KR20130120975A - 리페어 장치 및 리페어 방법 - Google Patents

리페어 장치 및 리페어 방법 Download PDF

Info

Publication number
KR20130120975A
KR20130120975A KR1020120125900A KR20120125900A KR20130120975A KR 20130120975 A KR20130120975 A KR 20130120975A KR 1020120125900 A KR1020120125900 A KR 1020120125900A KR 20120125900 A KR20120125900 A KR 20120125900A KR 20130120975 A KR20130120975 A KR 20130120975A
Authority
KR
South Korea
Prior art keywords
processing
unit
image
defect
substrate
Prior art date
Application number
KR1020120125900A
Other languages
English (en)
Other versions
KR101368167B1 (ko
Inventor
도모아끼 하세가와
Original Assignee
올림푸스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 올림푸스 가부시키가이샤 filed Critical 올림푸스 가부시키가이샤
Publication of KR20130120975A publication Critical patent/KR20130120975A/ko
Application granted granted Critical
Publication of KR101368167B1 publication Critical patent/KR101368167B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Liquid Crystal (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

리페어 장치(1)는, 복수의 파장의 레이저 광을 출사하는 레이저 광원(14)과, 기판(11)을 관찰하기 위한 관찰 광학계(23)와, 2개의 레이저 조사 광학계(15, 16)와, 레이저 광이 입사하는 광로를, 2개의 레이저 조사 광학계 중 어느 하나로 전환하는 광로 전환부(17)와, 관찰 광학계(23)로부터의 광을 받아서 기판(11)을 촬상하는 촬상부(13)와, 촬상부(13)에 있어서 촬상해서 얻어진 화상으로부터 화상 처리에 의해, 기판(11)의 결함부를 검출하는 결함 검출부(54a)와, 결함부의 가공 영역마다, 가공 방식과 가공 조건을 설정하는 설정부(51a)와, 가공 영역마다 설정된 가공 방식과 가공 조건에 기초해서 기판(11)에 대하여 가공을 행하도록, 레이저 광원(14)과 광로 전환부(17)를 제어하는 제어부(51)를 갖는다.

Description

리페어 장치 및 리페어 방법{REPAIR DEVICE AND REPAIR METHOD}
본 발명은, 리페어 장치 및 리페어 방법에 관한 것으로, 특히 레이저 광을 이용해서 기판의 결함을 수정하는 리페어 장치 및 리페어 방법에 관한 것이다.
종래부터 레이저 광을 이용해서 기판의 결함을 수정하는 리페어 장치가 있다. 리페어 장치는, 제조 공정에서 제조된 각종 기판의 패턴의 결함 수정 등에 이용된다. 수정되는 기판은, 소위 플랫 패널 디스플레이(FPD) 기판, 반도체 웨이퍼, 프린트 기판 등이다. 소위 플랫 패널 디스플레이(FPD) 기판에는, 예를 들면 액정 디스플레이(LCD; Liquid Crystal Display) 기판, 플라즈마 디스플레이 패널(PDP; Plasma Display Panel) 기판, 유기 EL(Electroluminescence) 디스플레이 기판, 등이 있다.
리페어 장치에서 수정되는 결함에는, 레지스트 패턴, 에칭 패턴 등의 패터닝 프로세스 후의, 배선 패턴의 단락 불량 등의 결함이 있다. 리페어 장치는 레이저 광을 조사함으로써, 단락 부분을 절단할 수 있다.
또한, 리페어 장치에는 슬릿 투영 방식, 레이저 광을 점으로 집광시키는 방식 등, 다양한 가공 방식의 리페어 장치가 있다. 예를 들면, 여분의 레지스트 막을 절단하기 위해서, 절단 부분의 형상에 따른 단면 형상을 갖는 레이저 광을 수정 부분에 조사하여, 임의의 형상으로 결함을 수정할 수 있는 면 가공 방식의 리페어 장치가 있다.
그러한 면 가공 방식의 리페어 장치에는, 레이저 광의 단면 형상을 절단 부분의 형상에 맞추기 위해서, 복수의 미소 미러가 매트릭스 형상으로 배열된 디지털 미러 디바이스(Digital Mirror Device; 이하, DMD라 약기함) 유닛 등의 공간 광 변조 소자가 이용한 것이 있다. 복수의 미소 미러의 일부 각도를 제어하여, 레이저 광원으로부터의 레이저 광을 DMD에 조사함으로써, 레이저 광의 단면 형상을 원하는 형상으로 정형할 수 있다. 면 가공 방식의 리페어 장치는, 레이저 광을 면 형상으로 조사하기 때문에, 레이저 내력이 낮은 물질을 제거 또는 절단하는 경우에 이용된다.
또한, 레이저 내력이 높은 금속 등의 이물을 제거하는 경우에는, 높은 에너지를 조사시키기 위해서, 집광점에서 레이저 광을 수정 부분에 조사하여, 결함을 수정할 수 있는 집광점 가공 방식의 리페어 장치도 있다.
결함에는, 소정의 패턴 형상으로부터 밀려나온 레지스트 부분 등의 면 가공 방식의 리페어 장치로 수정 가능한 결함과, 금속 등의 이물로 집광점 가공 방식의 리페어 장치로 수정 가능한 결함이 있다. 종래는, 면 가공 방식과 집광점 가공 방식의 리페어 장치 각각의 장치에 있어서, 검사자가 결함부의 상태를 보고, 수정을 행하고 있다.
이러한 리페어 장치에 관련되는 기술로서는, 예를 들면 일본 특허 출원 공개 제2007-109981호 공보에 개시되어 있는 바와 같이, 모니터에 결함부를 표시시켜서 작업자가 결함 수정이 필요한지의 여부를 판정하여, 수정이 필요하다고 판단된 결함에 대하여, 작업자가 가공 조건 등을 설정하는 결함 수정의 기술이 있다.
또한, 일본 특허 출원 공개 제2011-85821호 공보에는, 기판 상의 패턴에 대해서 취득된 결함 화상과 참조 화상의 차분 정보와, 미리 등록된 영역 정보로부터 결함을 검출하고, 검출한 결함에 기초해서 수정 방법을 결정하는 기술이 개시되어 있다.
그러나, 전술한 면 가공 방식의 리페어 장치와 집광점 가공 방식의 리페어 장치와 같이, 가공 방식이 다른 리페어 장치는 별개의 장치이며, 종래는 검사자가 결함 개소를 모니터에 표시시켜서, 결함을 판정하고, 그 결함에 따라서 각각의 장치로 반송해서 결함 수정을 행하기 때문에, 제조 공정의 택트타임이 길어진다고 하는 문제가 있었다.
상기의 일본 특허 출원 공개 제2007-109981호 공보 및 일본 특허 출원 공개 제2011-85821호 공보에 개시된 장치에서는, 각각의 장치가 실행 가능한 가공 방식은 한 종류로 한정되어 있고, 각각의 장치는 전술한 바와 같은 면 가공 방식과 집광점 가공 방식이라고 하는 복수의 가공 방식 중에서 최적의 가공 방식을 선택하여, 실행할 수는 없다. 따라서, 각 리페어 장치에 있어서 수정 가능한 결함의 종류는, 한정되어 버려, 제조 공정의 택트타임이 길어져 버린다.
본 발명은, 상기의 문제를 감안하여 이루어진 것으로, 결함의 종류에 따라서, 복수의 가공 방식 중에서의 최적의 가공 방식의 설정과 가공 조건의 설정을 하여, 기판의 결함 수정이 가능한 리페어 장치 및 리페어 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양태에 따르면, 복수의 파장의 레이저 광을 출사하는 레이저 광원 장치와, 상기 레이저 광에 의해 결함 수정되는 기판을 관찰하기 위한 관찰 광학계와, 적어도 2개의 레이저 조사 광학계와, 상기 레이저 광이 입사하는 광로를, 상기 적어도 2개의 레이저 조사 광학계 중 어느 하나로 전환하는 레이저 광로 전환부와, 상기 관찰 광학계로부터의 광을 받아서 상기 기판을 촬상하는 촬상부와, 상기 촬상부에 있어서 촬상해서 얻어진 화상으로부터 화상 처리에 의해, 상기 기판의 결함부를 검출하는 결함 검출부와, 상기 결함부의 가공 영역마다, 가공 방식과 가공 조건을 설정하는 가공 조건 설정부와, 상기 가공 영역마다 설정된 상기 가공 방식과 상기 가공 조건에 기초해서 상기 기판에 대하여 가공을 행하도록, 상기 레이저 광원 장치와 상기 레이저 광로 전환부를 제어하는 제어부를 갖는 리페어 장치를 제공할 수 있다.
본 발명의 일 양태에 따르면, 복수의 파장의 레이저 광을 출사하는 레이저 광원 장치로부터의 레이저 광에 의해 기판의 결함부를 수정하는 리페어 방법으로서, 상기 레이저 광에 의해 결함 수정되는 기판을 촬상하는 촬상부에 있어서 촬상해서 얻어진 화상으로부터 화상 처리에 의해, 상기 기판의 결함부를 검출하고, 검출된 상기 결함부의 가공 영역마다, 가공 방식과 가공 조건을 설정하고, 상기 가공 영역마다 설정된 상기 가공 방식과 상기 가공 조건에 기초해서 상기 기판에 대하여 가공을 행하도록, 상기 레이저 광원 장치와, 상기 레이저 광이 입사하는 광로를 적어도 2개의 레이저 조사 광학계 중 어느 하나로 전환하는 레이저 광로 전환부를 제어하는 리페어 방법을 제공할 수 있다.
도 1은 본 발명의 실시 형태에 따른 리페어 장치의 구성도.
도 2는 본 발명의 실시 형태에 따른 결함부를 포함하는 기판(11)의 부분 확대 화상의 예를 도시하는 도면.
도 3은 도 2의 화상에 대응하는 참조 화상 RI의 예를 도시하는 도면.
도 4는 본 발명의 실시 형태에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트.
도 5는 본 발명의 실시 형태에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트.
도 6은 본 발명의 실시 형태에 따른, 결함 화상으로부터 결함부가 추출되고, 결함부의 면 가공 영역과 집광점 가공 영역이 설정될 때까지를 설명하기 위한 도면.
도 7은 본 발명의 실시 형태에 따른 설정부(51a)에 설정되는 가공 방식 및 가공 조건의 예를 도시하는 도면.
도 8은 본 발명의 실시 형태의 변형예 1에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트.
도 9는 본 발명의 실시 형태의 변형예 1에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트.
도 10은 변형예 1에 따른 집광점 가공 영역 입력 GUI의 예를 도시하는 도면.
도 11은 본 발명의 실시 형태의 변형예 2에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트.
도 12는 본 발명의 실시 형태의 변형예 2에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트.
도 13은 변형예 2에 따른 면 가공 영역 입력 GUI의 예를 도시하는 도면.
이하, 도면을 참조해서 본 발명의 실시 형태를 설명한다.
(전체 구성)
도 1은 본 실시 형태에 따른 리페어 장치의 구성도이다.
리페어 장치(1)는 리페어 대상인 기판(11)을 재치하는 XY 스테이지(12)와, 기판(11)을 촬상하는 촬상부(13)와, 레이저 광을 출사하는 레이저 광원(14)과, 레이저 광원(14)으로부터 출사된 레이저 광을 유도하는 제1 광학계(15)와, 레이저 광원(14)으로부터 출사된 레이저 광을 유도하는 제2 광학계(16)와, 레이저 광원(14)으로부터의 레이저 광을 제1 광학계(15)와 제2 광학계(16) 중 어느 하나로 출사하도록 전환하는 제1 광로 전환부(17)와, 제1 광학계(15)에 배치되어 레이저 광의 단면 형상을 임의의 형상으로 변경 가능한 2차원 공간 변조기(18)와, 제1 광학계(15)와 제2 광학계(16) 중 어느 하나로부터의 레이저 광을 출력하도록 전환하는 제2 광로 전환부(19)와, 제2 광로 전환부(19)로부터의 레이저 광을 기판(11)으로 유도하는 제3 광학계(20)와, 촬상부(13)에 의해 기판(11)을 촬상하기 위해서 조명광을 출사하는 조명 광원(21)과, 조명 광원(21)으로부터의 조명광을 기판(11)으로 유도하는 제4 광학계(22)와, 조명광의 반사광을 촬상부(13)로 유도하는 제5 광학계(23)와, 제어 장치(24)를 갖고 구성되어 있다.
제어 장치(24)는 전술한 레이저 광원(14), 광로 전환부(17), 등을 제어하는, 중앙 처리 장치(CPU) 및 메모리 장치를 갖는 장치이며, 예를 들면 퍼스널 컴퓨터이다. 제어 장치(24)의 구성에 대해서는, 후술한다.
리페어 대상인 기판(11)은, 여기에서는 액정 디스플레이 기판인 소위 플랫 패널 디스플레이(FPD) 기판이다. 기판(11) 상에는 포토 공정, 에칭 공정 등에 의해, 레지스트 패턴, 에칭 패턴 등이 형성된다.
XY 스테이지(12)는 제어 장치(24)의 제어 하에서, 기판(11)을 XY 방향으로 이동하는 기판 이동 장치이다. 도시하지 않은 검사 장치에 의해 기판(11)에 대하여 결함 검사가 행해지고, 결함이 존재하는 위치 정보가 제어 장치(24)에 공급된다. XY 스테이지(12)는 제어 장치(24)의 제어 하에서, 기판(11)을 이동시킨다.
XY 스테이지(12)의 상방에는, 대물 렌즈 전환 유닛(31)이 배설되어 있다. 대물 렌즈 전환 유닛(31)은 복수(여기서는 2개)의 대물 렌즈(32)를 갖고, 제어 장치(24)의 제어 하에서, 사용하는 대물 렌즈(32)가 선택되어 레이저 광을 기판(11)에 입사시킨다.
촬상부(13)는 CCD 등의 고체 촬상 소자이며, 대물 렌즈(32)를 통과한 기판(11)으로부터의 광을, 다이크로익 미러(33, 34)와 결상 렌즈(35)를 포함하는 제5 광학계(23)를 통해서 받는다. 제5 광학계(23)는 레이저 광에 의해 결함 수정되는 기판을 관찰하기 위한 관찰 광학계이다. 촬상부(13)는 관찰 광학계로부터의 광을 받아서 기판(11)을 촬상하는 촬상부이다.
조명 광원(21)으로부터의 조명광은 콜렉터 렌즈(36), 다이크로익 미러(33) 및 대물 렌즈(32)를 포함하는 제4 광학계(22)를 통해서, 기판(11)으로 유도되고, 기판(11)을 조명한다. 기판(11)의 광학상은 촬상부(13)의 촬상면에, 그 조명광이 조사된 기판(11)으로부터의 반사광에 의해 형성된다. 즉, 조명광은 다이크로익 미러(33)에 의해, 반사되어 기판(11)으로 유도되고, 기판(11)의 반사광은 다이크로익 미러(33, 34)를 투과하여, 결상 렌즈(35)에 의해 촬상부(13)로 유도된다.
레이저 광원(14)은 YAG 레이저 발신기를 포함하여, 복수의 파장의 레이저 광을 생성해서 출사 가능한 다파장 레이저 광원 장치이다. 레이저 광원(14)은 제어 장치(24)의 제어 하에서, 여기에서는 파장 266㎚, 파장 355㎚, 파장 532㎚, 및 파장 1064㎚의 4개의 파장 중에서 1개의 레이저 광을 선택적으로 출사한다. 레이저 광원(14)은, 결함의 종류 또는 가공 방식에 따라서 선택되어 설정된 파장, 파워 등으로 레이저 광을 출사한다.
제1 광학계(15)는 결함 개소의 형상에 맞춰서 결함을 수정하는 면 가공 방식의 결함 수정을 위한 레이저 광을 조사하는 레이저 조사 광학계이다. 제1 광학계(15)는, 렌즈(41), 광 파이버(42), 렌즈(43), 미러(44) 및 2차원 공간 변조기(18)를 포함한다.
제2 광학계(16)는 결함 개소를 점으로 수정하는 집광점 가공 방식의 결함 수정을 위한 레이저 광을 조사하는 레이저 조사 광학계이다. 제2 광학계(16)는 렌즈(45)와 광 파이버(46)를 포함한다.
제1 광로 전환부(17)는 슬라이드 가능한 미러(47)를 포함하는 미러 슬라이더이다. 제1 광로 전환부(17)는 제어 장치(24)의 제어 하에서, 레이저 광원(14)으로부터의 레이저 광을 제1 광학계(15)와 제2 광학계(16) 중 어느 하나로 출사하도록 전환하는 레이저 광로 전환 기구를 구성한다. 즉, 제1 광로 전환부(17)는 레이저 광이 입사하는 광로를, 적어도 2개의 레이저 조사 광학계(15, 16) 중 어느 하나로 전환하는 레이저 광로 전환부를 구성한다.
도 1에 있어서 실선으로 나타낸 바와 같이, 레이저 광을 반사 가능한 미러(47)가 레이저 광원(14)으로부터 출사되는 레이저 광의 광로 상으로부터 벗어나도록 이동하면, 레이저 광은 직진하여, 제1 광학계(15)로 출사된다. 또한, 도 1에 있어서 점선으로 나타낸 바와 같이, 미러(47)가, 레이저 광원(14)으로부터 출사되는 레이저 광의 광로 상으로 이동하면, 레이저 광은 미러(47)에서 반사해서, 제2 광학계(16)로 출사된다. 또한, 미러(47)를 레이저 광의 광로 상으로부터 벗어나도록 이동하면, 레이저 광이 제2 광학계(16)로 출사되고, 미러(47)를 레이저 광의 광로 상으로 이동하면, 레이저 광은 제1 광학계(15)로 출사되도록 해도 된다.
제1 광학계(15)로 출사된 레이저 광은 렌즈(41)를 통과해서, 광 파이버(42)의 한 쪽 단부면에 입사한다. 레이저 광은 광 파이버(42)의 작용에 의해 광 파이버(42) 내를 전송하여, 광 파이버(42)의 다른 쪽 단부면으로부터 출사되고, 렌즈(43)를 통과해서 미러(44)에서 반사된다.
광 파이버(42)의 다른 쪽 단부면으로부터의 레이저 광은, 렌즈(43)에 의해 확대되어 미러(44)로 출사된다. 따라서, 파이버(42)의 다른 쪽 단부면은, 렌즈(43)와 미러(44)에 의해, 레이저 파워 분포가 균일화된 면 광원으로 된다.
미러(44)로부터의 레이저 광은, 2차원 공간 변조기(18)에 입사된다. 2차원 공간 변조기(18)는 후술하는 결상 렌즈(50)의 전측 초점 위치에 배치된다.
2차원 공간 변조기(18)는, 공간 광 변조 소자이며, 여기에서는 각도가 변경 가능한 미소 미러를 구비하는 DMD(디지털 마이크로미러 디바이스)가 복수 2차원 매트릭스 형상으로 배열된 DMD 유닛이다. DMD는 구동용 메모리 셀의 상부에, 예를 들면 각도 ±10도와 0도(수평)로 디지털 제어 가능한 미소 미러를 구비하고 있다.
DMD는 각 미소 미러와 구동용 메모리 셀 사이의 갭에 작용하는 전압차에 의해 일어나는 정전 인력에 의해 각도 ±10도와 0도(수평)로 고속으로 전환할 수 있는 것이며, 예를 들면 일본 특허 출원 공개 제2000-28937호 공보에 개시되어 있다. 이 미소 미러의 회전은, 예를 들면 스토퍼에 의해 각도 ±10도로 제한되고, 구동용 메모리 셀의 온 상태에서 각도 ±10도로 회전하여, 오프 상태에서 수평 각도인 0도로 복귀한다. 또한, 이 미소 미러는, 예를 들면 수㎛ ~ 수십㎛의 오더의 사각형상으로 반도체 제조 기술을 이용해서 형성된 마이크로 미러이며, 구동용 메모리 셀 상에 2차원으로 배열함으로써 DMD 유닛이 구성된다.
제2 광로 전환부(19)는 슬라이드 가능한 미러(48)를 포함하는 미러 슬라이더이다. 제2 광로 전환부(19)는 제어 장치(24)의 제어 하에서, 제1 광학계(15)와 제2 광학계(16) 중 어느 하나로부터의 레이저 광을 제3 광학계(20)로 출사하도록 전환하는 레이저 광로 전환 기구를 구성한다. 도 1에 있어서 실선으로 나타낸 바와 같이, 레이저 광을 반사 가능한 미러(48)가, 2차원 공간 변조기(18)로부터의 레이저 광의 광로 상으로부터 벗어나도록 이동하면, 2차원 공간 변조기(18)로부터의 레이저 광은, 제3 광학계(20)로 출사된다. 또한, 도 1에 있어서 점선으로 나타낸 바와 같이, 미러(48)가 2차원 공간 변조기(18)로부터의 레이저 광의 광로 상으로 이동하면, 2차원 공간 변조기(18)로부터의 레이저 광은 미러(48)에 의해 차단되고, 제2 광학계(16)로부터의 레이저 광이 미러(48)에서 반사되어, 제3 광학계(20)로 출사된다.
제3 광학계(20)는 미러(49), 결상 렌즈(50), 다이크로익 미러(34) 및 대물 렌즈(32)를 포함한다.
전술한 DMD 유닛의 기준 반사면(각 DMD의 각도가 0도인 반사면)에 레이저 광이 입사한 경우, 미러(49)에 레이저 광은 입사하지 않고, 각 미소 미러가 온 상태에서 각도 ±10도로 기울었을 때, 미러(49)로 레이저 광이 입사하도록, 제1 광학계(15), 제2 광로 전환부(19) 및 제3 광학계(20)는 배치된다. 또한, DMD 유닛은 기준 반사면의 경사각을 조정 가능한 지지대에 부착되어 있는 것이 바람직하다.
또한, DMD 유닛인 2차원 공간 변조기(18)에 입사한 레이저 광은, 예를 들면 구동용 메모리 셀을 온 상태로 했을 때에, 미러(49)로 입사하고, 결상 렌즈(50), 다이크로익 미러(33, 34) 및 대물 렌즈(32)를 통해서, 기판(11) 상에 축소 투영된다. 또한, 구동용 메모리 셀을 오프 상태로 하면, 2차원 공간 변조기(18)로부터의 레이저 광은, 미러(49)에 입사하지 않고, 기판(11)에 조사되지 않는다.
따라서, 면 가공 방식에 의한 결함 수정을 행하는 경우에는, 2차원 공간 변조기(18)에 의해 원하는 단면 형상으로 형성된 레이저 광은, 제2 광로 전환부(19)를 직진하여, 미러(49)에서 반사되어, 결상 렌즈(50)로 입사한다. 결상 렌즈(50)로부터 출사한 레이저 광은, 다이크로익 미러(34)에 의해 반사되고, 대물 렌즈(32)에 의해 기판(11) 상에 2차원 공간 변조기(18)의 반사면이 축소 투영됨으로써, 기판(11)을 원하는 형상으로 수정해서 가공한다.
또한, 제2 광학계(16)로부터의 레이저 광이 미러(48)에서 반사되면, 레이저 광이 미러(49)로 입사하도록, 제2 광학계(16), 제2 광로 전환부(19) 및 제3 광학계(20)는 배치된다.
따라서, 집광점 가공 방식에 의한 결함 수정을 행하는 경우에는, 레이저 광은 렌즈(45)를 통해서 광 파이버(46)의 한 쪽 단부면에 입사한다. 광 파이버(46)의 다른 쪽 단부면에서는, 레이저 광은 레이저 파워 분포가 균일화된 면 광원으로 되어 있다. 또한, 광 파이버(46)의 다른 쪽 단부면은, 결상 렌즈(50)의 전측 초점 위치에 배설된다. 광 파이버(46)의 다른 쪽 단부면으로부터 출사한 레이저 광은, 미러(48)와 미러(49)에서 반사되어, 결상 렌즈(50)에 입사한다. 결상 렌즈(50)로부터 출사한 레이저 광은, 다이크로익 미러(34)에 의해 반사되어, 대물 렌즈(32)에 의해 기판(11) 상에 집광하여, 기판(11)을 점의 형상으로 수정해서 가공한다.
또한, 제2 광학계(16)의 광 파이버(46)의 다른 쪽 단부면에, 핀홀 장치를 설치하여, 이 핀홀 장치의 핀홀 직경을 갖는 레이저 광이, 기판(11) 상에 축소 투영되도록 해도 된다. 또한, 핀홀 장치의 핀홀 직경은, 가변이어도 된다. 이러한 구성에 따르면, 집광점 가공 방식의 가공 사이즈는, 그 핀홀 직경에 의존하므로, 제어부(51)에 의해, 핀홀 직경을 제어함으로써, 집광점 가공 방식의 가공 사이즈를, 결함에 따른 가공 사이즈로 할 수 있다.
또한, 제2 광학계(16)의 광 파이버(46) 대신에, 오목 렌즈를 배치하여, 레이저 광원(46)으로부터 출사된 레이저 광의 평행 광선을 그 오목 렌즈에 의해 개구수 NA를 갖는 상태에서, 결상 렌즈(50)에 입사시키도록 해도 된다. 결상 렌즈(50)에 의해 다시 평행 광선으로 된 레이저 광은, 대물 렌즈(32)에 의해 기판(11) 상에 집광한다. 그 경우, 그 오목 렌즈의 초점 거리를 조정하여, 초점 위치를 기판(11)의 바로 앞에서 집광시켜, 레이저 광이 기판(11) 상에 어느 정도의 크기를 갖도록 해도 되고, 결상 렌즈(50)의 바로 앞측 초점 위치에 핀홀 장치를 배치하도록 하여, 그 핀홀 장치의 핀홀 직경을 갖는 레이저 광이 기판(11) 상에 축소 투영되도록 해도 된다. 오목 렌즈를 이용하는 것은, 소모품인 광 파이버를 사용하지 않아도 된다고 하는 메리트가 있다.
관찰 광학계인 제5 광학계(23)의 일부는, 다이크로익 미러(34)에 의해, 제3 광학계(20)와 겹쳐 있다. 즉, 관찰 광학계는, 제3 광학계(20)의 일부와 동일한 광축 상에 위치해 있다. 기판(11)으로부터의 반사광이 결상 렌즈(35)에 의해 촬상부(13)의 촬상면 상에 결상함으로써, 촬상부(13)는 기판(11)을 촬상한다. 표시부(59)에는, 기판(11)의 라이브 화상이 표시된다.
또한, 전술한 면 가공 방식에서는, 2차원 공간 변조기(18)를 이용하고 있지만, 2차원 공간 변조기(18)의 위치에 배치된 소정 형상의 마스크 패턴 또는 슬릿을 이용해도 된다. 예를 들면, 레이저 광원(14)으로부터 출사된 레이저 광을 빔 익스팬더에 의해 확대해서 마스크 패턴 또는 슬릿에 입사시킨다. 레이저 광은 마스크 패턴 또는 슬릿의 형상에 따른 단면 형상을 갖고, 기판(11) 상에 조사된다. 이 경우, 빔 익스팬더로 레이저 광의 빔 직경을 넓히는 대신에, 광 파이버의 단부면으로부터의 레이저 광을 마스크 패턴 또는 슬릿에 투영하여, 레이저 광의 빔 직경을 넓히도록 해도 된다.
(제어 장치의 구성)
제어 장치(24)는, 제어부(51)와, 레시피 저장부(52)와, 스테이지 제어부(53)와, 화상 처리부(54)와, 대물 렌즈 전환 제어부(55)와, 슬라이더 제어부(56)와, 레이저 형상 제어부(57)와, 레이저 광원(14)을 제어하는 레이저 제어부(58)와, 표시부(59)와, 입력 장치(60)를 포함한다.
제어부(51)는 중앙 처리 장치(CPU) 및 메모리 장치를 포함하여, 메모리 장치에 기억된 프로그램 및 데이터를 이용해서, 후술하는 처리를 실행한다. 제어부(51)에는 외부의 검사 장치로부터, 결함 수정하는 기판(11)에 대한 결함 위치 정보가 입력된다.
제어부(51)는 가공 영역 및 가공 조건이 설정되는 설정부(51a)를 포함한다. 설정부(51a)는 결함부의 가공 영역마다, 가공 방식과 가공 조건을 설정하는 가공 조건 설정부를 구성한다.
제어부(51)는 기억된 프로그램을 CPU에 의해 실행하여, 레시피 저장부(52)에 저장된 각종 정보를 이용해서, 설정부(51a)에 가공 영역 및 가공 조건을 설정하여, 스테이지 제어부(53), 화상 처리부(54), 대물 렌즈 전환 제어부(55), 슬라이더 제어부(56), 레이저 형상 제어부(57) 및 레이저 제어부(58)를 제어하는 처리를 실행한다. 즉, 제어부(51)는 가공 영역마다 설정된 가공 방식과 가공 조건에 기초해서 기판(11)에 대하여 가공을 행하도록, 레이저 광원(14)과 제1 광로 전환부(17)를 제어한다.
레시피 저장부(52)는, 결함 수정 시에 사용하는 각종 정보를 저장하는 메모리 장치이다. 각종 정보에는, 리페어 대상인 기판에 대한, 참조 화상 정보, 가공 금지 영역 정보, 미세 가공 영역 정보, 가공 방식 영역 정보, 레이저 광 출력 설정 정보, 대물 렌즈 설정 정보 등, 각 가공 방식 실행 시에 필요한 정보가 포함된다.
참조 화상 정보는, 결함부를 갖지 않는 기판(11)을 촬상해서 얻어진 촬상 화상 등의 화상 정보이며, 결함부의 검출을 할 때에 참조되는 참조 화상 RI의 화상 정보이다.
가공 금지 영역 정보는, 기판(11)에 있어서, 모두 또는 일부 가공 방식에 의한 가공이 금지되는 영역의 정보이다.
미세 가공 영역 정보는 기판(11)에 있어서, 미세 가공되는 영역의 정보이다.
가공 방식 영역 정보는 가공 방식이 설정되어 있는 영역의 정보이며, 예를 들면 후술하는 자동 처리의 경우에, 면 가공 방식에 의해 가공되는 면 가공 영역의 정보와, 집광점 가공 방식에 의해 가공되는 집광점 가공 영역의 정보이다.
레이저 광 출력 설정 정보는, 각 가공 방식의 실행 시에 레이저 광원(14)으로부터 출사되는 레이저 광의 파장, 주파수, 샷 수 등의 정보이다.
대물 렌즈 설정 정보는, 가공 방식마다 사용되는 대물 렌즈, 및 미세 가공 시에 사용되는 대물 렌즈의 정보이다.
이상 외에도, 각종 정보가, 레시피 저장부(52)에 미리 기억되어 있다.
스테이지 제어부(53)는 기판(11)의 결함의 위치에 레이저 광을 조사하도록, XY 스테이지(12)를 제어한다. 스테이지 제어부(53)는 제어부(51)로부터 위치 정보가 입력되고, 입력된 위치 정보에 기초하여, 촬상부(13)에 의해 결함부가 촬상되어 표시부(59)에 표시되도록, XY 스테이지(12)를 제어한다.
화상 처리부(54)는 촬상부(13)로부터의 화상 신호를 입력하여, 리페어 대상인 기판(11)의 결함부를 화상 처리에 의해 검출하는 결함 검출부(54a)를 포함하여, 기판(11)의 화상을 표시하기 위한 화상 신호를 표시부(59)에 출력한다. 결함 검출부(54a)는, 촬상부(13)에 있어서 촬상해서 얻어진 화상으로부터 화상 처리에 의해, 기판(11)의 결함부를 검출한다.
대물 렌즈 전환 제어부(55)는 대물 렌즈 전환 유닛(31)을 제어하여, 가공 방식 등에 따라서, 또는 검사자로부터의 지시에 따라서, 대물 렌즈(32)를 전환한다.
슬라이더 제어부(56)는 미러(47, 48)의 위치를 변경하도록, 제1 및 제2 광로 전환부(17, 19)를 제어한다.
레이저 형상 제어부(57)는 수정하는 결함부의 형상 또는 레이저 광 조사 영역의 형상에 맞춘 레이저 광의 반사광을 미러(49)로 출사하도록, 제어부(51)로부터의 정보에 기초해서 2차원 공간 변조기(18)를 제어한다.
레이저 제어부(58)는 레이저 광원(14)을 제어하여, 레이저 광의 출력과, 출력하는 레이저 광의 파장 등을 제어한다.
표시부(59)는 기판(11)의 라이브 화상을 표시함과 함께, 수정의 영역 등의 입력 또는 설정을 행하는 그래피컬 유저 인터페이스(이하, GUI라 약기함)를 제공한다. 표시부(59)에 표시되는 GUI의 화상은, 제어부(51)에 의해 생성되고, 표시되는 GUI의 화상 중에는, 촬상부(13)에 의해 촬상해서 얻어진 기판(11)의 화상이 포함된다.
입력 장치(60)는 검사자가 제어부(51)에 대하여 각종 지시를 입력하기 위한, 키보드, 마우스 등의 조작기이다.
(리페어 처리)
다음으로, 리페어 장치(1)의 리페어 처리에 대해서 설명한다.
리페어 장치(1)에는, 도시하지 않은 검사 장치로부터의 결함 위치 정보가 입력되고, 리페어 장치(1)는 그 결함 위치 정보에 기초하여, 리페어 처리를 실행한다. 도시하지 않은 검사 장치는, 예를 들면 촬상 장치에 의해 기판(11)을 촬상하여, 화상 처리에 의해 결함을 검출하고, 검출한 결함의 기판 상의 위치 정보를 생성해서 출력하는 장치이다.
이하, 기판 화상의 예를 이용해서, 제어부(51)의 동작을 설명하지만, 우선, 기판 화상의 예에 대해서 설명한다.
도 2는 결함부를 포함하는 기판(11)의 부분 확대 화상의 예를 도시하는 도면이다. 여기에서는, 도 2의 화상은 포토 공정 후의 기판(11)의 화상이다. 도 2에 도시한 바와 같이, 결함부를 포함하는 기판(11)의 부분 확대 화상(이하, 결함 화상이라고 함) DI에는, 기판(11)의 표면 상에 형성된 복수의 배선 패턴(101)의 화상과, 결함부(102)의 화상이 포함되어 있다. 결함부(102)는 금속 등의 이물(103)을 포함하는 레지스트 막(104)이다. 또한, 기판(11) 상에는 배선 패턴 간의 도통부(105)도 형성되어 있다.
도 3은 도 2의 화상에 대응하는 참조 화상 RI의 예를 도시하는 도면이다. 전술한 바와 같이, 참조 화상 RI는 레시피 저장부(52)에 기억되어 있다. 참조 화상 RI와 결함 화상 DI의 차분 화상으로부터, 결함부(102)를 검출할 수 있다.
또한, 후술하는 바와 같이, 도 3에 있어서, 4개의 도통부(105) 사이의 영역FRA가, 미세 가공 영역이다.
도 4와 도 5는 제어부(51)의 처리의 예를 나타내는 플로우차트이다. 이하, 도 4와 도 5에 의해, 리페어 장치(1)의 리페어 처리에 대해서 설명한다. 또한, 도 6은 결함 화상으로부터 결함부가 추출되고, 결함부의 면 가공 영역과 집광점 가공 영역이 설정될 때까지를 설명하기 위한 도면이다.
제어부(51) 내의 메모리 장치에는, 도시하지 않은 검사 장치로부터 입력된 기판(11)의 1개 또는 복수의 결함 위치 정보가 저장되고, 제어부(51)는 그 메모리 장치로부터 결함 위치 정보를 1개씩 판독하고, 판독된 결함 위치 정보에 기초하여, 촬상부(13)의 촬상 범위를 그 결함 위치로, 즉 그 결함 위치 정보에 대응하는 위치를 포함하는 범위로, 이동시킨다(스텝(이하 S라 약기함) 1). 보다 구체적으로는, 제어부(51)는 그 결함 위치 정보에 기초해서 스테이지 제어부(53)를 제어하여, 촬상부(13)에 의해 기판(11)의 결함 위치가 촬상되도록 XY 스테이지(12)를 구동한다.
제어부(51)는 화상 처리부(54)를 제어하여, 촬상부(13)로부터 출력되는 화상 신호를 화상 처리부(54)에 받아들임으로써, 기판(11)을 촬상한다(S2). S2의 처리에 의해, 결함 화상 DI가 취득된다.
계속해서, 제어부(51)는 화상 처리부(54) 내의 결함 검출부(54a)에 의해, 결함 화상 DI로부터 결함부(102)의 검출을 행한다(S3). 도 6에 도시한 바와 같이, 결함 화상 DI로부터, 결함부 화상 DDI가 추출된다.
결함부(102)의 검출은, 결함 화상 D1과 참조 화상 RI의 차분을 취함으로써 행할 수 있다. 예를 들면, 도 2에 도시한 바와 같은 결함 화상 DI와 도 3에 도시한 바와 같은 참조 화상 RI로부터 패턴 매칭에 의해, 결함부(102)가 추출되고, 결함이 검출된다. 또한, 결함부(102)의 추출은 패턴 매칭 외에도, 인접 화상 비교 등의 화상 처리 기술을 이용해서 행하도록 해도 된다.
결함 화상 DI는, 외부로부터의 결함 위치 정보에 기초해서 얻어지지만, 검사 장치에 있어서 검출된 결함이, 검사 정밀도에 의해 결함이 아닌 경우도 있다. 따라서, 제어부(51)는 S3에서 결함이 검출되지 않는 경우도 있다.
따라서, 제어부(51)는 결함부가 존재하는지 여부 즉 결함이 검출되었는지 여부를 판정하여, 결함 화상 내에 결함부가 존재하지 않는 경우에는(S4; 아니오), 처리는, 후술하는 S20으로 이행한다.
제어부(51)는 결함 화상 내에 결함부가 존재하는 경우에는(S4; 예), 검출된 결함부의 가공 방식을 결정한다(S5). S5의 처리가, 가공 영역을 결함부(102)의 화상을 해석하는 화상 처리에 의해, 가공 영역마다 가공 방식을 결정하는 가공 방식 결정부를 구성한다. S5에 있어서 결정된 가공 영역마다의 가공 방식은 설정부(51a)에 설정된다. 여기에서는, S5에 있어서, 가공 영역을, 결함부(102)의 화상을 해석하는 화상 처리에 의해, 레이저 광에 의한 저에너지로 가공하는 면 가공 영역과, 레이저 광에 의한 고에너지로 가공하는 집광점 가공 영역으로 분류함으로써, 면 가공 영역 및 집광점 가공 영역 각각에 대한 가공 방식이 결정된다.
가공 방식은 검출된 결함부(102)의 화상으로부터 얻어지거나 또는 화상에 대한 각종 정보로부터 결정된다. 제어부(51)는 검출된 결함부(102)의 화상을 해석하여, 결함부(102)의 휘도, 휘도 분산, 색, 형상, 면적 등으로부터 결함의 종류를 판정하고, 또한 결함부가 존재하는 영역의 정보로부터, 결함부(102)의 가공 방식을 결정한다.
도 6의 예에서는, S3에서 추출된 결함부(102)를 포함하는 결함부 화상 DDI로부터, 이물(103)의 화상을 포함하는 결함부 화상 DDI1과, 레지스트 막(104)의 화상을 포함하는 결함부 화상 DDI2가 생성되어 있다. 도 6의 결함부 화상 DDI1과 DDI2의 경우, 예를 들면 결함 화상 DI에 있어서 이물(103) 부분의 화소의 휘도값은 소정의 값 이하로 되기 때문에, 이물(103) 부분(결함부 화상 DDI1에 있어서 둥글고 약간 짙은 음영 부분)은, 높은 에너지로 가공되는 부분으로서 분류된다.
마찬가지로, 예를 들면 결함 화상 DI에 있어서 레지스트 막(104)의 부분의 화소의 휘도값은 소정의 값 이상이기 때문에, 레지스트 막(104)의 부분(결함부 화상 DDI2에 있어서 링 형상의 옅은 음영 부분)은, 낮은 에너지로 가공되는 부분으로서 분류된다.
여기에서는, 높은 에너지로 가공되는 부분(이하, 고에너지 가공부라 함)은, 예를 들면 흑 결함의 영역이며, 집광점 가공 방식에 의해 가공된다. 낮은 에너지로 가공되는 부분(이하, 저에너지 가공부라 함)은, 예를 들면 레지스트 막 결함의 영역이며, 면 가공 방식에 의해 가공된다.
전술한 예에서는, 가공 방식의 결정은, 결함 화상 DI의 화상 데이터의 휘도에 기초해서 행해지고 있지만, 휘도뿐만 아니라, 전술한 휘도 분산, 색, 형상, 면적, 결함부의 위치 정보 등으로부터 판정해도 된다.
또한, 여기서는, 결함부(102)를 고에너지 가공부와 저에너지 가공부의 2개 부분으로 분류하고 있지만, 소정의 조건에서는, 가공이 불필요한 부분(이하, 가공 불필요부라 함)으로서 분류하도록 해도 된다. 예를 들면, 흑 결함은 가공 불필요부와 분류되도록 해도 된다.
제어부(51)는 결함부(102)의 가공 방식을 결정한 후, 결함 화상 DI 내에 고에너지 가공부가 존재하는지 여부를 판정한다(S6). 도 6의 예에서는, 결함부 화상 DDI1의 이물(103)이 고에너지 가공부이므로, 집광점 가공 방식으로 가공되는 부분이 존재한다고 판정된다.
또한, 고에너지 가공부가 존재하지 않는 경우(S6; 아니오), 처리는 S10으로 이행한다.
고에너지 가공부가 존재하는 경우(S6; 예), 제어부(51)는 집광점 가공 방식으로 가공되는 영역(이하, 집광점 가공 영역이라고 함)의 정보를 설정부(51a)에 설정한다(S7). 집광점 가공 영역은, 집광점의 궤적(즉 이동 범위)으로서 결정된다.
도 6에 도시한 바와 같이, 집광점 가공 영역 화상 RA1은, 참조 화상 RI와 결함부 화상 DDI1으로부터 결정된다. 집광점 가공 영역 화상 RA1에 있어서, 흰색 윤곽 부분(흰색 부분)이, 초점 가공 방식에 의해 가공되는 집광점 가공 영역을 나타낸다. 즉, 집광점 가공 영역은, 이물(103) 부분에 있어서 배선 패턴(101) 부분을 제외한 영역이다. 따라서, S7에서는, 도 6의 흰색 윤곽 부분을 주사하는 궤적이, 집광점 가공 영역으로서 설정된다.
계속해서, 제어부(51)는 레이저 샷 조건을 설정부(51a)에 설정한다(S8). 레이저 샷 조건은, 레이저 가공 조건이며, 집광점 가공 방식에 있어서의 레이저 광의 파장, 주파수, 샷 수 등이다. 제어부(51)는 레시피 저장부(52)에 미리 기억되어 있는, 집광점 가공 방식에 대응하는 레이저 샷 조건을, 판독하여, 설정부(51a)에 설정한다.
도 7은 설정부(51a)에 설정되는 가공 방식 및 가공 조건의 예를 도시하는 도면이다. 각 결함부의 가공 영역마다, 가공 방식과, 가공 영역 정보와, 파장, 주파수, 샷 수, 파워, 광로 등의 가공 조건 정보가 설정된다. 도 7은 결함 위치 번호가 「1」인 결함부에 있어서, 결함 영역 번호가 「1-1」인 가공 영역에 대해서, 가공 방식이 「고에너지 가공 방식」이며, 그 가공 영역이 「(Xa, Ya), (Xb, Yb), …」이고, 파장이 「266㎚」인 것 등, 을 나타내고 있다.
그리고, 제어부(51)는 결함 영역 번호가 「1-1」에 대해서 설정부(51a)에 설정된 가공 방식, 가공 영역, 및 각종 가공 조건에 기초하여, 집광점 가공을 실행한다(S9). 구체적으로는, 제어부(51)가, 스테이지 제어부(53), 대물 렌즈 전환 제어부(55), 슬라이더 제어부(56), 레이저 제어부(58)를 구동하고 또한 제어함으로써, 집광점 가공 방식에 의한 수정이 실행된다.
집광점 가공 방식의 경우, 레이저 광이 제2 광학계(16)를 통과해서 미러(49)에 도달하도록, 제어부(51)는 슬라이더 제어부(56)를 제어하여, 제1 및 제2 광로 전환부(17, 19)를 전환한다. 대물 렌즈 전환 제어부(55)에 있어서 집광점 가공 방식에 대응하는 대물 렌즈가 선택되도록, 제어부(51)는 대물 렌즈 전환 제어부(55)를 제어한다.
또한, 제어부(51)는 설정부(15a)에 설정된 집광점 가공 영역(집광점의 궤적)의 정보에 기초하여, 스테이지 제어부(53)를 제어해서 XY 스테이지(12)를 구동한다.
또한, 제어부(51)는 설정부(15a)에 설정된 레이저 가공 조건에 기초하여, 레이저 제어부(58)를 제어하여, 설정된 파장, 주파수, 샷 수 등으로, 레이저 광을 출사하도록 레이저 광원(14)을 구동한다.
다음으로, 제어부(51)는 결함 화상 DI 내에 저에너지 가공부가 존재하는지 여부를 판정한다(S10). 도 6의 결함부 화상 DDI2에 도시한 바와 같은 저에너지 가공부가 존재하는 경우(S10; 예), 제어부(51)는 미세 가공부가 존재하는지 여부를 판정한다(S11). 또한, 저에너지 가공부가 존재하지 않는 경우(S10; 아니오), 처리는, S20으로 이행한다.
미세 가공부의 위치 및 영역의 정보는, 미세 가공 영역 정보인 미세 가공 영역 화상 FRI로서, 레시피 저장부(52)에 기억되어 있다. 따라서, 제어부(51)는 레시피 저장부(52)로부터 미세 가공 영역 화상 FRI를 판독함으로써, 결함부 화상 DDI2에 미세 가공 영역이 포함되어 있는지를 판정할 수 있다.
여기에서는, 도 3의 십자형 영역 FRA가 미세 가공 영역이다. 따라서, 저에너지 가공부가 미세 가공 영역을 포함하는 경우에는, 제어부(51)는 집광점 가공 영역을 설정한다(S12). 이 집광점 가공 영역은, 미세 가공 영역 화상 FRI와 결함부 화상 DDI1로부터 결정되고, 집광점 가공 영역 화상 RA2에 있어서, 흰색 윤곽 부분(흰색 부분)이, 집광점 가공 방식에 의해 가공되는 집광점 가공 영역을 나타낸다. 즉, 집광점 가공 영역은, 레지스트 막(104)의 부분 중 미세 가공 부분의 영역이다.
따라서, 미세 가공부가 존재하는 경우(S11; 예), 제어부(51)는 도 6의 집광점 가공 영역 화상 RA2에 도시한 바와 같은 집광점 가공 영역을 설정한다(S12). S12의 처리는, 상기의 S7과 마찬가지의 처리이다. 또한, 저에너지 가공부가 존재하지 않는 경우(S11; 아니오), 처리는, S15로 이행한다.
계속해서, 제어부(51)는 레이저 샷 조건을 설정한다(S13). S13의 처리는, 상기의 S8과 마찬가지의 처리이다.
도 7에 도시한 바와 같이, 결함 위치 번호가 「1」인 결함부에 있어서, 결함 영역 번호가 「1-2」인 가공 영역에 대해서, 가공 방식이 「고에너지 가공 방식」인 것이 설정되어 있다. 또한, 결함 영역 번호가 「1-2」인 가공 영역에 대해서, 가공 영역, 파장 등의 가공 조건도 설정된다.
그리고, 제어부(51)는 결함 영역 번호가 「1-2」에 대해서 설정부(51a)에 설정된 가공 방식, 가공 영역, 및 가공 조건에 기초하여, 집광점 가공을 실행한다(S14). S14의 처리는, 상기의 S9와 마찬가지의 처리이다.
다음으로, 제어부(51)는 결함 화상 DI 내에 면 가공부가 존재하는지 여부를 판정한다(S15). 도 6의 예에서는, 결함부 화상 DDI2의 레지스트 막(104)이 저에너지 가공부이므로, 면 가공 방식으로 가공되는 부분이 존재한다고 판정된다.
또한, 면 가공부가 존재하지 않는 경우(S15; 아니오), 처리는 S20으로 이행한다.
면 가공부가 존재하는 경우(S15; 예), 제어부(51)는 면 가공 방식으로 가공되는 영역(이하, 면 가공 영역이라고 함)을 설정한다(S16). 면 가공 영역은 S3에서 검출된 결함부의 형상 및 위치에 기초해서 결정되고 설정된다. 또한, 면 가공부가 존재하지 않는 경우(S15; 아니오), 처리는, S20으로 이행한다.
면 가공 영역은, 참조 화상 RI와 결함부 화상 DDI2로부터 결정되지만, 면 가공 방식에 있어서의 가공 금지 영역 정보가 있으면, 가공 금지 영역 정보도 가미해서 결정된다. 예를 들면, 상기 미세 가공 영역 FRA를 포함하는 사각형부가 면 가공 방식에 있어서의 가공 금지 영역 정보로서 설정되어, 레시피 저장부(52)에 기억되어 있을 때, 제어부(51)는 참조 화상 RI와 결함부 화상 DDI2와 가공 금지 영역 정보로부터, 면 가공 영역을 결정하여, 설정부(51a)에 설정한다. 도 6에서는, 면 가공 영역은, 참조 화상 RI와 결함부 화상 DDI2와 가공 금지 영역 정보로부터 결정되고, 면 가공 영역 화상 RA3에 있어서, 흰색 윤곽 부분(흰색 부분)이, 면 가공 방식에 의해 가공되는 면 가공 영역을 나타낸다.
다음으로, 제어부(51)는 설정한 면 가공 영역에만 레이저 광을 조사하도록, 2차원 공간 변조기(18)의 설정을 행한다(S17). 그 결과, 면 가공 영역 화상 RA3의 면 가공 영역에만 레이저 광이 조사되도록,각 DMD의 각도는 제어된다.
계속해서, 제어부(51)는 레이저 샷 조건을 설정한다(S18). 레이저 샷 조건은 면 가공 방식에 있어서의 레이저 광의 파장, 주파수, 샷 수 등이다. 제어부(51)는 면 가공 방식에 대응하는, 레시피 저장부(52)에 미리 기억되어 있는 레이저 샷 조건을, 판독하고 설정부(51a)에 설정한다.
도 7에 도시한 바와 같이, 결함 위치 번호가 「1」인 결함부에 있어서, 결함 영역 번호가 「1-3」인 가공 영역에 대해서, 가공 방식이 「저에너지 가공 방식」인 것이 설정되어 있다. 또한, 결함 영역 번호가 「1-3」인 가공 영역에 대해서, 가공 영역, 파장 등의 가공 조건도 설정된다.
그리고, 제어부(51)는 결함 영역 번호가 「1-3」에 대해서 설정부(51a)에 설정된 가공 방식, 가공 영역, 및 가공 조건에 기초하여, 면 가공을 실행한다(S19). 구체적으로는, 제어부(51)가 스테이지 제어부(53), 대물 렌즈 전환 제어부(55), 슬라이더 제어부(56), 레이저 제어부(58)를 구동하고 또한 제어함으로써, 면 가공 방식에 의한 수정이 실행된다.
면 가공 방식의 경우, 레이저 광이 제1 광학계(15)를 통과해서 미러(49)에 도달하도록, 제어부(51)는 슬라이더 제어부(56)를 제어하여, 제1 및 제2 광로 전환부(17, 19)를 전환한다. 대물 렌즈 전환 제어부(55)에 있어서 면 가공 방식에 대응하는 대물 렌즈가 선택되도록, 제어부(51)는 대물 렌즈 전환 제어부(55)를 제어한다.
또한, 제어부(51)는 설정부(15a)에 설정된 레이저 가공 조건에 기초하여, 레이저 제어부(58)를 제어하여, 설정된 파장, 주파수, 샷 수 등으로, 레이저 광을 출사하도록 레이저 광원(14)을 구동한다.
이상에 의해, 1개의 결함 위치 정보에 기초해서 얻어진 결함 화상에 대한 결함 수정 처리가 행해지므로, 제어부(51)는 미처리의 결함 위치 정보가 아직 존재하는지 여부를 판정한다(S20). 제어부(51)는 결함 수정하는 기판(11)에 대해서 입력된 모든 결함 위치 정보에 대해서, 상기 처리를 실행하지만, 미처리의 결함 위치 정보가 있으면(S20; 예), 처리는, S1으로 이행하여, 미처리의 결함 위치 정보를 판독하고, 그 판독한 결함 위치 정보에 기초하여, 촬상 범위를 다음의 결함 위치로 이동한다.
결함 수정하는 기판(11)에 대해서 입력된 모든 결함 위치 정보에 대해서, 상기의 처리가 실행되면(S20; 아니오), 처리는 종료한다.
또한, 상기의 예에서는, 고에너지 가공부의 결함 수정 및 미세 가공부의 결함 수정은, 집광점 가공 방식으로 행해지고 있지만, 고배율로의 면 가공 방식에 의해 행하도록 해도 된다. 그 경우, 제어부(51)는 대물 렌즈 전환 제어부(55)를 제어하여, 고배율의 대물 렌즈를 제3 광학계(20)에 배치하여, 제1 광학계(15)를 통과한 레이저 광을 기판(11)에 조사하도록, 슬라이더 제어부(56)를 제어하여, 제1 및 제2 광로 전환부(17, 19)를 전환한다.
또한, 상기의 예에서는, 미세 가공부의 유무는, 레시피 저장부(52)에 미리 저장되어 있는 미세 가공 영역 화상 FRI에 기초해서 판정하고 있지만, 결함 영역의 면적, 폭 등의 정보에 기초해서 판정하도록 해도 된다.
또한, 상기의 예에서는, 집광점 가공 방식에서는, XY 스테이지(12)를 구동하여, 기판(11)을 이동시키고, 설정된 가공 궤적을 따라, 라인 형상 가공을 행하고 있지만, 가공 헤드 또는 제3 광학계(20) 내의 미러(49)를 움직임으로써, 라인 형상 가공을 행하도록 해도 된다.
이상과 같이, 전술한 실시 형태에 따르면, 결함의 종류에 따라서, 복수의 가공 방식 중에서의 최적의 가공 방식의 설정과 가공 조건의 설정을 하여, 결함 수정이 가능한 리페어 장치 및 리페어 방법을 실현할 수 있다.
(변형예 1)
이상의 예에서는, 제어부(51)는 검출한 결함부를, 가공 방식에 따른 가공 영역으로 분류하여, 가공을 행하도록 각종 제어부 등을 제어하지만, 본 변형예 1의 리페어 장치에서는, 고에너지 가공부에 대해서는, 작업자인 검사자에게 가공 영역을 설정시키도록 한 것이다.
도 8 및 도 9는 본 변형예 1에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트이다. 도 8 및 도 9에 있어서, 도 4 및 도 5와 동일한 처리에 대해서는, 동일한 부호를 붙이고, 설명은 생략한다. 또한, 여기에서는 미세 가공부의 처리는, 생략한다.
S1 내지 S5까지의 처리 후, 결함부가 존재하는 경우(S5; 예), 제어부(51)는 면 가공부가 존재하는지 여부를 판정하여(S15), 면 가공부가 존재하는 경우에는, 전술한 S16 내지 S19의 처리를 실행한다.
면 가공부가 존재하지 않는 경우(S15; 아니오) 또는 면 가공 방식의 실행(S19) 후, 제어부(51)는 집광점 가공 영역을 검사자에게 입력시키기 위한 GUI인 집광점 가공 영역 입력 GUI를 표시한다(S31). 따라서, 제어부(51)는 집광점 가공 방식에 의해 가공되는 영역을 입력하기 위한 GUI를 생성해서 표시부(59)에 표시하는 GUI 표시부를 구성한다.
도 10은 집광점 가공 영역 입력 GUI의 예를 도시하는 도면이다. 도 10에 도시하는 GUI는, 제어부(5)에 의해 생성되고, 표시부(59)의 화면 상에 표시된다. 검사자는, 표시부(59)에 표시된 집광점 가공 영역 입력 GUI 상에, 입력 장치(60)의 마우스 등을 이용해서 집광점 가공 영역을 입력한다.
집광점 가공 영역 입력 GUI는 촬상부(13)에 의해 얻어진 라이브의 기판(11)의 화상을 표시하는 기판 화상 표시부(111)와, 조작 내용 표시부(112)와, 가공 조건 입력부(113)와, 「0K」 버튼(114)과, 「취소」 버튼(115)을 포함한다.
기판 화상 표시부(111)에는, 촬상부(13)에 의해 얻어진 라이브의 기판(11)의 화상이 표시된다. 조작 내용 표시부(112)에는, 검사자에게, 집광점 가공을 위한 설정 조작을 재촉하는 메시지가 표시되어 있다. 가공 조건 입력부(113)에는, 레시피 저장부(52)에 저장되어 있는 집광점 가공 방식에 대응하는 레이저 샷 조건이 표시되고, 검사자는 필요하면 레이저 샷 조건을 변경할 수 있다.
예를 들면, 도 10에 도시한 바와 같이, 검사자는 입력 장치(60)를 이용해서, 기판 화상 표시부(111)에 표시된 기판(11)의 화상 상에, 레이저 광을 쏘는 시점 Sp와 종점 Ep를 지정한다. 예를 들면, 입력 장치(60)의 마우스의 왼쪽 버튼을 눌러서 시점 Sp를 지정하고, 오른쪽 버튼을 눌러서 종점 Ep를 지정한다.
또한, 검사자는 조건 입력부(113)에 표시되어 있는 레이저 샷 조건을 변경하고자 하는 경우에는, 입력 장치(60)의 키보드를 이용해서, 변경하는 조건을 선택해서 변경 값을 입력한다. 레이저 샷 조건을 변경할 필요가 없는 경우에는, 조건 입력부(113)의 조건값은 변경되지 않는다.
검사자는 집광점 가공 영역의 지정 및 필요한 레이저 샷 조건의 변경이 종료하면, 지정 종료를 지시하기 위한 버튼인 「OK」 버튼(114)을 마우스로 클릭한다. 또한, 검사자는 집광점 가공을 행하지 않는 경우, 취소를 지시하기 위한 버튼인 「취소」 버튼(115)을 마우스로 클릭한다.
제어부(51)는 집광점 가공 영역이 입력되었는지 여부를 판정한다(S32). 제어부(51)는 「0K」 버튼(114)이 클릭되면 집광점 가공 영역이 입력되었다고 판정하고, 「취소」 버튼(115)이 클릭되면 집광점 가공 영역이 입력되지 않는다고 판정한다.
「0K」 버튼(114)이 클릭되면(S32; 예), 제어부(51)는 집광점 가공 영역의 정보, 즉 시점 Sp와 종점 Ep의 위치 정보를 설정부(51a)에 설정한다(S7). 또한, 제어부(51)는 레시피 저장부(52)에 저장되거나 또는 변경된 레이저 샷 조건을 설정부(51a)에 설정한다(S8). 그리고, 제어부(51)는 지정된 집광점 가공을 실행한다(S9). 따라서, 시점 Sp와 종점 Ep의 위치 사이에, 설정된 레이저 샷 조건으로, 레이저 광이 조사된다. 도 10에 도시한 바와 같이, 시점 Sp와 종점 Ep의 위치 사이의 점선으로 나타내는 가공 궤적 LR1을 따라 레이저 광에 의한 집광점 가공이 행해진다.
이상과 같이, 본 변형예 1의 리페어 장치에 따르면, 작업자인 검사자는, 고에너지 가공부에 대해서는 가공 영역을 설정하여, 고에너지 가공을 행할 수 있다.
(변형예 2)
전술한 변형예 1의 리페어 장치에서는, 고에너지 가공부에 대해서는, 작업자인 검사자에게 가공 영역을 설정시키지만, 본 변형예 2의 리페어 장치에서는, 저에너지 가공부와 고에너지 가공부의 양 쪽에 대해서, 작업자인 검사자에게 가공 영역을 설정시키도록 한 것이다.
도 11 및 도 12는, 본 변형예 2에 따른 제어부(51)의 처리의 예를 나타내는 플로우차트이다. 도 11 및 도 12에 있어서, 도 4 및 도 5와 동일한 처리에 대해서는, 동일한 부호를 붙이고, 설명은 생략한다. 또한, 여기서는 미세 가공부의 처리는, 생략한다.
S1 내지 S5까지의 처리 후, 결함부가 존재하는 경우(S5; 예), 제어부(51)는 면 가공 영역을 검사자에게 입력시키기 위한 GUI인 면 가공 영역 입력 GUI를 표시한다(S33).
도 13은 면 가공 영역 입력 GUI의 예를 도시하는 도면이다. 도 13에 도시하는 GUI는, 제어부(51)에 의해 생성되어, 표시부(59)의 화면 상에 표시된다. 검사자는, 표시부(59)에 표시된 면 가공 영역 입력 GUI 상에, 입력 장치(60)의 마우스등을 이용해서 면 가공 영역을 입력한다.
면 가공 영역 입력 GUI는, 촬상부(13)에 의해 얻어진 라이브의 기판(11)의 화상을 표시하는 기판 화상 표시부(121)와, 조작 내용 표시부(122)와, 가공 조건 입력부(123)와, 「0K」 버튼(124)과, 「취소」 버튼(125)과, 커맨드 지정부(126)를 포함한다.
기판 화상 표시부(121)에는, 촬상부(13)에 의해 얻어진 라이브의 기판(11)의 화상이 표시된다. 조작 내용 표시부(122)에는, 검사자에게, 면 가공을 위한 설정 조작을 재촉하는 메시지가 표시되어 있다. 가공 조건 입력부(123)에는, 레시피 저장부(52)에 저장되어 있는 면 가공 방식에 대응하는 레이저 샷 조건이 표시되고, 검사자는 필요하면 레이저 샷 조건을 변경할 수 있다.
커맨드 지정부(126)에는 면 영역을 지정하는 경우에 이용할 수 있는 도형 묘화를 위한 커맨드의 아이콘이 복수 표시되어 있다. 예를 들면, 원, 타원, 사각 등 어느 문자를 포함하는 아이콘 중에서, 원하는 도형에 대응하는 아이콘을 검사자가 마우스로 지정하고, 소정의 조작 입력을 하면, 임의의 위치에, 엔, 타원 등의 도형을, 기판 화상 표시부(121)를 묘화시킬 수 있으므로, 검사자는 이들 아이콘을 이용해서, 면 영역을 지정할 수 있다.
예를 들면, 도 13에 도시한 바와 같이, 검사자는 입력 장치(60)의 마우스를 조작하여, 커맨드 지정부(126)를 이용해서 면 영역을 지정하고, 옅은 음영으로 나타낸 레지스트 막(104)의 부분을 면 가공 영역으로서 지정한다.
또한, 검사자는 조건 입력부(123)에 표시되어 있는 레이저 샷 조건을 변경하고자 하는 경우에는, 입력 장치(60)의 키보드를 이용해서, 변경하는 조건을 선택해서 변경값을 입력한다. 레이저 샷 조건을 변경할 필요가 없는 경우에는, 조건 입력부(123)의 조건값은 변경되지 않는다.
검사자는 면 가공 영역의 지정 및 필요한 레이저 샷 조건의 변경이 종료하면, 지정 종료를 지시하기 위한 버튼인 「OK」 버튼(124)을 마우스로 클릭한다. 또한, 검사자는 집광점 가공을 행하지 않는 경우에는, 취소를 지시하기 위한 버튼인 「취소」 버튼(125)을 마우스로 클릭한다.
제어부(51)는 면 가공 영역이 입력되었는지 여부를 판정한다(S34). 제어부(51)는 「0K」 버튼(124)이 클릭되면 면 가공 영역이 입력되었다고 판정하고, 「취소」 버튼(125)이 클릭되면 면 가공 영역이 입력되지 않는다고 판정한다.
「OK」 버튼(124)이 클릭되면(S34; 예), 제어부(51)는 면 가공 영역의 정보, 즉 레이저 광을 쏘는 면의 영역의 정보를 설정부(51a)에 설정한다(S16). 그리고, 제어부(51)는 설정한 면 가공 영역에만 레이저 광을 조사하도록, 2차원 공간 변조기(18)의 설정을 행한다(S17).
또한, 제어부(51)는 레시피 저장부(52)에 저장되거나 또는 변경된 레이저 샷 조건을 설정부(51a)에 설정한다(S18). 그리고, 제어부(51)는 지정된 면 가공을 실행한다(S19). 따라서, 지정된 면 가공 영역에, 설정된 레이저 샷 조건으로, 레이저 광이 조사된다. 도 13에 도시한 바와 같이, 레지스트 막(104)의 부분에 레이저 광에 의한 면 가공이 행해진다. S19의 처리 후, 제어부(51)는 S31 ~ S9의 처리를 실행한다. 따라서, 제어부(51)는 면 가공 방식에 의해 가공되는 영역을 입력하기 위한 GUI와, 집광점 가공 방식에 의해 가공되는 영역을 입력하기 위한 GUI를 생성해서 표시부(59)에 표시하는 GUI 표시부를 구성한다.
이상과 같이, 본 변형예 2의 리페어 장치에 따르면, 작업자인 검사자는, 고에너지 가공부 및 저에너지 가공부 각각에 대해서, 가공 방식과 가공 영역을 설정하여, 고에너지 가공과 저에너지 가공을 행할 수 있다.
이상과 같이, 전술한 실시 형태 및 그 각 변형예에 따르면, 결함의 종류에 따라서, 복수의 가공 방식 중에서의 최적의 가공 방식의 설정과 가공 조건의 설정을 하여, 기판의 결함 수정이 가능한 리페어 장치 및 리페어 방법을 실현할 수 있다.
리페어 대상의 기판 상의 결함에는 다양한 종류가 존재하며, 각각의 결함 수정에 최적의 가공 방식 및 가공 조건으로 가공을 행할 필요가 있으며, 전술한 실시 형태 및 그 각 변형예에 따르면, 결함의 종류에 따라서, 최적의 가공 방식 및 가공 조건과 가공 조건을 설정하여, 기판의 결함 수정을 1대의 장치로 실현할 수 있다.
또한, 전술한 실시 형태 및 그 각 변형예에서는, 1개의 가공 방식이 1개의 가공 영역마다 다르게 설정되어 있다. 이것은, 예를 들면 금속 등을 포함하는 레지스터 불량 영역 전체에 면 가공 방식으로 레이저 광을 조사한 후에, 남겨진 금속을 집광점 방식으로 레이저 광을 조사해서 제거한 바, 결함 개소의 주위에 레지스트가 비산해 버린다고 하는 문제가 발생하는 경우가 있기 때문이다.
그러나, 기판, 이물의 재질, 레지스트 재료 등 리페어 대상의 조건에 따라서는, 동일한 가공 영역에 복수의 가공 방식에 의한 가공을 행해도 문제가 없는 경우도 있다. 따라서, 1개의 가공 영역에 복수의 가공 방식을 설정 또는 지정할 수 있게 해도 된다.
또한, 전술한 예에서는, 레이저 가공 대상의 기판은, 플랫 패널 디스플레이 기판이지만, 반도체 웨이퍼, 프린트 기판 등이어도 된다.
본 명세서에 있어서의 각 「부」는, 실시 형태의 각 기능에 대응하는 개념적인 것으로, 반드시 특정한 하드웨어나 소프트웨어·루틴에 일대일로는 대응하지 않는다. 따라서, 본 명세서에서는, 이하 실시 형태의 각 기능을 갖는 가상적 회로 블록(부)을 상정해서 실시 형태를 설명했다. 또한, 본 실시 형태에 있어서의 각 수순의 각 스텝은, 그 성질에 반하지 않는 한, 실행 순서를 변경하여, 복수 동시에 실행하거나, 또는 실행마다 서로 다른 순서로 실행해도 된다.
본 발명은, 전술한 실시 형태에 한정되는 것은 아니며, 본 발명의 요지를 바꾸지 않는 범위에 있어서, 다양한 변경, 개변 등이 가능하다.

Claims (13)

  1. 복수의 파장의 레이저 광을 출사하는 레이저 광원 장치와,
    상기 레이저 광에 의해 결함 수정되는 기판을 관찰하기 위한 관찰 광학계와,
    적어도 2개의 레이저 조사 광학계와,
    상기 레이저 광이 입사하는 광로를, 상기 적어도 2개의 레이저 조사 광학계 중 어느 하나로 전환하는 레이저 광로 전환부와,
    상기 관찰 광학계로부터의 광을 받아서 상기 기판을 촬상하는 촬상부와,
    상기 촬상부에 있어서 촬상해서 얻어진 화상으로부터 화상 처리에 의해, 상기 기판의 결함부를 검출하는 결함 검출부와,
    상기 결함부의 가공 영역마다, 가공 방식과 가공 조건을 설정하는 가공 조건 설정부와,
    상기 가공 영역마다 설정된 상기 가공 방식과 상기 가공 조건에 기초해서 상기 기판에 대하여 가공을 행하도록, 상기 레이저 광원 장치와 상기 레이저 광로 전환부를 제어하는 제어부
    를 갖는 것을 특징으로 하는 리페어 장치.
  2. 제1항에 있어서,
    상기 가공 영역을, 상기 결함부의 화상을 해석하는 화상 처리에 의해, 상기 가공 영역마다 상기 가공 방식을 결정하는 가공 방식 결정부를 갖고,
    상기 가공 조건 설정부에는, 상기 가공 영역마다 상기 가공 방식 결정부에서 결정된 상기 가공 방식이 설정되는 것을 특징으로 하는 리페어 장치.
  3. 제2항에 있어서,
    상기 가공 방식 결정부는, 상기 가공 영역을, 상기 결함부의 화상을 해석하는 화상 처리에 의해, 상기 레이저 광에 의한 제1 에너지로 가공하는 제1 가공 영역과, 상기 레이저 광에 의한 상기 제1 에너지보다도 높은 제2 에너지로 가공하는 제2 가공 영역으로 분류함으로써, 상기 제1 및 상기 제2 가공 영역 각각에 대한 상기 가공 방식을 결정하는 것을 특징으로 하는 리페어 장치.
  4. 제3항에 있어서,
    상기 제1 가공 영역은, 면 가공 방식에 의해 가공되는 영역이며, 상기 제2 가공 영역은, 집광점 가공 방식에 의해 가공되는 영역인 것을 특징으로 하는 리페어 장치.
  5. 제4항에 있어서,
    상기 제어부는, 상기 집광점 가공 방식에 의한 가공을 행한 후에, 상기 면 가공 방식에 의한 가공을 행하는 것을 특징으로 하는 리페어 장치.
  6. 제5항에 있어서,
    상기 면 가공 방식에 의한 가공은, 2차원 공간 변조기, 마스크 패턴, 또는 슬릿을 이용해서 행해지는 것을 특징으로 하는 리페어 장치.
  7. 제4항에 있어서,
    상기 집광점 가공 방식에 의해 가공되는 영역을 입력하기 위한 그래피컬 유저 인터페이스를 생성해서 표시부에 표시하는 GUI 표시부를 갖는 것을 특징으로 하는 리페어 장치.
  8. 제7항에 있어서,
    상기 GUI 표시부의 그래피컬 유저 인터페이스에서는, 상기 레이저 광을 쏘는 시점과 종점이 지정되는 것을 특징으로 하는 리페어 장치.
  9. 제4항에 있어서,
    상기 집광점 가공 방식에 의해 가공되는 영역을 입력하기 위한 제1 그래피컬 유저 인터페이스와, 상기 면 가공 방식에 의해 가공되는 영역을 입력하기 위한 제2 그래피컬 유저 인터페이스를 생성해서 표시부에 표시하는 GUI 표시부를 갖는 것을 특징으로 하는 리페어 장치.
  10. 제9항에 있어서,
    상기 GUI 표시부의 제2 그래피컬 유저 인터페이스에서는, 상기 레이저 광을 쏘는 영역이 지정되는 것을 특징으로 하는 리페어 장치.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 기판의 결함부의 검출은, 상기 촬상부에 의해 촬상된 화상과, 참조 화상과의 차분을 취함으로써 행해지는 것을 특징으로 하는 리페어 장치.
  12. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 기판은, 플랫 패널 디스플레이 기판, 반도체 웨이퍼, 또는 프린트 기판인 것을 특징으로 하는 리페어 장치.
  13. 복수의 파장의 레이저 광을 출사하는 레이저 광원 장치로부터의 레이저 광에 의해 기판의 결함부를 수정하는 리페어 방법으로서,
    상기 레이저 광에 의해 결함 수정되는 기판을 촬상하는 촬상부에 있어서 촬상해서 얻어진 화상으로부터 화상 처리에 의해, 상기 기판의 결함부를 검출하고,
    검출된 상기 결함부의 가공 영역마다, 가공 방식과 가공 조건을 설정하고,
    상기 가공 영역마다 설정된 상기 가공 방식과 상기 가공 조건에 기초해서 상기 기판에 대하여 가공을 행하도록, 상기 레이저 광원 장치와, 상기 레이저 광이 입사하는 광로를 적어도 2개의 레이저 조사 광학계 중 어느 하나로 전환하는 레이저 광로 전환부를 제어하는
    것을 특징으로 리페어 방법.
KR1020120125900A 2012-04-26 2012-11-08 리페어 장치 및 리페어 방법 KR101368167B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012101545A JP2013226588A (ja) 2012-04-26 2012-04-26 リペア装置及びリペア方法
JPJP-P-2012-101545 2012-04-26

Publications (2)

Publication Number Publication Date
KR20130120975A true KR20130120975A (ko) 2013-11-05
KR101368167B1 KR101368167B1 (ko) 2014-02-27

Family

ID=49496399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120125900A KR101368167B1 (ko) 2012-04-26 2012-11-08 리페어 장치 및 리페어 방법

Country Status (3)

Country Link
JP (1) JP2013226588A (ko)
KR (1) KR101368167B1 (ko)
CN (1) CN203265909U (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195272A1 (en) * 2014-06-20 2015-12-23 Applied Materials, Inc. Methods for reducing semiconductor substrate strain variation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521805B2 (ja) * 1998-09-11 2004-04-26 株式会社村田製作所 誘電体フィルタ、複合誘電体フィルタ、アンテナ共用器および通信装置
KR101560378B1 (ko) * 2014-04-30 2015-10-20 참엔지니어링(주) 레이저 처리장치 및 처리방법
JP6604715B2 (ja) * 2014-09-12 2019-11-13 株式会社ディスコ レーザー加工装置
CN107092166B (zh) * 2016-02-18 2019-01-29 上海微电子装备(集团)股份有限公司 曝光系统、曝光装置及曝光方法
CN105911725A (zh) * 2016-06-12 2016-08-31 昆山精讯电子技术有限公司 显示面板修复装置
JP2020148804A (ja) * 2019-03-11 2020-09-17 株式会社ブイ・テクノロジー レーザリペア方法、レーザリペア装置
EP4070912A4 (en) * 2019-12-06 2023-07-12 Panasonic Intellectual Property Management Co., Ltd. REPAIR WELDING DEVICE AND REPAIR WELDING METHOD
CN112099251A (zh) * 2020-09-16 2020-12-18 中山大学 一种采用深紫外激光的液晶面板修复系统
CN116918051A (zh) * 2021-02-25 2023-10-20 富士胶片株式会社 缺陷去除装置、缺陷去除方法、图案形成方法及电子器件的制造方法
CN116810184B (zh) * 2023-08-30 2024-02-02 苏州科韵激光科技有限公司 一种微细线路激光修复装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716472B1 (ko) * 2005-07-20 2007-05-10 (주)미래컴퍼니 기판 결함 수정장치 및 방법
JP5331421B2 (ja) * 2008-09-12 2013-10-30 オリンパス株式会社 レーザリペア装置およびレーザリペア方法
JP5250395B2 (ja) 2008-11-19 2013-07-31 株式会社日立ハイテクノロジーズ 検査装置
JP5437287B2 (ja) 2011-02-07 2014-03-12 オリンパス株式会社 レーザリペア装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195272A1 (en) * 2014-06-20 2015-12-23 Applied Materials, Inc. Methods for reducing semiconductor substrate strain variation
US9484274B2 (en) 2014-06-20 2016-11-01 Applied Materials, Inc. Methods for reducing semiconductor substrate strain variation

Also Published As

Publication number Publication date
JP2013226588A (ja) 2013-11-07
CN203265909U (zh) 2013-11-06
KR101368167B1 (ko) 2014-02-27

Similar Documents

Publication Publication Date Title
KR101368167B1 (ko) 리페어 장치 및 리페어 방법
US20080129950A1 (en) Repair method and apparatus therefor
TWI405633B (zh) 雷射加工裝置
KR20090033817A (ko) 조정 장치, 레이저 가공 장치, 조정 방법, 및 조정 프로그램
KR20130045186A (ko) 리페어 장치 및 리페어 방법
JP2009028742A (ja) レーザ照射装置およびそれを用いたレーザ加工システム
JP2011025316A (ja) 欠陥修正装置
TWI567374B (zh) 缺陷觀察裝置及包含所述缺陷觀察裝置的雷射加工設備
JP2011257303A (ja) 画像取得装置、欠陥修正装置および画像取得方法
JP2009056507A (ja) レーザ加工装置
JP2005103581A (ja) リペア方法及びその装置
TWI553981B (zh) 雷射處理設備和方法
JP6643328B2 (ja) リソグラフィ構造を生成するための光学系
KR20130098838A (ko) 레이저 가공 장치, 레이저 가공 방법 및 레이저 가공 프로그램을 기록한 컴퓨터가 판독 가능한 기록 매체
JP2009053485A (ja) オートフォーカス装置、オートフォーカス方法および計測装置
JP2014083562A (ja) レーザ照射ユニット及びレーザ加工装置
JP2009006339A (ja) レーザ加工装置、及び、レーザ加工方法
JP2007196275A (ja) レーザ加工装置
JP2013146760A (ja) 欠陥修正装置、及び、欠陥修正方法
JP2017131931A (ja) レーザーマーキング装置
JP5164001B2 (ja) レーザ加工装置
JP5120814B2 (ja) パターン形成方法及びパターン形成装置
JP2005021916A (ja) 欠陥修正機能付き顕微鏡装置
JP2013123721A (ja) 欠陥修正装置、欠陥修正方法および欠陥修正プログラム
JP2014004596A (ja) レーザ加工装置及びレーザ加工方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee