KR101786344B1 - Aluminum alloy for cylinder head method for manufacturing cylinder head using the same - Google Patents

Aluminum alloy for cylinder head method for manufacturing cylinder head using the same Download PDF

Info

Publication number
KR101786344B1
KR101786344B1 KR1020160059828A KR20160059828A KR101786344B1 KR 101786344 B1 KR101786344 B1 KR 101786344B1 KR 1020160059828 A KR1020160059828 A KR 1020160059828A KR 20160059828 A KR20160059828 A KR 20160059828A KR 101786344 B1 KR101786344 B1 KR 101786344B1
Authority
KR
South Korea
Prior art keywords
cylinder head
aluminum alloy
thermal conductivity
present
heat treatment
Prior art date
Application number
KR1020160059828A
Other languages
Korean (ko)
Inventor
이경문
백홍길
이태원
민병호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160059828A priority Critical patent/KR101786344B1/en
Application granted granted Critical
Publication of KR101786344B1 publication Critical patent/KR101786344B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • B22D15/02Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor of cylinders, pistons, bearing shells or like thin-walled objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Abstract

본 발명은 실린더가 작동되는 동안 형성되는 고온에서의 열전도도와 인장강도가 우수한 실린더 헤드용 알루미늄 합금 및 이를 이용한 실린더 헤드의 제조방법에 관한 것으로서, 본 발명의 일 실시예에 따른 실린더 헤드용 알루미늄 합금은 차량의 엔진에 사용되는 실린더 헤드용 알루미늄 합금으로서, 중량%로, Si: 1 ~ 3%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Fe: 0.2 ~ 0.4%, Ni: 0.1 ~ 1%, Ti: 0.02% 이하(0% 제외), 잔부 Al 및 불가피한 불순물을 포함한다.The present invention relates to an aluminum alloy for a cylinder head having excellent thermal conductivity and tensile strength at a high temperature formed during operation of a cylinder, and a method of manufacturing a cylinder head using the aluminum alloy. The aluminum alloy for a cylinder head according to an embodiment of the present invention, 1. An aluminum alloy for a cylinder head for use in an engine of a vehicle, comprising: 1 to 3% Si, 2 to 4% Cu, 0.1 to 0.4% Mg, 0.2 to 0.4% Fe, %, Ti: 0.02% or less (excluding 0%), the remainder Al and unavoidable impurities.

Description

실린더 헤드용 알루미늄 합금 및 이를 이용한 실린더 헤드의 제조방법{ALUMINUM ALLOY FOR CYLINDER HEAD METHOD FOR MANUFACTURING CYLINDER HEAD USING THE SAME}Technical Field [0001] The present invention relates to an aluminum alloy for a cylinder head, and a method of manufacturing the cylinder head using the same. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 실린더 헤드용 알루미늄 합금 및 이를 이용한 실린더 헤드의 제조방법에 관한 것으로, 보다 상세하게는 실린더가 작동되는 동안 형성되는 고온에서의 열전도도와 인장강도가 우수한 실린더 헤드용 알루미늄 합금 및 이를 이용한 실린더 헤드의 제조방법에 관한 것이다.The present invention relates to an aluminum alloy for a cylinder head and a method of manufacturing a cylinder head using the aluminum alloy. More particularly, the present invention relates to an aluminum alloy for a cylinder head having excellent thermal conductivity and tensile strength at high temperatures, And a method for producing the same.

실린더 헤드는 엔진의 주요 부품으로써, 연료 및 공기의 입구, 연소가스 출구 역할을 하는 부품이다. 통상 연소실 내 폭발에 따라 실린더 헤드의 하면 온도는 약 200℃까지 상승한다. 연소실의 온도가 상승하면, 연료의 자동 발화현상이 발생하여 노킹(knocking) 현상이 발생하게 된다. 노킹 현상이 발생하면 엔진의 내구성이 저하될 뿐만 아니라 연비가 저하되는 문제가 발생한다.The cylinder head is the main part of the engine, the part serving as the inlet of the fuel and air, and the outlet of the combustion gas. Normally, the bottom temperature of the cylinder head rises to about 200 ° C due to explosion in the combustion chamber. When the temperature of the combustion chamber rises, automatic ignition of the fuel occurs and knocking phenomenon occurs. When the knocking phenomenon occurs, the durability of the engine is lowered and the fuel consumption is lowered.

연소실 내의 노킹 현상을 방지하기 위해서는, 폭발이 일어난 후 발생된 열이 빠르게 방출되어야 한다. 따라서, 높은 열전도도를 가지는 소재로 실린더 헤드를 제작할 경우, 연소실에서 헤드로 전달된 열이 빠르게 외부로 방출되어 노킹 현상을 방지할 수 있으며, 이는 곧 연비 저감 효과를 나타낼 수 있다.In order to prevent knocking in the combustion chamber, the heat generated after the explosion must be released quickly. Therefore, when a cylinder head is manufactured from a material having a high thermal conductivity, the heat transferred from the combustion chamber to the head is rapidly discharged to the outside, thereby preventing the knocking phenomenon.

종래의 실린더 헤드는 Al-Si-Cu 계열의 합금인 AC2BH 합금 및 A356H 합금을 사용하여 제조되었다.Conventional cylinder heads are manufactured using AC2BH alloy and A356H alloy, which are alloys of Al-Si-Cu series.

AC2BH 합금은 중량%로, Si: 5 ~ 7%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Mn: 0.03% 이하, Zn: 0.3% 이하, Fe: 0.25% 이하, Ni: 0.3% 이하, Ti: 0.03% 이하, 잔부 Al 및 불가피한 불순물을 포함하고, A356H 합금은 중량%로, Si: 7 ~ 8%, Cu: 0.2% 이하, Mg: 0.2 ~ 0.6%, Mn: 0.05 ~ 0.2%, Zn: 0.1% 이하, Fe: 0.2% 이하, Ni: 0.1% 이하, Ti: 0.25% 이하, 잔부 Al 및 불가피한 불순물을 포함한다.The AC2BH alloy contains, by wt%, 5 to 7% of Si, 2 to 4% of Cu, 0.1 to 0.4% of Mg, 0.03% or less of Mn, 0.3% or less of Zn, 0.25% or less of Fe, By mass, Cu: not more than 0.2%, Mg: not more than 0.2%, Mn: not more than 0.05%, and most preferably not more than 0.03%, and the balance Al and inevitable impurities. , Zn: not more than 0.1%, Fe: not more than 0.2%, Ni: not more than 0.1%, Ti: not more than 0.25%, and the balance Al and unavoidable impurities.

이들의 물성을 살펴보면, T7 열처리를 거친 AC2BH 합금은 항복강도 251MPa, 인장강도 288MPa, 신율 1.2%, 열전도도 154W/mK@25℃, 160W/mK@200℃를 나타내고, T6 열처리를 거친 A356H 합금은 항복강도 226MPa, 인장강도 277MPa, 신율 5.5%, 열전도도 114W/mK@25℃, 117W/mK@200℃를 나타낸다.The AC2BH alloy subjected to the T7 heat treatment exhibited a yield strength of 251 MPa, a tensile strength of 288 MPa, a elongation of 1.2%, a thermal conductivity of 154 W / mK at 25 ° C. and a transmittance of 160 W / mK at 200 ° C. The A356H alloy, A yield strength of 226 MPa, a tensile strength of 277 MPa, a elongation of 5.5% and a thermal conductivity of 114 W / mK at 25 DEG C and 117 W / mK at 200 DEG C.

이들은 Al2Cu 강화상과 Si 정출물을 통해 강도 및 주조성이 향상된다. 그러나 이들 정출물이 지나치게 많이 생성될 경우, 열전도도를 낮추는 원인이 된다.They have improved strength and castability through the Al 2 Cu strengthening phase and the Si crystallization. However, if too many of these crystallizations are produced, this will cause the thermal conductivity to decrease.

실린더 헤드는 고온의 환경 하에서 높은 강도와 열전도도를 유지하여야 하는데, 종래의 AC2BH 합금이나 A356H 합금의 경우 강도는 충족하나 열전도도가 부족한 문제가 있었다.The cylinder head must maintain high strength and thermal conductivity under a high temperature environment. In the case of conventional AC2BH alloy or A356H alloy, however, the cylinder head satisfies the strength but lacks thermal conductivity.

따라서, 종래의 합금에 비해 동등하거나 그 이상의 강도를 유지하면서도, 실린더가 작동되는 동안 형성되는 고온(200℃)에서의 열전도도를 높게 유지할 수 있는 새로운 알루미늄 합금이 요구되고 있는 실정이다.Accordingly, there is a demand for a new aluminum alloy which can maintain the thermal conductivity at a high temperature (200 캜) formed while the cylinder is operating, while maintaining the same or higher strength as compared with the conventional alloy.

한국공개특허 제10-2004-0095437호(2004.11.15)Korean Patent Publication No. 10-2004-0095437 (November 15, 2004)

본 발명은 실린더가 작동되는 동안 형성되는 고온에서의 열전도도와 강도를 모두 높게 유지할 수 있는 실린더 헤드용 알루미늄 합금 및 이를 이용한 실린더 헤드의 제조방법을 제공하는 데 있다.An object of the present invention is to provide an aluminum alloy for a cylinder head capable of maintaining a high thermal conductivity and strength at a high temperature formed during operation of the cylinder, and a method of manufacturing the cylinder head using the same.

본 발명의 일 실시예에 따른 실린더 헤드용 알루미늄 합금은 차량의 엔진에 사용되는 실린더 헤드용 알루미늄 합금으로서, 중량%로, Si: 1 ~ 3%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Fe: 0.2 ~ 0.4%, Ni: 0.1 ~ 1%, Ti: 0.02% 이하(0% 제외), 잔부 Al 및 불가피한 불순물을 포함한다.An aluminum alloy for a cylinder head according to an embodiment of the present invention is an aluminum alloy for a cylinder head used in an engine of a vehicle, which comprises 1 to 3% of Si, 2 to 4% of Cu, 0.1 to 0.4% of Mg, , Fe: 0.2 to 0.4%, Ni: 0.1 to 1%, Ti: 0.02% or less (excluding 0%), the remainder Al and unavoidable impurities.

이때 상기 알루미늄 합금은 200℃에서의 열전도도가 200W/mK 이상이고, 인장강도가 290MPa 이상인 것을 특징으로 한다.Wherein the aluminum alloy has a thermal conductivity of 200 W / mK or more at 200 ° C and a tensile strength of 290 MPa or more.

또한, 상기 알루미늄 합금은 강화상으로 Al3Ti가 형성된 것을 특징으로 한다.Further, the aluminum alloy is characterized in that Al 3 Ti is formed as a reinforcing phase.

이때 상기 알루미늄 합금은 강화상으로 Al3Ti가 알루미늄 합금 전체 대비 0.003 ~ 0.03wt% 형성된 것을 특징으로 한다.At this time, the aluminum alloy is a strengthened phase and is characterized in that Al 3 Ti is formed in an amount of 0.003 to 0.03 wt% relative to the total weight of the aluminum alloy.

한편, 본 발명의 일 실시예에 따른 실린더 헤드의 제조방법은 차량의 엔진에 사용되는 실린더 헤드를 제조하는 방법으로서, 중량%로, Si: 1 ~ 3%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Fe: 0.2 ~ 0.4%, Ni: 0.1 ~ 1%, Ti: 0.02% 이하(0% 제외), 잔부 Al 및 불가피한 불순물을 포함하는 용강을 주조하여 실린더 헤드 형상의 성형품을 제조하고, 상기 성형품을 용체화 처리한 다음 과시효가 되도록 시효 열처리를 실시하는 것을 특징으로 한다.A method of manufacturing a cylinder head according to an embodiment of the present invention includes a step of preparing a cylinder head for use in an engine of a vehicle, which comprises 1 to 3% of Si, 2 to 4% of Cu, 0.1 to 0.4% of Fe, 0.2 to 0.4% of Fe, 0.1 to 1% of Ni, 0.02% or less of Ti (exclusive of 0%), Al and unavoidable impurities are cast to produce a cylinder head shaped article , The molded product is subjected to a solution treatment and then an aging heat treatment is carried out so as to be overblown.

이때 상기 시효 열처리는 180 ~ 200℃의 열처리 온도에서 12시간 이상 실시하는 것을 특징으로 한다.At this time, the aging heat treatment is performed at a heat treatment temperature of 180 to 200 ° C for 12 hours or more.

본 발명에 의한 실린더 헤드용 알루미늄 합금 및 이를 이용한 실린더 헤드의 제조방법에 따르면 다음과 같은 효과가 있다.The aluminum alloy for a cylinder head according to the present invention and the method for manufacturing a cylinder head using the aluminum alloy according to the present invention have the following effects.

첫째, 실린더가 작동되는 동안 형성되는 고온에서 높은 열전도도를 유지하여 노킹 현상을 방지할 수 있다.First, it is possible to maintain a high thermal conductivity at a high temperature formed during the operation of the cylinder, thereby preventing the knocking phenomenon.

둘째, 종래 합금 대비 동등하거나 그 이상의 강도를 유지하여 실린더 헤드용으로 사용이 가능하다.Second, it can be used for a cylinder head while maintaining strength equal to or higher than conventional alloys.

도 1은 본 발명의 일 실시예에 따른 알루미늄 합금을 190℃로 시효 열처리한 경우 강화상들의 종류 및 양을 나타낸 그래프이고,
도 2는 본 발명의 일 실시예에 따른 알루미늄 합금을 250℃로 시효 열처리한 경우 강화상들의 종류 및 양을 나타낸 그래프이며,
도 3은 Ti을 0.05% 첨가한 알루미늄 합금을 190℃로 시효 열처리한 경우 강화상들의 종류 및 양을 나타낸 그래프이고,
도 4는 본 발명의 실시예들에 따른 알루미늄 합금의 Ti 함량에 따른 열전도도 및 인장강도 변화를 나타낸 그래프이며,
도 5는 본 발명의 실시예들에 따른 알루미늄 합금의 시효 열처리 온도와 Ti 함량에 따른 열전도도 변화를 나타낸 그래프이며,
도 6은 본 발명의 실시예들에 따른 알루미늄 합금의 시효 열처리 온도와 Ti 함량에 따른 인장강도 변화를 나타낸 그래프이며,
1 is a graph showing types and amounts of reinforcing phases when an aluminum alloy according to an embodiment of the present invention is subjected to aging heat treatment at 190 ° C,
2 is a graph showing types and amounts of reinforcing phases when the aluminum alloy according to an embodiment of the present invention is subjected to an age heat treatment at 250 ° C,
FIG. 3 is a graph showing the types and amounts of reinforcing phases when an aluminum alloy containing 0.05% of Ti is subjected to an aging heat treatment at 190 ° C,
4 is a graph showing changes in thermal conductivity and tensile strength according to Ti content of an aluminum alloy according to embodiments of the present invention,
5 is a graph showing changes in thermal conductivity according to the aging heat treatment temperature and the Ti content of the aluminum alloy according to the embodiments of the present invention,
6 is a graph showing tensile strength changes according to the aging heat treatment temperature and the Ti content of the aluminum alloy according to the embodiments of the present invention,

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It will be apparent to those skilled in the art that the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, It is provided to let you know.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 의한 실린더 헤드용 알루미늄 합금 및 이를 이용한 실린더 헤드의 제조방법에 대하여 설명하기로 한다.Hereinafter, an aluminum alloy for a cylinder head according to a preferred embodiment of the present invention and a method for manufacturing a cylinder head using the aluminum alloy will be described with reference to the accompanying drawings.

우선 실린더 헤드용 알루미늄 합금은, 중량%로, Si: 1 ~ 3%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Fe: 0.2 ~ 0.4%, Ni: 0.1 ~ 1%, Ti: 0.01 ~ 0.02%, 잔부 Al 및 불가피한 불순물을 포함한다.Firstly, the aluminum alloy for a cylinder head is made of aluminum alloy containing 1 to 3% by weight of Si, 2 to 4% of Cu, 0.1 to 0.4% of Mg, 0.2 to 0.4% of Fe, 0.1 to 1% To 0.02%, residual Al and unavoidable impurities.

다음으로 각 성분별 수치한정의 이유에 대해 설명한다.Next, the reason for the numerical limitation for each component will be described.

Si: 주조성을 향상시키기 위해 첨가하는 원소로서, 주조성 확보를 위해 1% 이상의 첨가가 필요하지만, 3%를 초과하여 첨가되면 고온에서의 열전도도가 큰 폭으로 저하되므로 함량을 3% 이하로 제한한다.Si: As an element to be added for improving the casting composition, it is necessary to add 1% or more in order to secure castability. However, when added in an amount exceeding 3%, the thermal conductivity at a high temperature is greatly decreased. do.

Cu: Al2Cu 강화상을 형성하여 알루미늄 합금의 강도를 상승시키는 원소이다. 이를 위해 최소한 2% 이상의 첨가가 필요하다. 그러나 4%를 초과하여 첨가할 경우, 강도는 향상되지만 열전도도가 저하되는 문제가 있다.Cu: Al 2 Cu It is an element that forms a strengthened phase to increase the strength of the aluminum alloy. At least 2% addition is required for this. However, when it is added in an amount exceeding 4%, the strength is improved but the thermal conductivity is lowered.

Mg: Mg2Si 강화상을 형성하여 강도를 향상시키는 원소이다. 이러한 강화 효과를 위해 0.1% 이상의 첨가가 필요하다. 그러나 0.4%를 초과하여 첨가될 경우, Mg-Cu-Ni계 정출물의 생성이 증가되어 고온에서의 열전도도가 저하된다.Mg: Mg 2 Si strengthening phase to improve strength. For this strengthening effect, addition of 0.1% or more is necessary. However, when it is added in excess of 0.4%, the production of the Mg-Cu-Ni-based crystallized product is increased and the thermal conductivity at high temperature is lowered.

Fe: 강도 향상 및 금형 소착 방지에 효과적인 원소이다. 이러한 효과를 위해 0.2% 이상의 첨가가 필요하지만, 0.4%를 초과하여 첨가될 경우 철계 합금상의 분율이 증가되어 고온 열전도도가 저하되는 문제가 있다.Fe: It is an effective element for improving the strength and preventing mold sticking. For this effect, it is necessary to add 0.2% or more, but when it is added in excess of 0.4%, the fraction of the iron-based alloy phase is increased and the high-temperature thermal conductivity is lowered.

Ni: Al3Ni 강화상을 형성하여 강도를 향상시키고, 주조성을 향상시키는 원소이다. 본 발명은 Si의 함량을 감소시켜 주조성이 저하되는데, Ni의 투입으로 이를 보상할 수 있게 된다. 이러한 효과를 위해서는 0.1% 이상의 첨가가 필요하지만, 1%를 초과하여 과량 첨가될 경우 다량의 정출물이 형성되어 고온에서의 열전도도가 저하된다.Ni: It is an element which forms an Al3Ni strengthened phase to improve the strength and improve the casting. In the present invention, the content of Si is decreased to decrease the main composition, which can be compensated by the addition of Ni. For this effect, the addition of 0.1% or more is required, but when it is added in an excess amount exceeding 1%, a large amount of crystallized product is formed and the thermal conductivity at a high temperature is lowered.

Ti: 결정립 크기를 미세화시켜 강도 향상에 효과적이고, Al3Ti 강화상을 통해 강도를 향상시키는 원소이다. 이러한 효과를 위해서는 0.01% 이상의 첨가가 필요하지만, 0.02%를 초과하여 첨가될 경우 과다한 정출상이 형성되어 고온에서의 열전도도가 저하된다.Ti: It is an element which is effective in improving the strength by making the crystal grain size fine and improving the strength through the Al 3 Ti strengthening phase. In order to obtain such an effect, it is necessary to add 0.01% or more, but when it is added in excess of 0.02%, an excessive crystallization phase is formed and the thermal conductivity at high temperature is lowered.

전술한 성분들을 제외한 알루미늄 합금의 나머지는 알루미늄(Al) 및 기타 불가피한 불순물로 이루어진다.The remainder of the aluminum alloy, except for the aforementioned components, consists of aluminum (Al) and other inevitable impurities.

본 발명은 고온에서의 열전도도 및 강도 특성이 우수한 실린더 헤드를 제조하기 위하여 상기와 같은 조성을 갖는 용강을 통상의 실린더 헤드 제조방법을 사용하여 제조한다. 통상의 실린더 헤드 제조방법은 성분이 조정된 용강을 주조하여 성형품을 생산한 후 이를 용체화 처리하고, 이어서 시효 열처리를 실시한다.In order to manufacture a cylinder head having excellent thermal conductivity and strength characteristics at high temperatures, molten steel having the above composition is manufactured using a conventional cylinder head manufacturing method. In a typical method for manufacturing a cylinder head, cast molten steel whose components are adjusted is cast to produce a molded product, followed by solution treatment, followed by aging heat treatment.

이때 용체화 처리는 통상의 실린더 헤드 제조방법에 따라 실시하는데, 예를 들어 520℃에서 7시간 이상 실시한다.At this time, the solution treatment is carried out according to a conventional cylinder head manufacturing method, for example, at 520 DEG C for 7 hours or more.

다만, 180 ~ 200℃의 열처리 온도에서 12시간 이상 시효 열처리를 실시하는데, 예를 들어 190℃에서 12 ~ 24시간 시효 열처리하는 것이 바람직하다. 이렇게 시효 열처리 온도를 통상의 실린더 헤드 제조방법보다 낮추면서 처리시간을 늘려 과시효를 유도하는 것이 바람직하다. 그래서 Ti 함량이 매우 낮은 조건인 경우에 종래 시효 열처리 온도, 예를 들어 250℃에서는 생성되지 않는 Al3Ti 정출상을 생성시켜 인장강도를 향상시킨다. 다만, 이때 너무 많은 Al3Ti 정출상이 생성되는 경우에는 열전도도 향상 효과가 저감되기 때문에 Ti의 함량을 0.02% 이하로 한정하면서 열처리 온도 및 시간을 준수하여야 한다. 이러한 시효 열처리를 거친 이후에는 200℃에서의 열전도도가 200W/mK 이상이고, 인장강도가 290MPa 이상이 되어 고온 열전도도와 강도가 모두 우수한 알루미늄 합금을 제조할 수 있다.However, aging heat treatment is performed for 12 hours or more at a heat treatment temperature of 180 to 200 占 폚, and it is preferable to perform aging heat treatment at 190 占 폚 for 12 to 24 hours. It is preferable that the aging heat treatment temperature is lowered than that of the conventional cylinder head manufacturing method and the treatment time is increased to induce the overshoot. Therefore, when the Ti content is very low, the Al 3 Ti crystallization phase which is not generated at the conventional aging heat treatment temperature, for example, 250 ° C., is generated to improve the tensile strength. However, if too much Al 3 Ti crystallization phase is generated at this time, since the effect of improving the thermal conductivity is reduced, it is necessary to limit the Ti content to 0.02% or less while observing the heat treatment temperature and time. After the aging heat treatment, an aluminum alloy having a thermal conductivity of 200 W / mK or more at 200 ° C and a tensile strength of 290 MPa or more can be produced, which has both high thermal conductivity and strength.

[실시예][Example]

이하 실시예를 사용하여 본 발명을 더욱 상세하게 성명한다. 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.The following examples further illustrate the present invention. These embodiments are only for illustrating the present invention, and the present invention is not limited thereto.

상업 생산되는 실린더 헤드의 생산 조건에 따라 최종 제품을 생산하는 실험을 실시하였으며, 다만 하기의 [표 1]과 같이 각 성분의 함량을 변경하면서 생산된 용강을 이용하여 주조된 성형품을 용체화 처리 및 시효 열처리를 실시하였다. 이때 용체화 처리는 520℃에서 7시간 동안 실시하고, 시효 열처리는 190℃에서 12 이상 실시하였다.Experiments were conducted to produce final products according to the production conditions of commercially produced cylinder heads. However, as shown in [Table 1], it was found that the molten steel produced by changing the content of each component, An aging heat treatment was performed. The solution treatment was carried out at 520 ° C for 7 hours, and the aging heat treatment was carried out at 190 ° C for 12 hours or more.

상기와 같은 조건으로 생산된 실린더 헤더를 200℃ 분위기에서 열전도도 및 인장강도를 측정하였고, 그 결과를 [표 1]에 나타내었다.The cylinder headers produced under the above conditions were measured for thermal conductivity and tensile strength in an atmosphere of 200 ° C, and the results are shown in Table 1.

No.No. SiSi CuCu MgMg FeFe NiNi TiTi Al3Ti분율(wt%)Al 3 Ti fraction (wt%) 열전도도
(W/mK)
Thermal conductivity
(W / mK)
인장강도
(MPa)
The tensile strength
(MPa)
비고Remarks
1One 2.52.5 33 0.250.25 0.30.3 0.30.3 00 00 200200 260260 비교예Comparative Example 22 2.52.5 33 0.250.25 0.30.3 0.30.3 0.010.01 0.0030.003 203203 293293 실시예Example 33 2.52.5 33 0.250.25 0.30.3 0.30.3 0.020.02 0.030.03 207207 298298 실시예Example 44 2.52.5 33 0.250.25 0.30.3 0.30.3 0.050.05 0.110.11 195195 309309 비교예Comparative Example 55 33 44 0.40.4 0.40.4 1One 0.010.01 0.0040.004 201201 304304 실시예Example 66 33 44 0.40.4 0.40.4 1One 0.050.05 0.110.11 185185 315315 비교예Comparative Example

[표 1]에 나타난 바와 같이 실시예 그룹(No. 2, 3, 5 합금)은 본 발명에 따른 알루미늄 합금의 조성, 즉 Si: 1 ~ 3%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Fe: 0.2 ~ 0.4%, Ni: 0.1 ~ 1%, Ti: 0.02% 이하(0% 제외), 잔부 Al 및 불가피한 불순물을 포함하는 조성을 만족하는 그룹으로서 200℃ 분위기에서 열전도도가 200W/mK 이상으로 유지되고, 인장강도도 290MPa 이상으로 유지된다. 또한, Al3Ti 정출상의 분율이 각각 0.003wt%, 0.03wt% 및 0.004wt%로 생성되어 원하는 수준의 인장강도 및 열전도도를 확보할 수 있었다. 따라서 Al3Ti 정출상의 분율은 0.003 ~ 0.03wt% 수준으로 관리하는 것이 바람직하다.As shown in Table 1, the composition of the aluminum alloy according to the present invention, i.e., Si: 1 to 3%, Cu: 2 to 4%, Mg: 0.4 to 0.4%, Fe: 0.2 to 0.4%, Ni: 0.1 to 1%, Ti: 0.02% or less (excluding 0%), the remainder Al and unavoidable impurities. mK, and the tensile strength is maintained at 290 MPa or more. In addition, the fractions of the Al 3 Ti crystallized phases were produced as 0.003 wt%, 0.03 wt%, and 0.004 wt%, respectively, so that desired tensile strength and thermal conductivity could be secured. Therefore, it is preferable to control the fraction of the Al 3 Ti crystallization phase to the level of 0.003 to 0.03 wt%.

반면에, 비교예 그룹인 No. 1 합금은 Ti가 함유되지 않아 열전도도는 만족하는 수준을 유지하지만, Al3Ti 정출상이 생성되지 않아 인장강도가 현저하게 낮은 것을 확인할 수 있었다.On the other hand, in the comparative example group No. 1 alloy does not contain Ti and maintains the thermal conductivity at a satisfactory level, but the Al 3 Ti crystallization phase is not produced and the tensile strength is remarkably low.

또한, 비교예 그룹인 No. 4, 6 합금은 Ti의 함량이 너무 많기 때문에 너무 많은 Al3Ti 정출상이 생성되어 열전도도 감소된 것을 확인할 수 있었다.Further, in Comparative Example group No. 1, 4 and 6 alloys were found to have too much Ti content, resulting in too much Al 3 Ti crystallization phase and reduced thermal conductivity.

도 1은 본 발명의 일 실시예에 따른 알루미늄 합금을 190℃로 시효 열처리한 경우 강화상들의 종류 및 양을 나타낸 그래프이고, 도 2는 본 발명의 일 실시예에 따른 알루미늄 합금을 250℃로 시효 열처리한 경우 강화상들의 종류 및 양을 나타낸 그래프이며, 도 3은 Ti을 0.05% 첨가한 알루미늄 합금을 190℃로 시효 열처리한 경우 강화상들의 종류 및 양을 나타낸 그래프이다.FIG. 1 is a graph showing the types and amounts of reinforcing phases when an aluminum alloy according to an embodiment of the present invention is subjected to aging heat treatment at 190 ° C, FIG. 2 is a graph showing the types and amounts of reinforcing phases when an aluminum alloy according to an embodiment of the present invention is aged FIG. 3 is a graph showing the types and amounts of reinforcing phases when an aluminum alloy containing 0.05% of Ti is subjected to an age heat treatment at 190 ° C. FIG.

도 1에 나타난 바와 같이, 본 발명에 따른 알루미늄 합금 조성 및 시효 열처리를 실시한 실린더 헤드는 비교적 높은 Al2Cu 강화상, 비교적 낮은 Si, 발생량이 소량으로 제어된 Al3Ti가 나타나 있다. Al2Cu 강화상의 양이 많아 높은 강도를 얻을 수 있고, 낮은 Si로 인해 열전도도의 상승을 억제할 수 있다.As shown in Fig. 1, the cylinder head subjected to the aluminum alloy composition and aging heat treatment according to the present invention shows a relatively high Al 2 Cu strengthened phase, relatively low Si, and a small amount of generated Al 3 Ti. The amount of the Al 2 Cu reinforced phase is large, so that a high strength can be obtained, and an increase in thermal conductivity can be suppressed due to low Si content.

도 2는 본 발명의 합금 조성을 갖는 알루미늄 합금을 250℃에서 3 ~ 5시간 시효 열처리를 수행한 것으로서, 낮은 Al2Cu 강화상, 비교적 높은 Si가 나타나 있고, Al3Ti 정출물은 생성되지 않았다.FIG. 2 shows an aluminum alloy having the alloy composition of the present invention subjected to an aging heat treatment at 250 ° C for 3 to 5 hours, showing a low Al 2 Cu strengthened phase and relatively high Si, and no Al 3 Ti crystallization was produced.

도 3은 Ti의 함량이 0.05%로 본 발명의 범위를 벗어나는 알루미늄 합금으로서, 본 발명에 비해 Al3Ti 정출물의 생성량이 높게 나타나는 것을 알 수 있다.FIG. 3 shows that the amount of Al 3 Ti crystallized product is higher than that of the present invention, in which the content of Ti is 0.05%, which is outside the scope of the present invention.

또한, 도 4는 본 발명의 실시예들에 따른 알루미늄 합금의 Ti 함량에 따른 열전도도 및 인장강도 변화를 나타낸 그래프이다.4 is a graph showing changes in thermal conductivity and tensile strength according to Ti content of an aluminum alloy according to embodiments of the present invention.

도 4에 도시된 바와 같이, Ti의 함량이 본 발명의 범위를 초과하는 경우, 인장강도는 증가하였지만 고온(200℃)에서의 열전도도가 현저하게 낮아지는 것을 확인할 수 있었다. 이는 190℃에서 시효 열처리시에 Ti 첨가량이 증가할 경우 AlTi계열의 정출물 생성량이 증대되어, 고온 열전도도가 감소되는 것이다.As shown in FIG. 4, when the content of Ti exceeded the range of the present invention, it was confirmed that although the tensile strength was increased, the thermal conductivity at a high temperature (200 ° C) was remarkably lowered. This is because, when the amount of Ti added is increased during the aging heat treatment at 190 ° C., the amount of the AlTi-based crystallization product is increased and the high-temperature thermal conductivity is decreased.

한편, 도 5는 본 발명의 실시예들에 따른 알루미늄 합금의 시효 열처리 온도와 Ti 함량에 따른 열전도도 변화를 나타낸 그래프이며, 도 6은 본 발명의 실시예들에 따른 알루미늄 합금의 시효 열처리 온도와 Ti 함량에 따른 인장강도 변화를 나타낸 그래프이다. 도 5 및 도 6에서 190℃에서의 시효 열처리는 12시간을 유지한 결과이고, 250℃에서의 시효 열처리는 5시간을 유지한 결과이다.FIG. 5 is a graph showing changes in thermal conductivity according to the aging heat treatment temperature and the Ti content of the aluminum alloy according to the embodiments of the present invention. FIG. 6 is a graph showing the aging heat treatment temperature of the aluminum alloy according to the embodiments of the present invention Tensile strength according to Ti content. In FIGS. 5 and 6, the aging heat treatment at 190 ° C. is the result of maintaining 12 hours, and the aging heat treatment at 250 ° C. is the result of maintaining the 5 hours.

도 5 및 도 6에 도시된 바와 같이 190℃에서 시효 열처리를 실시한 경우가 250℃에서 시효 열처리를 실시한 경우보다 고온 열전도도 및 인장강도가 모두 증가된 것을 확인할 수 있었다.As shown in FIG. 5 and FIG. 6, it was confirmed that the aging heat treatment at 190 ° C increased both the high temperature thermal conductivity and the tensile strength as compared with the aging heat treatment at 250 ° C.

상술한 알루미늄 합금을 사용하여 엔진 실린더 헤드를 제조할 경우, 고온에서의 높은 열전도도와 높은 강도를 가질 수 있게 된다. 이에 대한 상세한 설명은 알루미늄 합금에 대한 설명으로 갈음하도록 한다.When the engine cylinder head is manufactured using the above-described aluminum alloy, high thermal conductivity and high strength at a high temperature can be obtained. For a detailed explanation, please refer to the description of aluminum alloy.

이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, You will understand.

그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention .

Claims (6)

차량의 엔진에 사용되는 실린더 헤드용 알루미늄 합금으로서,
중량%로, Si: 1 ~ 3%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Fe: 0.2 ~ 0.4%, Ni: 0.1 ~ 1%, Ti: 0.02% 이하(0% 제외), 잔부 Al 및 불가피한 불순물을 포함하고,
200℃에서의 열전도도가 200W/mK 이상이고, 인장강도가 290MPa 이상인 것을 특징으로 하는 실린더 헤드용 알루미늄 합금.
An aluminum alloy for a cylinder head used in an engine of a vehicle,
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet comprises 1 to 3% of Si, 2 to 4% of Cu, 0.1 to 0.4% of Mg, 0.2 to 0.4% of Fe, 0.1 to 1% of Ni, 0.02% The remainder Al and unavoidable impurities,
A thermal conductivity at 200 占 폚 of 200 W / mK or more, and a tensile strength of 290 MPa or more.
삭제delete 청구항 1에 있어서,
상기 알루미늄 합금은 강화상으로 Al3Ti가 형성된 것을 특징으로 하는 실린더 헤드용 알루미늄 합금.
The method according to claim 1,
Wherein the aluminum alloy is formed of Al 3 Ti in a reinforcing phase.
청구항 3에 있어서,
상기 알루미늄 합금은 강화상으로 Al3Ti가 알루미늄 합금 전체 대비 0.003 ~ 0.03wt% 형성된 것을 특징으로 하는 실린더 헤드용 알루미늄 합금.
The method of claim 3,
The aluminum alloy is an aluminum alloy for the cylinder head, characterized in that the Al 3 Ti phase is formed 0.003 ~ 0.03wt% total compared to an aluminum alloy reinforced.
차량의 엔진에 사용되는 실린더 헤드를 제조하는 방법으로서,
중량%로, Si: 1 ~ 3%, Cu: 2 ~ 4%, Mg: 0.1 ~ 0.4%, Fe: 0.2 ~ 0.4%, Ni: 0.1 ~ 1%, Ti: 0.02% 이하(0% 제외), 잔부 Al 및 불가피한 불순물을 포함하는 용강을 주조하여 실린더 헤드 형상의 성형품을 제조하고, 상기 성형품을 용체화 처리한 다음 과시효가 되도록 180 ~ 200℃의 열처리 온도에서 12시간 이상 시효 열처리를 실시하는 것을 특징으로 하는 실린더 헤드의 제조방법.
A method of manufacturing a cylinder head for use in an engine of a vehicle,
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet comprises 1 to 3% of Si, 2 to 4% of Cu, 0.1 to 0.4% of Mg, 0.2 to 0.4% of Fe, 0.1 to 1% of Ni, 0.02% And the remaining part Al and unavoidable impurities are cast to manufacture a cylinder head shaped article and the solution is heat treated at a heat treatment temperature of 180 to 200 DEG C for 12 hours or more so as to become overactive Of the cylinder head.
삭제delete
KR1020160059828A 2016-05-16 2016-05-16 Aluminum alloy for cylinder head method for manufacturing cylinder head using the same KR101786344B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160059828A KR101786344B1 (en) 2016-05-16 2016-05-16 Aluminum alloy for cylinder head method for manufacturing cylinder head using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160059828A KR101786344B1 (en) 2016-05-16 2016-05-16 Aluminum alloy for cylinder head method for manufacturing cylinder head using the same

Publications (1)

Publication Number Publication Date
KR101786344B1 true KR101786344B1 (en) 2017-10-18

Family

ID=60296676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160059828A KR101786344B1 (en) 2016-05-16 2016-05-16 Aluminum alloy for cylinder head method for manufacturing cylinder head using the same

Country Status (1)

Country Link
KR (1) KR101786344B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080908A (en) 2019-12-23 2021-07-01 현대자동차주식회사 Manufacturing method of an aluminum alloyand the aluminum alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152375A (en) 2013-02-13 2014-08-25 Art Metal Mfg Co Ltd Piston material for internal combustion engine and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152375A (en) 2013-02-13 2014-08-25 Art Metal Mfg Co Ltd Piston material for internal combustion engine and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080908A (en) 2019-12-23 2021-07-01 현대자동차주식회사 Manufacturing method of an aluminum alloyand the aluminum alloy

Similar Documents

Publication Publication Date Title
CN102676962B (en) Method for manufacturing an extruded material of heat treatment type Al-Zn-Mg series aluminum alloy
KR101220577B1 (en) Material based an aluminum alloy, method for the production thereof and its use
KR101900973B1 (en) Thick products made of 7xxx alloy and manufacturing process
WO2017033663A1 (en) Aluminum alloy extruded material and method for producing same
JP6406971B2 (en) Method for producing aluminum alloy member
JP5284935B2 (en) Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
JP6378937B2 (en) Method for producing aluminum alloy member
EP3505648B1 (en) High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
JP2006241531A (en) Continuous casting aluminum alloy ingot and its production method
KR20180136434A (en) Al-Mg-Si curable aluminum alloy
KR101786344B1 (en) Aluminum alloy for cylinder head method for manufacturing cylinder head using the same
KR20220063628A (en) Al-Mg-Si based aluminum alloy and method of manufacturing the same
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
KR101756014B1 (en) Aluminum alloy for cylinder head method for manufacturing cylinder head using the same
KR102107658B1 (en) Method of manufacturing of the cast yuggi with excellent elongation
JP2009299104A5 (en)
KR101571665B1 (en) Aluminum alloy composition for die casting and method for heat treatment of manufacturing aluminum alloy using thereof
JP2014201787A (en) High strength aluminum extrusion alloy and manufacturing method therefor
KR101846735B1 (en) Aluminum alloy for cylinder head and method for manufacturing thereof
KR101856381B1 (en) Aluminum alloy for cylinder head
KR101481909B1 (en) Manufacturing method of magnesium alloy
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
KR101744457B1 (en) Aluminum alloy having an excellent strength
KR20210080908A (en) Manufacturing method of an aluminum alloyand the aluminum alloy
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant