KR20140016190A - Method of manufacturing high aspect ratio silver nanowires - Google Patents

Method of manufacturing high aspect ratio silver nanowires Download PDF

Info

Publication number
KR20140016190A
KR20140016190A KR1020130089597A KR20130089597A KR20140016190A KR 20140016190 A KR20140016190 A KR 20140016190A KR 1020130089597 A KR1020130089597 A KR 1020130089597A KR 20130089597 A KR20130089597 A KR 20130089597A KR 20140016190 A KR20140016190 A KR 20140016190A
Authority
KR
South Korea
Prior art keywords
silver
shell
core
carrier
component
Prior art date
Application number
KR1020130089597A
Other languages
Korean (ko)
Inventor
제롬 클라락크
가로 카나리안
루지아 부
재범 주
피터 트레포나스
Original Assignee
롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. filed Critical 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨.
Publication of KR20140016190A publication Critical patent/KR20140016190A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Inorganic Fibers (AREA)

Abstract

A method or manufacturing silver nanowires comprises the steps of: providing a silver ink core component containing 60 wt% or more of silver nanoparticles distributed on a silver carrier; providing a shell component containing film forming polymer distributed on a shell carrier; providing a substrate; forming a core and a shell for surrounding the core by performing the electromagnetic cavity radiation of the silver ink core component and the shell component, and depositing a core shell fiber in which the silver nanoparticles are positioned on the core; and forming nanowires with 60 μm or more of the mean length by processing the substrate with the silver nanoparticles.

Description

고종횡비 은 나노와이어의 제조방법{Method of Manufacturing High Aspect Ratio Silver Nanowires}Method of Manufacturing High Aspect Ratio Silver Nanowires

본 발명은 일반적으로 은 나노와이어 제조분야에 관한 것이다. 특히, 본 발명은 다양한 응용에 사용하기 위한, 장길이(바람직하게는 ≥ 60 ㎛) 은 나노와이어의 제조방법에 관한 것이다.The present invention relates generally to the field of silver nanowire manufacturing. In particular, the present invention relates to a method of making long nanowires (preferably ≧ 60 μm) of silver nanowires for use in various applications.

고투명성과 겸비하여 고전도성을 나타내는 필름은 예를 들어, 터치 스크린 디스플레이 및 광전지를 비롯한 광범위 전자 응용에 전극 또는 코팅으로 사용하기에 매우 유용하다. 이들 응용을 위한 현재의 기술은 물리적 증착법을 통해 증착된 주석 도핑된 산화인듐(ITO) 함유 필름의 사용을 포함한다. 물리적 증착공정의 고자본 경비 때문에 대체 투명성 전도성 물질 및 코팅 처리 방법을 찾는 것이 모색되고 있다. 관통 네크워크로서 분산된 은 나노와이어의 사용은 ITO 함유 필름의 유망한 대안으로서 부각되고 있다. 은 나노와이어의 사용은 롤투롤(roll to roll) 기술을 이용한 처리가 가능한 이점을 제공할지 모른다. 따라서, 은 나노와이어는 잠재적으로 종래 ITO 함유 필름보다 고투명성 및 전도성이면서 저비용 제조라는 이점을 제공한다.Films that exhibit high conductivity in combination with high transparency are very useful for use as electrodes or coatings in a wide range of electronic applications, including, for example, touch screen displays and photovoltaic cells. Current techniques for these applications include the use of tin doped indium oxide (ITO) containing films deposited via physical vapor deposition. Due to the high capital costs of physical vapor deposition processes, alternative transparent conductive materials and coating treatment methods are being sought. The use of dispersed silver nanowires as the penetrating network is emerging as a promising alternative to ITO containing films. The use of silver nanowires may provide an advantage that can be processed using roll to roll technology. Thus, silver nanowires potentially offer the advantages of high transparency and conductivity and low cost manufacturing over conventional ITO containing films.

은 나노구조의 제조를 위한 "폴리올 공정"이 밝혀졌다. 폴리올 공정은 은 나노와이어 제조에 용매 및 환원제 모두로서 에틸렌 글리콜(또는 대안적인 글리콜)을 사용한다. 그러나, 글리콜의 사용은 몇가지 고유 단점을 지닌다. 구체적으로, 환원제 및 용매 모두로 글리콜을 사용하게 되면 주요 환원제 종(글리콜알데히드)이 동일계에서 제조되고 그의 존재 및 농도가 산소 노출 정도에 좌우되기 때문에 과잉 반응의 제어가 감소하게 된다. 또한, 글리콜의 사용은 은 나노와이어를 제조하기 위해 사용되는 반응기의 공간 부분에 가연성 글리콜/공기 혼합물을 형성할 가능성이 있다. 마지막으로, 다량의 글리콜 사용은 폐기 관련 비용이 생겨 이러한 작업의 상용화 비용을 증가시킨다.A "polyol process" for the production of silver nanostructures has been found. The polyol process uses ethylene glycol (or alternative glycol) as both solvent and reducing agent for the production of silver nanowires. However, the use of glycols has some inherent disadvantages. Specifically, the use of glycol as both a reducing agent and a solvent reduces the control of the excess reaction since the main reducing agent species (glycolaldehyde) are prepared in situ and their presence and concentration depend on the degree of oxygen exposure. In addition, the use of glycols has the potential to form combustible glycol / air mixtures in the space portion of the reactor used to make silver nanowires. Finally, the use of large amounts of glycols incurs associated costs of disposal, increasing the cost of commercialization of these operations.

은 나노와이어의 제조를 위한 다른 대안의 폴리올 공정에 대하 일례가 미야기시마(Miyagishima) 등에 의한 미국 특허출원 공개 제20100078197호에 개시되었다. 미야기시마 등은 적어도 할라이드 및 환원제를 함유하는 물 용매에 금속 착물의 용액을 첨가하고, 생성된 혼합물을 150 ℃ 이하의 온도로 가열하는 것을 포함하고, 여기에서 금속 나노와이어는 직경이 50 nm 이하이고 주축 길이가 5 ㎛인 금속 나노와이어를 함유하는, 금속 나노와이어의 제조방법을 기술하였다.An example of another alternative polyol process for the production of silver nanowires is disclosed in US Patent Application Publication No. 20100078197 by Miyagishima et al. Miyagishima et al. Comprises adding a solution of a metal complex to a water solvent containing at least a halide and a reducing agent and heating the resulting mixture to a temperature of 150 ° C. or less, wherein the metal nanowires are 50 nm or less in diameter. A method for producing metal nanowires containing metal nanowires having a major axis length of 5 μm has been described.

그럼에도 불구하고, 대안적인 은 나노와이어의 제조방법, 특히 글리콜의 사용없이 장길이(바람직하게는 ≥ 60 ㎛)를 나타내는 은 나노와이어의 제조방법이 여전히 필요한 실정이다.Nevertheless, there is still a need for alternative methods for the production of silver nanowires, in particular for the production of silver nanowires with long lengths (preferably ≧ 60 μm) without the use of glycols.

본 발명은 은 담체에 분산된 ≥ 60 wt% 은 나노입자를 함유하는 은 잉크 코어 성분을 제공하고; 쉘 담체에 분산된 필름 형성 폴리머를 함유하는 쉘 성분을 제공하고; 기판을 제공하고; 은 잉크 코어 성분 및 쉘 성분을 공동전자방사하여(coelectrospinning) 코어 및 코어를 둘러싼 쉘을 갖고 은 나노입자가 코어에 있는 코어 쉘 섬유를 기판상에 침착시키고; 은 나노입자를 처리하여 평균 길이 L이 ≥ 60 ㎛인 은 나노와이어군을 형성하는 것을 포함하는 은 나노와이어의 제조방법을 제공한다.The present invention provides a silver ink core component containing ≧ 60 wt% silver nanoparticles dispersed in a silver carrier; Providing a shell component containing the film forming polymer dispersed in the shell carrier; Providing a substrate; Coelectrospinning the silver ink core component and the shell component to deposit core shell fibers on the substrate with the core and the shell surrounding the core and the silver nanoparticles being in the core; It provides a method for producing silver nanowires comprising treating the silver nanoparticles to form a group of silver nanowires having an average length L of ≧ 60 μm.

본 발명은 은 담체에 분산된 ≥ 60 wt% 은 나노입자를 함유하는 은 잉크 코어 성분을 제공하고; 쉘 담체에 분산된 필름 형성 폴리머를 함유하는 쉘 성분을 제공하고; 기판을 제공하고; 은 잉크 코어 성분 및 쉘 성분을 공동전자방사하여 코어 및 코어를 둘러싼 쉘을 갖고 은 나노입자가 코어에 있는 코어 쉘 섬유를 기판상에 침착시키고; 은 나노입자를 처리하여 평균 길이 L이 ≥ 60 ㎛인 은 나노와이어군을 형성하는 것을 포함하고, 여기에서 은 담체 및 쉘 담체는 쉘 성분과 은 잉크 코어 성분 사이의 계면장력이 2 내지 5 mN/m가 되도록 선택되는 은 나노와이어의 제조방법을 제공한다.The present invention provides a silver ink core component containing ≧ 60 wt% silver nanoparticles dispersed in a silver carrier; Providing a shell component containing the film forming polymer dispersed in the shell carrier; Providing a substrate; Co-electrospinning the silver ink core component and the shell component to deposit core shell fibers on the substrate with the core and the shell surrounding the core and the silver nanoparticles being in the core; Treating the silver nanoparticles to form a group of silver nanowires having an average length L of ≧ 60 μm, wherein the silver carrier and the shell carrier have an interfacial tension between the shell component and the silver ink core component at 2 to 5 mN / It provides a method for producing silver nanowires selected to be m.

글리콜을 사용하는 경우 나타내는 고유 단점을 피하면서 평균 길이 L이 ≥ 60 ㎛인 은 나노와이어의 제조방법이 제공된다.There is provided a process for producing silver nanowires with an average length L of ≧ 60 μm, avoiding the inherent disadvantages of using glycols.

회수된 은 나노와이어와 관련하여 본 원 및 청구범위에 사용된 용어 "고종횡비"는 회수된 은 나노와이어의 평균 종횡비가 ≥ 150임을 의미한다. 바람직하게는, 회수된 은 나노와이어는 평균 종횡비가 ≥ 200이다. 가장 바람직하게는, 회수된 은 나노와이어는 평균 종횡비가 ≥ 1,000이다.The term “ high aspect ratio ” as used herein and in the claims with respect to recovered silver nanowires means that the average aspect ratio of the recovered silver nanowires is ≧ 150. Preferably, the recovered silver nanowires have an average aspect ratio ≧ 200. Most preferably, the recovered silver nanowires have an average aspect ratio ≧ 1,000.

바람직하게는, 본 발명의 은 나노와이어 제조방법에 사용되는 은 잉크 코어 성분은 ≥ 60 wt% (더욱 바람직하게는 ≥ 70 wt%; 가장 바람직하게는 ≥ 75 wt%)의 은 담체에 분산된 은 나노입자를 포함한다.Preferably, the silver ink core component used in the silver nanowire manufacturing method of the present invention is ≥ 60 wt% (more preferably ≥ 70 wt%; most preferably ≥ 75 wt%) of silver dispersed in the silver carrier. Nanoparticles.

바람직하게는, 은 잉크 코어 성분에 사용되는 은 나노입자는 종횡비(aspect ratio)가 ≤ 2 (더욱 바람직하게는 ≤ 1.5; 가장 바람직하게는 ≤ 1.1)이다. 사용되는 은 나노입자는 임의로 은 담체중에 안정한 분산물의 형성을 가능하게 하고 응집물의 형성을 억제하기 위한 처리 또는 표면 코팅을 포함한다.Preferably, the silver nanoparticles used in the silver ink core component have an aspect ratio of ≦ 2 (more preferably ≦ 1.5; most preferably ≦ 1.1). Silver nanoparticles used optionally include treatments or surface coatings to enable the formation of stable dispersions in silver carriers and to inhibit the formation of aggregates.

본 발명의 은 나노와이어 제조방법에 사용되는 은 담체는 은 나노입자가 분산될 수 있는 임의의 액체로부터 선택될 수 있다. 바람직하게는, 은 담체는 물, 알콜 및 이들의 혼합물로 구성된 그룹으로부터 선택된다. 더욱 바람직하게는, 은 담체는 물; C1-4 알콜 (예를 들면, 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올); 디메틸 설폭사이드; N,N-디메틸 포름아미드; 1-메틸-2-피롤리돈; 트리메틸 포스페이트 및 이들의 혼합물로 구성된 그룹으로부터 선택된다. 가장 바람직하게는, 은 담체는 물이다.The silver carrier used in the silver nanowire manufacturing method of the present invention may be selected from any liquid in which silver nanoparticles can be dispersed. Preferably, the silver carrier is selected from the group consisting of water, alcohols and mixtures thereof. More preferably, the silver carrier is water; C 1-4 alcohols (eg methanol, ethanol, propanol, isopropanol, butanol); Dimethyl sulfoxide; N, N-dimethylformamide; 1-methyl-2-pyrrolidone; Trimethyl phosphate and mixtures thereof. Most preferably, the silver carrier is water.

본 발명의 은 나노와이어 제조방법에 사용되는 은 잉크 코어 성분은 임의로, 코어 첨가제를 추가로 포함한다. 코어 첨가제는 계면활성제, 항산화제, 광산 발생제(photoacid generator), 열산(thermal acid) 발생제, 퀀처(quencher), 경화제, 용해 속도 변경제, 광경화제, 감광제, 산 증폭제, 가소제, 배향 조절제 및 가교제로 구성된 그룹으로부터 선택될 수 있다. 바람직한 코어 첨가제는 계면활성제 및 항산화제를 포함한다.The silver ink core component used in the silver nanowire manufacturing method of the present invention optionally further includes a core additive. Core additives include surfactants, antioxidants, photoacid generators, thermal acid generators, quenchers, curing agents, dissolution rate modifiers, photocuring agents, photosensitizers, acid amplifying agents, plasticizers, and orientation modifiers. And crosslinkers. Preferred core additives include surfactants and antioxidants.

바람직하게는, 본 발명의 은 나노와이어 제조방법에 사용되는 쉘 성분은 쉘 담체에 분산된 필름 형성 폴리머를 포함한다.Preferably, the shell component used in the silver nanowire manufacturing method of the present invention comprises a film forming polymer dispersed in a shell carrier.

본 발명의 은 나노와이어 제조방법에 사용되는 필름 형성 폴리머는 공지된 전자방사성 필름 형성 물질로부터 선택될 수 있다. 바람직한 필름 형성 폴리머는 폴리아크릴산, 폴리에틸렌 옥사이드, 폴리비닐 알콜, 폴리비닐 프로필렌, 셀룰로즈 (예를 들면, 하이드록시 프로필 셀룰로즈, 니트로셀룰로즈), 실크 및 이들의 블렌드를 포함한다. 더욱 바람직하게는, 필름 형성 폴리머는 폴리에틸렌 옥사이드이다. 가장 바람직하게는, 필름 형성 폴리머는 중량평균분자량이 10,000 내지 1,000,000 g/mol인 폴리에틸렌 옥사이드이다.The film forming polymer used in the silver nanowire manufacturing method of the present invention may be selected from known electron-radioactive film forming materials. Preferred film forming polymers include polyacrylic acid, polyethylene oxide, polyvinyl alcohol, polyvinyl propylene, cellulose (eg hydroxy propyl cellulose, nitrocellulose), silk and blends thereof. More preferably, the film forming polymer is polyethylene oxide. Most preferably, the film forming polymer is polyethylene oxide having a weight average molecular weight of 10,000 to 1,000,000 g / mol.

본 발명의 은 나노와이어 제조방법에 사용되는 쉘 담체는 필름 형성 폴리머가 분산가능한 임의의 액체로부터 선택될 수 있다. 바람직하게는, 쉘 담체는 필름 형성 폴리머가 잘 녹는 임의의 용매일 수 있다. 더욱 바람직하게는, 쉘 담체는 쉘 성분과 은 잉크 코어 성분 사이의 계면장력이 > 0.1 mN/m (바람직하게는, > 1 mN/m; 더욱 바람직하게는, > 2 mN/m; 가장 바람직하게는 2 내지 5 mN/m)이 되도록 선택된다. 은 담체로서 물을 함유하는 은 잉크 코어 성분과 조합하여 사용되는 경우, 쉘 담체는 바람직하게는 물 알콜 혼합물로 구성된 그룹으로부터 선택되며; 여기에서 알콜은 아세톤, C1-4 알콜(예를 들면, 메탄올, 에탄올, 이소프로판올, 프로판올, 부탄올, tert-부탄올) 및 이들의 혼합물로 구성된 그룹으로부터 선택되고; 물 알콜 혼합물은 ≥ 50 wt% (더욱 바람직하게는 > 50 wt%)의 알콜 농도를 나타낸다.The shell carrier used in the silver nanowire manufacturing method of the present invention may be selected from any liquid in which the film forming polymer is dispersible. Preferably, the shell carrier may be any solvent in which the film forming polymer is well soluble. More preferably, the shell carrier has an interfacial tension between the shell component and the silver ink core component> 0.1 mN / m (preferably> 1 mN / m; more preferably> 2 mN / m; most preferably Is chosen to be 2 to 5 mN / m). When used in combination with a silver ink core component containing water as the silver carrier, the shell carrier is preferably selected from the group consisting of water alcohol mixtures; Wherein the alcohol is selected from the group consisting of acetone, C 1-4 alcohols (eg methanol, ethanol, isopropanol, propanol, butanol, tert-butanol) and mixtures thereof; The water alcohol mixture exhibits an alcohol concentration of ≧ 50 wt% (more preferably> 50 wt%).

본 발명의 은 나노와이어 제조방법에 사용되는 쉘 성분은 임의로, 쉘 첨가제를 추가로 포함한다. 쉘 첨가제는 계면활성제, 항산화제, 광산 발생제, 열산 발생제, 퀀처, 경화제, 용해 속도 변경제, 광경화제, 감광제, 산 증폭제, 가소제, 배향 조절제 및 가교제로 구성된 그룹으로부터 선택될 수 있다. 바람직한 쉘 첨가제는 계면활성제 및 항산화제를 포함한다.The shell component used in the silver nanowire manufacturing method of the present invention optionally further includes a shell additive. The shell additive may be selected from the group consisting of surfactants, antioxidants, photoacid generators, thermal acid generators, quenchers, curing agents, dissolution rate modifiers, photocuring agents, photosensitizers, acid amplifying agents, plasticizers, orientation modifiers and crosslinking agents. Preferred shell additives include surfactants and antioxidants.

본 발명의 은 나노와이어 제조방법에 사용되는 특히 바람직한 쉘 성분은 물 및 C1-4 알콜 혼합물 쉘 담체에 분산된 필름 형성 폴리머를 1 내지 25 wt% (더욱 바람직하게는 1 내지 15 wt%; 가장 바람직하게는 2 내지 10 wt%)로 포함한다. 바람직하게는, 쉘 담체는 알콜 농도가 ≥ 50 wt% (가장 바람직하게는 ≥ 60 wt% 알콜)인 물 및 C1-4 알콜 혼합물이다. 가장 바람직하게는, 쉘 성분은 쉘 담체중에 2 내지 10 wt% 폴리에틸렌 옥사이드를 포함하며, 여기에서 쉘 담체는 에탄올 함량이 ≥ 50 wt%인 물 에탄올 혼합물이다. Particularly preferred shell components used in the silver nanowire manufacturing method of the present invention are 1 to 25 wt% (more preferably 1 to 15 wt%; most preferably, a film forming polymer dispersed in a water and C 1-4 alcohol mixture shell carrier). Preferably 2 to 10 wt%). Preferably, the shell carrier is a mixture of water and C 1-4 alcohol having an alcohol concentration of ≧ 50 wt% (most preferably ≧ 60 wt% alcohol). Most preferably, the shell component comprises 2 to 10 wt% polyethylene oxide in the shell carrier, wherein the shell carrier is a water ethanol mixture with an ethanol content ≧ 50 wt%.

본 발명의 은 나노와이어 제조방법에 사용되는 기판은 전도성 및 비전도성 모두의 임의의 공지된 기판으로부터 선택될 수 있다. 바람직한 기판은 유리(예를 들면, 코닝사(Corning, Inc.)로부터 입수가능한 Willow® 유리), 플라스틱 필름(예를 들면, 폴리에틸렌, 폴리에틸렌 테레프탈레이트, 폴리카보네이트, 폴리 메틸 메타크릴레이트), 금속(예를 들면, 알루미늄, 구리), 전도성 처리된 종이, 전도성 처리된 부직포, 전도성 액체조(예를 들면, 물, 물 전해질 혼합물)를 포함한다. 바람직하게는, 본 발명의 은 나노와이어 제조방법에 사용되는 기판은 나중에 디바이스(예를 들면, 터치 스크린 장치에서 투명 전도체 어셈블리의 일부로서)에 내장되도록 선택된다. 바람직하게는, 본 발명의 은 나노와이어 제조방법에 사용되는 기판은 그 위에 침착된 은 나노와이어의 후속 처리가 가능하도록(예를 들면, 기판으로부터 나노와이어의 회수/분리가 가능하도록) 선택된다.The substrate used in the silver nanowire manufacturing method of the present invention may be selected from any known substrate, both conductive and nonconductive. Preferred substrates include glass (eg Willow ® glass available from Corning, Inc.), plastic films (eg polyethylene, polyethylene terephthalate, polycarbonate, poly methyl methacrylate), metals (eg For example, aluminum, copper), conductive treated paper, conductive nonwoven fabric, conductive liquid bath (eg, water, water electrolyte mixture). Preferably, the substrate used in the silver nanowire manufacturing method of the present invention is later selected to be embedded in a device (eg, as part of a transparent conductor assembly in a touch screen device). Preferably, the substrate used in the silver nanowire manufacturing method of the present invention is selected to enable subsequent processing of silver nanowires deposited thereon (e.g., recovery / separation of nanowires from the substrate).

바람직하게는, 본 발명의 은 나노와이어의 제조방법은 은 담체에 분산된 은 나노입자를 ≥ 60 wt% (더욱 바람직하게는 ≥ 70 wt%; 가장 바람직하게는 ≥ 75 wt%)로 함유하는 은 잉크 코어 성분을 제공하고; 쉘 담체에 분산된 필름 형성 폴리머를 함유하는 쉘 성분을 제공하고; 기판을 제공하고; 은 잉크 코어 성분 및 쉘 성분을 공동전자방사하여 기판상에 코어 및 코어를 둘러싼 쉘을 갖고 은 나노입자가 코어에 있는 코어 쉘 섬유를 침착시키고; 은 나노입자를 처리하여 평균 길이 L이 ≥ 60 ㎛ (바람직하게는 60 내지 10,000 ㎛; 더욱 바람직하게는 100 내지 10,000 ㎛; 가장 바람직하게는 500 내지 10,000 ㎛)인 은 나노와이어군을 형성하는 것을 포함한다.Preferably, the process for producing the silver nanowires of the present invention comprises silver ≧ 60 wt% (more preferably ≧ 70 wt%; most preferably ≧ 75 wt%) of the silver nanoparticles dispersed in the silver carrier. Providing an ink core component; Providing a shell component containing the film forming polymer dispersed in the shell carrier; Providing a substrate; Coelectrospinning the silver ink core component and the shell component to deposit core shell fibers having a core and a shell surrounding the core on the substrate and the silver nanoparticles being in the core; Treating the silver nanoparticles to form a group of silver nanowires having an average length L of ≧ 60 μm (preferably 60 to 10,000 μm; more preferably 100 to 10,000 μm; most preferably 500 to 10,000 μm) do.

바람직하게는, 본 발명의 은 나노와이어의 제조방법은 은 담체에 분산된 은 나노입자를 ≥ 60 wt% (더욱 바람직하게는 ≥ 70 wt%; 가장 바람직하게는 ≥ 75 wt%)로 함유하는 은 잉크 코어 성분을 제공하고; 쉘 담체에 분산된 필름 형성 폴리머를 함유하는 쉘 성분을 제공하고; 기판을 제공하고; 은 잉크 코어 성분 및 쉘 성분을 공동전자방사하여 기판상에 코어 및 코어를 둘러싼 쉘을 갖고 은 나노입자가 코어에 있는 코어 쉘 섬유를 침착시키고; 은 나노입자를 처리하여 평균 직경 D가 ≤ 5 ㎛(바람직하게는 100 nm 내지 5 ㎛; 더욱 바람직하게는 1 내지 5 ㎛)이고 평균 길이 L이 ≥ 60 ㎛(바람직하게는 60 내지 10,000 ㎛; 더욱 바람직하게는 100 내지 10,000 ㎛; 가장 바람직하게는 500 내지 10,000 ㎛(바람직하게는 여기에서 은 나노와이어의 종횡비 L/D는 ≥ 150(더욱 바람직하게는 ≥ 200; 더욱더 바람직하게는 ≥ 500; 가장 바람직하게는 ≥ 1,000이다)인 은 나노와이어군을 형성하는 것을 포함한다.Preferably, the process for producing the silver nanowires of the present invention comprises silver ≧ 60 wt% (more preferably ≧ 70 wt%; most preferably ≧ 75 wt%) of the silver nanoparticles dispersed in the silver carrier. Providing an ink core component; Providing a shell component containing the film forming polymer dispersed in the shell carrier; Providing a substrate; Coelectrospinning the silver ink core component and the shell component to deposit core shell fibers having a core and a shell surrounding the core on the substrate and the silver nanoparticles being in the core; The silver nanoparticles are treated to have an average diameter D of ≦ 5 μm (preferably between 100 nm and 5 μm; more preferably 1 to 5 μm) and an average length L of ≧ 60 μm (preferably between 60 and 10,000 μm; more Preferably from 100 to 10,000 μm; most preferably from 500 to 10,000 μm (preferably here the aspect ratio L / D of the silver nanowires is ≧ 150 (more preferably ≧ 200; even more preferably ≧ 500; most preferred Preferably ≧ 1,000).

바람직하게는, 본 발명의 은 나노와이어의 제조방법에서, 코어 쉘 섬유는 기판상에 랜덤 중복 패턴 및 제어된 중복 패턴으로 구성된 그룹으로부터 선택되는 중복 패턴으로 침착되며, 여기에서 은 나노와이어군은 전도성 네트워크를 형성한다. 바람직하게는, 형성된 전도성 네트워크는 시트 저항(sheet resistance) Rs가 < 100 Ω/sq이다.Preferably, in the method for producing silver nanowires of the present invention, the core shell fibers are deposited on the substrate in a redundant pattern selected from the group consisting of random overlapping patterns and controlled overlapping patterns, wherein the silver nanowire group is conductive Form a network. Preferably, the formed conductive network has a sheet resistance R s of <100 Ω / sq.

본 발명의 은 나노와이어의 제조방법에서, 기판상에 침착된 코어 쉘 섬유내 은 나노입자는 소결 (예를 들면, 광소결, 열소결); 가열 (예를 들면, 번-오프(burn-off), 마이크로 펄스 포토닉(micro pulse photonic) 가열, 연속 포토닉 가열, 마이크로웨이브 가열, 오븐 가열, 로 가열) 및 이들의 조합으로 구성된 그룹으로부터 선택되는 기술을 사용하여 처리된다. 바람직하게는, 기판상에 침착된 코어 쉘 섬유내 은 나노입자는 광소결로 처리된다. In the method for producing silver nanowires of the present invention, the silver nanoparticles in the core shell fibers deposited on the substrate may be sintered (eg, photosintered, thermally sintered); Selected from the group consisting of heating (e.g., burn-off, micro pulse photonic heating, continuous photonic heating, microwave heating, oven heating, furnace heating) and combinations thereof Is handled using technology. Preferably, the silver nanoparticles in the core shell fibers deposited on the substrate are treated with photosintering.

바람직하게는, 본 발명의 은 나노와이어의 제조방법에서, 공동전자방사는 중심 개구부 및 주변 환형 개구부를 갖는 공통 환형 노즐을 통해 은 잉크 코어 성분 및 쉘 성분을 공급하는 것을 포함하는데, 여기에서 은 잉크 코어 성분은 중심 개구부를 통해 공급되고, 쉘 성분은 주변 환형 개구부를 통해 공급된다. 바람직하게는, 주변 환형 개구부를 통해 공급되는 쉘 물질의 체적 유량, VFR 대 중심 개구부를 통해 공급되는 코어 물질의 체적 유량, VFR코어의 비는 유동 방향에 수직인 주변 환형 개구부의 단면적 CSA환형 대 유동 방향에 수직인 중심 개구부의 단면적의 비보다 크거나 같다. 더욱 바람직하게는, 다음 표현이 공정 조건에 의해 만족된다:Preferably, in the method for producing silver nanowires of the present invention, co-electrospinning includes supplying a silver ink core component and a shell component through a common annular nozzle having a central opening and a peripheral annular opening, wherein the silver ink The core component is supplied through the central opening and the shell component is supplied through the peripheral annular opening. Preferably, the cross-sectional area CSA annular shell material volume flow rate, volume flow rate, the ratio of the VFR core has a peripheral vertical to the flow direction of the annular opening of the core material to be fed through the VFR shell-center opening of which is supplied via a peripheral annular opening for It is greater than or equal to the ratio of the cross-sectional area of the central opening perpendicular to the flow direction. More preferably, the following expressions are satisfied by the process conditions:

Figure pat00001
Figure pat00001

가장 바람직하게는, 다음 표현이 공정 조건에 의해 만족된다:Most preferably, the following expressions are satisfied by the process conditions:

Figure pat00002
Figure pat00002

바람직하게는, 본 발명의 은 나노와이어의 제조방법에서, 은 잉크 코어 성분은 0.1 내지 3 μL/min (바람직하게는 0.1 내지 1 μL/min; 더욱 바람직하게는 0.1 내지 0.7 μL/min; 가장 바람직하게는 0.4 내지 0.6 μL/min)의 체적 유량으로 중심 개구부를 통해 공급된다.Preferably, in the method for producing silver nanowires of the present invention, the silver ink core component is 0.1 to 3 μL / min (preferably 0.1 to 1 μL / min; more preferably 0.1 to 0.7 μL / min; most preferred Preferably through a central opening at a volume flow rate of 0.4 to 0.6 μL / min.

바람직하게는, 본 발명의 은 나노와이어의 제조방법에서, 쉘 성분은 1 내지 30 μL/min (바람직하게는 1 내지 10 μL/min; 더욱 바람직하게는 1 내지 7 μL/min; 가장 바람직하게는 4 내지 6 μL/min)의 유량으로 주변 환형 개구부를 통해 공급된다.Preferably, in the method for producing silver nanowires of the present invention, the shell component is 1 to 30 μL / min (preferably 1 to 10 μL / min; more preferably 1 to 7 μL / min; most preferably Feed through the peripheral annular opening at a flow rate of 4-6 μL / min).

바람직하게는, 본 발명의 은 나노와이어의 제조방법에서, 공통 환형 노즐은 기판에 대해 양의 인가된 전위차로 고정된다. 더욱 바람직하게는, 인가된 전위차는 5 내지 50 kV (바람직하게는, 5 내지 30 kV; 더욱 바람직하게는, 5 25 kV; 가장 바람직하게는, 5 내지 10 kV)이다.Preferably, in the method of making silver nanowires of the present invention, the common annular nozzle is fixed with a positive applied potential difference with respect to the substrate. More preferably, the applied potential difference is between 5 and 50 kV (preferably between 5 and 30 kV; more preferably between 5 and 25 kV; most preferably between 5 and 10 kV).

이하, 본 발명의 일부 구체예가 하기 실시예에서 상세히 기술될 것이다.Some embodiments of the invention will now be described in detail in the following examples.

아이엠이 테크놀로지즈사(IME Technologies) 제품인 이중 노즐 전자방사기 모델 EC-DIG가 실시예에서 은 나노와이어를 전자방사하는데 사용되었다. 실시예에 사용된 노즐은 내경 0.6 mm, 외경 1.2 mm이고, 물질 유동 방향에 수직인 환형 횡단면을 갖고 내부 개구부와 동심원인 외부 개구부; 및 물질 유동 방향에 수직인 직경 0.4 mm의 원형 횡단면을 갖는 내부 개구부를 갖춘 동축 노즐(아이엠이 테크놀로지즈사 제품인 EM-CAX)이다. 물질 방사시, 은 잉크 코어 성분은 동축 노즐의 내부 개구부를 통해 공급되고, 쉘 성분은 동축 노즐의 외부 개구부를 통해 공급된다. 은 잉크 코어 성분 및 쉘 성분은 은 잉크 코어 성분의 체적 유량, VFR코어를 0.5 μL/min으로, 쉘 성의 체적 유량, VFR을 5 μL/min으로 제어하는 독립형 시린지 펌프(아이엠이 테크놀로지즈사 제품인 EP-NE1)를 사용하여 동축 노즐을 통해 공급된다. 실시예에서 전자방사 공정은 20 ℃ 및 상대습도 25-35%로 온도 습도 조절되는 실험실에서 주변 조건에서 수행되었다.A dual nozzle electrospinator model EC-DIG, from IME Technologies, was used to electrospin silver nanowires in the examples. The nozzles used in the examples include an outer opening 0.6 mm in inner diameter and 1.2 mm in outer diameter and having an annular cross section perpendicular to the material flow direction and concentric with the inner opening; And a coaxial nozzle (EM-CAX from IMM Technologies) with an internal opening with a circular cross section of 0.4 mm in diameter perpendicular to the material flow direction. During material spinning, the silver ink core component is supplied through the inner opening of the coaxial nozzle and the shell component is supplied through the outer opening of the coaxial nozzle. The silver ink core component and the shell component are independent syringe pumps that control the volume flow rate of the silver ink core component, the VFR core at 0.5 μL / min, the shell flow volume, and the VFR shell at 5 μL / min (EP manufactured by EP Technologies, Inc.). -NE1) to feed through the coaxial nozzle. In the examples the electrospinning process was performed at ambient conditions in a laboratory controlled at 20 ° C. and 25-35% relative humidity.

실시예에서 섬유 수집을 위해 사용된 기판은 직경 60 mm이고 두께 0.16-0.19 mm인 유리 슬라이드였다. 방사 작업중, 방사 헤드를 기판 위에 수직으로 위치시키고 유리 플레이트를 접지 전극의 상부에 놓았다. 방사동안, 양전위를 방사 헤드에 인가하였다. 실시예에 사용된 전압은 방사 개시시 9 kV에서 방사 공정이 안정되면 7 kV로 내렸다.The substrate used for the fiber collection in the examples was a glass slide with a diameter of 60 mm and a thickness of 0.16-0.19 mm. During the spinning operation, the spinning head was placed vertically on the substrate and the glass plate was placed on top of the ground electrode. During spinning, a positive potential was applied to the spinning head. The voltage used in the examples was lowered to 9 kV at 9 kV at the onset of radiation and once the spinning process stabilized.

실시예에서 언급된 포토닉 소결은 노바센트릭(Novacentrix)에서 입수할 수 있는 Pulseforge 3100 포톤 발생제를 사용하여 수행하였다. 포톤 발생제는 UV에서 단 IR까지 광범위 스펙트럼에 걸쳐 발광할 수 있는 고강도 제논 램프를 갖추었다. 포톤 발생제는 2.46 J/cm2를 발생하는 연속 모드로 5 Hz 진동수의 400 μsec 펄스 생성을 위해 350 V로 설정되었다. 샘플은 7.62 m/min의 속도로 콘베이어 벨트상의 포톤 발생제를 통해 공급되었다.Photonic sintering mentioned in the examples was performed using a Pulseforge 3100 photon generator available from Novacentrix. Photon generators are equipped with high-intensity xenon lamps that can emit a broad spectrum from UV to short IR. The photon generator was set at 350 V for 400 μsec pulse generation at 5 Hz frequency in a continuous mode generating 2.46 J / cm 2 . The sample was fed through a photon generator on the conveyor belt at a speed of 7.62 m / min.

포토닉 소결 샘플에 대해 보고된 시트 저항값은 잔델 엔지니어링 리미티드(Jandel Engineering Limited) 제품인 Jendel HM-20 콜리너(colliner) 4점 프로브 테스트 유닛을 이용하여 ASTM F390-11에 따라 측정되었다.Reported sheet resistance values for the photonic sintered samples were measured according to ASTM F390-11 using a Jendel HM-20 colliner four point probe test unit from Janel Engineering Limited.

실시예에서 보고된 투과 퍼센트 대 파장 측정은 HP 람다 9 UV VIS 분광계를 사용하여 수행되었다.
Percent transmission versus wavelength measurements reported in the examples were performed using an HP lambda 9 UV VIS spectrometer.

실시예 1-2: 동축 전자방사에 의한 은 나노와이어 제조Example 1-2 Preparation of Silver Nanowires by Coaxial Electrospinning

실시예 1 및 2에서 각각 은 나노와이어를 전자방사하고, 유리 슬라이드 기판상에 침착시켰다. 실시예 1 내지 2에서 사용된 은 잉크 코어 성분은 물에 분산된 공칭 입자 크기 50 nm의 75 wt% 은 나노입자(카봇 코포레이션(Cabot Corporation)으로부터 CSD-95로 입수가능)로 이루어졌다. 실시예 1 내지 2에서 사용된 쉘 성분은 40/60 wt% 물/에탄올 용액에 용해된 6 wt% 폴리에틸렌 옥사이드(400,000 g/mol, 알드리히(Aldrich)로부터 입수가능)로 이루어졌으며, 여기에서 은 잉크 코어 성분과 쉘 성분 사이의 계면장력은 2-5 mN/m로 측정되었다.Silver nanowires were electrospun in Examples 1 and 2, respectively, and deposited on glass slide substrates. The silver ink core components used in Examples 1-2 consisted of 75 wt% silver nanoparticles (available as CSD-95 from Cabot Corporation) with a nominal particle size of 50 nm dispersed in water. The shell component used in Examples 1-2 consisted of 6 wt% polyethylene oxide (400,000 g / mol available from Aldrich) dissolved in 40/60 wt% water / ethanol solution, where The interfacial tension between the silver ink core component and the shell component was measured to be 2-5 mN / m.

포토닉 소결 전, 후 측정된 실시예 1 및 2로부터 침착된 은 나노와이어 네트워크의 시트 저항을 표 1에 나타내었다.The sheet resistance of the silver nanowire networks deposited from Examples 1 and 2 measured before and after photonic sintering is shown in Table 1.

실시예 1로부터의 소결후 생성물 은 나노와이어 네트워크를 광학현미경으로 분석하고, 직경이 1 내지 5 ㎛ 범위이고 길이가 800 내지 1,000 ㎛ 범위인 은 나노와이어임을 확인하였다.Example The product silver nanowire network after sintering from 1 was analyzed by optical microscopy and found to be silver nanowires with diameters ranging from 1 to 5 μm and lengths ranging from 800 to 1,000 μm.

실시예 1로부터의 소결후 생성물 은 나노와이어 네트워크를 분광계로 분석하고, 390 nm 내지 750 nm의 가시 스펙트럼에 걸쳐 투과 퍼센트가 ≥ 70% 임을 확인하였다.Example After sintering from 1 the product silver nanowire network was analyzed spectrometer and found that the percent transmission was ≥ 70% over the visible spectrum of 390 nm to 750 nm.

실시예Example
번호number
포토닉 소결전Photonic Sintering
(kΩ/sq)(kΩ / sq)
포토닉 소결후After Photonic Sintering
(Ω/sq)(Ω / sq)
1One 360.4±36.8360.4 ± 36.8 44.6±4.644.6 ± 4.6 22 431.5±30.9 431.5 ± 30.9 57.4±2.157.4 ± 2.1

비교 실시예 A1Comparative Example A1

비교 실시예 A1에서 사용된 은 잉크 코어 성분은 물에 분산된 60 wt% 은 나노입자(피켐 어쏘시에이츠사(PChem Associates, Inc.)로부터 PFI-722 잉크로 입수가능)로 이루어졌다. 다음을 비롯하여 다양한 쉘 성분이 비교 실시예 A1에 사용되었다:The silver ink core component used in Comparative Example A1 consisted of 60 wt% silver nanoparticles (available as PFI-722 ink from PChem Associates, Inc.) dispersed in water. Various shell components were used in Comparative Example A1, including:

물중의 6 wt% 폴리아크릴산;6 wt% polyacrylic acid in water;

60/40 wt% 에탄올/물 혼합물중의 4 wt% 폴리에틸렌 옥사이드;4 wt% polyethylene oxide in 60/40 wt% ethanol / water mixture;

60/40 wt% 이소프로판올/물 혼합물중의 6 wt% 폴리에틸렌 옥사이드;6 wt% polyethylene oxide in 60/40 wt% isopropanol / water mixture;

30/20/50 wt% 물/이소프로판올/부탄올 혼합물중의 8 wt% 폴리아크릴산;8 wt% polyacrylic acid in 30/20/50 wt% water / isopropanol / butanol mixtures;

60/40 wt% 에탄올/물 혼합물중의 4-6 wt% 폴리에틸렌 옥사이드;4-6 wt% polyethylene oxide in 60/40 wt% ethanol / water mixture;

60/40 wt% 에탄올/물 혼합물중의 4-8 wt% 폴리아크릴산; 및4-8 wt% polyacrylic acid in 60/40 wt% ethanol / water mixture; And

40/60 wt% 에탄올/물 혼합물중의 4-8 wt% 폴리아크릴산.4-8 wt% polyacrylic acid in 40/60 wt% ethanol / water mixture.

이들 시스템 각각에서 은 잉크 코어 성분과 쉘 성분 사이의 계면장력은 0.4-2 mN/m인 것으로 측정되었다.The interface tension between the silver ink core component and the shell component in each of these systems was determined to be 0.4-2 mN / m.

상기 은 잉크 코어 성분을 기술된 쉘 성분과 조합하여 은 나노와이어를 제조하려는 노력은 모두 성공하지 못했다.
Efforts to produce silver nanowires by combining the silver ink core components with the described shell components have not been successful.

비교 실시예 A2Comparative Example A2

비교 실시예 A2에서 사용된 은 잉크 코어 성분은 물에 분산된 60 wt% 은 나노입자(피켐 어쏘시에이츠사부터PFI-722 잉크로 입수가능)로 이루어졌다. 다음을 비롯하여 다양한 쉘 성분이 비교 실시예 A2에 사용되었다:The silver ink core component used in Comparative Example A2 consisted of 60 wt% silver nanoparticles (available as PFI-722 ink from Pchem Chem Associates) dispersed in water. Various shell components were used in Comparative Example A2, including:

물중의 6 wt% 폴리아크릴산;6 wt% polyacrylic acid in water;

60/40 wt% 에탄올/물 혼합물중의 4 wt% 폴리에틸렌 옥사이드;4 wt% polyethylene oxide in 60/40 wt% ethanol / water mixture;

60/40 wt% 이소프로판올/물 혼합물중의 6 wt% 폴리에틸렌 옥사이드;6 wt% polyethylene oxide in 60/40 wt% isopropanol / water mixture;

30/20/50 wt% 물/이소프로판올/부탄올 혼합물중의 8 wt% 폴리아크릴산;8 wt% polyacrylic acid in 30/20/50 wt% water / isopropanol / butanol mixtures;

60/40 wt% 에탄올/물 혼합물중의 4-6 wt% 폴리에틸렌 옥사이드;4-6 wt% polyethylene oxide in 60/40 wt% ethanol / water mixture;

60/40 wt% 에탄올/물 혼합물중의 4-8 wt% 폴리아크릴산; 및4-8 wt% polyacrylic acid in 60/40 wt% ethanol / water mixture; And

40/60 wt% 에탄올/물 혼합물중의 4-8 wt% 폴리아크릴산. 4-8 wt% polyacrylic acid in 40/60 wt% ethanol / water mixture.

이들 시스템 각각에서 은 잉크 코어 성분과 쉘 성분 사이의 계면장력은 0.4-2 mN/m인 것으로 측정되었다.The interface tension between the silver ink core component and the shell component in each of these systems was determined to be 0.4-2 mN / m.

상기 은 잉크 코어 성분을 기술된 각 쉘 성분과 개별적으로 조합하여 공동전자방사 공정(상기 실시예 1에 기술되고 이용된 바와 같이)으로 은 나노와이어를 제조하려는 노력은 모두 성공하지 못했다.The silver ink core component is individually combined with each of the described shell components to form a co-electrospinning process (the above embodiment. Efforts to make silver nanowires (as described and used in 1) have not all succeeded.

Claims (10)

은 담체에 분산된 ≥ 60 wt% 은 나노입자를 함유하는 은 잉크 코어 성분을 제공하고;
쉘 담체에 분산된 필름 형성 폴리머를 함유하는 쉘 성분을 제공하고;
기판을 제공하고;
은 잉크 코어 성분 및 쉘 성분을 공동전자방사하여 코어 및 코어를 둘러싼 쉘을 갖고 은 나노입자가 코어에 있는 코어 쉘 섬유를 기판상에 침착시키고;
은 나노입자를 처리하여 평균 길이 L이 ≥ 60 ㎛인 은 나노와이어군을 형성하는 것을 포함하는,
은 나노와이어의 제조방법.
Providing a silver ink core component containing ≧ 60 wt% silver nanoparticles dispersed in a silver carrier;
Providing a shell component containing the film forming polymer dispersed in the shell carrier;
Providing a substrate;
Co-electrospinning the silver ink core component and the shell component to deposit core shell fibers on the substrate with the core and the shell surrounding the core and the silver nanoparticles being in the core;
Treating the silver nanoparticles to form a group of silver nanowires having an average length L of ≧ 60 μm,
Method for producing silver nanowires.
제 1 항에 있어서, 은 담체 및 쉘 담체가 쉘 성분과 은 잉크 코어 성분 사이의 계면장력이 2 내지 5 mN/m이 되도록 선택되는 방법.The method of claim 1, wherein the silver carrier and the shell carrier are selected such that the interfacial tension between the shell component and the silver ink core component is between 2 and 5 mN / m. 제 2 항에 있어서, 코어 쉘 섬유가 기판상에 랜덤 중복 패턴 및 제어된 중복 패턴으로 구성된 그룹으로부터 선택되는 중복 패턴으로 침착되며, 여기에서 은 나노와이어군은 전도성 네트워크를 형성하는 방법.The method of claim 2, wherein the core shell fibers are deposited on the substrate in an overlapping pattern selected from the group consisting of a random overlapping pattern and a controlled overlapping pattern, wherein the silver nanowire group forms a conductive network. 제 2 항에 있어서, 은 나노입자가 광소결로 처리되는 방법.The method of claim 2 wherein the silver nanoparticles are treated with photosintering. 제 2 항에 있어서, 공동전자방사가 중심 개구부 및 주변 환형 개구부를 갖는 공통 환형 노즐을 통해 은 잉크 코어 성분 및 쉘 성분을 공급하는 것을 포함하고, 여기에서 은 잉크 코어 성분은 중심 개구부를 통해 공급되고, 쉘 성분은 주변 환형 개구부를 통해 공급되는 방법.3. The method of claim 2, wherein the co-electrospinning comprises supplying a silver ink core component and a shell component through a common annular nozzle having a central opening and a peripheral annular opening, wherein the silver ink core component is supplied through the central opening and , The shell component is supplied through the peripheral annular opening. 제 2 항에 있어서, 은 나노입자의 종횡비(L/D)가 ≤ 2인 방법.The method of claim 2 wherein the aspect ratio (L / D) of the silver nanoparticles is ≦ 2. 제 2 항에 있어서, 은 담체가 물이고. 쉘 담체는 물 알콜 혼합물이며, 여기에서 물 알콜 혼합물은 ≥ 50 wt% 알콜을 포함하는 방법.3. The silver carrier of claim 2 wherein the silver carrier is water. The shell carrier is a water alcohol mixture, wherein the water alcohol mixture comprises ≧ 50 wt% alcohol. 제 5 항에 있어서, 은 잉크 코어 성분이 0.1 내지 3 μL/min의 유량으로 중심 개구부를 통해 공급되고, 쉘 성분이 1 내지 30 μL/min의 유량으로 주변 환형 개구부를 통해 공급되는 방법.The method of claim 5, wherein the silver ink core component is supplied through the central opening at a flow rate of 0.1 to 3 μL / min and the shell component is supplied through the peripheral annular opening at a flow rate of 1 to 30 μL / min. 제 5 항에 있어서, 노즐이 기판에 대해 양의 인가 전위차로 고정되는 방법.6. The method of claim 5 wherein the nozzle is fixed with a positive applied potential difference relative to the substrate. 제 9 항에 있어서, 인가 전위차가 5 내지 50 kV인 방법.10. The method of claim 9, wherein the applied potential difference is between 5 and 50 kV.
KR1020130089597A 2012-07-30 2013-07-29 Method of manufacturing high aspect ratio silver nanowires KR20140016190A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261677211P 2012-07-30 2012-07-30
US61/677,211 2012-07-30

Publications (1)

Publication Number Publication Date
KR20140016190A true KR20140016190A (en) 2014-02-07

Family

ID=49917948

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130089597A KR20140016190A (en) 2012-07-30 2013-07-29 Method of manufacturing high aspect ratio silver nanowires

Country Status (7)

Country Link
US (1) US9148969B2 (en)
JP (1) JP6387221B2 (en)
KR (1) KR20140016190A (en)
CN (1) CN103588166B (en)
DE (1) DE102013012548A1 (en)
FR (1) FR2993875B1 (en)
TW (1) TWI505995B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160077457A (en) * 2014-12-23 2016-07-04 전자부품연구원 Electrode and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9295153B2 (en) * 2012-11-14 2016-03-22 Rohm And Haas Electronic Materials Llc Method of manufacturing a patterned transparent conductor
EP2991083B1 (en) * 2013-04-26 2021-06-09 Showa Denko K.K. Method for manufacturing electroconductive pattern and electroconductive pattern-formed substrate
US9353460B2 (en) * 2013-09-24 2016-05-31 Xerox Corporation Method for forming metal structures
DE102015013239A1 (en) * 2014-10-28 2016-04-28 Dow Global Technologies Llc Hydrothermal process for the production of silver nanowires
JP6526739B2 (en) * 2016-06-02 2019-06-05 Dowaエレクトロニクス株式会社 Silver nanowire, method for producing the same, silver nanowire ink and transparent conductive film
WO2019124584A1 (en) * 2017-12-21 2019-06-27 희성전자 주식회사 Metal nanowire manufacturing method and metal nanowire manufactured thereby
CN114496352A (en) * 2020-11-12 2022-05-13 天材创新材料科技(厦门)有限公司 Nano silver wire protective layer structure and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200728527A (en) * 2006-01-26 2007-08-01 Singland Biotech Int L Co Ltd A process for the nano-silver fabric through electro spinning filaments
CN100595355C (en) * 2007-08-03 2010-03-24 东南大学 Method for preparing coaxial compound nano thread of monocrystal zinc oxide wrapped by organic polymer
DE102007040762A1 (en) * 2007-08-29 2009-03-05 Bayer Materialscience Ag Device and method for producing electrically conductive nanostructures by means of electrospinning
JP5306760B2 (en) 2008-09-30 2013-10-02 富士フイルム株式会社 Transparent conductor, touch panel, and solar cell panel
CN101580978B (en) * 2009-06-09 2012-01-11 东华大学 Marine biological antibacterial nano fiber and preparation method thereof
TWI420540B (en) * 2009-09-14 2013-12-21 Ind Tech Res Inst Conductive material formed using light or thermal energy and method for manufacturing the same, and nano-scale composition
CN102234846B (en) * 2010-04-28 2013-08-21 中国科学院化学研究所 Core/shell fiber with nanowire-embedded microtube structure and preparation method thereof
KR101407209B1 (en) * 2010-10-07 2014-06-16 포항공과대학교 산학협력단 Method for formation of micro- and nano-scale patterns and method for producing micro- and nano-scale channel transistor, and micro- and nano-scale channel light emitting transistor using the same
CN102021677B (en) * 2010-10-13 2013-07-03 清华大学 Preparation method for carbon nanofiber containing transition metal and nitrogen element and application of carbon nanofiber in fuel-cell catalysts
CN102352548B (en) * 2011-07-25 2013-05-01 浙江理工大学 Method for preparing SiC/C nano-fiber membrane by electrostatic spinning
US9040114B2 (en) * 2012-08-29 2015-05-26 Rohm And Haas Electronic Material Llc Method of manufacturing silver miniwire films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160077457A (en) * 2014-12-23 2016-07-04 전자부품연구원 Electrode and manufacturing method thereof

Also Published As

Publication number Publication date
US9148969B2 (en) 2015-09-29
CN103588166B (en) 2016-06-29
CN103588166A (en) 2014-02-19
FR2993875B1 (en) 2015-03-13
JP2014053291A (en) 2014-03-20
TWI505995B (en) 2015-11-01
FR2993875A1 (en) 2014-01-31
JP6387221B2 (en) 2018-09-05
US20140027954A1 (en) 2014-01-30
TW201410614A (en) 2014-03-16
DE102013012548A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
KR20140016190A (en) Method of manufacturing high aspect ratio silver nanowires
TWI536404B (en) Method of manufacturing a patterned transparent conductor
KR101885376B1 (en) Transparent electrode of Ag nanowire network and it&#39;s fabrication methode
KR20060135616A (en) Spin-printing of electronic and display components
KR20110071526A (en) Silver nanowire and method of preparing same and transparent conductors using same
US9487886B1 (en) Indium tin oxide nanotubes and method of manufacture
DE112015004882T5 (en) Transparent conductor and manufacturing method for the same
WO2013165101A1 (en) Hybrid electrode using silver nanowires and graphene, and preparation method thereof
WO2013015612A1 (en) Electrode structure and method for producing electrode
KR20130048333A (en) Transparent electrode comprising polymer passivation layer and ag nanowire network and the fabrication method thereof
KR20140119644A (en) Method of Manufacturing A Patterned Transparent Conductor
KR20200006998A (en) Method for producing conductive film, conductive film, and metal nanowire ink
KR102169194B1 (en) Core-shell filler and method for preparing core-shell filler
JP2008218243A (en) Manufacturing method of transparent conductive substrate, and transparent conductive substrate
US9040114B2 (en) Method of manufacturing silver miniwire films
KR100939278B1 (en) Atmospheric Pressure Plasma Apparatus and Method for Atmospheric Pressure Plasma Treatment of Conductive Polymer Compositions
Düzyer Different Methods of Fabricating Conductive Nanofibers
KR20130014278A (en) Nanowire and method for manufacturing the same
US20180147603A1 (en) Method of treating nanoparticles
Habis et al. Specific role of Al in the synthesis of electrospun Al: ZnO nanofibers: Thermal and elemental analysis
JP2011210553A (en) Titanium oxide paste, manufacturing method for porous titanium oxide laminated body, porous titanium oxide laminated body, and dye-sensitized solar cell
KR20170134871A (en) Uniform coating method by high frequency dispersion spraying device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application