JP2008218243A - Manufacturing method of transparent conductive substrate, and transparent conductive substrate - Google Patents

Manufacturing method of transparent conductive substrate, and transparent conductive substrate Download PDF

Info

Publication number
JP2008218243A
JP2008218243A JP2007054906A JP2007054906A JP2008218243A JP 2008218243 A JP2008218243 A JP 2008218243A JP 2007054906 A JP2007054906 A JP 2007054906A JP 2007054906 A JP2007054906 A JP 2007054906A JP 2008218243 A JP2008218243 A JP 2008218243A
Authority
JP
Japan
Prior art keywords
fine particles
film
transparent conductive
conductive fine
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007054906A
Other languages
Japanese (ja)
Inventor
Mikiko Hojo
美貴子 北條
Seiji Take
誠司 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007054906A priority Critical patent/JP2008218243A/en
Publication of JP2008218243A publication Critical patent/JP2008218243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a transparent conductive substrate which has a uniform transparency and in which an arc discharge from conductive particulates by microwave irradiation is suppressed. <P>SOLUTION: A step in which an ink containing conductive particulates is coated on a transparent base material to form a treatment membrane containing conductive particulates, and a step in which a microwave of a single mode is irradiated on the treatment membrane to form the transparent conductive membrane on the base material are equipped. According to this forming method of the transparent conductive substrate, while suppressing temperature elevation of the base material by microwave irradiation, selective heating of only the treated membrane containing conductive particulates becomes possible. Accordingly, formation of a transparent conductive membrane having a high conductivity on a base material having a low heat resistance becomes possible. Furthermore, by irradiating microwaves uniformly on the treatment membrane containing conductive particulates, the arc discharge from the conductive particulates can be suppressed, and even formation of such a transparent conductive membrane, for example, which has a uniform transparency and in which transmittance of the light with wavelength of 550 nm is 88% or more also becomes possible. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は機能性基板の形成技術に係り、特に、透明導電性基板の製造方法及び透明導電性基板に係る。   The present invention relates to a technology for forming a functional substrate, and more particularly, to a method for manufacturing a transparent conductive substrate and a transparent conductive substrate.

透明導電膜は、透明タッチパネル、液晶表示装置、及び電磁波シールド基板等に利用されている。透明導電膜は、蒸着法、マグネトロンスパッタ法、あるいはイオンプレーティング法、パルスレーザデポジション法等の時間がかかる真空プロセスを経て形成される。ここで、透明導電膜を大面積化するためには、高価な真空プロセス装置を用いる必要がある。また透明導電膜を表示電極に使用するためには、透明導電膜をエッチング法等によりパターニングする必要がある。しかし、非晶質の膜を成膜した後に非晶質の膜をエッチングし、さらに非晶質の膜を結晶化するなど、複数の工程が必要であった。また材料によっては適当なエッチング方法がなく、パターニングが困難な場合もあった。これに対し、導電性のインクを印刷することにより、パターニングされた透明導電膜を形成する方法が、有機酸塩熱分解法や金属錯体塩熱分解法等により検討されている。しかし、一般に導電膜を形成するためには、印刷後に導電性のインクで形成された被処理膜を500℃以上に加熱する必要があり、低耐熱性の基材を使用できないという問題があった。そのため基材のダメージをさけるために、マルチモードのマイクロ波を被処理膜に照射して被処理膜に含まれる導電性の微粒子を選択的に加熱し、焼結させる方法が提案されている(例えば、特許文献1参照。)。しかし、マルチモードのマイクロ波で導電性の微粒子を含む被処理膜を均一に加熱するのは困難であるため、導電性の微粒子からアーク放電が生じ、部分的な異常加熱が生じたり発火したりするという問題や、均一な透明性を有し、かつ波長が550nmの光の透過率が88%以上である透明導電膜を形成するのは難しいという問題があった。
特開2000-123658号公報
Transparent conductive films are used for transparent touch panels, liquid crystal display devices, electromagnetic wave shield substrates, and the like. The transparent conductive film is formed through a time-consuming vacuum process such as vapor deposition, magnetron sputtering, ion plating, or pulsed laser deposition. Here, in order to increase the area of the transparent conductive film, it is necessary to use an expensive vacuum process apparatus. Moreover, in order to use a transparent conductive film for a display electrode, it is necessary to pattern a transparent conductive film by the etching method etc. However, after forming an amorphous film, a plurality of processes are required such as etching the amorphous film and crystallizing the amorphous film. Also, depending on the material, there is no appropriate etching method, and patterning may be difficult. On the other hand, a method of forming a patterned transparent conductive film by printing conductive ink has been studied by an organic acid salt thermal decomposition method, a metal complex salt thermal decomposition method, or the like. However, in general, in order to form a conductive film, it is necessary to heat a film to be processed formed of conductive ink after printing to 500 ° C. or higher, and there is a problem that a low heat resistant substrate cannot be used. . Therefore, in order to avoid damage to the base material, a method has been proposed in which a multi-mode microwave is irradiated to a film to be processed to selectively heat and sinter conductive fine particles contained in the film to be processed ( For example, see Patent Document 1.) However, since it is difficult to uniformly heat a film to be processed containing conductive fine particles with multimode microwaves, arc discharge occurs from the conductive fine particles, and partial abnormal heating or ignition occurs. There is a problem that it is difficult to form a transparent conductive film having uniform transparency and having a transmittance of 88% or more for light having a wavelength of 550 nm.
JP 2000-123658 A

本発明は、マイクロ波照射による導電性微粒子からのアーク放電を抑制し、均一な透明性を有する透明導電性基板の製造方法及び透明導電性基板を提供することを目的とする。   An object of the present invention is to provide a method for producing a transparent conductive substrate and a transparent conductive substrate, which suppress arc discharge from conductive fine particles due to microwave irradiation and have uniform transparency.

上記目的を達成するために本発明の第1の特徴は、(イ)透明な基材上に、導電性微粒子を含有するインクを塗布し、導電性微粒子を含む被処理膜を形成するステップと、(ロ)被処理膜に単一モードのマイクロ波を照射し、基材上に透明導電膜を形成するステップとを備える透明導電性基板の製造方法であることを要旨とする。本発明の第1の特徴に係る透明導電性基板の製造方法によれば、被処理膜に単一モードのマイクロ波を照射することにより、導電性微粒子からのアーク放電を抑制することが可能となる。また被処理膜に単一モードのマイクロ波を照射することにより、均一な透明度を有する透明導電性基板を製造することが可能となる。   In order to achieve the above object, the first feature of the present invention is as follows: (a) a step of applying an ink containing conductive fine particles on a transparent substrate to form a film to be treated containing the conductive fine particles; And (b) irradiating a film to be processed with a single-mode microwave to form a transparent conductive film on a base material, and a gist of the invention. According to the method for manufacturing a transparent conductive substrate according to the first feature of the present invention, it is possible to suppress arc discharge from conductive fine particles by irradiating a film to be processed with a single-mode microwave. Become. In addition, by irradiating the film to be processed with a single mode microwave, a transparent conductive substrate having uniform transparency can be manufactured.

本発明の第2の特徴は、(イ)透明な基材上に、導電性微粒子を含有するインクを塗布し、導電性微粒子を含む被処理膜を形成するステップと、(ロ)被処理膜に、導電性微粒子からアーク放電が生じない周波数のマイクロ波を照射し、基材上に透明導電膜を形成するステップとを備える透明導電性基板の製造方法であることを要旨とする。本発明の第2の特徴に係る透明導電性基板の製造方法によれば、被処理膜に導電性微粒子からアーク放電が生じない周波数のマイクロ波を照射することにより、導電性微粒子からのアーク放電を抑制することが可能となる。また被処理膜に導電性微粒子からアーク放電が生じない周波数のマイクロ波を照射することにより、均一な透明度を有する透明導電性基板を製造することが可能となる。   The second feature of the present invention is that (b) a step of applying an ink containing conductive fine particles on a transparent substrate to form a film to be processed containing conductive fine particles; and (b) a film to be processed. And a step of forming a transparent conductive film on a substrate by irradiating a microwave having a frequency at which arc discharge does not occur from the conductive fine particles. According to the method for producing a transparent conductive substrate according to the second aspect of the present invention, the discharge of the arc from the conductive fine particles is performed by irradiating the film to be processed with microwaves having a frequency at which arc discharge does not occur from the conductive fine particles. Can be suppressed. Further, by irradiating the film to be processed with microwaves having a frequency at which arc discharge does not occur from the conductive fine particles, a transparent conductive substrate having uniform transparency can be manufactured.

本発明の第3の特徴は、(イ)透明な基材と、(ロ)透明な基材上に配置された透明導電膜とを備え、(ハ)波長が550nmの光の透過率が88%以上であり、(ニ)透明導電膜は、平均粒子径が3nm乃至200nmの導電性微粒子及び導電性微粒子が結合した焼結体を含み、(ホ)透明導電膜の表面に占める導電性微粒子及び焼結体の割合が80%以上である透明導電性基板であることを要旨とする。   The third feature of the present invention includes (a) a transparent base material, and (b) a transparent conductive film disposed on the transparent base material, and (c) a transmittance of light having a wavelength of 550 nm is 88. And (d) the transparent conductive film includes conductive fine particles having an average particle diameter of 3 nm to 200 nm and a sintered body combined with the conductive fine particles, and (e) conductive fine particles occupying the surface of the transparent conductive film. And a transparent conductive substrate in which the ratio of the sintered body is 80% or more.

