KR20130123652A - Aluminum alloy for rheocasting and forging - Google Patents

Aluminum alloy for rheocasting and forging Download PDF

Info

Publication number
KR20130123652A
KR20130123652A KR1020120046938A KR20120046938A KR20130123652A KR 20130123652 A KR20130123652 A KR 20130123652A KR 1020120046938 A KR1020120046938 A KR 1020120046938A KR 20120046938 A KR20120046938 A KR 20120046938A KR 20130123652 A KR20130123652 A KR 20130123652A
Authority
KR
South Korea
Prior art keywords
aluminum alloy
forging
elongation
strength
present
Prior art date
Application number
KR1020120046938A
Other languages
Korean (ko)
Inventor
하태수
Original Assignee
(주)레오포즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)레오포즈 filed Critical (주)레오포즈
Priority to KR1020120046938A priority Critical patent/KR20130123652A/en
Priority to PCT/KR2012/011277 priority patent/WO2013165069A1/en
Publication of KR20130123652A publication Critical patent/KR20130123652A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Abstract

The embodiment of the present invention relates to an aluminum alloy for rheocasting and forging, which improves tensile strength and elongation during rheocasting and forging processes in comparison with an existing material by adjusting the amount of alloying elements, such as Si, Cu, Mn, and Mg. The embodiment of the present invention discloses a 6000 based aluminum alloy for rheocasting and forging composed of 0.6-1.2 wt% of Si, less than 0.2 wt% of Fe, 0.1-0.4 wt% of Cu, 0.2-0.4 wt% of Mn, 0.6-1.0 wt% of Mg, 0.2-0.4 wt% of Cr, less than 0.2 wt% of Zn, and residual Al.

Description

반응고 단조용 알루미늄 합금{ALUMINUM ALLOY FOR RHEOCASTING AND FORGING}ALUMINUM ALLOY FOR RHEOCASTING AND FORGING

본 발명의 일 실시예는 반응고 단조용 알루미늄 합금에 관한 것으로서, 반응고 단조에 의하여 성형될 수 있도록 인장강도와 연신율이 향상된 기계적 특성을 가지는 반응고 단조용 알루미늄 합금이다.
One embodiment of the present invention relates to an aluminum alloy for reaction hard forging, and is an aluminum alloy for reaction hard forging having improved mechanical properties in tensile strength and elongation to be molded by reaction forging.

일반적으로, 유리온실, 건축자재, 자동차 부품, 기계부품 등 산업용ㆍ구조용으로 사용되는 6000계 알루미늄 합금, 특히 대표적으로 사용되는 6061, 6082와 같은 열간단조용 알루미늄 합금은 마그네실리케이트(Mg2Si)의 시효 경화 효과에 의해 비교적 높은 기계적 강도를 갖는다.Generally, 6000 series aluminum alloys used for industrial and structural applications such as glass greenhouses, building materials, automobile parts, and mechanical parts, and hot forging aluminum alloys such as 6061 and 6082, which are typically used, are age hardened of magnesium silicate (Mg2Si). The effect has a relatively high mechanical strength.

예컨대, 이러한 6000계 알루미늄 합금은 주조후 균질열처리, 압출 또는 열간가공, 시효처리로 이루어지며 이후 단조, 접합 및 기계가공 등이 수반되기도 한다.For example, such a 6000-based aluminum alloy is composed of homogeneous heat treatment, extrusion or hot working, and aging treatment after casting, followed by forging, joining, and machining.

이때, 균질열처리 온도는 고상선 직하의 온도범위에서 고온 균질처리를 행하게 되는데 이는 시효처리도중 강도에 영향을 미치는 마그네실리케이트의 석출량을 크게 하기 위해 기지내로 마그네슘 및 실리콘 원소의 고용량을 증가시키기 위함이다.At this time, the homogeneous heat treatment temperature is a high temperature homogeneous treatment in the temperature range directly under the solidus line, in order to increase the high capacity of magnesium and silicon element in the base to increase the amount of deposition of the magnesium silicate which affects the strength during the aging treatment. .

종래 6000계 열간단조용 알루미늄 합금은 중량%로, Si:1.13%, Fe:0.23%, Cu:0.04%, Mn:0.44%, Mg:1.17%, Cr:0.25%, Zn:0.01%, Ti:0.06% 및 잔부 Al로 조성되어 인장강도 330~337MPa, 항복강도 296~302MPa, 연신율 11.7~13.6%의 기계적 특성을 지녔다.Conventional 6000 aluminum alloy for hot forging is weight%, Si: 1.13%, Fe: 0.23%, Cu: 0.04%, Mn: 0.44%, Mg: 1.17%, Cr: 0.25%, Zn: 0.01%, Ti: It is composed of 0.06% and balance Al, and has mechanical properties of tensile strength of 330 ~ 337MPa, yield strength of 296 ~ 302MPa and elongation of 11.7 ~ 13.6%.

그런데, 이와 같은 종래 6000계 열간단조용 알루미늄 합금은 마그네실리케이트의 시효경화 효과를 통해 평균 인장강도 334MPa, 항복강도 298MPa 수준의 고강도 물성을 얻고는 있으나, 해당 합금을 거의 전량 수입에 의존함에 따라 안정적인 소재 공급은 물론 원가 절감 측면에 있어서도 개발의 필요성이 있게 된다.
By the way, the conventional 6000-based hot forging aluminum alloy has obtained high strength properties of the average tensile strength of 334MPa, yield strength 298MPa through the age hardening effect of the magnesium silicate, but stable material as the alloy almost depends on the total import There is a need for development in terms of supply as well as cost reduction.

본 발명은 상술한 바와 같은 종래 기술의 문제점을 고려하여 Si, Cu, Mn, Mg 등의 합금 원소량을 조절함으로써, 반응고 단조시 기존재에 비하여 인장강도와 연신율이 향상된 기계적 특성을 가지는 반응고 단조용 알루미늄 합금을 제공함에 주된 목적이 있다.
The present invention by adjusting the amount of alloying elements, such as Si, Cu, Mn, Mg in consideration of the problems of the prior art as described above, the reaction height having mechanical properties improved tensile strength and elongation compared to the existing material during the reaction forging The main purpose is to provide forging aluminum alloys.

본 발명은 상기한 기술적 과제를 달성하기 위하여, 6000계 반응고 단조용 알루미늄 합금에 있어서, 중량 %로, Si: 0.6~1.2%, Fe: 0.2%이하, Cu: 0.1~0.4%, Mn: 0.2~0.4%, Mg: 0.6~1.0%, Cr: 0.2~0.4%, Zn: 0.2%이하 및 잔부 Al로 조성된 것을 특징으로 하는 반응고 단조용 알루미늄 합금을 제공한다.The present invention, in order to achieve the above technical problem, in the 6000-based reaction solid forging aluminum alloy, by weight%, Si: 0.6 ~ 1.2%, Fe: 0.2% or less, Cu: 0.1 ~ 0.4%, Mn: 0.2 It provides an aluminum alloy for reaction solid forging, characterized in that composed of ~ 0.4%, Mg: 0.6 ~ 1.0%, Cr: 0.2 ~ 0.4%, Zn: 0.2% or less and the balance Al.

이때, 상기 알루미늄 합금은 인장강도 330MPa 내지 350MPa, 항복강도 300MPa 이상, 연신율 15%인 것에도 그 특징이 있다. 또한, 상기 알루미늄 합금은 경도 80HB 이상인 것에도 그 특징이 있다.
At this time, the aluminum alloy is characterized in that the tensile strength of 330MPa to 350MPa, yield strength of 300MPa or more, elongation of 15%. Moreover, the said aluminum alloy has the characteristic also that it is more than hardness 80HB.

이상에서와 같이, 본 발명은 종래 6000계 열간단조용 알루미늄 합금에 비하여 인장강도 및 연신율이 우수하여 설계중량 감소효과가 있고, 중량 절감을 통하여 자동차 구조용으로 사용시 연비를 개선하고 그에 따른 대기오염도 저감시키는 효과가 있다.
As described above, the present invention has excellent tensile strength and elongation as compared with the conventional 6000-based hot forging aluminum alloy has a design weight reduction effect, improving the fuel efficiency when using for automobile structures through weight saving and thereby reducing air pollution It works.

도 1은 본 발명의 일 실시예에 따른 반응고 단조용 알루미늄 합금을 구성하는 Si의 조성비와 물리적 특성과의 관계를 나타내는 그래프이다.
도 2는 본 발명의 일 실시예에 따른 반응고 단조용 알루미늄 합금을 구성하는 Cu의 조성비와 물리적 특성과의 관계를 나타내는 그래프이다.
도 3은 본 발명의 일 실시예에 따른 반응고 단조용 알루미늄 합금을 구성하는 Mn의 조성비와 물리적 특성과의 관계를 나타내는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 반응고 단조용 알루미늄 합금을 구성하는 Mg의 조성비와 물리적 특성과의 관계를 나타내는 그래프이다.
1 is a graph showing the relationship between the composition ratio and physical properties of Si constituting the reaction forging aluminum alloy according to an embodiment of the present invention.
2 is a graph showing the relationship between the composition ratio and physical properties of Cu constituting the aluminum alloy for reaction solid forging according to an embodiment of the present invention.
3 is a graph showing the relationship between the composition ratio and physical properties of Mn constituting the aluminum alloy for reaction solid forging according to an embodiment of the present invention.
4 is a graph showing the relationship between the composition ratio and physical properties of Mg constituting the aluminum alloy for reaction solid forging according to an embodiment of the present invention.

이하에서는, 본 발명에 따른 열간단조용 알루미늄 합금에 대하여 실시예를 참조하여 보다 상세하게 설명하기로 한다.Hereinafter, the aluminum alloy for hot forging according to the present invention will be described in more detail with reference to Examples.

일반적으로, 반응고 단조공법은 소재를 용해하여 금형 내에 투입한 후, 응고와 가압을 적절한 메카니즘에 의하여 실시함으로써, 고액공존 상태에서 복잡한 형상의 제품을 한번에 성형 생산하는 방법이다. 또한, 반응고 단조 공법은 가압에 의하여 소재 밀착률이 높고, 응고 속도가 빨라 생산속도가 빠르고, 소재 응고 중에 발생하는 수축 결함을 근본적으로 해결할 수 있어, 대형 제품의 양산화가 가능하며, 또한 소재에 직접 고압을 가함으로써 조직의 구상화 제어가 가능하고, 강도를 증가시켜 제품 경량화를 실현할 수 있는 장점이 있다.In general, the reaction solid forging method is a method of forming and producing a complex-shaped product at a time in a solid-liquid coexistence state by dissolving a raw material, putting it into a mold, and then performing solidification and pressurization by an appropriate mechanism. In addition, the reaction solidification forging method has a high material adhesion rate by pressurization, a rapid solidification rate, a high production speed, and can fundamentally solve shrinkage defects occurring during solidification of a material, thereby enabling mass production of large products. By applying high pressure directly, it is possible to control the spheroidization of the tissue, and there is an advantage that the product weight can be realized by increasing the strength.

본 발명은 상기와 같은 반응고 단조공법에 이용될 수 있는 반응고 단조용 알루미늄 합금에 관한 것으로서, 6000계 반응고 단조용 알루미늄 합금을 구성하는 성분중 Si, Cu, Mn, Mg의 함량을 적절히 제어함으로써 반응고 단조를 통하여 응고에 의한 수축을 최소화하여 연신율을 향상시키는 효과를 갖도록 함으로써 보다 고강도의 기계적 특성을 갖는 알루미늄 합금을 구성하도록 한 것이다.The present invention relates to an aluminum alloy for reaction solid forging that can be used in the reaction solid forging method as described above, appropriately control the content of Si, Cu, Mn, Mg in the components constituting the 6000-based reaction solid forging aluminum alloy By minimizing the shrinkage due to solidification through the reaction solid forging to have an effect of improving the elongation to form an aluminum alloy having a higher strength mechanical properties.

예컨대, 본 발명에 따른 반응고 단조용 알루미늄 합금을 이루는 Si의 함량은 0.6~1.2중량%로서 기존 열간단조용 알루미늄 합금에서의 1.13중량% 대비 더 낮게, 그리고 Cu의 함량은 0.1~0.4중량%로서 기존 열간단조용 알루미늄 합금에서의 0.04중량% 대비 더 높게, Mn의 함량은 0.2~0.4중량%로서 기존 열간단조용 알루미늄 합금에서의 0.44중량% 대비 더 낮게, Mg의 함량은 0.6~1.0중량%로서 기존 열간단조용 알루미늄 합금에서의 1.17중량% 대비 더 낮게 설계한 것이다.For example, the content of Si constituting the reaction solid forging aluminum alloy according to the present invention is 0.6 to 1.2% by weight, lower than 1.13% by weight in the existing hot forging aluminum alloy, and the content of Cu is 0.1 to 0.4% by weight. Higher than 0.04% by weight in the existing hot forging aluminum alloy, Mn content is 0.2 ~ 0.4% by weight, lower than 0.44% by weight in the existing hot forging aluminum alloy, Mg content is 0.6 ~ 1.0% by weight It is lower than 1.17% by weight in the existing hot forging aluminum alloy.

이를 알기 쉽게 표로 정리하면 하기한 표 1과 같다.This is summarized in Table 1 below for clarity.

성분ingredient SiSi FeFe CuCu MnMn MgMg CrCr ZnZn AlAl 조성비Composition ratio 0.6~1.20.6 ~ 1.2 0.2이하0.2 or less 0.1~0.40.1-0.4 0.2~0.40.2 to 0.4 0.6~1.00.6 to 1.0 0.2~0.40.2 to 0.4 0.20.2 Bal.Honey.

(이때, 상기 표 1에서 조성비는 모두 중량%이다.)(At this time, the composition ratio in Table 1 is all weight%.)

그러면, 상기의 성분과 조성비를 갖는 본 발명에 따른 반응고 단조용 알루미늄 합금의 수치한정 사유에 대하여 설명한다.Next, the reason for numerical limitation of the aluminum alloy for reaction solid forging which concerns on this invention which has said component and composition ratio is demonstrated.

[Si: 0.6~1.2중량%][Si: 0.6 ~ 1.2 wt%]

Si는 응고잠열이 높으며 규소(Si) 고유의 경도가 매우 높기 때문에 알루미늄 합금으로 가장 널리 사용되는 합금원소로써 그 첨가량이 중량비 12.6%이하에서 공정 규소조직을 나타내게 되며 그 첨가량의 결정에 있어서 강도의 측면과 연신율의 측면이 고려되어야 한다.Si is the most widely used alloying element of aluminum alloy because of its high latent heat of solidification and very high inherent hardness of silicon (Si), and it shows the process silicon structure at an amount of 12.6% or less by weight. The aspects of over and elongation should be considered.

Si는, 도 1에 도시된 바와 같이, 1.2% 에서는 연신율이 지속적으로 증가하는 반면, Si 1.2%일때, Mg 0.7%초과시 연신율 급감하는 특성을 가진다. 즉, 본 발명에서는 Si 1.2%일 때, Mn 0.2%→0.3%→0.4%→0.5%, Cu 0.3%→0.4%→0.5%, Mg 0.6%→0.7%→0.8%로 각각의 모합금을 매탕마다 순차적으로 투입한 결과에 따르면, 고온 성형성을 유지하면서 연신율을 극대화할 수 있도록 0.6~1.2중량%로 함이 바람직하다.
As shown in FIG. 1, the elongation is continuously increased at 1.2%, while the elongation is rapidly decreased when Mg exceeds 0.7% when Si is 1.2%. That is, in the present invention, when the Si 1.2%, Mn 0.2% → 0.3% → 0.4% → 0.5%, Cu 0.3% → 0.4% → 0.5%, Mg 0.6% → 0.7% → 0.8% According to the results sequentially added to each, it is preferred to be 0.6 to 1.2% by weight so as to maximize the elongation while maintaining high formability.

[Fe:0.2중량% 이하][Fe: 0.2 wt% or less]

Fe는 대표적인 불순물 원소로서 0.2중량% 이상 함유시 금속간 화합물을 형성하여 고온 성형성을 저하시키므로 0.2중량% 이하로 첨가되어야 한다.
Fe is a representative impurity element, and when it is contained 0.2 wt% or more, it forms an intermetallic compound and degrades high temperature formability. Therefore, Fe should be added at 0.2 wt% or less.

[Cu: 0.1~0.4중량%][Cu: 0.1-0.4 wt%]

Cu는 강도 및 굽힘성을 향상시키며 소부처리시 시효경화로 강도를 증가시키는 주요한 첨가원소이다. 일 예로 Cu는, 도 2에 도시된 바와 같이, Si 변동폭이 1.1%~1.2%일 때의 강도 및 연신율 분석을 수행하면, Cu 0.3%~0.4% 구간에서는 강도가 증가하는 반면, Cu 0.4%~ 0.5% 구간에서는 강도가 감소하는 것을 알 수 있다. 즉, 본 발명에서는 Cu의 함량이 0.3중량% 이하이면 강도향상이 미약하고, 0.4중량% 이상이면 강도는 향상되지만 연신율이 저하되므로 상기 범위로 첨가됨이 바람직하다.
Cu is a major addition element that improves strength and bendability and increases strength by age hardening during baking. As an example, as shown in FIG. 2, when the strength and elongation analysis is performed when the Si fluctuation range is 1.1% to 1.2%, the strength is increased in the Cu 0.3% to 0.4% section, while the Cu is 0.4% to It can be seen that the intensity decreases in the 0.5% section. That is, in the present invention, when the Cu content is 0.3% by weight or less, the strength improvement is insignificant. When the content of Cu is 0.4% by weight or more, the strength is improved, but the elongation is lowered.

[Mn: 0.2~0.4중량%][Mn: 0.2-0.4 wt%]

Mn은 Mn3Al 화합물 형성을 통해 결정립을 미세화시킴으로써 강도를 향상시키기 위한 첨가원소로서, 0.2중량% 이하로 첨가되면 강도향상이 미미하고, 0.5중량% 이상으로 첨가되면 강도는 큰 변동이 없긴 하나, 본 발명에서는 연실율을 향상시키기 위하여 가능하면 적게 첨가되는 것이 바람직하며, 특히 바람직한 범위로는 0.5중량% 이하이다.Mn is an additive element for improving the strength by miniaturizing the crystal grains through the formation of Mn 3 Al compound, when the addition of less than 0.2% by weight, the strength is insignificant; In order to improve a loss rate, it is preferable to add as little as possible, and it is 0.5 weight% or less in especially preferable range.

일 예로, Mn은 도 3에 도시된 바와 같이, 0.20%~0.30% 인 경우 강도와 연신율 증가하나, 0.30%→0.40%→0.50% 구간은 항복 및 인장 강도는 큰 변동 없으나, 연신율이 지속적으로 증가하게 된다.
For example, as shown in FIG. 3, Mn increases strength and elongation at 0.20% to 0.30%, but yields and tensile strengths are not significantly changed in 0.30% → 0.40% → 0.50%, but elongation is continuously increased. Done.

[Mg: 0.6~1.0중량%][Mg: 0.6-1.0 wt%]

Mg는 고용체 경화를 위해 첨가되는 원소로서, 기지조직의 강도를 높이며 함량증가에 따라 강도도 향상되지만 1.0중량%를 넘게 되면 성형성을 떨어뜨리고 연신율이 급격하게 감소하므로 그 이하로 첨가되어야 하며, 0.6중량% 이하로 첨가되게 되면 고용체 경화효과가 떨어지므로 상기 범위로 첨가됨이 바람직하다.Mg is an element added for solid solution hardening. It increases the strength of the matrix structure and improves the strength as the content increases, but when it exceeds 1.0% by weight, the Mg decreases the formability and the elongation rapidly decreases. When added in an amount of less than or equal to weight%, since the solid solution hardening effect is lowered, it is preferably added in the above range.

일 예로, Mg는 도 4 에 도시된 바와 같이, Mg와 Si 모합금 동시 투입 결과 0.50%~0.47%구간 강도와 연신율이 증가하는 반면에, Mg를 단독 투입 결과 0.62%~0.81% 구간 강도가 미세 증가하거나 유지됨을 알 수 있다. 따라서, 본 발명에서는 더욱 바람직한 범위로는 0.62%~0.81% 범위이다.
As an example, as shown in FIG. 4, the Mg and Si master alloys simultaneously increase 0.50% to 0.47% section strength and elongation, whereas Mg alone results in a fine 0.62% to 0.81% section strength. It can be seen that it is increased or maintained. Therefore, as a more preferable range in this invention, it is 0.62%-0.81% range.

[Cr:0.2~0.4중량%][Cr: 0.2-0.4 wt%]

Cr은 재결정층의 생성과 성장을 억제하여 고온 성형성을 향상시키기 위해 첨가되는 원소로서, 0.2중량% 이하로 첨가되게 되면 고온 성형성이 저하되고, 0.4중량% 이상으로 첨가되게 되면 거대 금속간 화합물을 생성하여 고온 성형성을 오히려 크게 감소시키므로 상기 범위로 제한함이 바람직하다.
Cr is an element added to suppress the formation and growth of the recrystallization layer and improve the high temperature formability. When it is added in an amount of 0.2 wt% or less, the high temperature formability is lowered. It is desirable to limit the above range because it produces a rather high temperature formability rather greatly reduced.

[Zn:0.2중량% 이하][Zn: 0.2 wt% or less]

Zn은 Cu와 더블어 부식저항성의 손실없이 강도를 향상시키기 위한 것으로서, 본 발명에서는 0.2중량% 이하인 것이 바람직하다.
Zn is for improving strength without losing Cu and double corrosion resistance. In the present invention, Zn is preferably 0.2% by weight or less.

이와 같은 성분조성으로 이루어진 본 발명에 따른 반응고 알루미늄 합금은 공지의 반응고 단조공정을 거쳐 제조되어 제품화되게 된다.
The reaction high aluminum alloy according to the present invention made of such a composition is manufactured through a known reaction high forging process to be commercialized.

이하, 실시예에 대하여 설명한다. 이하 실시예에서의 알루미늄 합금은 AA6061을 일 예로 들어 실험한 결과이다.Hereinafter, examples will be described. The aluminum alloy in the following examples is the result of experiment using AA6061 as an example.

[실시예][Example]

본 발명에 따른 알루미늄 합금의 특성(인장강도, 항복강도, 연신율) 확인을 위해 본 발명의 범주 내에서 하기한 표 2와 같은 성분조성으로 이루어진 발명재 A 내지 F를 반응고 단조공정을 거쳐 동일크기의 시험편으로 만들었다. 여기서, 표 2에서 발명재 A는 Si, 발명재 B는 Fe, 발명재 C는 Mn, 발명재 D는 Mg, 발명재 E는 Cu, 발명재 F는 Si, Cu, Mn, Mg를 기준으로 다른 원소들의 중량을 가변시키며 알루미늄 합금재의 물리적인 특성을 실험하였다.In order to confirm the properties (tensile strength, yield strength, elongation) of the aluminum alloy according to the present invention within the scope of the present invention, the invention materials A to F consisting of the composition of the composition as shown in Table 2 through the reaction forging process and the same size Made of test pieces. Here, in Table 2, the invention A is Si, invention B is Fe, invention C is Mn, invention D is Mg, invention E is Cu, invention F is different based on Si, Cu, Mn, Mg The physical properties of aluminum alloys were tested by varying the weight of the elements.

구분division SiSi FeFe CuCu MnMn MgMg CrCr ZnZn 타겟target 0.8~1.20.8 to 1.2 0.2↓0.2 ↓ 0.2~0.40.2 to 0.4 0.2~0.40.2 to 0.4 0.6~1.00.6 to 1.0 0.2~0.40.2 to 0.4 0.2↓0.2 ↓ 기준standard 60616061 0.70.7 0.70.7 0.30.3 0.150.15 1.01.0 0.30.3 0.1↓0.1 ↓ TestTest AA 1.21.2 BB 0.20.2 CC 0.30.3 DD 0.80.8 EE 0.20.2 FF 1.01.0 0.30.3 0.20.2 0.60.6

(이때, 상기 표 2에서 조성비는 모두 중량%이다.)(At this time, the composition ratio in Table 2 is all weight%.)

상기 조성비로 이루어진 본 발명의 합금과, 발명재 A 내지 F의 특성 비교를 위해 이들 시험편을 각각 동일한 최대 하중과, 시험 속도를 가지는 인장시험기를 이용하여 인장강도와 항복강도를 계측하였고, 이러한 계측을 통해 얻어지는 값을 연산하여 연신율[연신율=(늘어난길이-원래의 길이/원래의 길이)*100]을 산출하였는 바, 본 발명에 따른 반응고 단조용 알루미늄 합금의 강도 및 연신율이 우수함을 알 수 있게 되었다. 이와 같은 실험을 통하여 얻어진 반응고 단조용 알루미늄 합금의 특성인 인장강도(TS: tensile strength), 항복강도(YS; yield strength), 연신율(ES; elongation)은 각각 330MPa 내지 350MPa, 300MPa, 15%를 나타내었다.
Tensile strength and yield strength were measured using a tensile tester having the same maximum load and test speed, respectively, for comparing the properties of the alloy of the present invention and the inventive materials A to F having the composition ratio. The elongation rate [elongation ratio = (extended length-original length / original length) * 100] was calculated by calculating a value obtained through the above, so that the strength and elongation of the reaction forging aluminum alloy according to the present invention are excellent. It became. Tensile strength (TS), yield strength (YS), and elongation (ES) of the reaction alloy forging aluminum alloy obtained through the above experiments were 330 MPa to 350 MPa, 300 MPa, and 15%, respectively. Indicated.

이를 뒷받침하기 위하여 본 발명에 따른 반응고 단조용 알루미늄 합금을 이용하여 성형된 알루미늄 디스크 휠에 대하여 측정한 결과 하기 표 3과 같다. 본 실시에에서 인장강도와 연신율을 측정하기 위하여 반응고 알루미늄 합금이 프리성형(pre-form) 단조와 유동성형(flow forming) 공법에 의하여 성형된 알루미늄 디스크 휠의 시편을 축 방향으로 인장하중을 가하여 하중 및 변형을 측정하였다.In order to support this, the results of the measurement for the aluminum disk wheels formed using the reaction alloy forging aluminum alloy according to the present invention are shown in Table 3 below. In this embodiment, in order to measure the tensile strength and elongation, a tensile load is applied in the axial direction to the specimen of the aluminum disk wheel in which the reaction aluminum alloy is formed by the pre-form forging and the flow forming method. The load and strain were measured.

평가항목Evaluation item 단위unit 시제품 측정치Prototype measurements 인장강도The tensile strength MPaMPa 355355 연신율Elongation %% 12.212.2 항복강도Yield strength MPaMPa 304304 RFT(Radial Fatigue Test)Radial Fatigue Test (RFT) CycleCycle 300만3 million CFT(Cornering Fatigue Test)Corning Fatigue Test (CFT) CycleCycle 100만1 million

따라서, 상기와 같은 결과에서 알 수 있듯이, 본 발명은 Si, Cu, Mn, Mg 등의 합금 원소량을 조절함으로써 종래 6000계 열간단조용 알루미늄 합금에 비하여 인장강도 및 연신율이 우수하여 설계중량 감소효과가 있고, 중량 절감을 통하여 자동차 구조용으로 사용시 연비를 개선하고 그에 따른 대기오염도 저감시키는 효과가 있다.
Therefore, as can be seen from the results as described above, the present invention by controlling the amount of alloying elements, such as Si, Cu, Mn, Mg, excellent tensile strength and elongation compared to the conventional 6000-based hot forging aluminum alloy, the design weight reduction effect There is an effect to improve the fuel economy and reduce the air pollution accordingly when used for automobile structures through weight reduction.

이상에서 설명한 것은 본 발명에 의한 반응고 단조용 알루미늄 합금을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.
What has been described above is only one embodiment for carrying out the reaction solid forging aluminum alloy according to the present invention, the present invention is not limited to the above embodiment, as claimed in the following claims of the present invention Without departing from the gist of the present invention, one of ordinary skill in the art will have the technical spirit of the present invention to the extent that various modifications can be made.

Claims (3)

6000계 반응고 단조용 알루미늄 합금에 있어서,
중량 %로,
Si: 0.6~1.2%, Fe: 0.2%이하, Cu: 0.1~0.4%, Mn: 0.2~0.4%, Mg: 0.6~1.0%, Cr: 0.2~0.4%, Zn: 0.2%이하 및 잔부 Al로 조성된 것을 특징으로 하는 반응고 단조용 알루미늄 합금.
In the 6000 series reaction high forging aluminum alloy,
In weight percent,
Si: 0.6 ~ 1.2%, Fe: 0.2% or less, Cu: 0.1 ~ 0.4%, Mn: 0.2 ~ 0.4%, Mg: 0.6 ~ 1.0%, Cr: 0.2 ~ 0.4%, Zn: 0.2% or less and balance Al Aluminum alloy for reaction high forging, characterized in that the composition.
제1항에 있어서,
상기 알루미늄 합금은 인장강도 330MPa 내지 350MPa, 항복강도 300MPa 이상, 연신율 15%인 것을 특징으로 하는 반응고 단조용 알루미늄 합금.
The method of claim 1,
The aluminum alloy has a tensile strength of 330MPa to 350MPa, yield strength 300MPa or more, elongation 15% aluminum alloy for forging characterized in that the elongation.
제2항에 있어서,
상기 알루미늄 합금은 경도 80HB 이상인 것을 특징으로 하는 반응고 단조용 알루미늄 합금.
3. The method of claim 2,
The aluminum alloy is a high-temperature forging aluminum alloy, characterized in that the hardness of 80HB or more.
KR1020120046938A 2012-05-03 2012-05-03 Aluminum alloy for rheocasting and forging KR20130123652A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120046938A KR20130123652A (en) 2012-05-03 2012-05-03 Aluminum alloy for rheocasting and forging
PCT/KR2012/011277 WO2013165069A1 (en) 2012-05-03 2012-12-21 Aluminum alloy for semi-solid forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120046938A KR20130123652A (en) 2012-05-03 2012-05-03 Aluminum alloy for rheocasting and forging

Publications (1)

Publication Number Publication Date
KR20130123652A true KR20130123652A (en) 2013-11-13

Family

ID=49514452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120046938A KR20130123652A (en) 2012-05-03 2012-05-03 Aluminum alloy for rheocasting and forging

Country Status (2)

Country Link
KR (1) KR20130123652A (en)
WO (1) WO2013165069A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150030273A (en) * 2012-07-16 2015-03-19 알코아 인코포레이티드 Improved 6xxx aluminum alloys, and methods for producing the same
KR102259617B1 (en) * 2020-01-23 2021-06-03 서진산업 주식회사 Styled wheel with improved durability of spokes
WO2022062727A1 (en) * 2020-09-28 2022-03-31 广东坚美铝型材厂(集团)有限公司 Preparation method for motor shell aluminum profile, and motor shell and motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770840B (en) * 2018-01-12 2023-04-07 阿库莱德公司 Aluminum wheel and method of manufacture
CN110541092A (en) * 2019-08-29 2019-12-06 金榀精密工业(苏州)有限公司 preparation method of high-wear-resistance aluminum alloy automobile part
CN114107750B (en) * 2020-08-26 2022-10-21 宝山钢铁股份有限公司 Preparation method of 6XXX aluminum alloy strip by strip continuous casting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282162A (en) * 1999-03-30 2000-10-10 Nippon Steel Corp Aluminum alloy extruded material excellent in corrosion fatigue strength
JP3332885B2 (en) * 1999-04-20 2002-10-07 古河電気工業株式会社 Aluminum-based alloy for semi-solid processing and method for manufacturing the processed member
KR20020096279A (en) * 2001-06-19 2002-12-31 현대자동차주식회사 an aluminum alloy
KR20090028954A (en) * 2007-09-17 2009-03-20 현대모비스 주식회사 High strength aluminum alloy for hot forging
JP5643479B2 (en) * 2008-11-12 2014-12-17 株式会社神戸製鋼所 Al-Mg-Si aluminum alloy plate with excellent bendability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150030273A (en) * 2012-07-16 2015-03-19 알코아 인코포레이티드 Improved 6xxx aluminum alloys, and methods for producing the same
KR102259617B1 (en) * 2020-01-23 2021-06-03 서진산업 주식회사 Styled wheel with improved durability of spokes
WO2022062727A1 (en) * 2020-09-28 2022-03-31 广东坚美铝型材厂(集团)有限公司 Preparation method for motor shell aluminum profile, and motor shell and motor

Also Published As

Publication number Publication date
WO2013165069A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
KR20130123652A (en) Aluminum alloy for rheocasting and forging
US8105449B2 (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
CN104471090B (en) Aluminium alloy
EP3026135B1 (en) Alloy casting material and method for manufacturing alloy object
US20110017366A1 (en) 7000-series aluminum alloy extruded product and method of producing the same
KR101900973B1 (en) Thick products made of 7xxx alloy and manufacturing process
CN111041293B (en) Production process of high-strength thin-wall section
CN109457198B (en) Aluminum alloy material with ultrahigh strength, corrosion resistance and low stress and preparation method thereof
JPWO2012165086A1 (en) Aluminum alloy and method for producing extruded profile using the same
CN109097642B (en) High-strength high-toughness die-casting aluminum alloy material suitable for sharing bicycle and preparation method thereof
CN111041294B9 (en) 6-series low alloy composition with high long-term thermal stability and preparation method thereof
KR20080109347A (en) High strength and toughness aluminum alloy and manufacturing method for bumper beam
TWI434939B (en) Aluminium alloy and process of preparation thereof
CN104099498B (en) A kind of super capacity of equipment produces the method for train freight damp car body ultra-wide aluminium alloy extrusions
KR102589799B1 (en) High-strength aluminum-based alloys and methods for producing articles therefrom
JP2012184505A (en) Aluminum alloy hollow shaped member excellent in fatigue strength and method for manufacturing the same, and swing arm for motorcycle
CN110564996B (en) High-strength magnesium alloy material and preparation method thereof
CN103397230A (en) Aluminum alloy material
KR101481909B1 (en) Manufacturing method of magnesium alloy
KR20110113454A (en) High strength aluminum alloys for die casting
CN105525176A (en) Preparation and treatment process of Mg-Gd-Y-Zr alloy
CN110819857B (en) Rail train automobile body thin-wall aluminum profile
JP2014201787A (en) High strength aluminum extrusion alloy and manufacturing method therefor
KR101786344B1 (en) Aluminum alloy for cylinder head method for manufacturing cylinder head using the same
KR20090028954A (en) High strength aluminum alloy for hot forging

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application