KR20130088331A - High strength steel plate and method for manufacturing the same - Google Patents

High strength steel plate and method for manufacturing the same Download PDF

Info

Publication number
KR20130088331A
KR20130088331A KR1020120009498A KR20120009498A KR20130088331A KR 20130088331 A KR20130088331 A KR 20130088331A KR 1020120009498 A KR1020120009498 A KR 1020120009498A KR 20120009498 A KR20120009498 A KR 20120009498A KR 20130088331 A KR20130088331 A KR 20130088331A
Authority
KR
South Korea
Prior art keywords
steel sheet
weight
high strength
less
strength steel
Prior art date
Application number
KR1020120009498A
Other languages
Korean (ko)
Other versions
KR101344640B1 (en
Inventor
김규태
김민경
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020120009498A priority Critical patent/KR101344640B1/en
Publication of KR20130088331A publication Critical patent/KR20130088331A/en
Application granted granted Critical
Publication of KR101344640B1 publication Critical patent/KR101344640B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

PURPOSE: A high strength steel plate and a manufacturing method thereof are provided to have low yield ratio of less than 0.8 while having tensile strength of more than 600MPa. CONSTITUTION: A method for manufacturing a high strength steel plate comprises following steps. A board consisting of 0.04-0.15 weight % of carbon (C), 0.15-0.35 weight % of silicone (Si), 1.2-1.6 weight % of manganese (Mn), less than 0.02 weight % of phosphorus (P), less than 0.005 weight % of sulfur (S), 0.04-0.06 weight % of niobium (Nb), 0.05-0.1 weight % of molybdenum (Mo), 0.005~0.02 weight % of titanium (Ti), 0.02-0.06 weight % of vanadium (V), the rest iron (Fe) and unavoidable impurity is primarily rolled in an austenite recrystallization area and secondarily rolled in an austenite non-recrystallization area (S110). The hot-rolled board is cooled (S120). [Reference numerals] (AA) Start; (BB) End; (S111) First rolling; (S112) Second rolling; (S120) Cooling

Description

고강도 강판 및 그 제조 방법{HIGH STRENGTH STEEL PLATE AND METHOD FOR MANUFACTURING THE SAME}High strength steel sheet and its manufacturing method {HIGH STRENGTH STEEL PLATE AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 라인파이프 등의 소재로 사용될 수 있는 고강도 강판 및 그 제조 방법에 관한 것으로, 보다 상세하게는 몰리브덴 등의 합금성분 조절 및 공정 제어를 통하여, 인장강도 600MPa 이상을 가지면서 아울러 0.8 이하의 저항복비를 갖는 고강도 강판 및 그 제조 방법에 관한 것이다.
The present invention relates to a high-strength steel sheet that can be used as a material such as line pipes and a method of manufacturing the same, and more specifically, to the alloy component such as molybdenum and the like, and having a tensile strength of 600 MPa or more and a resistance of 0.8 or less. It relates to a high strength steel sheet having a composite ratio and a manufacturing method thereof.

라인파이프라 함은 주로 원유나 천연가스의 수송 등을 위하여 지중에 매설되는 강관을 의미하는 것으로서, 이러한 라인파이프 내에는 주로 고압의 원유 또는 가스가 유동하기 때문에 높은 압력이 작용하는 것이 보통이다.The line pipe means a steel pipe buried in the ground mainly for transportation of crude oil or natural gas, and high pressure is usually applied because such high pressure crude oil or gas flows in the line pipe.

이러한 라인파이프는 자원 고갈 등을 이유로 사용지가 극지, 한랭지 등으로 확대되고 있다. 이러한 극지, 한랭지 등에서 라인파이프가 사용되기 위해서는 그 소재가 고강도 및 저온인성을 가져야 하며, 아울러 지진 기타 지각 변동에 따른 고변형능이 함께 요구되고 있다. Such line pipes are being expanded to polar regions and cold regions due to resource depletion. In order to use the line pipe in such polar regions and cold regions, the material must have high strength and low temperature toughness, and high deformation ability due to earthquakes and other tectonic fluctuations is required.

소재가 고변형능을 가지기 위해서는 인장강도(TS)에 대한 항복강도(YS)의 비를 의미하는 항복비(Yield Ratio)가 낮아야 한다. In order for the material to have high deformation capacity, the yield ratio, which means the ratio of yield strength (YS) to tensile strength (TS), must be low.

본 발명에 관련된 배경기술로는 대한민국 특허공개공보 제10-2002-0051254호(2002.06.28. 공개)에 개시되어 있는 저항복비형 고인성 열연강재 제조 방법이 있다.
Background art related to the present invention is a method of manufacturing a resistance-ratio-type high toughness hot rolled steel disclosed in Republic of Korea Patent Publication No. 10-2002-0051254 (2002.06.28. Publication).

본 발명의 하나의 목적은 몰리브덴(Mo) 등의 합금성분 조절 및 공정 제어를 통하여 인장강도 600MPa 이상의 고강도를 가지면서도 항복비가 0.8 이하를 갖는 고강도 강판 제조 방법을 제공하는 것이다. One object of the present invention is to provide a method of manufacturing a high strength steel sheet having a yield ratio of 0.8 or less while having a high strength of 600 MPa or more through an alloy component control and process control such as molybdenum (Mo).

본 발명의 다른 목적은 인장강도 600MPa 이상의 고강도와 함께 0.8 이하의 저항복비를 가짐으로써 라인파이프 등의 소재로 활용할 수 있는 고강도 강판을 제공하는 것이다.
Another object of the present invention is to provide a high strength steel sheet that can be utilized as a material such as line pipe by having a high strength of 600MPa or more and a resistance ratio of 0.8 or less.

상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 고강도 강판 제조 방법은 중량%로, 탄소(C) : 0.04~0.15%, 실리콘(Si) : 0.15~0.35%, 망간(Mn) : 1.2~1.6%, 인(P) : 0.02% 이하, 황(S) : 0.005% 이하, 니오븀(Nb) : 0.04~0.06%, 몰리브덴(Mo) : 0.05~0.1%, 티타늄(Ti) : 0.005~0.02%, 바나듐(V) : 0.02~0.06% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 오스테나이트 재결정 영역에서 1차 압연한 후, 오스테나이트 미재결정 영역에서 2차 압연하는 열간압연 단계; 및 상기 열간 압연된 판재를 냉각하는 냉각 단계;를 포함하고, 상기 2차 압연은, 누적압하율((A-B)/A X 100), 여기서 A는 2차 압연 개시 시점의 판재 두께, B는 2차 압연 종료 시점의 판재 두께)이 50% 이하, 종료 온도가 860℃ 이상이 되도록 실시되는 것을 특징으로 한다. High-strength steel sheet manufacturing method according to an embodiment of the present invention for achieving the above one object by weight, carbon (C): 0.04 ~ 0.15%, silicon (Si): 0.15 ~ 0.35%, manganese (Mn): 1.2 ~ 1.6%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Niobium (Nb): 0.04 ~ 0.06%, Molybdenum (Mo): 0.05 ~ 0.1%, Titanium (Ti): 0.005 ~ 0.02 %, Vanadium (V): hot rolling step of firstly rolling the slab plate composed of 0.02 to 0.06% and the remaining iron (Fe) and inevitable impurities in the austenite recrystallization zone, and then second rolling in the austenite microcrystallization zone; And a cooling step of cooling the hot rolled sheet; wherein the secondary rolling includes a cumulative reduction ratio ((AB) / AX 100), where A is a sheet thickness at the start of secondary rolling, and B is a secondary. The thickness of the sheet at the end of rolling) is 50% or less and the end temperature is 860 ° C or more.

이때, 상기 열간 압연 단계는 상기 2차 압연의 종료 온도가 860~890℃가 되도록 실시되는 것이 바람직하다.  At this time, the hot rolling step is preferably carried out so that the end temperature of the secondary rolling is 860 ~ 890 ℃.

또한, 상기 열간 압연 단계는 상기 2차 압연의 누적압하율이 20~50%가 되도록 실시되는 것이 바람직하다.
In addition, the hot rolling step is preferably carried out so that the cumulative reduction of the secondary rolling is 20 to 50%.

상기 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 고강도 강판은 중량%로, 탄소(C) : 0.04~0.15%, 실리콘(Si) : 0.15~0.35%, 망간(Mn) : 1.2~1.6%, 인(P) : 0.02% 이하, 황(S) : 0.005% 이하, 니오븀(Nb) : 0.04~0.06%, 몰리브덴(Mo) : 0.05~0.1%, 티타늄(Ti) : 0.005~0.02%, 바나듐(V) : 0.02~0.06% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지고, 애시큘라 페라이트(acicular ferrite) 70vol% 이상, 베이나이트 10vol% 미만 및 폴리고날 페라이트(polygonal ferrite), 마르텐사이틱 오스테나이트(Martensitic Austenite) 중 1종 이상의 2차상 10vol% 미만을 포함하는 미세조직을 갖는 것을 특징으로 한다. High strength steel sheet according to an embodiment of the present invention for achieving the other object by weight, carbon (C): 0.04 ~ 0.15%, silicon (Si): 0.15 ~ 0.35%, manganese (Mn): 1.2 ~ 1.6% , Phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, niobium (Nb): 0.04-0.06%, molybdenum (Mo): 0.05-0.1%, titanium (Ti): 0.005-0.02%, vanadium (V): 0.02 to 0.06% and the remaining iron (Fe) and inevitable impurities, more than 70vol% of acicular ferrite (acicular ferrite), less than 10vol% bainite and polygonal ferrite, martensitic austenite It is characterized by having a microstructure comprising less than 10 vol% of one or more secondary phases of knight (Martensitic Austenite).

이때, 상기 강판은 인장강도 600MPa 이상, -40℃에서 샤르피 평균 충격흡수에너지 290J 이상 및 항복비 0.8 이하를 가질 수 있다.
In this case, the steel sheet may have a tensile strength of 600 MPa or more, Charpy average impact absorption energy of 290 J or more, and a yield ratio of 0.8 or less at -40 ° C.

본 발명에 따른 고강도 강판 제조 방법은 몰리브덴(Mo) 등의 성분을 조절하고, 열간압연, 냉각 등의 공정 조건을 제어함으로써 인장강도 600MPa 이상의 고강도를 가지면서도 저온 충격인성, 그리고 저항복비를 갖는 고강도 강판을 제조할 수 있다. High-strength steel sheet manufacturing method according to the present invention by controlling the components such as molybdenum (Mo), and controlling the process conditions such as hot rolling, cooling, etc., a high-strength steel sheet having a high strength of at least 600MPa tensile strength, low-temperature impact toughness, and a resistance ratio Can be prepared.

따라서, 제조된 강판은 이러한, 강도, 저온 충격인성, 저항복비 등의 특성을 통하여 극지방, 한랭지의 라인파이프 등의 소재로 활용할 수 있다.
Therefore, the manufactured steel sheet can be utilized as a material such as line pipes of polar regions and cold regions through such characteristics as strength, low temperature impact toughness, and resistance ratio.

도 1은 본 발명의 실시예에 따른 고강도 강판 제조 방법을 개략적으로 나타낸 순서도이다.
도 2는 실시예 1에 따라 제조된 강판의 광학조직사진을 나타낸 것이다.
도 3은 비교예 2에 따라 제조된 강판의 광학조직사진을 나타낸 것이다.
1 is a flow chart schematically showing a method of manufacturing a high strength steel sheet according to an embodiment of the present invention.
Figure 2 shows the optical structure picture of the steel sheet prepared according to Example 1.
Figure 3 shows an optical structure picture of a steel sheet prepared according to Comparative Example 2.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

이하 첨부된 도면을 참조하여 본 발명의 실시예에 따른 고강도 강판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
Hereinafter, a high strength steel sheet according to an embodiment of the present invention and a manufacturing method thereof will be described in detail with reference to the accompanying drawings.

고강도 강판High strength steel plate

본 발명에 따른 고강도 강판은, 중량%로, 탄소(C) : 0.04~0.15%, 실리콘(Si) : 0.15~0.35%, 망간(Mn) : 1.2~1.6%, 인(P) : 0.02% 이하, 황(S) : 0.005% 이하, 니오븀(Nb) : 0.04~0.06%, 몰리브덴(Mo) : 0.05~0.1%, 티타늄(Ti) : 0.005~0.02%, 바나듐(V) : 0.02~0.06%를 포함한다. High-strength steel sheet according to the present invention, in weight%, carbon (C): 0.04 ~ 0.15%, silicon (Si): 0.15 ~ 0.35%, manganese (Mn): 1.2 ~ 1.6%, phosphorus (P): 0.02% or less , Sulfur (S): 0.005% or less, niobium (Nb): 0.04 to 0.06%, molybdenum (Mo): 0.05 to 0.1%, titanium (Ti): 0.005 to 0.02%, vanadium (V): 0.02 to 0.06% Include.

상기 성분들 외 나머지는 철(Fe)과 제강 공정 등에서 불가피하게 포함되는 불순물로 이루어진다. The rest of the above components are composed of iron (Fe) and impurities inevitably included in the steelmaking process and the like.

이하, 본 발명에 따른 고강도 강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.
Hereinafter, the role and content of each component contained in the high-strength steel sheet according to the present invention will be described.

탄소(C)Carbon (C)

본 발명에서 탄소(C)는 강판의 강도를 확보하기 위해 첨가된다. In the present invention, carbon (C) is added to secure the strength of the steel sheet.

상기 탄소는 강판 전체 중량의 0.04~0.15중량%로 첨가되는 것이 바람직하다. 탄소의 첨가량이 0.04중량% 미만인 경우 강판의 강도가 불충분하다. 반대로, 탄소의 첨가량이 0.15중량%를 초과하면 강판의 저온 충격인성 및 용접성이 저하되는 문제점이 있다.
The carbon is preferably added in 0.04 ~ 0.15% by weight of the total weight of the steel sheet. If the amount of carbon added is less than 0.04% by weight, the strength of the steel sheet is insufficient. On the contrary, when the addition amount of carbon exceeds 0.15% by weight, there is a problem that low-temperature impact toughness and weldability of the steel sheet are lowered.

실리콘(Si)Silicon (Si)

실리콘(Si)은 제강공정에서 강 중의 산소를 제거하기 위한 탈산제로 첨가된다. 또한 실리콘은 고용강화를 통한 강판의 강도 향상에 기여한다. Silicon (Si) is added as a deoxidizer to remove oxygen in steel during the steelmaking process. Silicon also contributes to the strength improvement of the steel sheet through solid solution strengthening.

상기 실리콘은 강판 전체 중량의 0.15~0.35중량%로 첨가되는 것이 바람직하다. 실리콘의 첨가량이 0.15중량% 미만인 경우, 실리콘 첨가에 따른 탈산 효과가 불충분하다. 반대로, 실리콘의 첨가량이 0.35중량%를 초과하는 경우, 강판 표면에 산화물을 다량 형성하여 강판의 도금특성을 저해하고 용접성을 저하시키는 문제점이 있다.
The silicon is preferably added in 0.15 ~ 0.35% by weight of the total weight of the steel sheet. When the amount of silicon added is less than 0.15% by weight, the deoxidation effect due to the addition of silicon is insufficient. On the contrary, when the amount of added silicon exceeds 0.35% by weight, there is a problem in that a large amount of oxide is formed on the surface of the steel sheet to hinder the plating property of the steel sheet and lower the weldability.

망간(Mn)Manganese (Mn)

망간(Mn)은 오스테나이트 안정화 원소이며, 결정립을 미세화시켜 강도 및 저온 충격인성을 향상시키는 역할을 한다. Manganese (Mn) is an austenite stabilizing element and serves to improve the strength and impact resistance at low temperatures by making the grain finer.

상기 망간은 강판 전체 중량의 1.2~1.6중량%로 첨가되는 것이 바람직하다. 망간의 첨가량이 1.2중량% 미만인 경우, 그 첨가 효과가 불충분하다. 반대로, 망간의 첨가량이 1.6중량%를 초과하는 경우, 저온충격인성을 저하시키는 문제점이 있다.
The manganese is preferably added in 1.2 ~ 1.6% by weight of the total weight of the steel sheet. When the addition amount of manganese is less than 1.2% by weight, the effect of addition thereof is insufficient. On the contrary, when the amount of manganese exceeds 1.6% by weight, there is a problem of lowering the low temperature impact toughness.

인(P)Phosphorus (P)

인(P)은 강도 향상에 일부 기여하나, 저온 충격인성을 저하시키는 대표적인 원소로서 그 함량이 낮으면 낮을수록 좋다. Phosphorus (P) contributes partly to the strength improvement, but it is a representative element that lowers impact toughness at low temperatures. The lower the content is, the better.

이에 본 발명에서는 인의 함량을 강판 전체 중량의 0.02중량% 이하로 제한하였다.
Therefore, in the present invention, the phosphorus content is limited to 0.02% by weight or less of the total weight of the steel sheet.

황(S)Sulfur (S)

황(S)은 상기 인(P)과 함께 강의 제조 시 불가피하게 함유되는 원소로서, 유화물계 개재물(MnS)을 형성하여 저온충격인성을 저하시킨다. Sulfur (S) is an element that is inevitably contained in the production of steel together with phosphorus (P), and forms an emulsion-based inclusion (MnS) to lower the low-temperature impact toughness.

이에 본 발명에서는 황의 함량을 강판 전체 중량의 0.005중량% 이하로 제한하였다.
Therefore, in the present invention, the content of sulfur was limited to 0.005% by weight or less of the total weight of the steel sheet.

니오븀(Nb)Niobium (Nb)

니오븀(Nb)은 탄소(C), 질소(N)와 결합하여 탄화물 또는 질화물을 형성한다. 이는 압연시 결정립 성장을 억제하여 결정립을 미세화 시키므로 강도와 저온인성을 향상시킨다. Niobium (Nb) combines with carbon (C) and nitrogen (N) to form carbides or nitrides. This improves the strength and low temperature toughness by inhibiting grain growth during rolling to refine grains.

상기 니오븀은 강판 전체 중량의 0.04~0.06중량%로 첨가되는 것이 바람직하다. 니오븀의 첨가량이 0.04중량% 미만일 경우 상기의 니오븀 첨가 효과를 충분히 발휘할 수 없다. 반대로, 니오븀의 첨가량이 0.06중량%를 초과할 경우 강판의 용접성을 저하하며, 충격인성을 저하시킬 위험이 있다.
The niobium is preferably added in 0.04 to 0.06% by weight of the total weight of the steel sheet. When the amount of niobium added is less than 0.04% by weight, the above niobium addition effect cannot be sufficiently exhibited. On the contrary, when the addition amount of niobium exceeds 0.06% by weight, the weldability of the steel sheet is lowered, and there is a risk of lowering the impact toughness.

몰리브덴(Mo)Molybdenum (Mo)

몰리브덴(Mo)은 강의 강도를 향상시키고, 연속항복(continuous yielding) 거동을 유도한다. Molybdenum (Mo) improves steel strength and leads to continuous yielding behavior.

상기 몰리브덴은 강판 전체 중량의 0.05~0.1중량%로 첨가되는 것이 바람직하다. 몰리브덴의 첨가량이 0.05중량% 미만일 경우, 상기의 몰리브덴 첨가 효과를 충분히 발휘하기 어렵다. 반대로, 몰리브덴의 첨가량이 0.1중량%를 초과하는 경우, 강도 및 저항복비 달성에는 유리하나, M/A(Martensitic Austenite) 등의 2차상 증가로 인하여 강판의 저온 충격인성이 저하되는 문제점이 있다.
The molybdenum is preferably added at 0.05 to 0.1% by weight of the total weight of the steel sheet. When the addition amount of molybdenum is less than 0.05% by weight, it is difficult to sufficiently exhibit the above-described molybdenum addition effect. On the contrary, when the addition amount of molybdenum exceeds 0.1% by weight, it is advantageous to achieve strength and resistance ratio, but there is a problem in that low-temperature impact toughness of the steel sheet is lowered due to an increase in secondary phase such as M / A (Martensitic Austenite).

티타늄(Ti)Titanium (Ti)

티타늄(Ti)은 강판의 결정립을 미세화하고, 저온 충격인성 향상 등에 기여한다. Titanium (Ti) refines the grains of the steel sheet and contributes to improvement of low-temperature impact toughness.

상기 티타늄은 강판 전체 중량의 0.005~0.02중량%로 첨가되는 것이 바람직하다. 티타늄의 첨가량이 0.005중량% 미만인 경우 저온 충격인성 향상 등의 효과가 불충분하다. 반대로, 티타늄의 첨가량이 0.02중량%를 초과하면 고용 티타늄이 탄소(C)와 결합하여 탄화물을 형성하게 되어 오히려 인성을 저하시키는 문제점이 발생할 수 있다.
The titanium is preferably added in 0.005 to 0.02% by weight of the total weight of the steel sheet. If the added amount of titanium is less than 0.005% by weight, the effect of improving the low temperature impact toughness is insufficient. On the other hand, if the added amount of titanium is more than 0.02 wt%, the solid solution titanium reacts with the carbon (C) to form a carbide, which may result in deterioration of toughness.

바나듐(V)Vanadium (V)

바나듐(V)은 석출물을 형성하여 강도 향상에 기여하고, 경화능을 향상시키는 원소이다. Vanadium (V) is an element that forms precipitation and contributes to the improvement of strength and improves the hardenability.

상기 바나듐은 강판 전체 중량의 0.02~0.06중량%로 첨가하는 것이 바람직하다. 바나듐의 첨가량이 0.02중량% 미만인 경우, 그 첨가 효과가 불충분하다. 반대로, 바나듐의 첨가량이 0.06중량%를 초과하면, 강판의 취성이 증가하는 문제점이 있다.
The vanadium is preferably added at 0.02 to 0.06% by weight of the total weight of the steel sheet. When the amount of vanadium added is less than 0.02% by weight, the effect of addition is insufficient. On the contrary, when the added amount of vanadium exceeds 0.06% by weight, the brittleness of the steel sheet increases.

본 발명에 따른 고강도 강판은 상기 성분들 및 후술하는 공정 조건 제어에 의하여 애시큘라 페라이트(acicular ferrite) 70vol% 이상, 베이나이트 10vol% 미만 및 폴리고날 페라이트(polygonal ferrite), 도상 마르텐사이트라고도 지칭되는 마르텐사이틱 오스테나이트(Martensitic Austenite) 중 1종 이상의 2차상 10vol% 미만을 포함하는 미세조직을 가질 수 있다. 상기의 베이나이트와 2차상은 분율이 높아질수록 강도가 증가하나, 베이나이트 또는 2차상이 10vol% 이상 포함되는 경우, 저온 충격인성이 크게 저하되는 문제점이 있다. The high strength steel sheet according to the present invention is martens, also referred to as acicular ferrite 70vol% or more, bainite less than 10vol% and polygonal ferrite, phase martensite by controlling the above components and process conditions described below. It may have a microstructure comprising less than 10 vol% of one or more secondary phases of Martensitic Austenite. The bainite and the secondary phase is increased in strength as the fraction increases, but when bainite or the secondary phase is included in 10 vol% or more, there is a problem in that low-temperature impact toughness is greatly reduced.

또한, 본 발명에 따른 고강도 강판은 기계적 특성의 측면에서, 인장강도 600MPa 이상, -40℃에서 샤르피 평균 충격흡수에너지 290J 이상 및 항복비 0.8 이하를 가질 수 있다.
In addition, the high strength steel sheet according to the present invention may have a tensile strength of 600 MPa or more, a Charpy average impact absorption energy of 290 J or more, and a yield ratio of 0.8 or less in terms of mechanical properties.

고강도 강판 제조 방법High strength steel plate manufacturing method

도 1은 본 발명의 실시예에 따른 고강도 강판 제조 방법을 개략적으로 나타낸 것이다. 1 schematically shows a method of manufacturing a high strength steel sheet according to an embodiment of the present invention.

도 1을 참조하면, 본 발명에 따른 고강도 강판 제조 방법은 열간압연 단계(S110) 및 냉각 단계(S120)를 포함한다. 열간압연 단계는 다시 1차 압연 단계(S111) 및 2차 압연 단계(S112)를 포함한다.
Referring to Figure 1, the high strength steel sheet manufacturing method according to the present invention includes a hot rolling step (S110) and a cooling step (S120). The hot rolling step further includes a first rolling step S111 and a second rolling step S112.

열간 압연Hot rolling

열간압연 단계(S110)에서는 상기 조성, 즉 중량%로, 탄소(C) : 0.04~0.15%, 실리콘(Si) : 0.15~0.35%, 망간(Mn) : 1.2~1.6%, 인(P) : 0.02% 이하, 황(S) : 0.005% 이하, 니오븀(Nb) : 0.04~0.06%, 몰리브덴(Mo) : 0.05~0.1%, 티타늄(Ti) : 0.005~0.02%, 바나듐(V) : 0.02~0.06% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 열간 압연한다. 슬라브 판재의 경우, 석출물의 재고용 및 균질화 등을 목적으로 1150~1250℃ 정도의 온도에서 1~3시간 정도 재가열된 것일 수 있다.
In the hot rolling step (S110), the composition, that is by weight%, carbon (C): 0.04 ~ 0.15%, silicon (Si): 0.15 ~ 0.35%, manganese (Mn): 1.2 ~ 1.6%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, niobium (Nb): 0.04 to 0.06%, molybdenum (Mo): 0.05 to 0.1%, titanium (Ti): 0.005 to 0.02%, vanadium (V): 0.02 to A slab sheet made of 0.06% and the remaining iron (Fe) and unavoidable impurities is hot rolled. In the case of slab plate, it may be reheated for about 1 to 3 hours at a temperature of about 1150 ~ 1250 ℃ for the purpose of reusing and homogenizing the precipitate.

본 발명에서 열간압연 단계(S110)는 오스테나이트 재결정 영역에서 실시되는 1차 압연 단계(S111) 및 오스테나이트 미재결정 영역에서 실시되는 2차 압연 단계(S112)를 포함한다. Hot rolling step (S110) in the present invention includes a primary rolling step (S111) carried out in the austenite recrystallization region and a secondary rolling step (S112) carried out in the austenite uncrystallized region.

이때, 2차 압연 단계(S112)는, 2차 압연 단계에서의 누적압하율((A-B)/A X 100), 여기서 A는 2차 압연 개시 시점의 판재 두께, B는 2차 압연 종료 시점의 판재 두께)이 50% 이하가 되도록 실시되고, 또한 종료 온도가 860℃ 이상이 되도록 실시된다. 2차 압연의 누적 압하율이 50%를 초과하는 경우, 혹은 2차 압연의 종료 온도가 860℃ 미만인 경우, 항복강도 증가로 인하여 목표로 하는 0.8 이하의 저항복비를 확보하기 어렵기 때문이다. At this time, the secondary rolling step (S112), the cumulative reduction ratio ((AB) / AX 100) in the secondary rolling step, where A is the plate thickness at the start of the secondary rolling, B is the plate at the end of the secondary rolling Thickness) is 50% or less, and finish temperature is 860 degreeC or more. This is because when the cumulative reduction ratio of the secondary rolling exceeds 50% or when the end temperature of the secondary rolling is less than 860 ° C, it is difficult to secure a target resistance yield ratio of 0.8 or less due to the increase in yield strength.

한편, 2차 압연의 종료 온도는 860~890℃인 것이 더욱 바람직하다. 2차 압연의 종료 온도가 890℃를 초과하는 경우, 충분한 강도 확보가 어려워질 수 있으며, 이를 개선하기 위해서는 과도한 냉각이 요구될 수 있다. On the other hand, it is more preferable that the finishing temperature of secondary rolling is 860-890 degreeC. If the end temperature of the secondary rolling exceeds 890 ° C., it may be difficult to secure sufficient strength, and excessive cooling may be required to improve this.

또한, 2차 압연의 누적 압하율은 20~50%인 것이 더욱 바람직하다. 2차 압연의 누적 압하율이 20% 미만인 경우, 균일하면서도 미세한 조직을 확보하기 어려우며, 강판의 두께 방향 중심부 조직이 조대화되어 저온 충격인성이 저하될 수 있다.
Moreover, it is more preferable that the cumulative reduction ratio of secondary rolling is 20 to 50%. When the cumulative reduction ratio of the secondary rolling is less than 20%, it is difficult to secure a uniform and fine structure, and coarse structure of the central portion in the thickness direction of the steel sheet may lower the low-temperature impact toughness.

냉각Cooling

다음으로, 냉각 단계(S120)에서는 열간 압연된 판재를 냉각하여, 최종 미세조직을 형성한다. Next, in the cooling step (S120) to cool the hot rolled plate, to form a final microstructure.

또한, 냉각은 5~20℃/sec의 냉각속도로 실시되는 것이 바람직하다. 냉각 속도가 5℃/sec 미만인 경우 결정립 성장이 촉진되어 강도 확보에 어려움이 있다. 반대로, 냉각 속도가 20℃/sec를 초과할 경우 베이나이트 분율이 증가하여 강도 상승에 유효하지만, 저온 충격인성이 저하되는 문제점이 있다. In addition, the cooling is preferably carried out at a cooling rate of 5 ~ 20 ℃ / sec. If the cooling rate is less than 5 ° C / sec is promoted grain growth is difficult to secure strength. On the contrary, when the cooling rate exceeds 20 ° C / sec, the bainite fraction increases to increase the strength, but there is a problem in that low-temperature impact toughness is lowered.

이때, 냉각은 상기 냉각속도를 기준으로, 냉각종료 온도가 450~650℃가 되도록 실시되는 것이 바람직하다. 냉각 종료 온도가 450℃ 미만인 경우 저온변태조직이 다량 형성되어 저온 충격인성이 저하되는 문제점이 있다. 반대로, 냉각 종료 온도가 650℃를 초과할 경우 조대한 미세조직의 형성으로 인해 강도가 불충분해지는 문제가 있다.
At this time, the cooling is preferably carried out so that the cooling end temperature is 450 ~ 650 ℃ based on the cooling rate. If the cooling end temperature is less than 450 ℃ there is a problem that the low temperature transformation toughness is formed a large amount low temperature impact toughness. On the contrary, when the cooling end temperature exceeds 650 ° C, there is a problem that the strength is insufficient due to the formation of coarse microstructure.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense. Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.

1. 강판의 제조1. Manufacture of steel sheet

표 1에 기재된 조성 및 표 2에 기재된 공정 조건으로 강판을 제조하였다. The steel plate was manufactured by the composition of Table 1, and the process conditions of Table 2.

[표 1][Table 1]

Figure pat00001
Figure pat00001

[표 2][Table 2]

Figure pat00002
Figure pat00002

ARR : 2차 압연의 누적압하율 FRT : 2차 압연 종료 온도ARR: Cumulative reduction rate of secondary rolling FRT: Secondary rolling end temperature

FCT : 냉각 종료 온도 C/R : 냉각 속도FCT: Cooling end temperature C / R: Cooling rate

YS : 항복강도 TS : 인장강도YS: Yield Strength TS: Tensile Strength

El : 연신율 CVN : 샤르피 충격흡수에너지(3회 평균)El: Elongation CVN: Charpy impact absorption energy (3 times average)

YR : 항복비
YR: Yield Ratio

2. 물성 평가 결과2. Property evaluation result

표 2를 참조하면, 본 발명에서 제시한 조성 범위 및 공정 조건을 만족하는 실시예 1~2에 따라 제조된 강판은 인장강도 600MPa 이상, -40℃ 샤르피 평균 충격흡수에너지 290J 이상 및 0.8 이하의 항복비를 모두 만족하였다. Referring to Table 2, the steel sheets prepared according to Examples 1 and 2 satisfying the composition range and process conditions presented in the present invention yield a tensile strength of 600 MPa or more, a -40 ° C Charpy average impact absorption energy of 290 J or more, and a yield of 0.8 or less. All of the rain was satisfied.

그러나, 몰리브덴이 첨가되지 않고, 2차 압연의 누적 압하율, 2차 압연의 냉각 종료 온도가 본 발명에서 제시한 범위를 벗어난 비교예 1에 따른 강판의 경우, 항복비가 0.91로 매우 높은 값을 나타내었다. However, in the case of the steel sheet according to Comparative Example 1 in which molybdenum was not added and the cumulative reduction ratio of the secondary rolling and the cooling end temperature of the secondary rolling were outside the ranges proposed in the present invention, the yield ratio showed very high value of 0.91. It was.

또한, 몰리브덴이 0.1중량%를 초과하여 첨가되고, 2차 압연의 누적 압하율, 2차 압연의 냉각 종료 온도가 본 발명에서 제시한 범위를 벗어난 비교예 2~3에 따른 강판의 경우, 항복비가 비교예 1에 따른 강판보다는 낮았으나, 여전히 목표로 하는 0.8을 초과하였다. 특히, 비교예 2~3에 따른 강판의 경우, 샤르피 평균 충격흡수에너지가 매우 낮게 나타났다. In addition, in the case of the steel sheets according to Comparative Examples 2 to 3 in which molybdenum was added in excess of 0.1 wt%, and the cumulative reduction ratio of secondary rolling and the cooling end temperature of secondary rolling were outside the ranges proposed in the present invention, the yield ratio was Although lower than the steel sheet according to Comparative Example 1, it still exceeded the target of 0.8. In particular, in the case of the steel sheet according to Comparative Examples 2 to 3, the Charpy average impact absorption energy was very low.

또한, 본 발명에서 제시한 조성범위는 만족하나, 2차 압연의 누적 압하율, 2차 압연의 냉각 종료 온도가 본 발명에서 제시한 범위를 벗어난 비교예 4에 따른 강판의 경우, 항복비가 0.86으로 목표로 하는 0.8을 초과하였다.
In addition, the composition range proposed in the present invention is satisfactory, but in the case of the steel sheet according to Comparative Example 4 in which the cumulative reduction ratio of the secondary rolling and the cooling end temperature of the secondary rolling were outside the ranges proposed in the present invention, the yield ratio was 0.86. The target exceeded 0.8.

3. 미세조직 평가 결과3. Microstructure Evaluation Results

도 2는 실시예 1에 따라 제조된 강판의 광학조직사진을 나타낸 것이고, 도 3은 비교예 2에 따라 제조된 강판의 광학조직사진을 나타낸 것이다. Figure 2 shows an optical tissue picture of the steel sheet prepared according to Example 1, Figure 3 shows an optical tissue picture of the steel sheet prepared according to Comparative Example 2.

도 2를 참조하면, 실시예 1에 따른 강판의 경우, 침상형의 애시큘라 페라이트가 잘 형성되어 있는 것을 볼 수 있다. 반면, 몰리브덴이 상대적으로 많이 첨가된 비교예 2에 따른 강판의 경우, 도상 마르텐사이트라고도 지칭되는 마르텐사이틱 오스테나이트(Martensitic Austenite, M/A)와 같은 2차상이 다량 형성되어 있는 것을 볼 수 있다. Referring to Figure 2, in the case of the steel sheet according to Example 1, it can be seen that the acicular ferrite of the needle-shaped well formed. On the other hand, in the case of the steel sheet according to Comparative Example 2 in which molybdenum is added relatively much, it can be seen that a large amount of secondary phases such as martensitic austenite (M / A), also referred to as island martensite, are formed. .

이러한 미세조직의 차이로 인하여 비교예 2에 따른 강판에 비하여 실시예 1에 따른 강판의 경우, 저항복비와 함께 우수한 저온 충격인성을 나타내는 것이라 볼 수 있다.
Due to the difference in microstructure, the steel sheet according to Example 1 may be seen to exhibit excellent low-temperature impact toughness with a resistance ratio compared to the steel sheet according to Comparative Example 2.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Such changes and modifications may belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (7)

중량%로, 탄소(C) : 0.04~0.15%, 실리콘(Si) : 0.15~0.35%, 망간(Mn) : 1.2~1.6%, 인(P) : 0.02% 이하, 황(S) : 0.005% 이하, 니오븀(Nb) : 0.04~0.06%, 몰리브덴(Mo) : 0.05~0.1%, 티타늄(Ti) : 0.005~0.02%, 바나듐(V) : 0.02~0.06% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 오스테나이트 재결정 영역에서 1차 압연한 후, 오스테나이트 미재결정 영역에서 2차 압연하는 열간압연 단계; 및
상기 열간 압연된 판재를 냉각하는 냉각 단계;를 포함하고,
상기 2차 압연은, 누적압하율((A-B)/A X 100), 여기서 A는 2차 압연 개시 시점의 판재 두께, B는 2차 압연 종료 시점의 판재 두께)이 50% 이하, 종료 온도가 860℃ 이상이 되도록 실시되는 것을 특징으로 하는 고강도 강판 제조 방법.
By weight%, carbon (C): 0.04 to 0.15%, silicon (Si): 0.15 to 0.35%, manganese (Mn): 1.2 to 1.6%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% Niobium (Nb): 0.04 to 0.06%, Molybdenum (Mo): 0.05 to 0.1%, Titanium (Ti): 0.005 to 0.02%, Vanadium (V): 0.02 to 0.06% and the remaining iron (Fe) and inevitable impurities A hot rolling step of slab plate material consisting of a first roll in the austenite recrystallized region, and then a second roll in the austenite uncrystallized region; And
A cooling step of cooling the hot rolled sheet;
The secondary rolling has a cumulative reduction ratio ((AB) / AX 100), where A is the sheet thickness at the start of the secondary rolling, B is the sheet thickness at the end of the secondary rolling, and the end temperature is 860. A high strength steel sheet manufacturing method, characterized in that it is carried out to be ℃ or more.
제1항에 있어서,
상기 열간 압연 단계는
상기 2차 압연의 종료 온도가 860~890℃가 되도록 실시되는 것을 특징으로 하는 고강도 강판 제조 방법.
The method of claim 1,
The hot rolling step
The method of producing a high strength steel sheet, characterized in that the end temperature of the secondary rolling is 860 ~ 890 ℃.
제1항에 있어서,
상기 열간 압연 단계는
상기 2차 압연의 누적압하율이 20~50%가 되도록 실시되는 것을 특징으로 하는 고강도 강판 제조 방법.
The method of claim 1,
The hot rolling step
The method for producing a high strength steel sheet, characterized in that the cumulative reduction ratio of the secondary rolling is 20 to 50%.
제1항에 있어서,
상기 냉각 단계는
5~20℃/sec의 냉각속도로 실시되는 것을 특징으로 하는 고강도 강판 제조 방법.
The method of claim 1,
The cooling step
High strength steel sheet manufacturing method characterized in that carried out at a cooling rate of 5 ~ 20 ℃ / sec.
제4항에 있어서,
상기 냉각 단계는
냉각종료 온도가 450~650℃가 되도록 실시되는 것을 특징으로 하는 고강도 강판 제조 방법.
5. The method of claim 4,
The cooling step
High strength steel sheet manufacturing method characterized in that the cooling end temperature is carried out to be 450 ~ 650 ℃.
중량%로, 탄소(C) : 0.04~0.15%, 실리콘(Si) : 0.15~0.35%, 망간(Mn) : 1.2~1.6%, 인(P) : 0.02% 이하, 황(S) : 0.005% 이하, 니오븀(Nb) : 0.04~0.06%, 몰리브덴(Mo) : 0.05~0.1%, 티타늄(Ti) : 0.005~0.02%, 바나듐(V) : 0.02~0.06% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지고,
애시큘라 페라이트(acicular ferrite) 70vol% 이상, 베이나이트 10vol% 미만 및 폴리고날 페라이트(polygonal ferrite), 마르텐사이틱 오스테나이트(Martensitic Austenite) 중 1종 이상의 2차상 10vol% 미만을 포함하는 미세조직을 갖는 것을 특징으로 하는 고강도 강판.
By weight%, carbon (C): 0.04 to 0.15%, silicon (Si): 0.15 to 0.35%, manganese (Mn): 1.2 to 1.6%, phosphorus (P): 0.02% or less, sulfur (S): 0.005% Niobium (Nb): 0.04 to 0.06%, Molybdenum (Mo): 0.05 to 0.1%, Titanium (Ti): 0.005 to 0.02%, Vanadium (V): 0.02 to 0.06% and the remaining iron (Fe) and inevitable impurities Made up of
Having a microstructure comprising at least 70 vol% of acicular ferrite, less than 10 vol% of bainite and less than 10 vol% of at least one secondary phase of polygonal ferrite, Martensitic Austenite High strength steel sheet, characterized in that.
제6항에 있어서,
상기 강판은
인장강도 600MPa 이상, -40℃에서 샤르피 평균 충격흡수에너지 290J 이상 및 항복비 0.8 이하를 갖는 것을 특징으로 하는 고강도 강판.
The method according to claim 6,
The steel sheet
A high strength steel sheet having a tensile strength of 600 MPa or more, a Charpy average impact absorption energy of 290 J or more and a yield ratio of 0.8 or less at -40 ° C.
KR1020120009498A 2012-01-31 2012-01-31 High strength steel plate and method for manufacturing the same KR101344640B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120009498A KR101344640B1 (en) 2012-01-31 2012-01-31 High strength steel plate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120009498A KR101344640B1 (en) 2012-01-31 2012-01-31 High strength steel plate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20130088331A true KR20130088331A (en) 2013-08-08
KR101344640B1 KR101344640B1 (en) 2013-12-26

Family

ID=49214685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120009498A KR101344640B1 (en) 2012-01-31 2012-01-31 High strength steel plate and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101344640B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117712A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 High manganese steel having superior low-temperature toughness and yield strength and manufacturing method
WO2020085858A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
WO2020085861A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
KR20200047318A (en) * 2018-10-25 2020-05-07 주식회사 포스코 Ultra-low temperature austenitic high manganese steel having excellent shape and manufacturing method for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253331A (en) 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JP5157387B2 (en) 2007-11-21 2013-03-06 Jfeスチール株式会社 Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117712A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 High manganese steel having superior low-temperature toughness and yield strength and manufacturing method
CN110114491A (en) * 2016-12-22 2019-08-09 Posco公司 Low-temperature flexibility and the excellent potassium steel and manufacturing method of yield strength
CN110114491B (en) * 2016-12-22 2021-09-10 Posco公司 High manganese steel having excellent low-temperature toughness and yield strength, and method for producing same
US11505853B2 (en) 2016-12-22 2022-11-22 Posco High manganese steel having superior low-temperature toughness and yield strength and manufacturing method thereof
WO2020085858A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
WO2020085861A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
KR20200047318A (en) * 2018-10-25 2020-05-07 주식회사 포스코 Ultra-low temperature austenitic high manganese steel having excellent shape and manufacturing method for the same
KR20200047317A (en) * 2018-10-25 2020-05-07 주식회사 포스코 Ultra-low temperature austenitic high manganese steel having excellent shape and manufacturing method for the same

Also Published As

Publication number Publication date
KR101344640B1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
US11634785B2 (en) Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
CN110088346B (en) Steel material for welded steel pipe having excellent longitudinal uniform elongation, method for producing same, and steel pipe using same
US11649519B2 (en) Sour-resistant heavy-wall steel plate having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
KR101778598B1 (en) Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR20120033235A (en) Line pipe steel with excellent hic resistance and method of manufacturing the line pipe steel
KR101344640B1 (en) High strength steel plate and method for manufacturing the same
KR101318227B1 (en) Cu-added complex bainitic steel and manufacturing method thereof
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR102031444B1 (en) Hot rolled steel plate having exellent strength and high dwtt toughness at low temperature and method for manufacturing the same
KR101553108B1 (en) Steel for pressure vessel and method of manufacturing the steel
US11578392B2 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
KR101505279B1 (en) Hot-rolled steel sheet and method of manufacturing the same
KR101858857B1 (en) High-strength hot-rolled steel plate having high dwtt toughness at low temperature, and method for manufacturing the same
KR101679668B1 (en) Manufacturing method for high strength steel palte with low temperature toughness and high strength steel palte with low temperature toughness thereof
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR101572317B1 (en) Shape steel and method of manufacturing the same
KR101518551B1 (en) Ultrahigh strength hot rolled steel sheet having excellent impact resistant property and mehtod for production thereof
KR101586944B1 (en) Steel and method of manufacturing the same
KR20130023714A (en) Thick steel sheet and method of manufacturing the thick steel sheet
KR20130134333A (en) High strength steel sheet and method of manufacturing the same
KR101185269B1 (en) High hardness cold-rolled steel with excellent burring workability and method of manufacturing the same
US11519045B2 (en) High-strength steel having excellent low-yield-ratio characteristics, and manufacturing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181023

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191127

Year of fee payment: 7