本発明によれば、マイクロ波照射による導電性微粒子からのアーク放電を抑制し、均一な透明性を有する透明導電性基板の製造方法及び透明導電性基板を提供可能である。   ADVANTAGE OF THE INVENTION According to this invention, the arc discharge from the electroconductive fine particles by microwave irradiation can be suppressed, and the manufacturing method and transparent conductive substrate of a transparent conductive substrate which have uniform transparency can be provided.

次に図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。なお以下の示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The embodiments shown below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the arrangement of components and the like as follows. Not what you want. The technical idea of the present invention can be variously modified within the scope of the claims.

本発明の実施の形態に係る透明導電性基板の製造方法は、透明な基材上に、導電性微粒子を含有するインクを塗布し、導電性微粒子を含む被処理膜を形成するステップ、及び基材上に形成された被処理膜に例えば周波数が0.8〜100GHzの単一モードのマイクロ波を照射し、基材上に透明導電膜を形成するステップを備える。あるいは実施の形態に係る透明導電性基板の製造方法は、透明な基材上に、導電性微粒子を含有するインクを塗布し、導電性微粒子を含む被処理膜を形成ステップ、及び基材上に形成された被処理膜に、導電性微粒子からアーク放電が生じない周波数のマイクロ波を照射し、基材上に透明導電膜を形成するステップを備える。導電性微粒子からアーク放電が生じない周波数とは、例えば10-100GHzである。実施の形態に係る透明導電性基板の製造方法によれば、透明な基材、及び透明な基材上に配置された導電性微粒子を含む透明導電膜を備え、波長が550nmの光の透過率が88%以上の透明導電性基板が製造される。   A method for producing a transparent conductive substrate according to an embodiment of the present invention includes a step of applying an ink containing conductive fine particles on a transparent base material to form a film to be processed containing the conductive fine particles, and a base The film to be processed formed on the material is irradiated with a single mode microwave having a frequency of 0.8 to 100 GHz, for example, to form a transparent conductive film on the substrate. Or the manufacturing method of the transparent conductive substrate which concerns on embodiment applies the ink containing electroconductive fine particles on a transparent base material, and forms the to-be-processed film | membrane containing electroconductive fine particles, and a base material The process includes forming a transparent conductive film on a substrate by irradiating the formed film to be processed with microwaves having a frequency at which arc discharge does not occur from the conductive fine particles. The frequency at which arc discharge does not occur from the conductive fine particles is, for example, 10-100 GHz. According to the method for manufacturing a transparent conductive substrate according to the embodiment, a transparent base material, and a transparent conductive film including conductive fine particles arranged on the transparent base material, the transmittance of light having a wavelength of 550 nm A transparent conductive substrate having a ratio of 88% or more is manufactured.

導電性微粒子としては、可視波長域の光に対して透明性の高い酸化インジウム、酸化亜鉛、酸化スズ、及び酸化チタン等の金属酸化物からなる微粒子、あるいは異なる金属がドープされた金属酸化物からなる微粒子等が使用できる。特に導電性及び透明性の観点から、スズドープ酸化インジウム(ITO : Indium Tin Oxide)、及びガリウムドープ酸化亜鉛(GZO : Gallium-doped zinc oxide)、アルミニウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、及びアンチモンドープ酸化スズ等が導電性微粒子の材料として好ましい。インクに含まれた状態での導電性微粒子の平均1次粒径は、緻密な透明導電膜を形成するため、またマイクロ波で均一に加熱するために、透過型電子顕微鏡で観察して3nmから100nmであるのが好ましい。なお、導電性微粒子の平均1次粒径を3nm以上とすることにより、インク中において導電性微粒子が安定して分散する。ただし、導電性微粒子の平均1次粒径が100nm以上になると、形成される透明導電膜の透明性が損なわれる。また平均1次粒径が100nm以上の導電性微粒子は、内部までマイクロ波を吸収することができない。そのため、被処理膜を均一に加熱することが困難となる。   Examples of the conductive fine particles include fine particles made of metal oxides such as indium oxide, zinc oxide, tin oxide, and titanium oxide that are highly transparent to light in the visible wavelength range, or metal oxides doped with different metals. Fine particles or the like can be used. In particular, from the viewpoints of conductivity and transparency, tin-doped indium oxide (ITO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide, indium-doped zinc oxide, and antimony-doped oxide Tin or the like is preferable as the material for the conductive fine particles. The average primary particle size of the conductive fine particles contained in the ink is from 3 nm as observed with a transmission electron microscope in order to form a dense transparent conductive film and to uniformly heat with microwaves. 100 nm is preferred. By setting the average primary particle size of the conductive fine particles to 3 nm or more, the conductive fine particles are stably dispersed in the ink. However, when the average primary particle diameter of the conductive fine particles is 100 nm or more, the transparency of the formed transparent conductive film is impaired. In addition, conductive fine particles having an average primary particle size of 100 nm or more cannot absorb microwaves to the inside. Therefore, it becomes difficult to uniformly heat the film to be processed.

ここで、金属酸化物からなる導電性微粒子は、マイクロ波によって選択的に加熱されやすい。特に導電性微粒子の体積抵抗率が小さくなるほど、導電性微粒子はマイクロ波によって加熱されやすくなる。   Here, the conductive fine particles made of the metal oxide are easily selectively heated by the microwave. In particular, the smaller the volume resistivity of the conductive fine particles, the more easily the conductive fine particles are heated by the microwave.

導電性微粒子を含むインクの溶媒としては、例えば水、並びにメタノール、エタノール、1−プロパノール、イソプロパノール、1-ブタノール、エチレングリコール、プロピレングリコール、及びグリセリン等のアルコール類、並びにセロソルブ、及びブチルセロソルブ(C4H9OCH2CH2OH)等のグリコールエーテル類、並びにアセトン、メチルエチルケトン、及びメチルイソブチルケトン等のケトン類、並びに酢酸エチル等のエステル類、並びにアセトン、メチルエチルケトン等のケトン類、並びにヘキサン、デカン等の脂肪族炭化水素、あるいはトルエン及びキシレン等の芳香族炭化水素等又はそれらの混合液等が使用可能である。またインクには、必要に応じて、分散剤、表面張力調整剤、あるいは安定剤等を添加してもよい。 Examples of the solvent for the ink containing conductive fine particles include water, alcohols such as methanol, ethanol, 1-propanol, isopropanol, 1-butanol, ethylene glycol, propylene glycol, and glycerin, cellosolve, and butyl cellosolve (C 4 Glycol ethers such as H 9 OCH 2 CH 2 OH), ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as ethyl acetate, ketones such as acetone, methyl ethyl ketone, hexane, decane, etc. Aliphatic hydrocarbons, aromatic hydrocarbons such as toluene and xylene, or a mixture thereof can be used. Moreover, you may add a dispersing agent, a surface tension regulator, a stabilizer, etc. to an ink as needed.

さらに基材への密着性を高めること、造膜性を高めること、印刷適性を付与すること、及び分散性を高めることを目的として、例えばポリエステル樹脂、アクリル樹脂、あるいはウレタン樹脂等を樹脂バインダーとしてインクに添加してもよい。また、高温で焼成した後の基材との密着性あるいは造膜性を維持するために、エチルシリケート及びシリケートオリゴマー等の無機バインダーを使用してもよい。   Further, for example, polyester resin, acrylic resin, or urethane resin is used as a resin binder for the purpose of enhancing adhesion to a substrate, enhancing film forming property, imparting printability, and enhancing dispersibility. It may be added to the ink. In addition, an inorganic binder such as ethyl silicate and silicate oligomer may be used in order to maintain adhesion or film-forming property with the base material after firing at a high temperature.

基材の材料には、石英ガラス(SiO2)、ソーダ石灰ガラス、無アルカリガラス、ホウケイ酸ガラス、高歪点ガラス等のガラスが使用可能である。被処理膜に含まれる導電性微粒子はマイクロ波によって選択的に加熱されやすい。そのため、基材に吸収されるマイクロ波のエネルギーは小さくなり、基材の発熱は抑制される。したがって、基材の材料の歪点が低いガラス等であっても、透明導電膜を形成する際に基材が変形したり損傷したりすることはない。 As the material for the substrate, glass such as quartz glass (SiO 2 ), soda-lime glass, alkali-free glass, borosilicate glass, and high strain point glass can be used. The conductive fine particles contained in the film to be treated are easily selectively heated by microwaves. Therefore, the microwave energy absorbed by the base material is reduced, and the heat generation of the base material is suppressed. Therefore, even if the material of the base material is a glass having a low strain point, the base material is not deformed or damaged when the transparent conductive film is formed.

また基材の材料には、ポリエステル、ポリエチレン、アクリル樹脂、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、エチレン−ビニルアルコール共重合体、ポリビニルアルコール、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンナフタレート、ポリアミド、ポリイミド等のガラスよりも耐熱性の低い透明な樹脂も使用可能である。また基材の表面には、導電性微粒子を含む被処理膜に密着する密着性成分が成膜されていてもよい。あるいは、コロナ処理、乾式UV照射処理、プラズマ処理等による易接着処理がされていてもよい。   The base material includes polyester, polyethylene, acrylic resin, polypropylene, polyvinyl chloride, polyvinylidene chloride, ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyethylene naphthalate, polyamide, polyimide, etc. It is also possible to use a transparent resin having a lower heat resistance than the glass. An adhesive component that adheres to the film to be processed containing conductive fine particles may be formed on the surface of the substrate. Alternatively, easy adhesion treatment by corona treatment, dry UV irradiation treatment, plasma treatment or the like may be performed.

インクは、例えばスクリーン印刷機、インクジェットプリンタ、ディスペンサ、スピンコーター、ディップコーティング装置、フレキソ印刷機、グラビア印刷機等の塗布装置によって基材上に塗布される。なおインクは、塗布装置によって基材の表面にパターン状に印刷されてもよい。パターンは透明導電性基板の用途により適宜設計選択される。基材に塗布されたインクは、オーブン等によって乾燥させられ、図1に示すように基材100上に導電性微粒子を含む被処理膜150が形成される。導電性微粒子を含む被処理膜150の厚みは、焼成後に0.01乃至20μm、さらには0.05乃至1μmが好ましい。厚みが0.01μm以下では導電性が不充分となり、厚みが20μm以上では形成される透明導電膜の透明性が不充分となる。   The ink is applied onto the substrate by an application device such as a screen printer, an inkjet printer, a dispenser, a spin coater, a dip coating device, a flexographic printer, or a gravure printer. The ink may be printed in a pattern on the surface of the substrate by a coating apparatus. The pattern is appropriately selected and designed according to the use of the transparent conductive substrate. The ink applied to the substrate is dried by an oven or the like, and a film to be processed 150 containing conductive fine particles is formed on the substrate 100 as shown in FIG. The thickness of the film to be processed 150 containing conductive fine particles is preferably 0.01 to 20 μm, more preferably 0.05 to 1 μm after firing. When the thickness is 0.01 μm or less, the conductivity is insufficient, and when the thickness is 20 μm or more, the transparency of the formed transparent conductive film is insufficient.

導電性微粒子を含む被処理膜150には、マイクロ波が照射される。本発明の実施の形態のおいて、マイクロ波とは周波数が300MHz乃至300GHzの電磁波を意味する。例えば被処理膜150には、周波数が0.8乃至100GHzのマイクロ波が照射される。マイクロ波は、マグネトロン、クライストロン、あるいはジャイロトロン等により発生させることができる。照射するマイクロ波の周波数が10GHz以下の場合、マイクロ波の波長が長いため、導電性微粒子を含む被処理膜150を均一に加熱することができない。そのため、導電性微粒子を含む被処理膜150を均一に加熱するために、導波管あるいは空洞共振器を使用してマイクロ波を単一モードにし、導電性微粒子を含む被処理膜150に照射するマイクロ波の電界及び磁界を一定にすることが好ましい。空洞共振器を使用すれば、例えば線状に均一なマイクロ波を照射することが可能となる。この場合、被処理膜150を一定速度で移動させれば、大面積の被処理膜150を焼成することも可能である。   The processing target film 150 containing conductive fine particles is irradiated with microwaves. In the embodiment of the present invention, the microwave means an electromagnetic wave having a frequency of 300 MHz to 300 GHz. For example, the processing target film 150 is irradiated with microwaves having a frequency of 0.8 to 100 GHz. The microwave can be generated by a magnetron, a klystron, a gyrotron, or the like. When the frequency of the irradiated microwave is 10 GHz or less, the wavelength of the microwave is long, and thus the film to be processed 150 containing conductive fine particles cannot be heated uniformly. Therefore, in order to uniformly heat the film to be processed 150 containing conductive fine particles, microwaves are made into a single mode using a waveguide or a cavity resonator, and the film to be processed 150 containing conductive fine particles is irradiated. The microwave electric field and magnetic field are preferably constant. If a cavity resonator is used, it becomes possible to irradiate, for example, a linear uniform microwave. In this case, the film to be processed 150 having a large area can be baked if the film to be processed 150 is moved at a constant speed.

周波数が10GHz以上の場合は、複数モードあるいはランダムに反射したマイクロ波を照射してもよいし、導波管あるいは空洞共振器等を用いて単一モードのマイクロ波が照射してもよい。周波数が10GHz以上のマイクロ波を導電性微粒子に照射しても、アーク放電現象は生じない。また、周波数が10GHz以上のマイクロ波の波長は導電性微粒子を含む被処理膜150に対して短い。そのため、ランダムに炉内で多重反射させても、導電性微粒子を含む被処理膜150を均一に加熱することができる。導電性微粒子を含む被処理膜150にマイクロ波を照射すると、導電性微粒子を含む被処理膜150に含まれる導電性微粒子の表面が加熱され、微粒子どうしが焼結したり、微粒子が結晶成長することにより、導電性が向上する。均一加熱のためには、周波数は高いほどよいが、安定して高出力のマイクロ波を発生させるためには、60GHz以下とするのが好ましい。   When the frequency is 10 GHz or more, microwaves reflected in a plurality of modes or randomly may be irradiated, or single mode microwaves may be irradiated using a waveguide or a cavity resonator. Even if the conductive fine particles are irradiated with microwaves having a frequency of 10 GHz or more, the arc discharge phenomenon does not occur. Further, the wavelength of the microwave having a frequency of 10 GHz or more is shorter than the film to be processed 150 including conductive fine particles. Therefore, the film to be processed 150 containing conductive fine particles can be uniformly heated even when multiple reflections are randomly performed in the furnace. When the processing target film 150 containing conductive fine particles is irradiated with microwaves, the surface of the conductive fine particles included in the processing target film 150 containing conductive fine particles is heated, so that the fine particles sinter or the fine particles grow into crystals. As a result, the conductivity is improved. For uniform heating, the higher the frequency, the better. However, in order to stably generate a high-output microwave, it is preferable to set the frequency to 60 GHz or less.

マイクロ波を照射する炉は、大気雰囲気でもよいしガス置換してもよい。透明導電性基板の場合は、材料によって、透明性、キャリア密度、酸素欠損量、結晶径等の制御のために、酸素を導入して酸化を促進したり、あるいは窒素、水素等による還元雰囲気で焼結及び粒子成長を促進してもよい。また内部は大気圧でもよいし、加圧してもよい。焼結を促進するために、焼成前後または焼成中に物理的なプレスを施してもよい。   The furnace for microwave irradiation may be an atmospheric atmosphere or gas replacement. In the case of a transparent conductive substrate, depending on the material, oxygen may be introduced to promote oxidation or control in a reducing atmosphere such as nitrogen or hydrogen to control transparency, carrier density, oxygen deficiency, crystal diameter, etc. Sintering and grain growth may be promoted. The inside may be atmospheric pressure or pressurized. In order to promote the sintering, a physical press may be applied before or after firing or during firing.

なお、基材がマイクロ波を吸収しやすく、基板もマイクロ波によって加熱されやすい場合には、マイクロ波を照射する前に、基材にダメージを与えない温度でオーブン等で予備加熱を行ってもよい。予備加熱により一部の導電性微粒子どうしを焼結させて導電性を高めておくと、導電性微粒子はマイクロ波によって加熱されやすくなる。   If the substrate is easy to absorb microwaves and the substrate is also easily heated by microwaves, the substrate may be preheated in an oven or the like at a temperature that does not damage the substrate before irradiation with microwaves. Good. When the conductivity is increased by sintering some of the conductive fine particles by preheating, the conductive fine particles are easily heated by the microwave.

微粒子にマイクロ波を照射して形成された透明導電膜は均一な単結晶ではなく、図2に示すように、個々の微粒子どうしが接触または焼結し、内部には気孔が存在する構造をとる。ここで実施の形態に係る透明導電膜は、表面を走査型電子顕微鏡で観察した場合に、平均粒子径が3nm乃至200nmの導電性微粒子及び導電性微粒子が粒界を介して結合した焼結体を含む。マイクロ波の吸収率の高い材料では、個々の導電性微粒子の大きさも加熱により結晶成長するが、加熱後の透明導電膜に含まれる結晶成長後の導電性微粒子の平均粒子径は3nm乃至200nmであることが好ましい。結晶成長後の導電性微粒子の平均粒子径が200nm以上の場合、透明導電性基板の透明性が低下するためである。加熱後の透明導電膜に含まれる導電性微粒子のさらに好ましい平均粒子径は5nm乃至100nmであり、より限定すれば10nm乃至50nmである。   The transparent conductive film formed by irradiating the fine particles with microwaves is not a uniform single crystal, and as shown in FIG. 2, the individual fine particles are in contact with each other or sintered, and have a structure in which pores exist. . Here, the transparent conductive film according to the embodiment is a sintered body in which conductive fine particles having an average particle diameter of 3 nm to 200 nm and conductive fine particles are bonded via a grain boundary when the surface is observed with a scanning electron microscope. including. In a material having a high microwave absorption rate, the size of each conductive fine particle grows by heating, but the average particle size of the conductive fine particle after crystal growth contained in the heated transparent conductive film is 3 nm to 200 nm. Preferably there is. This is because when the average particle diameter of the conductive fine particles after crystal growth is 200 nm or more, the transparency of the transparent conductive substrate is lowered. The more preferable average particle diameter of the conductive fine particles contained in the transparent conductive film after heating is 5 nm to 100 nm, and more preferably 10 nm to 50 nm.

透明導電膜の気孔は導電性及び透明性を損なうため少ないほうが好ましい。波長が550nmの光の透過率を88%以上とするために、走査型電子顕微鏡で観察した場合に表面に占める導電性微粒子及びその焼結体の割合を80%以上、好ましくは90%以上とする。   Since the pores of the transparent conductive film impair the conductivity and transparency, it is preferable that the pores be small. In order to set the transmittance of light having a wavelength of 550 nm to 88% or more, the ratio of the conductive fine particles and the sintered body occupying the surface when observed with a scanning electron microscope is 80% or more, preferably 90% or more. To do.

従来、導電性微粒子を焼結させるためには、数百度の高温の空気中に基材が配置されていた。そのため、基材の材料が限定されるという問題があった。また、導電性微粒子が金属酸化物からなる場合、導電性微粒子の粒径をナノメートルオーダーとすると焼結に必要な温度は低下するが、その温度はなお基材の耐熱温度と比較して高いという問題があった。よって、基材には、500℃以上の耐熱性が要求されていた。これに対し、実施の形態に係る透明導電性基板の形成方法によれば、マイクロ波の照射によって基材の温度の上昇を抑制し、導電性微粒子を含有する被処理膜のみを選択的に加熱することが可能となる。したがって、耐熱性の低い基材上に、導電率の高い透明導電膜を形成することが可能となる。さらに導電性微粒子を含む被処理膜に均一にマイクロ波を照射することにより、導電性微粒子からのアーク放電を抑制し、例えば波長が550nmの光の透過率が88%以上であり、均一な透明性を揺する透明導電膜を形成することも可能となる。また導電性微粒子を含む被処理膜は、印刷法によりパターニングが可能であるため、エッチング等の複雑な工程を無くすことも可能である。   Conventionally, in order to sinter conductive fine particles, a base material has been disposed in air at a high temperature of several hundred degrees. Therefore, there is a problem that the material of the base material is limited. In addition, when the conductive fine particles are made of a metal oxide, the temperature required for sintering decreases if the particle size of the conductive fine particles is on the order of nanometers, but the temperature is still higher than the heat resistant temperature of the substrate. There was a problem. Therefore, the base material is required to have a heat resistance of 500 ° C. or higher. On the other hand, according to the method for forming a transparent conductive substrate according to the embodiment, the increase in the temperature of the substrate is suppressed by microwave irradiation, and only the film to be processed containing conductive fine particles is selectively heated. It becomes possible to do. Therefore, it is possible to form a transparent conductive film with high conductivity on a substrate with low heat resistance. Furthermore, by uniformly irradiating the film to be processed containing conductive fine particles with microwaves, arc discharge from the conductive fine particles is suppressed, for example, the transmittance of light having a wavelength of 550 nm is 88% or more, and uniform transparent It is also possible to form a transparent conductive film that changes its properties. In addition, since a film to be processed containing conductive fine particles can be patterned by a printing method, a complicated process such as etching can be eliminated.

(実施例1)
透過型電子顕微鏡で観察した平均1次粒径が20nmのITO導電性微粒子を含む分散液であるインク(三菱マテリアル株式会社製)を、スピンコート法により、1辺が100mmの正方形で、厚みが1.1mmの合成石英ガラスからなる基材に塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。導電性微粒子を含む被処理膜の膜厚は0.3μmであり、4探針法により測定した表面抵抗は5.0×105Ω/□であった。なお以下の記載において、表面抵抗は総てダイアインスツルメンツ社製のロレスタGPを使用し、JIS K7194規格に準拠して測定された値である。
(Example 1)
An ink (manufactured by Mitsubishi Materials Corporation), which is a dispersion containing ITO conductive fine particles with an average primary particle diameter of 20 nm, observed with a transmission electron microscope, is a square with a side of 100 mm and a thickness of The film was applied to a substrate made of 1.1 mm synthetic quartz glass, and the ink was further dried at 120 ° C. for 1 minute using an oven to form a film to be treated containing conductive fine particles. The film to be treated containing conductive fine particles had a thickness of 0.3 μm, and the surface resistance measured by the 4-probe method was 5.0 × 10 5 Ω / □. In the following description, the surface resistance is a value measured in accordance with the JIS K7194 standard using Loresta GP manufactured by Dia Instruments.

その後、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、上方から周波数が28GHzのマイクロ波を大気雰囲気中で照射し、表面の温度を計測して、50℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から800℃に加熱し、合成石英ガラスからなる基材上に透明導電膜を形成した。透明導電膜の表面温度が800℃に到達した後、マイクロ波の照射を終了した。透明導電膜の表面温度が800℃に到達した時、基材の裏面の温度は約600℃であった。マイクロ波の照射を終了した後、合成石英ガラスからなる基材及び透明導電膜を有する透明導電性基板の温度は数分で200℃以下になった。加熱の開始から冷却までに要した時間は、約20分であった。形成された透明導電膜の表面抵抗は600Ω/□に低下した。また透明導電性基板の波長550nmの光の透過率は、90.5%であり、面内の表面抵抗及び透過率にムラはなくほぼ均一であった。また透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は91.7%であり、導電性微粒子は加熱前と比較して互いに焼結していることが観察された。   After that, the base material on which the film to be treated containing conductive fine particles was formed was introduced into a heating and firing furnace, microwaves with a frequency of 28 GHz were irradiated from above in the air atmosphere, the temperature of the surface was measured, and 50 ° C. The film to be treated containing conductive fine particles was heated from room temperature to 800 ° C. at a heating rate of / min to form a transparent conductive film on a substrate made of synthetic quartz glass. After the surface temperature of the transparent conductive film reached 800 ° C., microwave irradiation was terminated. When the surface temperature of the transparent conductive film reached 800 ° C, the temperature of the back surface of the substrate was about 600 ° C. After the microwave irradiation was finished, the temperature of the transparent conductive substrate having the base material made of synthetic quartz glass and the transparent conductive film became 200 ° C. or less in several minutes. The time required from the start of heating to cooling was about 20 minutes. The surface resistance of the formed transparent conductive film was reduced to 600Ω / □. The transmittance of light with a wavelength of 550 nm of the transparent conductive substrate was 90.5%, and the in-plane surface resistance and transmittance were uniform and almost uniform. When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle size of the conductive fine particles forming the transparent conductive film was 20 nm. In addition, the ratio of the conductive fine particles and the sintered body of the conductive fine particles to the surface area of the transparent conductive film was 91.7%, and it was observed that the conductive fine particles were sintered to each other as compared with before heating.

(実施例2)
まず、1辺が100mmの正方形で、厚みが1.1mmの無アルカリガラスからなる基材(コーニング社製、商品名1737)を用意した。次にスピンコート法により、基材に実施例1で用いたインクと同じインクを塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。導電性微粒子を含む被処理膜の膜厚は0.3μmであり、表面抵抗は5.0×105Ω/□であった。
(Example 2)
First, a base (made by Corning, trade name 1737) made of non-alkali glass having a square of 100 mm on one side and a thickness of 1.1 mm was prepared. Next, the same ink as that used in Example 1 was applied to the substrate by spin coating, and the ink was further dried at 120 ° C. for 1 minute using an oven to form a film to be processed containing conductive fine particles. I let you. The film to be treated containing conductive fine particles had a thickness of 0.3 μm and a surface resistance of 5.0 × 10 5 Ω / □.

その後、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から周波数が28GHzのマイクロ波を大気雰囲気中で照射し、表面の温度を計測して50℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から500℃に加熱し、無アルカリガラスからなる基材上に透明導電膜を形成した。透明導電膜の温度が500℃に到達した後も10分間、透明導電膜を500℃に加熱し続けた。形成された透明導電膜の表面抵抗は3.0×103Ω/□に低下した。また、無アルカリガラスからなる基材及び透明導電膜を有する透明導電性基板の波長550nmの光の透過率は、92.1%であり、面内の表面抵抗及び透過率にムラはなくほぼ均一であった。また透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は92.3%であった。 After that, the base material on which the film to be treated containing conductive fine particles is formed is introduced into a heating and firing furnace, and microwaves having a frequency of 28 GHz are irradiated in the atmosphere from above the film to be treated containing conductive fine particles. The film to be treated containing conductive fine particles was heated from room temperature to 500 ° C. at a heating rate of 50 ° C./min by measuring the temperature of the film, and a transparent conductive film was formed on the substrate made of alkali-free glass. Even after the temperature of the transparent conductive film reached 500 ° C., the transparent conductive film was continuously heated to 500 ° C. for 10 minutes. The surface resistance of the formed transparent conductive film was reduced to 3.0 × 10 3 Ω / □. In addition, the transmittance of light having a wavelength of 550 nm of the substrate made of alkali-free glass and the transparent conductive substrate having the transparent conductive film was 92.1%, and the in-plane surface resistance and transmittance were almost uniform with no unevenness. It was. When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle size of the conductive fine particles forming the transparent conductive film was 20 nm. The ratio of the conductive fine particles and the sintered body of the conductive fine particles to the surface area of the transparent conductive film was 92.3%.

(実施例3)
スピンコート法により、1辺が100mmの正方形で、厚みが1.1mmの合成石英ガラスからなる基材に実施例1で用いたインクと同じインクを塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。導電性微粒子を含む被処理膜の膜厚は0.3μmであり、表面抵抗は5.0×105Ω/□であった。
(Example 3)
The same ink as that used in Example 1 was applied to a base material made of synthetic quartz glass having a square of 100 mm on one side and a thickness of 1.1 mm by spin coating, and further using an oven at 120 ° C. for 1 minute. The ink was dried to form a film to be processed containing conductive fine particles. The film to be treated containing conductive fine particles had a thickness of 0.3 μm and a surface resistance of 5.0 × 10 5 Ω / □.

その後、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から周波数が28GHzのマイクロ波を大気雰囲気中で照射し、表面の温度を計測して、200℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から600℃に加熱し、合成石英ガラスからなる基材上に透明導電膜を形成した。加熱の開始から冷却までに要した時間は、約4分と短時間であった。形成された透明導電膜の表面抵抗は800Ω/□に低下した。また、合成石英ガラスからなる基材及び透明導電膜を有する透明導電性基板の波長550nmの光の透過率は、91.5%であり、面内の表面抵抗及び透過率にムラはなくほぼ均一であった。また透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は50nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は90.2%であった。   After that, the base material on which the film to be treated containing conductive fine particles is formed is introduced into a heating and firing furnace, and microwaves having a frequency of 28 GHz are irradiated in the atmosphere from above the film to be treated containing conductive fine particles. The film to be treated containing conductive fine particles was heated from room temperature to 600 ° C. at a heating rate of 200 ° C./min to form a transparent conductive film on a substrate made of synthetic quartz glass. The time required from the start of heating to cooling was as short as about 4 minutes. The surface resistance of the formed transparent conductive film was reduced to 800Ω / □. In addition, the transmittance of light with a wavelength of 550 nm of a substrate made of synthetic quartz glass and a transparent conductive substrate having a transparent conductive film is 91.5%, and the in-plane surface resistance and transmittance are uniform and almost uniform. It was. When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle diameter of the conductive fine particles forming the transparent conductive film was 50 nm. The ratio of the conductive fine particles and the sintered body of the conductive fine particles to the surface area of the transparent conductive film was 90.2%.

(実施例4)
まず、1辺が100mmの正方形で、厚みが1.1mmのソーダ石灰ガラスからなる基材を用意した。次にスピンコート法により、基材に実施例1で用いたインクと同じインクを塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。導電性微粒子を含む被処理膜の膜厚は0.3μmであり、表面抵抗は5.0×105Ω/□であった。さらにオーブンを用いて300℃で60分間、基材及び導電性微粒子を含む被処理膜を加熱した後、室温まで冷却させた。その後測定された導電性微粒子を含む被処理膜の表面抵抗は6.1×104Ω/□に低下した。
(Example 4)
First, a base material made of soda-lime glass having a square with a side of 100 mm and a thickness of 1.1 mm was prepared. Next, the same ink as that used in Example 1 was applied to the substrate by spin coating, and the ink was further dried at 120 ° C. for 1 minute using an oven to form a film to be processed containing conductive fine particles. I let you. The film to be treated containing conductive fine particles had a thickness of 0.3 μm and a surface resistance of 5.0 × 10 5 Ω / □. Furthermore, after heating the to-be-processed film containing a base material and electroconductive fine particles for 60 minutes at 300 degreeC using oven, it was made to cool to room temperature. Thereafter, the measured surface resistance of the film to be treated containing the conductive fine particles decreased to 6.1 × 10 4 Ω / □.

次に、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から周波数が28GHzのマイクロ波を大気雰囲気中で照射し、表面の温度を計測して、200℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から500℃に加熱し、ソーダ石灰ガラスからなる基材上に透明導電膜を形成した。形成された透明導電膜の表面抵抗は900Ω/□に低下した。また、ソーダ石灰ガラスからなる基材及び透明導電膜を有する透明導電性基板の波長550nmの光の透過率は、90.2%であり、面内の表面抵抗及び透過率にムラはなくほぼ均一であった。また透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は91.8%であった。   Next, the base material on which the film to be treated containing conductive fine particles is formed is introduced into a heating and firing furnace, and microwaves having a frequency of 28 GHz are irradiated in the air from above the film to be treated containing conductive fine particles. The surface temperature was measured, and the film to be treated containing conductive fine particles was heated from room temperature to 500 ° C. at a heating rate of 200 ° C./min to form a transparent conductive film on a substrate made of soda-lime glass. The surface resistance of the formed transparent conductive film was reduced to 900Ω / □. In addition, the transmittance of light having a wavelength of 550 nm of a substrate made of soda-lime glass and a transparent conductive film having a wavelength of 550 nm is 90.2%, and the in-plane surface resistance and transmittance are uniform and almost uniform. It was. When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle size of the conductive fine particles forming the transparent conductive film was 20 nm. Further, the ratio of the conductive fine particles and the sintered body of the conductive fine particles to the surface area of the transparent conductive film was 91.8%.

ソーダ石灰ガラスは、石英ガラスよりもマイクロ波の吸収がよいため、マイクロ波によって加熱されやすく、熱変形しやすいため、マイクロ波を用いても表面抵抗を1000Ω/□以下とするのが難しい。これに対し、マイクロ波を照射する前に300℃で60分間加熱したことにより、導電性微粒子を含む被処理膜のマイクロ波の吸収効率が向上し、相対的にソーダ石灰ガラスに吸収されるマイクロ波が少なくなる。そのため、ソーダ石灰ガラスの熱ダメージを小さくすることが可能となり、かつ表面抵抗を低くすることも可能となった。   Since soda-lime glass absorbs microwaves better than quartz glass, it is easily heated by microwaves and easily deformed by heat, so that it is difficult to reduce the surface resistance to 1000 Ω / □ or less even using microwaves. In contrast, by heating at 300 ° C. for 60 minutes before irradiating with microwaves, the microwave absorption efficiency of the film to be processed containing conductive fine particles is improved and relatively absorbed by soda-lime glass. There are fewer waves. Therefore, it has become possible to reduce the thermal damage of soda-lime glass and to reduce the surface resistance.

(実施例5)
透過型電子顕微鏡で観察した平均1次粒径が20nmのガリウムドープ酸化亜鉛導電性微粒子(ハクスイテック株式会社製、商品名パゼットGK40)を、イソプロピルアルコールとブチルセロソルブとの混合溶媒に分散させ、固形分が13%のインクを得た。なお、混合溶媒におけるイソプロピルアルコールのブチルセロソルブに対する重量比は、8:1である。次にスピンコート法により、1辺が100mmの正方形で、厚みが1.1mmの無アルカリガラスからなる基材(コーニング社製、商品名1737)にインクを塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ導電性微粒子を含む被処理膜を形成させた。導電性微粒子を含む被処理膜の膜厚は0.3μmであり、表面抵抗は1.92×1010Ω/□であった。
(Example 5)
Disperse gallium-doped zinc oxide conductive fine particles (trade name: Pazette GK40, manufactured by Hux Itec Corp.) with an average primary particle diameter of 20 nm observed with a transmission electron microscope in a mixed solvent of isopropyl alcohol and butyl cellosolve, and the solid content is 13% ink was obtained. The weight ratio of isopropyl alcohol to butyl cellosolve in the mixed solvent is 8: 1. Next, by spin coating, ink was applied to a base made of alkali-free glass with a square of 100 mm on one side and a thickness of 1.1 mm (made by Corning, product name 1737), and at 120 ° C. using an oven. The ink was dried for 1 minute to form a film to be treated containing conductive fine particles. The film to be treated containing conductive fine particles had a thickness of 0.3 μm and a surface resistance of 1.92 × 10 10 Ω / □.

その後、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から周波数が28GHzのマイクロ波を窒素ガス雰囲気中で照射し、表面の温度を計測して、50℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から500℃に加熱し、無アルカリガラスからなる基材上に透明導電膜を形成した。透明導電膜の温度が500℃に到達した後も30分間、透明導電膜を500℃に加熱し続けた。形成された透明導電膜の表面抵抗は9.0×105Ω/□に低下した。また、無アルカリガラスからなる基材及び透明導電膜を有する透明導電性基板の波長550nmの光の透過率は、90.2%であり、面内の表面抵抗及び透過率にムラはなくほぼ均一であった。また透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は93.4%であった。 Thereafter, the base material on which the film to be treated containing conductive fine particles is formed is introduced into a heating and firing furnace, and a microwave with a frequency of 28 GHz is irradiated from above the film to be treated containing fine conductive particles in a nitrogen gas atmosphere. The surface temperature was measured, and the film to be treated containing conductive fine particles was heated from room temperature to 500 ° C. at a heating rate of 50 ° C./min, and a transparent conductive film was formed on a substrate made of alkali-free glass. Even after the temperature of the transparent conductive film reached 500 ° C., the transparent conductive film was continuously heated to 500 ° C. for 30 minutes. The surface resistance of the formed transparent conductive film was reduced to 9.0 × 10 5 Ω / □. In addition, the light transmittance at a wavelength of 550 nm of the base material made of alkali-free glass and the transparent conductive film having a transparent conductive film is 90.2%, and the in-plane surface resistance and transmittance are uniform and almost uniform. It was. When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle size of the conductive fine particles forming the transparent conductive film was 20 nm. Further, the ratio of the conductive fine particles and the sintered body of the conductive fine particles to the surface area of the transparent conductive film was 93.4%.

なお実施例5に係るガリウムドープ酸化亜鉛微粒子は酸化を抑制することにより高い導電性を得ることができるため、焼成炉の内部を窒素ガスに置換して導電性微粒子を含む被処理膜を焼成した。   Since the gallium-doped zinc oxide fine particles according to Example 5 can obtain high conductivity by suppressing oxidation, the film to be processed containing conductive fine particles was baked by replacing the inside of the baking furnace with nitrogen gas. .

(実施例6)
透過型電子顕微鏡で観察した平均1次粒径が20nmのITO導電性微粒子を含む分散液であるインク(三菱マテリアル株式会社製)に、無機バインダーとしてシリケートオリゴマー(三菱化学株式会社製、商品名MSH4)に水0.1%を反応させた反応液をITO導電性微粒子の重量に対し固形分比で5重量%加え、固形分が13%のインクを得た。次に簡易グラビア印刷装置により、無アルカリガラスからなる基材(コーニング社製、商品名1737)にインクを、幅が1mm、長さが200mmの配線パターン状に印刷した。さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。
(Example 6)
Ink (Mitsubishi Materials Co., Ltd.), a dispersion containing ITO conductive fine particles with an average primary particle size of 20 nm observed with a transmission electron microscope, is used as a silicate oligomer (Mitsubishi Chemical Co., Ltd., trade name MSH4) ) Was reacted with 0.1% water, and 5% by weight of the solid content ratio with respect to the weight of the ITO conductive fine particles was added to obtain an ink having a solid content of 13%. Next, with a simple gravure printing apparatus, the ink was printed on a substrate made of alkali-free glass (product name: 1737 manufactured by Corning) in a wiring pattern shape having a width of 1 mm and a length of 200 mm. Further, the ink was dried at 120 ° C. for 1 minute using an oven to form a film to be treated containing conductive fine particles.

その後、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から周波数が28GHzのマイクロ波を大気雰囲気中で照射し、表面の温度を計測して、50℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から500℃に加熱し、無アルカリガラスからなる基材上に透明導電膜を形成した。形成された透明導電膜の表面抵抗は8×103Ω/□であった。 After that, the base material on which the film to be treated containing conductive fine particles is formed is introduced into a heating and firing furnace, and microwaves having a frequency of 28 GHz are irradiated in the atmosphere from above the film to be treated containing conductive fine particles. The film to be treated containing conductive fine particles was heated from room temperature to 500 ° C. at a heating rate of 50 ° C./min, and a transparent conductive film was formed on a substrate made of alkali-free glass. The surface resistance of the formed transparent conductive film was 8 × 10 3 Ω / □.

透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は90.9%であった。   When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle diameter of the conductive fine particles forming the transparent conductive film was 20 nm. Further, the proportion of the conductive fine particles and the sintered body of the conductive fine particles in the surface area of the transparent conductive film was 90.9%.

印刷法を用いることで、透明導電膜のエッチング等の処理を経ることなく、パターニングされた透明導電膜を得られた。   By using the printing method, a patterned transparent conductive film was obtained without undergoing treatment such as etching of the transparent conductive film.

(実施例7)
透過型電子顕微鏡で観察した平均1次粒径が4nmのITO導電性微粒子を含むインク(アルバックマテリアル製、商品名ITOナノメタルインク)を、インクジェット法により無アルカリガラスからなる基材(コーニング社製、商品名1737)に1辺が20mmの正方形パターン状に印刷し、さらにオーブンを用いて120℃で30秒間、インクを乾燥させ、導電性微粒子を含むパターニングされた被処理膜を形成させた。
(Example 7)
An ink containing ITO conductive fine particles with an average primary particle diameter of 4 nm observed with a transmission electron microscope (manufactured by ULVAC Material, trade name ITO nanometal ink) is made of a non-alkali glass base material (manufactured by Corning, A square pattern having a side of 20 mm was printed on a product name 1737), and the ink was dried at 120 ° C. for 30 seconds using an oven to form a patterned film to be treated containing conductive fine particles.

その後、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から周波数が28GHzのマイクロ波を窒素ガス雰囲気中で照射し、表面の温度を計測して、20℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から200℃に加熱し、その後も導電性微粒子を含む被処理膜を10分間200℃で加熱し続け、無アルカリガラスからなる基材上に黒色の透明導電膜を形成した。次に大気雰囲気中で、透明導電膜の上方から周波数が28GHzのマイクロ波を照射し、50℃/分の加熱速度で透明導電膜を200℃に加熱し、その後も透明導電膜を10分間200℃で加熱し続け、無アルカリガラスからなる基材上に透明の透明導電膜を形成した。形成された透明導電膜の表面抵抗は360Ω/□であった。また、無アルカリガラスからなる基材及び透明導電膜を有する透明導電性基板の波長550nmの光の透過率は、92.0%であった。   Thereafter, the base material on which the film to be treated containing conductive fine particles is formed is introduced into a heating and firing furnace, and a microwave with a frequency of 28 GHz is irradiated from above the film to be treated containing fine conductive particles in a nitrogen gas atmosphere. The surface temperature is measured, and the film to be treated containing conductive fine particles is heated from room temperature to 200 ° C. at a heating rate of 20 ° C./min. After that, the film to be treated containing conductive fine particles is kept at 200 ° C. for 10 minutes. It continued heating and formed the black transparent conductive film on the base material which consists of an alkali free glass. Next, microwaves with a frequency of 28 GHz are irradiated from above the transparent conductive film in the air atmosphere, and the transparent conductive film is heated to 200 ° C. at a heating rate of 50 ° C./min. A transparent transparent conductive film was formed on a base material made of alkali-free glass by continuing heating at ° C. The surface resistance of the formed transparent conductive film was 360Ω / □. Further, the light transmittance at a wavelength of 550 nm of the transparent conductive substrate having a base material made of alkali-free glass and a transparent conductive film was 92.0%.

透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は10nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は94.9%であった。   When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle diameter of the conductive fine particles forming the transparent conductive film was 10 nm. The proportion of the conductive fine particles and the sintered body of the conductive fine particles in the surface area of the transparent conductive film was 94.9%.

実施例7に係るITO導電性微粒子を含むインクは、酸化が進むと焼結性が阻害され、導電性が低下する場合がある。これに対し、酸素が少ない還元雰囲気である窒素ガス雰囲気中でマイクロ波を照射することにより、酸化を抑制してITO導電性微粒子を焼結させることが可能となった。更に、部分的に焼結が進行した段階で、大気雰囲気中でマイクロ波を照射することにより、適度な酸化状態で透明な基板とすることが可能となった。   Ink containing ITO conductive fine particles according to Example 7 may be deteriorated in conductivity due to inhibition of sinterability as oxidation proceeds. In contrast, by irradiating microwaves in a nitrogen gas atmosphere, which is a reducing atmosphere with less oxygen, it was possible to suppress oxidation and sinter ITO conductive fine particles. Furthermore, it became possible to obtain a transparent substrate in an appropriate oxidized state by irradiating microwaves in an air atmosphere at the stage where the sintering partially progressed.

(実施例8)
実施例1で用いたインクと同じインクを、実施例1で用いた基材と同じ基材に塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。導電性微粒子を含む被処理膜の膜厚は0.3μmであり、表面抵抗は5.0×105Ω/□であった。
(Example 8)
The same ink as that used in Example 1 was applied to the same substrate as that used in Example 1, and the ink was further dried at 120 ° C. for 1 minute using an oven. A treated film was formed. The film to be treated containing conductive fine particles had a thickness of 0.3 μm and a surface resistance of 5.0 × 10 5 Ω / □.

その後、共振周波数が2.45GHzの空洞共振器中に導電性微粒子を含む被処理膜が形成された基材を挿入し、導電性微粒子を含む被処理膜の上方から周波数が2.45GHzの単一モードのマイクロ波を照射し、表面の温度を計測して、50℃/分の加熱速度で導電性微粒子を含む被処理膜を室温から600℃に加熱し、合成石英ガラスからなる基材上に透明導電膜を形成した。単一モードのマイクロ波を照射することにより、導電性微粒子を含む被処理膜は均一に加熱され、アーク放電が生じることはなかった。形成された透明導電膜の表面抵抗は1.2×103Ω/□に低下した。また、合成石英ガラスからなる基材及び透明導電膜を有する透明導電性基板の波長550nmの光の透過率は、90.6%であった。 After that, the base material on which the film to be processed containing conductive fine particles is formed is inserted into the cavity resonator having the resonance frequency of 2.45 GHz, and the single mode whose frequency is 2.45 GHz from above the film to be processed containing conductive fine particles. Irradiate microwaves, measure the surface temperature, heat the film to be treated containing conductive fine particles at a heating rate of 50 ° C / min from room temperature to 600 ° C, and then transparent on the substrate made of synthetic quartz glass A conductive film was formed. By irradiating the single mode microwave, the film to be treated containing the conductive fine particles was heated uniformly, and arc discharge did not occur. The surface resistance of the formed transparent conductive film was reduced to 1.2 × 10 3 Ω / □. Further, the transmittance of light having a wavelength of 550 nm of the transparent conductive substrate having the base material made of synthetic quartz glass and the transparent conductive film was 90.6%.

透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は93.7%であった。   When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle diameter of the conductive fine particles forming the transparent conductive film was 20 nm. The ratio of the conductive fine particles and the conductive fine particle sintered body to the surface area of the transparent conductive film was 93.7%.

(実施例9)
透過型電子顕微鏡で観察した平均1次粒径が20nmのITO導電性微粒子を含む分散液であるインク(三菱マテリアル株式会社製)に水分散ポリエステル樹脂をITO導電性微粒子の重量に対し固形分比で5重量%加え、固形分が13%のインクを得た。次に簡易グラビア印刷装置により、厚さが125μmのポリエチレンテレフタレートフィルム上の30mm×30mmの領域にインクを印刷し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含むパターニングされた被処理膜を形成させた。導電性微粒子を含む被処理膜の膜厚は0.4μmであり、表面抵抗は9.2×105Ω/□であった。
(Example 9)
Solid dispersion ratio of water-dispersed polyester resin to the weight of ITO conductive fine particles in ink (Mitsubishi Materials Co., Ltd.), which is a dispersion containing ITO conductive fine particles with an average primary particle diameter of 20 nm observed with a transmission electron microscope 5% by weight was added to obtain an ink having a solid content of 13%. Next, with a simple gravure printing device, ink is printed on a 30mm x 30mm area on a polyethylene terephthalate film with a thickness of 125μm, and the ink is dried at 120 ° C for 1 minute using an oven to contain conductive fine particles. A patterned film to be processed was formed. The film to be treated containing conductive fine particles had a thickness of 0.4 μm and a surface resistance of 9.2 × 10 5 Ω / □.

その後、導電性微粒子を含む被処理膜が形成された基材を加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から周波数が28GHzのマイクロ波を照射し、表面の温度を計測して、50℃/分の加熱速度で、導電性微粒子を含む被処理膜を室温から200℃に加熱し、ポリエチレンテレフタレートからなる基材上に透明導電膜を形成した。形成された透明導電膜の表面抵抗は3.5×103Ω/□であった。加熱による基材の変形はなかった。 After that, the substrate on which the film to be treated containing conductive fine particles is formed is introduced into a heating and firing furnace, and microwaves with a frequency of 28 GHz are irradiated from above the film to be treated containing conductive fine particles to measure the surface temperature. Then, the film to be treated containing the conductive fine particles was heated from room temperature to 200 ° C. at a heating rate of 50 ° C./min to form a transparent conductive film on the base material made of polyethylene terephthalate. The surface resistance of the formed transparent conductive film was 3.5 × 10 3 Ω / □. There was no deformation of the substrate due to heating.

透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は89.1%であった。   When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle diameter of the conductive fine particles forming the transparent conductive film was 20 nm. The ratio of the conductive fine particles and the sintered body of the conductive fine particles to the surface area of the transparent conductive film was 89.1%.

(比較例1)
実施例1で用いたインクと同じインクを、実施例1で用いた基材と同じ基材に塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。
(Comparative Example 1)
The same ink as that used in Example 1 was applied to the same substrate as that used in Example 1, and the ink was further dried at 120 ° C. for 1 minute using an oven. A treated film was formed.

その後、電気炉で導電性微粒子を含む被処理膜を800℃に加熱し、30分間導電性微粒子を含む被処理膜を800℃に保つと、透明導電膜の表面抵抗は600Ω/□となった。透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は92.1%であった。ただし加熱には1時間必要であった。また冷却にも2時間かかった。そのため、電気炉での加熱には合計3時間半必要であった。さらに基材が800℃に加熱されるため、高純度で高耐熱性の石英基板を使用する必要があった。   After that, when the film to be processed containing conductive fine particles was heated to 800 ° C. in an electric furnace and the film to be processed containing conductive fine particles was kept at 800 ° C. for 30 minutes, the surface resistance of the transparent conductive film was 600Ω / □. . When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle diameter of the conductive fine particles forming the transparent conductive film was 20 nm. The ratio of the conductive fine particles and the sintered body of the conductive fine particles to the surface area of the transparent conductive film was 92.1%. However, heating took 1 hour. The cooling also took 2 hours. Therefore, heating in the electric furnace required a total of 3.5 hours. Further, since the base material is heated to 800 ° C., it is necessary to use a quartz substrate having high purity and high heat resistance.

(比較例2)
実施例4で用いたインクと同じインクを、実施例4で用いた基材と同じ基材に塗布し、さらにオーブンを用いて120℃で1分間、さらに300℃で60分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。その後、電気炉で導電性微粒子を含む被処理膜を500℃で30分間加熱したところ、形成された導電膜の表面抵抗は1.9×103Ω/□であった。透明導電膜の表面を走査型電子顕微鏡で観察したところ、透明導電膜を形成する導電性微粒子の平均粒子径は20nmであった。また透明導電膜の表面積に占める導電性微粒子及び導電性微粒子の焼結体の割合は93.7%であった。しかし、加熱により基材に歪みが生じていた。
(Comparative Example 2)
The same ink as that used in Example 4 was applied to the same substrate as that used in Example 4, and further dried using an oven at 120 ° C. for 1 minute and further at 300 ° C. for 60 minutes. A film to be processed containing conductive fine particles was formed. Thereafter, the film to be treated containing conductive fine particles was heated in an electric furnace at 500 ° C. for 30 minutes. As a result, the surface resistance of the formed conductive film was 1.9 × 10 3 Ω / □. When the surface of the transparent conductive film was observed with a scanning electron microscope, the average particle diameter of the conductive fine particles forming the transparent conductive film was 20 nm. The ratio of the conductive fine particles and the conductive fine particle sintered body to the surface area of the transparent conductive film was 93.7%. However, the substrate was distorted by heating.

(比較例3)
実施例8で用いたインクと同じインクを、実施例8で用いた基材と同じ基材に塗布し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含む被処理膜を形成させた。その後、空洞共振器を用いずに、導電性微粒子を含む被処理膜を金属製の加熱焼成炉に導入し、導電性微粒子を含む被処理膜の上方から2.45GHzのマイクロ波を照射したところ、マイクロ波が不均一であるために基材の端面からアーク放電が生じ、3秒後には火花が生じたため、さらなる加熱は不可能であった。また導電性微粒子を含む被処理膜からなる膜にはひびが入っていた。また、マイクロ波を照射した後の被処理膜を含む基材の波長550nmの光の透過率は、88%以上の部分もあれば、82%以下の部分もあり、不均一であった。
(Comparative Example 3)
The same ink as that used in Example 8 was applied to the same substrate as that used in Example 8, and the ink was dried at 120 ° C. for 1 minute using an oven. A treated film was formed. After that, without using a cavity resonator, the film to be processed containing conductive fine particles was introduced into a metal heating and firing furnace, and irradiated with 2.45 GHz microwaves from above the film to be processed containing conductive fine particles. Due to the non-uniformity of the microwaves, arc discharge occurred from the end face of the substrate, and after 3 seconds, a spark occurred, which prevented further heating. Moreover, the film which consists of a to-be-processed film containing electroconductive fine particles was cracked. In addition, the transmittance of light having a wavelength of 550 nm of the substrate including the film to be processed after irradiation with microwaves was nonuniform, including a portion of 88% or more and a portion of 82% or less.

(比較例4)
実施例9で用いたインクを、実施例9で用いた基材と同じ基材に、実施例9と同様の方法で印刷し、さらにオーブンを用いて120℃で1分間、インクを乾燥させ、導電性微粒子を含むパターニングされた被処理膜を形成させた。その後、オーブンで被処理膜が形成された基材を230℃に加熱し、30分間、被処理膜が形成された基材を230℃に保った。しかし、透明導電膜の表面抵抗は2.0×105Ω/□であり、ほとんど低下しなかった。また加熱により、基材の一部が変形した。
(Comparative Example 4)
The ink used in Example 9 was printed on the same substrate as that used in Example 9 by the same method as in Example 9, and further dried at 120 ° C. for 1 minute using an oven. A patterned film to be processed containing conductive fine particles was formed. Thereafter, the substrate on which the film to be processed was formed was heated to 230 ° C. in an oven, and the substrate on which the film to be processed was formed was maintained at 230 ° C. for 30 minutes. However, the surface resistance of the transparent conductive film was 2.0 × 10 5 Ω / □, and hardly decreased. Moreover, a part of the base material was deformed by heating.

(その他の実施の形態)
上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。例えば、実施の形態に係る透明導電性基板の製造方法で得られた透明導電膜は、透明タッチパネル電極、表示装置用の透明電極及び電磁波障害(EMI : Electro Magnetic Interference)シールドフィルム等に使用可能である。以上示したように、本発明の技術的範囲は上記の説明からは妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
(Other embodiments)
Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. For example, the transparent conductive film obtained by the transparent conductive substrate manufacturing method according to the embodiment can be used for transparent touch panel electrodes, transparent electrodes for display devices, electromagnetic interference (EMI) shield films, and the like. is there. As described above, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る基材の断面図である。It is sectional drawing of the base material which concerns on embodiment of this invention. 本発明の実施の形態に係る透明導電膜の電子顕微鏡写真である。It is an electron micrograph of the transparent conductive film which concerns on embodiment of this invention.

符号の説明Explanation of symbols

100…基材
150…被処理膜
100 ... Base material
150 ... Processed film

Claims (13)

透明な基材上に、導電性微粒子を含有するインクを塗布し、前記導電性微粒子を含む被処理膜を形成するステップと、
前記被処理膜に単一モードのマイクロ波を照射し、前記基材上に透明導電膜を形成するステップ
とを備えることを特徴とする透明導電性基板の製造方法。
Applying an ink containing conductive fine particles on a transparent substrate to form a film to be treated containing the conductive fine particles;
Irradiating the film to be treated with a single-mode microwave to form a transparent conductive film on the base material. A method for producing a transparent conductive substrate, comprising:
前記マイクロ波の周波数は、2.45GHzであることを特徴とする請求項1に記載の透明導電性基板の製造方法。   The method for manufacturing a transparent conductive substrate according to claim 1, wherein the frequency of the microwave is 2.45 GHz. 透明な基材上に、導電性微粒子を含有するインクを塗布し、前記導電性微粒子を含む被処理膜を形成するステップと、
前記被処理膜に、前記導電性微粒子から放電が生じない周波数のマイクロ波を照射し、前記基材上に透明導電膜を形成するステップ
とを備えることを特徴とする透明導電性基板の製造方法。
Applying an ink containing conductive fine particles on a transparent substrate to form a film to be treated containing the conductive fine particles;
Irradiating the film to be treated with microwaves having a frequency at which no discharge occurs from the conductive fine particles, and forming a transparent conductive film on the base material. .
前記マイクロ波の周波数は、10GHz乃至60GHzであることを特徴とする請求項3に記載の透明導電性基板の製造方法。   The method for manufacturing a transparent conductive substrate according to claim 3, wherein a frequency of the microwave is 10 GHz to 60 GHz. 前記導電性微粒子は、金属酸化物からなることを特徴とする請求項1乃至4のいずれか1項に記載の透明導電性基板の製造方法。   The method for producing a transparent conductive substrate according to claim 1, wherein the conductive fine particles are made of a metal oxide. 前記導電性微粒子は、酸化インジウムからなることを特徴とする請求項1乃至5のいずれか1項に記載の透明導電性基板の製造方法。   The method for producing a transparent conductive substrate according to claim 1, wherein the conductive fine particles are made of indium oxide. 前記導電性微粒子は、酸化亜鉛からなることを特徴とする請求項1乃至5のいずれか1項に記載の透明導電性基板の製造方法。   The method for producing a transparent conductive substrate according to claim 1, wherein the conductive fine particles are made of zinc oxide. 前記透明な基材は、ガラスからなることを特徴とする請求項1乃至7のいずれか1項に記載の透明導電性基板の製造方法。   The method for producing a transparent conductive substrate according to claim 1, wherein the transparent base material is made of glass. 前記透明な基材は、樹脂からなることを特徴とする請求項1乃至7のいずれか1項に記載の透明導電性基板の製造方法。   The said transparent base material consists of resin, The manufacturing method of the transparent conductive substrate of any one of Claim 1 thru | or 7 characterized by the above-mentioned. 前記透明導電膜の表面に占める前記導電性微粒子及び前記導電性微粒子が結合した焼結体の割合が80%以上であることを特徴とする請求項1乃至9のいずれか1項に記載の透明導電性基板の製造方法。   The transparent according to any one of claims 1 to 9, wherein a ratio of the conductive fine particles and the sintered body in which the conductive fine particles are bonded to the surface of the transparent conductive film is 80% or more. A method for manufacturing a conductive substrate. 透明な基材と、
前記透明な基材上に配置された透明導電膜
とを備え、波長が550nmの光の透過率が88%以上であり、
前記透明導電膜は、平均粒子径が3nm乃至200nmの導電性微粒子及び前記導電性微粒子が結合した焼結体を含み、
前記透明導電膜の表面に占める前記導電性微粒子及び前記焼結体の割合が80%以上であることを特徴とする透明導電性基板。
A transparent substrate,
A transparent conductive film disposed on the transparent substrate, the transmittance of light having a wavelength of 550 nm is 88% or more,
The transparent conductive film includes conductive fine particles having an average particle diameter of 3 nm to 200 nm and a sintered body bonded with the conductive fine particles,
A ratio of the conductive fine particles and the sintered body in the surface of the transparent conductive film is 80% or more.
前記透明な基材は、ガラスからなることを特徴とする請求項11に記載の透明導電性基板。   The transparent conductive substrate according to claim 11, wherein the transparent base material is made of glass. 前記透明な基材は、樹脂からなることを特徴とする請求項11に記載の透明導電性基板。   The transparent conductive substrate according to claim 11, wherein the transparent base material is made of a resin.
JP2007054906A 2007-03-05 2007-03-05 Manufacturing method of transparent conductive substrate, and transparent conductive substrate Pending JP2008218243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054906A JP2008218243A (en) 2007-03-05 2007-03-05 Manufacturing method of transparent conductive substrate, and transparent conductive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054906A JP2008218243A (en) 2007-03-05 2007-03-05 Manufacturing method of transparent conductive substrate, and transparent conductive substrate

Publications (1)

Publication Number Publication Date
JP2008218243A true JP2008218243A (en) 2008-09-18

Family

ID=39838035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054906A Pending JP2008218243A (en) 2007-03-05 2007-03-05 Manufacturing method of transparent conductive substrate, and transparent conductive substrate

Country Status (1)

Country Link
JP (1) JP2008218243A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038570A1 (en) * 2008-09-30 2010-04-08 コニカミノルタホールディングス株式会社 Functional layer manufacturing method, functional layer and electronic device
WO2010117371A1 (en) * 2009-04-10 2010-10-14 Hewlett-Packard Development Company, L.P. Energy activated film and method of making the same
JP2010282119A (en) * 2009-06-08 2010-12-16 Canon Inc Charging member, process cartridge, and image forming apparatus
JP2012124076A (en) * 2010-12-09 2012-06-28 Komuratekku:Kk Method for forming transparent conductive film
JP2013179046A (en) * 2012-02-03 2013-09-09 Sekisui Nano Coat Technology Co Ltd Light transmitting conductive film and capacitance type touch panel with the same
KR101330065B1 (en) * 2011-04-27 2013-11-14 정의산업(주) Method for fabricating and coating ito ink

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035471A (en) * 2005-07-28 2007-02-08 Dowa Holdings Co Ltd Manufacturing method of conductive film or wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035471A (en) * 2005-07-28 2007-02-08 Dowa Holdings Co Ltd Manufacturing method of conductive film or wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038570A1 (en) * 2008-09-30 2010-04-08 コニカミノルタホールディングス株式会社 Functional layer manufacturing method, functional layer and electronic device
WO2010117371A1 (en) * 2009-04-10 2010-10-14 Hewlett-Packard Development Company, L.P. Energy activated film and method of making the same
JP2010282119A (en) * 2009-06-08 2010-12-16 Canon Inc Charging member, process cartridge, and image forming apparatus
JP2012124076A (en) * 2010-12-09 2012-06-28 Komuratekku:Kk Method for forming transparent conductive film
KR101330065B1 (en) * 2011-04-27 2013-11-14 정의산업(주) Method for fabricating and coating ito ink
JP2013179046A (en) * 2012-02-03 2013-09-09 Sekisui Nano Coat Technology Co Ltd Light transmitting conductive film and capacitance type touch panel with the same

Similar Documents

Publication Publication Date Title
TWI485070B (en) Transparent conducting film
JP6072709B2 (en) Method for forming conductive pattern, apparatus for forming the same, and conductive substrate
JP5869627B2 (en) Method for producing transparent conductive film and transparent conductive film produced thereby
JP5332759B2 (en) Method for manufacturing conductive substrate and conductive substrate
Kim et al. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review
JP2008218243A (en) Manufacturing method of transparent conductive substrate, and transparent conductive substrate
WO2006129568A1 (en) Electromagnetic shielding material and method for producing same
KR101485858B1 (en) Method of patterning a transparent electrode metal nanowires and a transparent electrode patterned metal nanowires thereby
JPWO2008044474A1 (en) Method for forming transparent conductive film
JP4730768B2 (en) Method for forming transparent conductive film and transparent conductive film
US20180364513A1 (en) Manufacturing method of graphene electrode and liquid crystal display panel
JP5446097B2 (en) Conductive substrate and method for manufacturing the same
US20210047533A1 (en) Photonic sintered nanoink, photonic sintering method, and conductive nanostructure
JPWO2008044473A1 (en) Method for forming transparent conductive film and transparent conductive film substrate
JP2006236747A (en) Transparent electrode and manufacturing method of transparent electrode
JP2009088122A (en) Conductive substrate
KR20160056861A (en) digitizer flexible printed circuits board using light sintering and method for manufacturing thereof
JP2008108541A (en) Forming method of transparent conductive film, and transparent conductive film
KR101809690B1 (en) Planar heating element, preparation method thereof and heating glass comprising the same
JP5151622B2 (en) Method for manufacturing conductive substrate and conductive substrate
JP2011028861A (en) Manufacturing method of transparent conductive film, transparent conductive film, transparent conductive substrate, and device using the same
JP2006047720A (en) Method of forming transparent conductive film and transparent conductive film
JP6121333B2 (en) Microwave heating apparatus and microwave heating method
JP2010277974A (en) Conductive thin film substrate, and method of manufacturing the same
JP5157096B2 (en) Transparent conductive film forming method and transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Effective date: 20121012

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A02