 수 있다. 특히, 섬유재를 0.5중량부로 혼합한 실시예4 내지 실시예6의 압축강도보다는 섬유재 1중량부를 혼합한 실시예1 내지 실시예3의 압축강도가 더 크게 나타나며 이는 시멘트의 혼합량을 높인 비교예와 유사 또는 더 향상된 강도를 제공함을 알 수 있다.
As described, it can be seen that similar compressive strength is provided by lowering the amount of cement mixed with the amount of industrial by-products introduced and mixing some of the fiber materials. In particular, the compressive strength of Examples 1 to 3, in which 1 part by weight of fiber material is mixed, is greater than the compressive strength of Examples 4 to 6, in which fiber material is mixed in 0.5 parts by weight, which is a comparative example in which the amount of cement is increased. It can be seen that it provides a similar or more enhanced strength to.

- 인장강도 실험-Tensile strength test

각 실시예와 비교예로 조성된 복합재료로 제조된 공시체를 이용하여 휨강도실험을 실행하고 그 결과는 도 5와 도 6에 나타내었다. Flexural strength tests were carried out using specimens made of composite materials prepared in each example and comparative example, and the results are shown in FIGS. 5 and 6.

참조한 바와같이 섬유재가 투입된 실시예1 내지 실시예6에서 모두 비교예보다 큰 휨강도를 제공함을 알 수 있다.
As described above, it can be seen that in Examples 1 to 6, in which the fiber material is added, it provides greater bending strength than the comparative example.

Claims (3)

시멘트 복합재료에 있어서,
바인더로 시멘트 100중량부, 산업부산물 400~500 중량부, 석고 25~35 중량부, 팽창제 25~35 중량부, 알카리자극제 25~35 중량부;
잔골재 300~400 중량부;
혼화제로 폴리머 1.5~2.5 중량부, HPMC 0.005~0.015 중량부, 감수제 0.2~0.4 중량부;
섬유재 0.5~2 중량부 를 혼합하고,
바인더 100중량부에 대해 물 22~24중량부로 혼합조성되는 것을 특징으로 하는 시멘트 복합재료.
In cement composite material,
100 parts by weight of cement, 400 to 500 parts by weight of industrial by-products, 25 to 35 parts by weight of gypsum, 25 to 35 parts by weight of expanding agent, and 25 to 35 parts by weight of alkaline stimulant;
Fine aggregate 300 to 400 parts by weight;
1.5 to 2.5 parts by weight of a polymer, HPMC 0.005 to 0.015 parts by weight, and 0.2 to 0.4 parts by weight of a reducing agent;
Mix 0.5 to 2 parts by weight of the fiber material,
Cement composite material, characterized in that the mixture is mixed 22 to 24 parts by weight of water with respect to 100 parts by weight of the binder.
제1항에 있어서,
상기 산업부산물은 고로슬래그, 플라이애시 로부터 일종 또는 이종 선택사용하고,
상기 알카리자극제는 규산나트륨(Na2SiO3), 수산화나트륨(NaOH), 소석회(Ca(OH)2), 황산나트륨(Na2SO4), 수산화칼륨(KOH)으로부터 일종 또는 이종이상 선택사용하고,
섬유재는 재생섬유, PVA(Polyvinyl alcohol)섬유, PP(Polypropylene)섬유로부터 일종 또는 이종이상 선택사용하는 것을 특징으로 하는 시멘트 복합재료.
The method of claim 1,
The industrial by-product is selected from the type of blast furnace slag, fly ash or heterogeneous,
The alkaline stimulant may be selected from one or more kinds of sodium silicate (Na 2 SiO 3 ), sodium hydroxide (NaOH), calcined lime (Ca (OH) 2 ), sodium sulfate (Na 2 SO 4 ), potassium hydroxide (KOH),
Fiber material is a cement composite material, characterized in that one or more selected from recycled fibers, PVA (Polyvinyl alcohol) fibers, PP (Polypropylene) fibers.
제2항에 있어서,
상기 재생섬유는,
PP를 길이 30mm, 폭과 두께 0.5~1.0mm로 형성하고, 길이방향으로는 0.1~0.2mm 깊이의 홈인 리브를 0.03mm 간격으로 형성하여 인장강도 400 Mpa, 탄성계수 5.6Gpa, 인장신도 max 15% 인 것을 사용하는 것을 특징으로 하는 시멘트 복합재료.
3. The method of claim 2,
The regenerated fiber,
PP is formed in 30mm length, 0.5 ~ 1.0mm in width and thickness, and ribs which are 0.1 ~ 0.2mm deep grooves are formed at intervals of 0.03mm in the length direction, tensile strength 400 Mpa, modulus of elasticity 5.6Gpa, tensile elongation max 15% Cement composite material, characterized in that the use.
KR1020120087208A 2012-08-09 2012-08-09 Shot fibers cement complex materials for decrease of carbon and life cycle cost KR101371380B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120087208A KR101371380B1 (en) 2012-08-09 2012-08-09 Shot fibers cement complex materials for decrease of carbon and life cycle cost

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120087208A KR101371380B1 (en) 2012-08-09 2012-08-09 Shot fibers cement complex materials for decrease of carbon and life cycle cost

Publications (2)

Publication Number Publication Date
KR20140020543A true KR20140020543A (en) 2014-02-19
KR101371380B1 KR101371380B1 (en) 2014-03-07

Family

ID=50267489

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120087208A KR101371380B1 (en) 2012-08-09 2012-08-09 Shot fibers cement complex materials for decrease of carbon and life cycle cost

Country Status (1)

Country Link
KR (1) KR101371380B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877317B1 (en) * 2017-05-12 2018-07-11 (주)노빌 Low powder and high fluidity concrete composition
KR20190106951A (en) * 2019-09-02 2019-09-18 (주)노빌 Concrete composition
KR20200022912A (en) * 2018-08-24 2020-03-04 한일에코산업 주식회사 Composition for manufacturing artificial retaining wall blocks using industrial by-products and manufacturing method of artificial retaining wall block using the same
CN111732365A (en) * 2020-07-22 2020-10-02 湖南大学 Concrete composite admixture and preparation method thereof
KR102459689B1 (en) * 2022-04-19 2022-10-27 (주)지오텍 a fiber-reinforced high-strength post-mortar composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496307A (en) * 2014-12-09 2015-04-08 西安建筑科技大学 Polypropylene fiber regenerated brick concrete as well as preparation and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040079629A (en) * 2003-03-08 2004-09-16 윤현도 Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers
KR100582840B1 (en) * 2005-12-20 2006-05-23 (주)에이엠에스 엔지니어링 Repair material and method of high-ductility and high-fire-resistance, and its spray equipment
KR100975581B1 (en) * 2010-03-16 2010-08-13 주식회사 이레하이테크이앤씨 Polymer modified high-early strength concrete composite and repairing method of road pavement using the composite
KR101140561B1 (en) * 2011-07-29 2012-05-02 아세아시멘트주식회사 High flowing-low heating concrete composition for carbon dioxide reduction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877317B1 (en) * 2017-05-12 2018-07-11 (주)노빌 Low powder and high fluidity concrete composition
KR20200022912A (en) * 2018-08-24 2020-03-04 한일에코산업 주식회사 Composition for manufacturing artificial retaining wall blocks using industrial by-products and manufacturing method of artificial retaining wall block using the same
KR20190106951A (en) * 2019-09-02 2019-09-18 (주)노빌 Concrete composition
CN111732365A (en) * 2020-07-22 2020-10-02 湖南大学 Concrete composite admixture and preparation method thereof
KR102459689B1 (en) * 2022-04-19 2022-10-27 (주)지오텍 a fiber-reinforced high-strength post-mortar composition

Also Published As

Publication number Publication date
KR101371380B1 (en) 2014-03-07

Similar Documents

Publication Publication Date Title
KR101371380B1 (en) Shot fibers cement complex materials for decrease of carbon and life cycle cost
US8444763B2 (en) Geopolymer cement and use therof
Adesina Performance of fibre reinforced alkali-activated composites–A review
KR101096513B1 (en) Mortar composition for reparing and reinforcing concreate structure compring of rapid curing binder using industrial by-products and using this concrete structure reparing and reinforcing methods
KR101067891B1 (en) Crack repairing composition of concrete structure using geopolymer
KR101608015B1 (en) Method of repairing and reinforcing cross section of concrete structure using fast hardening mortar
KR101530172B1 (en) Non-Shrink Chemical Grout Material Composition and Grouting Methods Using Thereof
KR100959587B1 (en) High strength concrete composition and method fod preparating concrete using the same
KR101639903B1 (en) Concrete composition for phc pile containing furnace blast slag and the method for preparing phc pile by using the same
EP2514727B1 (en) An alkali activated limestone concrete composition and use of composition in concrete casting
KR20200116475A (en) Cement composition and its hardened product
CN107488018A (en) A kind of sulphoaluminate cement base superelevation ductility concrete and preparation method thereof
CN103113077A (en) Desulfurization gypsum concrete
CN102815910A (en) Cement glue with adjustable performances
CN104496327A (en) Wet-mixed masonry mortar prepared by adopting aggregate chips
CN104556875A (en) Wet-mixed plastering mortar prepared from stone chips and tailing sand
CN104496330A (en) Wet-mixing masonry mortar prepared by adopting stone chip and tailing sand
KR20160127463A (en) Continuity method for bridge decks using rapid-hardening cement concrete composition
CN107935504A (en) Early strengthening and high strengthening, microdilatancy, the bar connecting sleeve grouting material of since conservation function
KR101558859B1 (en) Rapid-hardening and high ductility cement concrete composition and manufacture of therof
CN104030596A (en) Alkaline-free anti-crack concrete shrinkage reducing agent
KR101110235B1 (en) Cement nothing addition concrete water soluble bonding agent and manufacturing method of concrete
CN115010428A (en) Building 3D printing material, preparation method and application thereof, and product
JP5743650B2 (en) Method for producing slag curing composition
KR101594157B1 (en) Eco-Mortars Composition Usnig Non-firing Binder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190331

Year of fee payment: 6