KR100959587B1 - High strength concrete composition and method fod preparating concrete using the same - Google Patents
High strength concrete composition and method fod preparating concrete using the same Download PDFInfo
- Publication number
- KR100959587B1 KR100959587B1 KR20090097970A KR20090097970A KR100959587B1 KR 100959587 B1 KR100959587 B1 KR 100959587B1 KR 20090097970 A KR20090097970 A KR 20090097970A KR 20090097970 A KR20090097970 A KR 20090097970A KR 100959587 B1 KR100959587 B1 KR 100959587B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- admixture
- high strength
- strength concrete
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
- C04B28/16—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/10—Clay
- C04B14/106—Kaolin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
- C04B18/142—Steelmaking slags, converter slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/146—Silica fume
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
- C04B22/062—Oxides, Hydroxides of the alkali or alkaline-earth metals
- C04B22/064—Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/085—Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/10—Acids or salts thereof containing carbon in the anion
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/04—Carboxylic acids; Salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/16—Sulfur-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
- C04B28/065—Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00215—Mortar or concrete mixtures defined by their oxide composition
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/2038—Resistance against physical degradation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
- C04B2201/52—High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Dispersion Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 초고강도 콘크리트 조성물, 및 이를 이용한 초고강도 콘크리트 제조 방법에 관한 것으로, 구체적으로는 CSA 시멘트, 및 혼화재 등으로 구성되는 초고강도 콘크리트 조성물, 및 이를 이용한 초고강도 콘크리트 제조 방법에 관한 것이다.The present invention relates to an ultra high strength concrete composition, and a method for producing ultra high strength concrete using the same, and more particularly, to an ultra high strength concrete composition composed of CSA cement, a miscible, and the like, and an ultra high strength concrete manufacturing method using the same.
콘크리트는 시멘트 페이스트에 골재를 혼합하여 다양한 구조물을 만드는 것으로, 페이스트는 골재와 골재를 접착·결합시키는 역할을 하며 강도 발현에 중요한 역할을 한다. 그러나, 통상적인 시멘트 페이스트와 골재를 사용하여 제조한 콘크리트는 압축강도가 높은데 비하여 인장강도와 휨강도가 작고, 재료가 고가이거나 양생기간이 길어 생산성 및 경제성이 문제시 되고 있다.Concrete mixes aggregate with cement paste to make various structures. Paste plays an important role in strength and strength of bonding and bonding aggregate and aggregate. However, concrete manufactured using conventional cement paste and aggregate has high compressive strength, and has low tensile strength and flexural strength, and is expensive or has a long curing period.
이러한 낮은 인장강도 및 휨강도의 문제점을 해소하기 위해 최근에는 콘크리트의 결합재로서 시멘트 페이스트를 사용하지 않고 폴리에스테르 등의 수지를 이용한 폴리머 콘크리트 또는, 통상적인 시멘트 페이스트에 강섬유 및 유기섬유 등을 혼입하여 제조한 섬유 보강 콘크리트(Fiber Reinforced Concrete)가 높은 휨강도 및 압축강도가 요구되는 구조물에 사용되고있다.In order to solve the problem of low tensile strength and flexural strength, in recent years, steel fibers and organic fibers have been incorporated into polymer concrete or polyester cement using conventional resin paste without using cement paste as a binder of concrete. Fiber Reinforced Concrete is used in structures that require high flexural and compressive strength.
폴리머 콘크리트는 압축, 인장 및 휨강도 등의 물성이 일반 시멘트 콘크리트 보다 높을 뿐만 아니라 가사시간이나 경화시간을 폭넓게 제어할 수 있는 우수한 특성을 가지고 있으나, 폴리머 콘크리트 재료로 이용되는 폴리에스테르 수지 등이 대체로 고가이며 국제유가 및 원자재 수급상황에 따라 가격이 상승하는 문제점을 가지고 있다. 통상적인 포틀랜드 시멘트에 섬유를 혼입하여 보강을 한 초고강도 콘크리트는 콘크리트가 가지고 있는 낮은 인장 및 휨강도의 문제점을 해결하였으나, 양생 온도가 높고 양생 시간이 길며, 고가의 보강섬유를 혼입하므로 생산성 및 경제성의 문제점을 가지고 있다.Polymer concrete has not only higher physical properties such as compression, tensile and bending strength than general cement concrete, but also has excellent characteristics to control pot life and hardening time widely. However, polyester resins used as polymer concrete materials are generally expensive. There is a problem that the price increases due to the international oil prices and raw material supply and demand situation. Ultra-high strength concrete reinforced with fiber in the conventional Portland cement solved the problems of low tensile and flexural strength of concrete, but it has high curing temperature, long curing time, and expensive reinforcing fiber. I have a problem.
또한, 보통 포틀랜드 시멘트에 모래, 석영가루, 실리카흄, 분산제, 유기섬유 등을 배합하여 휨강도를 증진시키는 방법이 알려져 있으나, 소정의 휨강도를 발현하기 위해서는 90℃에서 2일간 양생시켜야 하고 고가의 유기섬유 또는 강섬유 등의 재료가 혼입되어 생산성과 경제성 면에서 문제점을 가지고 있어 극히 일부 특수 구조물 등에 사용범위가 한정되어 있다.In addition, a method of improving bending strength by mixing sand, quartz powder, silica fume, dispersant, and organic fibers with portland cement is generally known. However, in order to express a predetermined bending strength, curing is performed at 90 ° C. for 2 days and expensive organic fibers or Materials such as steel fibers are mixed to have problems in terms of productivity and economical efficiency, so the range of use of some special structures is limited.
또한, 콘크리트의 작업성을 향상시키기 위한 감수제로서 일반적으로 멜라민계 혼합제를 첨가하는데, 이를 통하여 배합수의 양을 줄이는 데는 한계가 있으므로 콘크리트 강도 향상에 제약이 있고, 증기 양생시간을 단축시킬 수 없으므로, 시간, 비용, 및 에너지 절감이 어려운 문제가 있다.In addition, a melamine-based mixture is generally added as a water reducing agent to improve the workability of concrete, and thus there is a limit in reducing the amount of blending water, thereby limiting the strength of concrete and reducing steam curing time. Time, cost, and energy savings are difficult.
본 발명은 증기양생 온도, 및 시간을 줄일 수 있고, 에너지 절감, 탄소 가스와 강알칼리 방생으로 인한 환경 오염 감소, 및 제조 가격 절감이 가능하며, 혼화제와 배합수의 양을 줄이면서도 작업성을 향상시킬 수 있음과 동시에, 상기와 같은 잇점을 달성하면서도 폴리머 콘크리트 또는 섬유보강 초고강도 콘크리트와 같이 휨강도, 및 압축강도가 높은 초고강도 콘크리트 조성물, 및 이를 이용한 초고강도 콘크리트 제조 방법을 제공함에 목적이 있다.The present invention can reduce steam curing temperature and time, and can save energy, reduce environmental pollution due to carbon gas and strong alkali generation, and reduce manufacturing cost, and improve workability while reducing the amount of admixture and water mixture. At the same time, the object of the present invention is to provide an ultra high strength concrete composition having high bending strength and high compressive strength, such as polymer concrete or fiber reinforced ultra high strength concrete, and a method of manufacturing ultra high strength concrete using the same, while achieving the above advantages.
본 발명에 따른 초고강도 콘크리트 조성물은, 4CaO·3Al2O3·SO3를 주성분으로 하는 클링커 85 내지 95중량부 및 II형 무수석고 5 내지 15중량부를 포함하는 CSA 시멘트 혼합물과 혼화재로 이루어지는 결합재; 제강슬래그와 골재로 이루어지는 피결합재; 및 옥시카르본산염계 혼화제를 포함할 수 있다.Ultra high-strength concrete composition according to the present invention, the binder comprising a CSA cement mixture and admixture comprising 85 to 95 parts by weight and 5 to 15 parts by weight of anhydrous gypsum II and clinker containing 4CaO.3Al 2 O 3 .SO 3 as a main component; Bonded material consisting of steelmaking slag and aggregate; And oxycarbonate-based admixtures.
바람직하게는, 상기 혼화재는 실리카흄 또는 메타카올린이고, 상기 결합재는 상기 CSA 시멘트 혼화물 90 내지 97중량부, 및 상기 혼화재 3 내지 7중량부로 이루어질 수 있다.Preferably, the admixture is silica fume or metakaolin, the binder may be composed of 90 to 97 parts by weight of the CSA cement admixture, and 3 to 7 parts by weight of the admixture.
바람직하게는, 상기 피결합재는 제강슬래그 20 내지 40중량부, 및 골재 60 내지 80중량부로 이루어질 수 있다.Preferably, the binder may be composed of 20 to 40 parts by weight of steelmaking slag, and 60 to 80 parts by weight of aggregate.
바람직하게는, 상기 옥시카르본산염계 혼화제는 옥시카르본산염을 포함할 수 있다.Preferably, the oxycarbonate-based admixture may include an oxycarbonate.
바람직하게는, 옥시카르본산염계 혼화제는 알킬벤젠술폰산염을 더 포함할 수 있고, 상기 옥시카르본산염 90 내지 95중량부, 및 상기 알킬벤젠술폰산염 5 내지 10중량부일 수 있다.Preferably, the oxycarboxylic acid-based admixture may further include an alkylbenzene sulfonate, 90 to 95 parts by weight of the oxycarbonate, and 5 to 10 parts by weight of the alkylbenzenesulfonate.
바람직하게는, 산화칼슘 40 내지 60중량부, 및 리튬카보네이트 30 내지 50중량부로 이루어지는 제1 혼화제를 더 포함할 수 있따.Preferably, the first admixture consisting of 40 to 60 parts by weight of calcium oxide, and 30 to 50 parts by weight of lithium carbonate may be further included.
바람직하게는, 염화칼슘 50 내지 70중량부, 및 아질산칼슘 30 내지 50 중량부로 이루어지는 제2 혼화제를 더 포함할 수 있다.Preferably, it may further include a second admixture consisting of 50 to 70 parts by weight of calcium chloride, and 30 to 50 parts by weight of calcium nitrite.
바람직하게는, 상기 결합재 100중량부 대비, 각각 상기 피결합재는 200 내지 260중량부, 상기 피결합재는 200 내지 230중량부, 상기 옥시카르본산염계 혼화제는 2 내지 6중량부, 상기 제1 혼화제는 0.5 내지 1.5중량부, 및 상기 제2 혼화제는 0.5 내지 1.5 중량부일 수 있다.Preferably, the binder is 200 to 260 parts by weight, the binder is 200 to 230 parts by weight, the oxycarboxylic acid admixture is 2 to 6 parts by weight, and the first admixture with respect to 100 parts by weight of the binder, respectively. Is 0.5 to 1.5 parts by weight, and the second admixture may be 0.5 to 1.5 parts by weight.
바람직하게는, 상기 초고강도 콘크리트 조성물을 35 내지 40℃에서 2 내지 3시간, 및 50 내지 80℃에서 5 내지 20시간 동안 증기양생시키는 단계를 포함할 수 있다.Preferably, the ultra-high strength concrete composition may include steam curing at 35 to 40 ° C. for 2 to 3 hours, and 50 to 80 ° C. for 5 to 20 hours.
바람직하게는, 활성성분을 함유한 수용액을 가압 충진시키는 단계를 더 포함할 수 있다.Preferably, the method may further include pressurizing and filling the aqueous solution containing the active ingredient.
바람직하게는, 상기 활성성분은 리그닌 술폰산 나트륨염, 규산소다, 및 염화폴리알루미늄 중의 적어도 하나 이상을 포함할 수 있다.Preferably, the active ingredient may include at least one or more of lignin sulfonic acid sodium salt, sodium silicate, and polyaluminum chloride.
본 발명에 따른 초고강도 콘크리트 조성물, 및 이를 이용한 초고강도 콘크리트 제조 방법은 증기양생 온도 및 시간을 줄일 수 있으므로 강도 향상, 공기 단축과 제조, 및 공사 비용 절감이 가능하고, 혼화제와 배합수의 양을 줄이면서도 작업성을 향상시킬 수 있으며, 탄소 가스 감소와 강알칼리 발생을 억제가 가능하므로 환경 오염을 방지할 수 있음과 동시에 휨강도와 압축강도가 우수하므로 초고강도가 요구되는 광통신용 맨홀 등에, 보다 얇은 두께로 적용이 가능한 효과가 있다.Ultra-high strength concrete composition according to the present invention, and the method of manufacturing ultra-high strength concrete using the same can reduce the steam curing temperature and time, thus improving the strength, shortening the air and manufacturing, and construction costs can be reduced, and the amount of admixture and water mixture It is possible to improve workability while reducing, and to reduce carbon gas and suppress strong alkali, and to prevent environmental pollution, and to be excellent in bending strength and compressive strength. It can be applied to the effect.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 발명의 일실시예에 따른 초고강도 콘크리트 조성물은 결합재, 피결합재, 옥시카르본산염계 혼화제, 제1 혼화제, 및 제2 혼화제를 포함한다.Ultra high-strength concrete composition according to an embodiment of the present invention includes a binder, a binder, an oxycarbonate-based admixture, a first admixture, and a second admixture.
결합재는 4CaO·3Al2O3·SO3를 주성분으로 하는 클링커(CSA 시멘트) 80 내지 95중량부와 II형 무수석고 5 내지 20 중량부를 포함하는 CSA 시멘트 혼합물 90 내지 97중량부, 및 혼화재 3 내지 10중량부를 포함한다. 이 경우 클링커(CSA 시멘트)와 석고의 주요 수화 생성물인 에트링자이트 침상 결정체의 서로 얽힘 구조를 이용하여 섬유보강을 하지 않고도 휨강도를 증진시킬 수 있다. 4CaO·3Al2O3·SO3를 주성분으로 하는 클링커는 에트링자이트 침상 결정체를 생성할 수 있는 성분이라면 어떠한 것이라도 무방하며, 4CaO·3Al2O3·SO3만으로 이루어진 클링커, 또는 4CaO·3Al2O3·SO3 및 2CaO·SiO2로 이루어진 클링커일 수 있다. Binding agent is 4CaO · 3Al 2 O 3 · SO 3 clinker containing as a main component (CSA cement) 80 to 95 parts by weight of type II anhydrous gypsum 5 to 20 wt CSA cement mixture 90 to 97 parts by weight containing portion, and the admixture of 3 to 10 parts by weight. In this case, the entangled structure of clinker (CSA cement) and ettringite acicular crystals, which are the main hydration products of gypsum, can be used to enhance the bending strength without fiber reinforcement. The clinker mainly composed of 4CaO · 3Al 2 O 3 · SO 3 may be any component capable of producing ettringite acicular crystals, and may be composed of 4CaO · 3Al 2 O 3 · SO 3 , or 4CaO · 3Al 2 O 3 · may be a clinker consisting of SO 3 and 2CaO · SiO 2.
Ⅱ형 무수석고는 5중량부 이하로 포함되는 경우에 에트링자이트가 조기에 충분히 생성되지 않으므로 조기 강도발현이 어려우며, 20중량부 이상으로 포함되는 경우에는 에트링자이트 결정이 서로 얽혀 견고하게 결합된 후 에트링자이트가 추가적으로 생성되므로 재령기간이 증가함에 따라 휨강도 저하의 폭이 커지고, 이상응결 및 팽창현상이 나타날 수 있다. 반면에, 본 발명과 같이 Ⅱ형 무수석고가 5 내지 20중량부인 경우에는 에트링자이트 결정이 최적으로 생성되어서, 콘크리트의 휨강도가 대체로 높고, 재령기간이 증가하는 경우에도 휨강도의 변화 및 감소 폭이 적다.Type II anhydrite is less than 5 parts by weight of ettringite is not produced early enough, so early strength expression is difficult, and when contained in more than 20 parts by weight ettringite crystals are entangled with each other firmly Since the ettringite is additionally produced after bonding, the bending strength decreases with increasing age, and abnormal condensation and expansion may occur. On the other hand, when the type II anhydrous gypsum is 5 to 20 parts by weight as in the present invention, the ettringite crystal is optimally produced, so that the bending strength of the concrete is generally high, and even when the age period is increased, the bending strength changes and decreases. This is less.
혼화재는 일실시예에 따르면, 실리카흄일 수 있고, 실리카흄은 수화열을 저감시키고, 강도발현이 현저하며, 수밀성, 화학저항성 및 내구성을 향상시킬수 있어 초고강도 및 고내구성의 콘크리트 제조에 효과적이다. According to one embodiment, the admixture may be silica fume, and silica fume may reduce heat of hydration, remarkable strength expression, and improve watertightness, chemical resistance, and durability, and thus may be effective in preparing high strength and high durability concrete.
한편, 본 발명의 다른 실시예에 따르면, 혼화재는 메타카올린일 수 있는데, 메타카올린은 균질하게 성분 조합한 카올린을 특수한 전처리를 거친 후 이를 소정의 조건으로 소성하여 활성화시킨 다음 일정한 입도로 미분화한 것으로, 일실시예에 따르면, 메타카올린의 분말도는 110,000 내지 130,000㎠/g일 수 있다. On the other hand, according to another embodiment of the present invention, the admixture may be metakaolin, metakaolin is homogeneous component kaolin after a special pre-treatment and activated by firing it under predetermined conditions and then finely divided into a certain particle size , According to one embodiment, the powder degree of metakaolin may be 110,000 to 130,000 cm 2 / g.
실리카흄은 다량으로 사용하는 경우 초기 균열이 발생할 수 있고, 블리딩(Bleeding)이 작아 건조수축이 크므로 고가의 감수제 사용량이 증가할 수 있다. 또한, 실리카흄은 산업부산물이기 때문에 제품의 품질, 색상 등이 균일하게 공급되기가 어려우나, 메타카올린은 산업부산물이 아니기 때문에 균질한 품질을 보증할 수 있다. 따라서, 저가의 메타카올린을 사용하는 경우에 비용을 감소시킬 수 있으며, 메타카올린은 수화시 단기적인 에트링자이트(ettringite)의 생성과, CSA 시멘트 중의 주요광물인 알라이트(alite)의 활성화로 인한 반응속도의 증가로 초기강도를 증가시키고 중장기적으로는 CSA 시멘트의 수산화칼슘과의 포졸란반응으로 콘크리트 조직이 치밀화되어 강도 및 내구성이 향상될 수 있다. 즉, CSA 시멘트 수화작용으로 생성되는 수산화칼슘과 결합하여 칼슘 실리케이트 수화물(Calcium Silicate Hydrate)과 같은 다량의 수화생성물을 형성하고, 유해한 알칼리 작용을 감소시키며, 강도 증진과 투수성 감소가 가능하다.When silica fume is used in a large amount, initial cracking may occur, and the amount of expensive water reducing agent may increase because of small dry bleeding and large dry shrinkage. In addition, since silica fume is an industrial by-product, it is difficult to uniformly supply product quality, color, etc., but since metakaolin is not an industrial by-product, it can guarantee a homogeneous quality. Therefore, the use of low-cost metakaolin can reduce the cost, and the metakaolin is produced by short-term ettringite production during hydration and activation of alite, which is a major mineral in CSA cement. Increasing the reaction rate increases the initial strength, and in the medium and long term, the concrete structure can be densified by the pozzolanic reaction of CSA cement with calcium hydroxide, thereby improving strength and durability. That is, it combines with calcium hydroxide produced by CSA cement hydration to form a large amount of hydration products such as calcium silicate hydrate (Calcium Silicate Hydrate), reduce harmful alkali action, increase strength and reduce permeability.
또한, 메타카올린이 3중량부 미만인 경우에는 시공성이 저하되고, 10중량부를 초과하는 경우에는 휨강도가 저하될 수 있으나, 본 발명과 같이 메타카올린이 3 내지 10중량부인 경우에는 콘크리트 조성물의 강도 및 내구성을 향상시키킬 수 있 다.In addition, when the metakaolin is less than 3 parts by weight, the workability is lowered, and when it exceeds 10 parts by weight, the bending strength may be lowered, but when the metakaolin is 3 to 10 parts by weight as in the present invention, the strength and durability of the concrete composition It can improve the quality.
피결합재는 일실시예에 따르면, 결합재 100중량부 대비 220 내지 280중량부일 수 있으며, 바람직하게는 250중량부일 수 있다. 피결합재는 제강슬래그 미분말 20 내지 40중량부, 및 골재 60 내지 80중량부가 포함되는 것이 바람직한데, 제강슬래그 미분말은 잠재수경성 재료로서 작업성, 펌핑성, 후기강도 발현을 고려하기 때문이며, 40중량부를 초과하는 경우에 콘크리트 제조에 있어서 재료분리가 발생하기 쉽고, 20중량비 미만인 경우에 후기강도 발현 및 작업성이 저하될 수 있다.According to one embodiment, the binder may be 220 to 280 parts by weight, and preferably 250 parts by weight with respect to 100 parts by weight of the binder. The binder is preferably comprised of 20 to 40 parts by weight of fine steel slag powder, and 60 to 80 parts by weight of aggregate, since the steelmaking slag fine powder is a latent hydraulic material considering workability, pumping property, and late strength. When it exceeds, it is easy to produce material separation in concrete production, and when it is less than 20 weight ratio, late strength expression and workability may fall.
제강슬래그로의 분말도는 일실시예에 따르면, 입경 2mm 이하일 수 있어 모래를 대체할 수 있다. 또한, 분말도 6,000 내지 11,000㎠/g인 경우에는 일반적으로 해양콘크리트에서 사용되는 분말도 4,500㎠/g의 제강슬래그에 비해 강도, 내구성, 반응성 및 충진성을 향상시킬 수 있다.According to one embodiment, the powder of steelmaking slag may have a particle diameter of 2 mm or less, thereby replacing sand. In addition, when the powder is also 6,000 to 11,000 cm 2 / g can be improved in strength, durability, reactivity and filling properties compared to steel slag of 4,500 cm 2 / g generally used in marine concrete.
또한, 제강슬래그는 가수 직후 거의 반응하지 않고 입자 표면에 수화물을 생성하지 않으므로 CSA 시멘트 입자간에 발생하는 마찰력을 저감시킬 뿐만 아니라 6,000 내지 11,000㎠/g의 미분말 효과에 의해 점성이 증가하여 고분말의 메타카올린을 사용함에 따른 콘크리트의 유동성 저하를 방지할 수 있다. 더하여 단위결합재량이 높은 초고강도 콘크리트에서 문제될 수 있는 수화열을 감소시킴으로써 콘크리트의 균열을 방지하고, 장기적으로 우수한 강도 특성을 가지므로 내구성을 증진시킬 수 있으며, 가격이 저렴하여 CSA 시멘트를 대체함으로써 제조 가격을 낮출 수 있다.In addition, steel slag hardly reacts immediately after watering and produces no hydrate on the surface of the particles, which not only reduces the friction force generated between the CSA cement particles but also increases the viscosity due to the fine powder effect of 6,000 to 11,000 cm 2 / g. It is possible to prevent the deterioration of the fluidity of the concrete by using kaolin. In addition, it can prevent cracking of concrete by reducing the heat of hydration that may be a problem in high strength concrete with high unit bonding materials, improve durability by having excellent strength characteristics in the long term, and manufacture by replacing CSA cement with low price You can lower the price.
옥시카르본산염계 혼화제는 일실시예에 따르면, 결합재 100중량부 대비 2 내지 6중량부가 포함될 수 있으며, 바람직하게는 4중량부일 수 있다. 옥시카르본산염계 혼화제는 옥시카르본산염 90 내지 95중량부, 및 알킬벤젠술폰산염 5 내지 10중량부를 포함하며, 옥시카르본산염계 혼화제가 2중량부 미만인 경우에 유동성 확보가 어렵고, 6중량부를 초과하는 경우에는 미응결, 강도발현 지연, 및 블리딩(Bleeding)량 증가로 시공성능이 저하되나, 2 내지 6중량부, 바람직하게는 4중량부의 적정 비율로 혼합되는 경우에 높은 부착강도, 무수축성 및 초고강도를 발현할 수 있다. 또한, 옥시카르본산염, 및 알킬벤젠술폰산염이 첨가됨으로써 빗물 등에 의한 CSA 시멘트의 수화반응을 억제하여 농작물이나 환경에 악영향을 미칠 수 있는 강알칼리 발생을 방지할 수 있다. The oxycarbonate-based admixture may include 2 to 6 parts by weight, preferably 4 parts by weight, based on 100 parts by weight of the binder. The oxycarbonate-based admixture includes 90 to 95 parts by weight of oxycarbonate, and 5 to 10 parts by weight of alkylbenzene sulfonate, and it is difficult to secure fluidity when the oxycarbonate-based admixture is less than 2 parts by weight, and 6 weight parts. In case of exceeding part, construction performance decreases due to non-condensation, delay in strength expression, and increase in bleeding, but high adhesion strength and no adhesion when mixed in an appropriate ratio of 2 to 6 parts by weight, preferably 4 parts by weight. It can express contractility and ultra high strength. In addition, by addition of oxycarboxylic acid salt and alkyl benzene sulfonate salt, it is possible to suppress the hydration reaction of CSA cement by rain water or the like to prevent the generation of strong alkali, which may adversely affect crops or the environment.
제1 혼화제는 일실시예에 따르면, 결합재 100중량부 대비 0.5 내지 1.5중량부가 포함되고, 제1 혼화제는 산화칼슘 50 내지 70중량부, 및 리튬카보네이트 30 내지 50중량부를 포함할 수 있으며, 산화칼슘과 리튬카보네이트가 첨가됨으로써 초기강도를 증진시킬 수 있다.According to an embodiment, the first admixture may include 0.5 to 1.5 parts by weight based on 100 parts by weight of the binder, the first admixture may include 50 to 70 parts by weight of calcium oxide, and 30 to 50 parts by weight of lithium carbonate, and calcium oxide By adding lithium carbonate and can increase the initial strength.
제2 혼화제는 일실시예에 따르면, 결합재 100중량부 대비 0.5 내지 1.5중량부가 포함되고, 제2 혼화제는 염화칼슘 50 내지 70중량부, 및 아질산칼슘 30 내지 50중량부를 포함할 수 있으며, 염화칼슘과 아질산칼슘이 첨가됨으로써 중성화억제 효과를 높일 수 있다.According to one embodiment, the second admixture may include 0.5 to 1.5 parts by weight relative to 100 parts by weight of the binder, the second admixture may include 50 to 70 parts by weight of calcium chloride, and 30 to 50 parts by weight of calcium nitrite, and calcium chloride and nitrite The addition of calcium can increase the neutralization inhibitory effect.
본 발명에 따른 초고강도 콘크리트는 여러 방법에 의하여 제조될 수 있는데, 본 발명의 일실시예에 따른 결합재 100중량부와, 결합재 100중량부에 대하여 16 내지 18중량부의 배합수를 믹서기로 혼합하는 단계와, 양생하는 단계를 포함하는 제조 방법에 의해 제작될 수 있다.Ultra high-strength concrete according to the present invention can be produced by a number of methods, mixing 100 parts by weight of the binder according to an embodiment of the present invention, and 16 to 18 parts by weight of the blended water with respect to 100 parts by weight of the binder with a mixer. And it can be produced by a manufacturing method comprising the step of curing.
양생단계는 30분 내지 1시간 30분의 전치시간과 35 내지 40℃에서 2시간 내지 3시간(1차 증기양생), 50℃ 내지 80℃에서 5시간 내지 20시간(2차 증기양생) 증기양생, 1 내지 4일의 습윤 양생을 실시하는 단계에 의해서 수행될 수 있다. 특히, 본 발명에 의한 초고강도 콘크리트는 종래의 콘크리트와는 달리 상대적으로 저온에서 단시간 동안 증기양생하여도 높은 압축강도, 휨강도를 발현할 수 있어서 조기에 구조물을 제작할 수 있다는 장점이 있다. 또한, 저온에서 단기간에 제작이 가능하므로 열을 가하기 위한 탄소 에너지 절감에 매우 우수한 효과가 있다. The curing step is a pretreatment time of 30 minutes to 1 hour 30 minutes, 2 hours to 3 hours (primary steam curing) at 35 to 40 ℃, 5 hours to 20 hours (second steam curing) at 50 ℃ to 80 ℃ , 1 to 4 days of wet curing. In particular, the ultra-high strength concrete according to the present invention has the advantage of being able to express a high compressive strength and bending strength even in a short period of time at a relatively low temperature, unlike the conventional concrete, can produce a structure early. In addition, since it can be produced in a short period of time at a low temperature there is a very excellent effect in reducing the carbon energy for applying heat.
양생조건에 있어서, 에트링자이트 결정을 최대로 생성시키기 위해서는 증기양생 시간을 12시간 내지 20시간으로 설정하고, 특히 35 내지 40℃에서 2시간 내지 3시간(1차 증기양생), 50℃ 내지 80℃에서 5시간 내지 20시간(2차 증기양생) 동안 증기양생하도록 설정하는 것이 바람직하다. 여기서, 특히 2차 증기양생 시간이 5시간 미만이면 에트링자이트 침상 결정이 상대적으로 치밀하게 얽혀 생성되지 않고 경화된 후 추가적인 에트링자이트 생성으로 휨강도가 저하되는 결과를 초래하며, 2차 증기양생 시간이 20시간을 상회하면 에트링자이트 결정이 추가로 생성되지 않으므로 추가적인 강도증진 효과가 나타나지 않는다.In the curing conditions, in order to produce the ettringite crystals to the maximum, the steam curing time is set to 12 hours to 20 hours, especially at 35 to 40 ℃ for 2 hours to 3 hours (primary steam curing), 50 ℃ to It is preferable to set it to steam curing at 80 degreeC for 5 to 20 hours (secondary steam curing). Here, in particular, when the secondary steam curing time is less than 5 hours, the ettringite needle crystals are hardly formed without being intertwined with each other, and after hardening, additional ettringite formation results in a decrease in bending strength. If the curing time is more than 20 hours, no additional ettringite crystal is produced, and thus no additional strength enhancing effect is exhibited.
또한, 활성성분을 함유한 수용액을 가압 충진시키는 단계를 더 포함할 수 있는데, 활성성분은 리그닌 술폰산 나트륨염, 규산소다, 및 염화폴리알루미늄 중의 적어도 하나 이상을 포함하여 이루어질 수 있다. 이를 통하여 감수, 방수, 경화촉진 효과를 극대화 할 수 있고, 특히 해안 등의 연약지반에서 시공성을 향상시킬 수 있다.The method may further include pressurizing and filling an aqueous solution containing the active ingredient, wherein the active ingredient may include at least one or more of lignin sulfonic acid sodium salt, sodium silicate, and polyaluminum chloride. Through this, it is possible to maximize the water-resistance, waterproofing and hardening effect, and in particular, it is possible to improve the workability in soft ground such as coast.
이하 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.
한편, 본 발명에서 함량의 단위로 사용된 함량단위인 '중량부'는 상기한 일 구현예에서와 같이 상대적인 함량을 나타내는 것으로서, 상대적 중량부에 대한 별도의 기준 함량이 비록 명시적으로는 기재되어 있지 않다고 하더라도, 본 발명이 속하는 기술분야의 당업자라면 본 발명의 각 구성성분의 상대적인 함량을 결정하는데 별다른 어려움이 없을 것이다.On the other hand, the content unit 'parts by weight' used as a unit of the content in the present invention indicates a relative content as in the above-described embodiment, although a separate reference content for the relative parts by weight is explicitly stated. If not, those skilled in the art will not have difficulty in determining the relative content of each component of the present invention.
실시예1Example 1
4CaO·3Al2O3·SO3 성분의 클링커(CSA 시멘트)와 Ⅱ형 무수석고를 각각 중량비 95:5, 90:10, 85:15, 및 80:20 으로 혼합하여 이루어진 CSA 시멘트 혼합물 92.5중량부와 실리카흄 7.5중량부를 포함하는 결합재, 결합재 100중량부 대비 250중량부의 피결합재, 결합재 100중량부 대비 4중량부의 옥시카르본산염계 혼화제, 및 결합재 100중량부 대비 각각 1중량부의 제1 및 제2 혼화제가 혼합되며, 이때 피결합재는 제강슬래그 30중량부와 골재 70중량부, 옥시카르본산염계 혼화제는 옥시카르본산염 90중량부와 알킬벤젠술폰산염 10중량부, 제1 혼화제는 산화칼슘 60중량부와 리튬카보네이트 40중량부, 및 제2 혼화제는 염화칼슘 60중량부, 및 아질산칼슘 40중량부가 각각 혼합된다. 또한, 결합재 100중량부 대비 16 중량부의 배합수가 첨가된다. 92.5 parts by weight of a CSA cement mixture comprising 4CaO 3 Al 2 O 3 SO 3 component clinker (CSA cement) and an anhydrous gypsum in a weight ratio of 95: 5, 90:10, 85:15, and 80:20, respectively. And a binder comprising 7.5 parts by weight of silica fume, 250 parts by weight of the binder, 100 parts by weight of the binder, 4 parts by weight of the oxycarbonate-based admixture, and 100 parts by weight of the binder, 1 part by weight of the first and second parts, respectively. The admixture is mixed, wherein the binding material is 30 parts by weight of steelmaking slag and 70 parts by weight of aggregate, the oxycarbonate-based admixture is 90 parts by weight of oxycarbonate and 10 parts by weight of alkylbenzene sulfonate, and the first admixture is calcium oxide 60 60 parts by weight of calcium chloride and 40 parts by weight of calcium nitrite are mixed with the parts by weight, 40 parts by weight of the lithium carbonate, and the second admixture. In addition, 16 parts by weight of the blended water relative to 100 parts by weight of the binder is added.
상기 조성물을 믹서에서 5분간 혼합하여 시험체를 제조하고, 1시간 전치, 40℃에서 3시간 동안 1차 증기양생, 70℃에서 20시간 동안 2차 증기양생 후 각각 1일 및 3일 습윤양생 하여 콘크리트 시험체를 제작하였고, 시험체의 휨강도와 압축강도를 KS L 5207에 따라 측정하였다. The composition was prepared by mixing the composition in a mixer for 5 minutes, and then subjected to primary steam curing for 3 hours at 40 ° C., secondary steam curing at 70 ° C. for 20 hours, and then wet curing for 1 day and 3 days, respectively. Test specimens were prepared and the flexural and compressive strengths of the specimens were measured according to KS L 5207.
혼화제Oxycarbonate
Admixture
*1: CSA 시멘트 95중량% + II 형 무수석고 5중량% * 1: 95% by weight of CSA cement + 5% by weight of type II anhydrous gypsum
*2: CSA 시멘트 90중량% + II 형 무수석고 10중량%* 2: 90 wt% CSA cement + 10 wt% anhydrous gypsum type II
*3: CSA 시멘트 85중량% + II 형 무수석고 15중량% * 3: 85 wt% CSA cement + 15 wt% anhydrous gypsum type II
*4: CSA 시멘트 80중량% + II 형 무수석고 20중량% * 4: 80% by weight of CSA cement + 20% by weight of type II anhydrous gypsum
*5: 옥시카르본산염계 혼화제: 옥시카르본산염 90중량% + 알킬벤젠술폰산염 10중량%* 5: Oxycarbonate-based admixture: 90% by weight of oxycarbonate + 10% by weight of alkylbenzenesulfonate
*6: 제1 혼화제: 산화칼슘 60중량% + 리튬카보네이트 40중량%* 6: 1st admixture: 60 weight% of calcium oxide + 40 weight% of lithium carbonates
*7: 제2 혼화제: 염화칼슘 60중량% + 아질산칼슘 40중량%* 7: second admixture: 60% by weight of calcium chloride + 40% by weight of calcium nitrite
실시예 2Example 2
실시예 1에서 클링커(CSA 시멘트) : Ⅱ형 무수석고의 중량비를 90:10으로 고정하고 CSA 시멘트 혼합물 : 실리카흄의 중량비를 각각 90:10, 92:8, 94:6, 및 96:4로 혼합하였으며, 나머지 조건은 실시예 1과 동일하게 하여서 제조하였다. In Example 1, the weight ratio of clinker (CSA cement) to type II anhydrous gypsum was fixed at 90:10, and the weight ratio of CSA cement mixture: silica fume was mixed at 90:10, 92: 8, 94: 6, and 96: 4, respectively. And the remaining conditions were prepared in the same manner as in Example 1.
혼화제Oxycarbonate
Admixture
*1: CSA 시멘트 90중량% + II형 무수석고 10중량% * 1: 90% by weight of CSA cement + 10% by weight of gypsum type II
*2: 옥시카르본산염계 혼화제: 옥시카르본산염 90중량% + 알킬벤젠술폰산염 10중량%* 2: Oxycarbonate-based admixture: 90% by weight of oxycarbonate + 10% by weight of alkylbenzenesulfonate
*3: 제1 혼화제: 산화칼슘 60중량% + 리튬카보네이트 40중량%* 3: 1st admixture: 60 weight% of calcium oxide + 40 weight% of lithium carbonates
*4: 제2 혼화제: 염화칼슘 60중량% + 아질산칼슘 40중량%* 4: Second admixture: 60% by weight of calcium chloride + 40% by weight of calcium nitrite
실시예 3Example 3
실시예 1에서 클링커(CSA 시멘트) : Ⅱ형 무수석고의 중량비를 90:10으로 고 정하고 결합재 100중량부 대비 옥시카르본산염계 혼화제를 각각 6, 5, 4, 3, 및 2중량부가 되도록 한 점을 제외하고는 실시예 1과 동일하게 하여서 제조하였다. In Example 1, the weight ratio of clinker (CSA cement) to type II anhydrous gypsum was set to 90:10, and the oxycarbonate-based admixtures were 6, 5, 4, 3, and 2 parts by weight, respectively, based on 100 parts by weight of the binder. Preparation was carried out in the same manner as in Example 1 except for the point.
혼화제Oxycarbonate
Admixture
*1: CSA 시멘트 90중량% + II형 무수석고 10중량% * 1: 90% by weight of CSA cement + 10% by weight of gypsum type II
*2: 옥시카르본산염계 혼화제: 옥시카르본산염 90중량% + 알킬벤젠술폰산염 10중량%* 2: Oxycarbonate-based admixture: 90% by weight of oxycarbonate + 10% by weight of alkylbenzenesulfonate
*3: 제1 혼화제: 산화칼슘 60중량% + 리튬카보네이트 40중량%* 3: 1st admixture: 60 weight% of calcium oxide + 40 weight% of lithium carbonates
*4: 제2 혼화제: 염화칼슘 60중량% + 아질산칼슘 40중량%* 4: Second admixture: 60% by weight of calcium chloride + 40% by weight of calcium nitrite
실시예 4Example 4
실시예 1의 증기양생 온도 및 시간 설정에 있어서, 40℃, 50℃, 60℃, 70℃, 및 80℃에서 8시간 또는 20시간, 또는 80℃에서 40시간 동안 2차 증기양생하는 점과 옥시카르본산염계 혼화제가 결합재 100중량부 대비 4중량부인 것을 제외하고는 실시예 3과 동일하게 하여서 초고강도 콘크리트를 제조하였다. In the steam curing temperature and time setting of Example 1, the second steam curing point and oxy for 8 hours or 20 hours at 40 ℃, 50 ℃, 60 ℃, 70 ℃, and 80 ℃, or 40 hours at 80 ℃ Ultra high strength concrete was prepared in the same manner as in Example 3 except that the carbonate-based admixture was 4 parts by weight based on 100 parts by weight of the binder.
무수석고Type II
Anhydrous gypsum
*1: CSA 시멘트 90중량% + II형 무수석고 10중량% * 1: 90% by weight of CSA cement + 10% by weight of gypsum type II
*2: 옥시카르본산염계 혼화제: 옥시카르본산염 90중량% + 알킬벤젠술폰산염 10중량%* 2: Oxycarbonate-based admixture: 90% by weight of oxycarbonate + 10% by weight of alkylbenzenesulfonate
*3: 제1 혼화제: 산화칼슘 60중량% + 리튬카보네이트 40중량%* 3: 1st admixture: 60 weight% of calcium oxide + 40 weight% of lithium carbonates
*4: 제2 혼화제: 염화칼슘 60중량% + 아질산칼슘 40중량%* 4: Second admixture: 60% by weight of calcium chloride + 40% by weight of calcium nitrite
본 발명에 따른 초고강도 콘크리트 조성물, 및 이를 이용한 초고강도 콘크리트 제조 방법에 따르면, 종래의 멜라민계 혼화제를 사용하는 콘크리트에 비하여 증기양생 온도를 낮추고 시간을 줄일 수 있으므로 이에 따른 제조 비용, 에너지를 줄일 수 있고, 특히 에너지 절감에 따른 탄소 가스 발생을 줄일 수 있으므로 지구 온난화와 같은 환경 오염을 줄일 수 있다. 또한, 감수제로서의 혼화제는 약 50%, 및 배합수는 약 20%이상 줄이는 것이 가능하면서도 오히려 작업성(Workability)을 향상시킬 수 있다. 아울러 상기와 같은 장점과 동시에 휨강도, 및 압축강도를 향상시키는 것이 가능하다. According to the ultrahigh-strength concrete composition according to the present invention, and a method for producing ultra-high-strength concrete using the same, it is possible to reduce the steam curing temperature and reduce the time compared to the concrete using a conventional melamine-based admixture, thereby reducing the production cost, energy In particular, since the generation of carbon gas due to energy saving can be reduced, it is possible to reduce environmental pollution such as global warming. In addition, it is possible to reduce the admixture as a water reducing agent by about 50%, and the blending water by about 20% or more, but may improve workability. In addition, it is possible to improve the bending strength and the compressive strength at the same time as the above advantages.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Various modifications and variations are possible within the scope of equivalents of the claims to be described.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090097970A KR100959587B1 (en) | 2009-10-15 | 2009-10-15 | High strength concrete composition and method fod preparating concrete using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090097970A KR100959587B1 (en) | 2009-10-15 | 2009-10-15 | High strength concrete composition and method fod preparating concrete using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100959587B1 true KR100959587B1 (en) | 2010-05-27 |
Family
ID=42282032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20090097970A KR100959587B1 (en) | 2009-10-15 | 2009-10-15 | High strength concrete composition and method fod preparating concrete using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100959587B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101254075B1 (en) * | 2012-10-12 | 2013-04-12 | (주)하이스콘 | Ceramic high concrete composition using fly-ash and method for preparating congrete using the same |
US9321681B2 (en) | 2012-04-27 | 2016-04-26 | United States Gypsum Company | Dimensionally stable geopolymer compositions and method |
KR20160089902A (en) | 2015-01-07 | 2016-07-29 | 주식회사 포스코건설 | Mixing materials component for high strength concrete structures and high strength concrete structures manufactured by the same |
US9624131B1 (en) | 2015-10-22 | 2017-04-18 | United States Gypsum Company | Freeze-thaw durable geopolymer compositions and methods for making same |
US9656916B2 (en) | 2012-04-27 | 2017-05-23 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
CN106830733A (en) * | 2017-03-13 | 2017-06-13 | 无锡金木土科技有限公司 | Non-evaporating pressure high-strength high-performance concrete admixture and its production method |
KR101830631B1 (en) * | 2017-09-08 | 2018-02-22 | 박성수 | Mineral-based binder for porous concrete and porous concrete comprising the same |
CN109943304A (en) * | 2019-04-16 | 2019-06-28 | 中国石油集团长城钻探工程有限公司固井公司 | A kind of oil-well cement promotees solidifying early strength agent and its preparation method and application |
KR102273190B1 (en) * | 2021-01-08 | 2021-07-06 | 주식회사 정명씨앤씨 | Super hyper optical communication manhole and Manufacturing method using steel fiber |
CN113185318A (en) * | 2021-06-07 | 2021-07-30 | 山东大学 | Steam-curing-free high-strength aerated concrete material and preparation method of aerated concrete |
CN117361917A (en) * | 2023-10-30 | 2024-01-09 | 石家庄市长安育才建材有限公司 | Lithium slag composite admixture, preparation method thereof and sprayed concrete |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980065526A (en) * | 1997-01-11 | 1998-10-15 | 이재복 | Composition of multifunctional high performance mortar |
KR100709669B1 (en) | 2006-09-01 | 2007-04-19 | 김준식 | A compound for concreat and nontoxic concreat using the above compound |
KR100717935B1 (en) | 2006-08-11 | 2007-05-11 | 주식회사 케이티 | Binder composition for high strength concrete, and concrete composition and process for manufacturing the concrete using the same |
KR100789627B1 (en) | 2006-08-29 | 2007-12-27 | 주식회사 케이티 | Composition and manufacturing method for ultra-high-strength concrete manhole |
-
2009
- 2009-10-15 KR KR20090097970A patent/KR100959587B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980065526A (en) * | 1997-01-11 | 1998-10-15 | 이재복 | Composition of multifunctional high performance mortar |
KR100717935B1 (en) | 2006-08-11 | 2007-05-11 | 주식회사 케이티 | Binder composition for high strength concrete, and concrete composition and process for manufacturing the concrete using the same |
KR100789627B1 (en) | 2006-08-29 | 2007-12-27 | 주식회사 케이티 | Composition and manufacturing method for ultra-high-strength concrete manhole |
KR100709669B1 (en) | 2006-09-01 | 2007-04-19 | 김준식 | A compound for concreat and nontoxic concreat using the above compound |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10392307B2 (en) | 2012-04-27 | 2019-08-27 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
US10597327B2 (en) | 2012-04-27 | 2020-03-24 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
US10221096B2 (en) | 2012-04-27 | 2019-03-05 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
US9321681B2 (en) | 2012-04-27 | 2016-04-26 | United States Gypsum Company | Dimensionally stable geopolymer compositions and method |
US9643888B2 (en) | 2012-04-27 | 2017-05-09 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
US9656916B2 (en) | 2012-04-27 | 2017-05-23 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
US9890082B2 (en) | 2012-04-27 | 2018-02-13 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
KR101254075B1 (en) * | 2012-10-12 | 2013-04-12 | (주)하이스콘 | Ceramic high concrete composition using fly-ash and method for preparating congrete using the same |
KR20160089902A (en) | 2015-01-07 | 2016-07-29 | 주식회사 포스코건설 | Mixing materials component for high strength concrete structures and high strength concrete structures manufactured by the same |
US9624131B1 (en) | 2015-10-22 | 2017-04-18 | United States Gypsum Company | Freeze-thaw durable geopolymer compositions and methods for making same |
US10308552B2 (en) | 2015-10-22 | 2019-06-04 | United States Gypsum Company | Freeze-thaw durable geopolymer compositions and methods for making same |
CN106830733A (en) * | 2017-03-13 | 2017-06-13 | 无锡金木土科技有限公司 | Non-evaporating pressure high-strength high-performance concrete admixture and its production method |
KR101830631B1 (en) * | 2017-09-08 | 2018-02-22 | 박성수 | Mineral-based binder for porous concrete and porous concrete comprising the same |
CN109943304A (en) * | 2019-04-16 | 2019-06-28 | 中国石油集团长城钻探工程有限公司固井公司 | A kind of oil-well cement promotees solidifying early strength agent and its preparation method and application |
KR102273190B1 (en) * | 2021-01-08 | 2021-07-06 | 주식회사 정명씨앤씨 | Super hyper optical communication manhole and Manufacturing method using steel fiber |
CN113185318A (en) * | 2021-06-07 | 2021-07-30 | 山东大学 | Steam-curing-free high-strength aerated concrete material and preparation method of aerated concrete |
CN113185318B (en) * | 2021-06-07 | 2023-03-14 | 山东大学 | Steam-curing-free high-strength aerated concrete material and preparation method of aerated concrete |
CN117361917A (en) * | 2023-10-30 | 2024-01-09 | 石家庄市长安育才建材有限公司 | Lithium slag composite admixture, preparation method thereof and sprayed concrete |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100959587B1 (en) | High strength concrete composition and method fod preparating concrete using the same | |
JP6332988B2 (en) | Refractory mortar | |
KR101333084B1 (en) | High early strength cement comprising blast furnace slag and CSA cement | |
KR101187409B1 (en) | Magnesia silicate phosphate composite with eco-friendly and high-performance | |
NZ528311A (en) | Low bulk density calcium silicate hydrate strength accelerant additive for curing cementitious products | |
CN103030321A (en) | Expanding agent, post-tensioning prestressed concrete porelike grouting agent and grouting material | |
CN109133740A (en) | A kind of anti-crack concrete | |
KR101336165B1 (en) | High performance composite material for shotcrete and high performance shotcrete using it | |
KR101366174B1 (en) | Ecofriendly cement binder composite | |
KR101371380B1 (en) | Shot fibers cement complex materials for decrease of carbon and life cycle cost | |
KR101877528B1 (en) | Cement composition having rapid hardening properties for runway reparing and runway repairing method using the same | |
KR20230086613A (en) | lightweight foam concrete composition and method for menufacturing the same | |
KR101018009B1 (en) | Manufacturing method of cement zero concrete using mixed waste glass powder and fly ash as binder | |
KR101664273B1 (en) | cement mortar compositon and cement mortar comprising the same, method thereof | |
KR101110235B1 (en) | Cement nothing addition concrete water soluble bonding agent and manufacturing method of concrete | |
KR101309115B1 (en) | High early strength cement comprising fly ash and concrete comprising thereof | |
KR100717935B1 (en) | Binder composition for high strength concrete, and concrete composition and process for manufacturing the concrete using the same | |
KR101272814B1 (en) | Non-sintering inorganic binder comprising blast-furnace slag and mortar composition using thereof | |
KR101254075B1 (en) | Ceramic high concrete composition using fly-ash and method for preparating congrete using the same | |
KR100516758B1 (en) | High strength cement composition and method of high strength cement panel | |
KR102103471B1 (en) | Noncement Concrete Based on Industrial By-products | |
JP2009227558A (en) | Self-restorable high strength hydration hardened material | |
CN110407491A (en) | Portland cement with high temperature resistant property | |
KR20150044341A (en) | Cement composition for accelerating concrete curing | |
KR100474976B1 (en) | The method for manufacturing of composition for height-intensity concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130404 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140515 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |