WO2020085858A1 - Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor - Google Patents

Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor Download PDF

Info

Publication number
WO2020085858A1
WO2020085858A1 PCT/KR2019/014188 KR2019014188W WO2020085858A1 WO 2020085858 A1 WO2020085858 A1 WO 2020085858A1 KR 2019014188 W KR2019014188 W KR 2019014188W WO 2020085858 A1 WO2020085858 A1 WO 2020085858A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
austenite
rolling
present
tnr
Prior art date
Application number
PCT/KR2019/014188
Other languages
French (fr)
Korean (ko)
Inventor
이운해
김보성
석정훈
이동호
김성규
강상덕
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190118924A external-priority patent/KR102255825B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP19875536.5A priority Critical patent/EP3872210A4/en
Priority to CN201980068654.9A priority patent/CN112912529A/en
Publication of WO2020085858A1 publication Critical patent/WO2020085858A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to an austenitic high-manganese steel and a method for manufacturing the same, and more particularly, to an ultra-low-temperature austenite-based high-manganese steel for excellent cryogenic toughness and a method for manufacturing the same.
  • Austenitic high-manganese steel materials have high toughness by stabilizing austenite even at ambient or cryogenic environments by adjusting the content of manganese (Mn) and carbon (C), which are elements that increase the stability of austenite, for LNG storage. It has particularly suitable properties as a material for cryogenic structures such as tanks and tanks for transporting LNG.
  • Mn manganese
  • C carbon
  • high manganese (Mn) steel has high deformation resistance at high temperatures, and in particular, in the case of thin materials, it is difficult to secure a uniform shape in the longitudinal direction according to a rolling pass, a rolling reduction, and the like.
  • shape of the hot rolled material is inferior, cooling safety is lowered, and there is a possibility of causing equipment damage in a process such as transfer.
  • longitudinal shape of the hot rolled material is inferior, it is not preferable in terms of economical efficiency and productivity since subsequent work such as shape correction work must be performed.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1994-0002370 (published on February 17, 1994)
  • an austenite-based high-manganese steel material having excellent shape and a method of manufacturing the same can be provided.
  • the austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, the balance includes Fe and other unavoidable impurities, and includes austenite of 95 area% or more as a microstructure, Charpy impact toughness of -196 °C is more than 30J (based on 5mm thickness), and the maximum height difference between the floor and the valley formed in the region within 2m along the rolling direction may be within 10mm.
  • the grain size of the austenite may be 5 ⁇ 150 ⁇ m.
  • the yield strength of the steel material may be 350 MPa or more, tensile strength 700 MPa or more, and elongation 30% or more.
  • the austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, slab containing residual Fe and other inevitable impurities is first heated to a temperature range of 1050 to 1300 ° C , First heating the slab at a final rolling temperature of 800 to 1100 ° C at a total rolling reduction of 35 to 80% to provide an intermediate material, and secondarily heating the intermediate material to a temperature range of 1050 to 1300 ° C, The secondary heated intermediate material is subjected to secondary hot rolling at a finish rolling temperature of (Tnr-120) to Tnr ° C to provide a hot rolled material, and the hot rolled material is cooled to a temperature of 600 ° C.
  • Cooling to the range it can be prepared by controlling the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) ⁇ Tnr °C during the second hot rolling to 5-25%.
  • the hot-rolled material that has been cooled may have a maximum height difference between a floor and a valley formed in a region within 2 m along the rolling direction within 10 mm.
  • an austenite-based high-manganese steel material having excellent cryogenic toughness and excellent shape.
  • Figure 1 (a) is a view for helping to understand the bone and floor formed in the steel material in the present invention
  • Figure 1 (b) is a picture of a steel material according to an example of the present invention.
  • the present invention relates to an austenitic high-manganese steel for excellent cryogenic shape and a method for manufacturing the same, hereinafter, to describe preferred embodiments of the present invention.
  • the embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. These embodiments are provided to those skilled in the art to further detail the present invention.
  • the austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, balance Fe and other inevitable impurities.
  • Carbon (C) is not only an austenite stabilizing element, but also an effective element for securing strength by solid solution strengthening. Therefore, the present invention can limit the lower limit of the carbon (C) content to 0.2% in order to secure low-temperature toughness and strength. That is, when the carbon (C) content is less than 0.2%, the stability of austenite is insufficient to obtain a stable austenite at cryogenic temperatures, and it is easy to process organic transformation into ⁇ -martensitic and ⁇ '-martensitic due to external stress. This is because it can reduce the toughness and strength of steel materials.
  • the carbon (C) content of the present invention may be 0.2 to 0.5%, the preferred carbon (C) content may be 0.3 to 0.5%, and the more preferable carbon (C) content may be 0.3 to 0.45%.
  • Manganese (Mn) is an element that effectively contributes to the stabilization of austenite, so the present invention can limit the lower limit of the manganese (Mn) content to 23% to achieve this effect. That is, the present invention can effectively increase the stability of austenite because it contains 23% or more of manganese (Mn), thereby suppressing the formation of ferrite, ⁇ -martensite and ⁇ '-martensite, thereby improving the low-temperature toughness of steel. It can be secured effectively.
  • the manganese (Mn) content exceeds a certain level range, the effect of increasing the stability of austenite is saturated, while the manufacturing cost is greatly increased, and surface oxidation may be deteriorated due to excessive internal oxidation during hot rolling.
  • the present invention can limit the upper limit of the manganese (Mn) content to 28%. Therefore, the manganese (Mn) content of the present invention may be 23 to 28%, and a more preferable manganese (Mn) content may be 23 to 25%.
  • Silicon (Si) is an element that is indispensably added in trace amounts as a deoxidizer, such as aluminum (Al).
  • a deoxidizer such as aluminum (Al).
  • silicon (Si) is excessively added, an oxide is formed at a grain boundary to reduce high temperature ductility, and there is a fear that surface quality may be lowered by causing cracks, etc., so that the present invention has an upper limit of the silicon (Si) content. It can be limited to 0.5%.
  • an excessive cost is required to reduce the Si content in the steel, and the present invention can limit the lower limit of the silicon (Si) content to 0.05%. Therefore, the silicon (Si) content of the present invention may be 0.05 to 0.5%.
  • Phosphorus (P) is not only an inevitably introduced impurity element, but also an element that is easily segregated and causes cracking during casting or deteriorates weldability. Therefore, the present invention can limit the upper limit of the phosphorus (P) content to 0.03% in order to prevent deterioration of castability and deterioration of weldability.
  • S Sulfur
  • S is not only an inevitably introduced impurity element, but also an element that causes hot embrittlement defects by inclusion formation. Therefore, the present invention can limit the upper limit of the sulfur (S) content to 0.005% to suppress the occurrence of hot embrittlement.
  • Aluminum (Al) is a representative element added as a deoxidizer. However, aluminum (Al) may form precipitates by reacting with carbon (C) and nitrogen (N), and the hot workability may be deteriorated by these precipitates, and the present invention provides an upper limit of the aluminum (Al) content. It can be limited to 0.5%. The more preferable content of aluminum (Al) may be 0.05 to 0.5%.
  • Chromium (Cr) is a winso that stabilizes austenite up to a range of an appropriate addition amount, thereby contributing to the improvement of impact toughness at low temperatures, and is employed in austenite to increase the strength of steel.
  • chromium is also an element that improves the corrosion resistance of steel materials. Therefore, the present invention can add more than 2.5% chromium (Cr) to achieve this effect.
  • chromium (Cr) is a carbide-forming element, and is also an element that forms a carbide at the austenite grain boundary to reduce low-temperature impact, so the present invention takes into account the content relationship with carbon (C) and other elements added together
  • the upper limit of the chromium (Cr) content may be limited to 4.5%. Therefore, the chromium (Cr) content of the present invention may be 2.5 to 4.5%, and a more preferable chromium (Cr) content may be 3 to 4%.
  • Boron (B) is a grain boundary strengthening element for strengthening the austenite grain boundary, and is an element capable of effectively lowering the high temperature cracking sensitivity of steel materials by strengthening the austenite grain boundary even with a small amount added. Therefore, in order to achieve this effect, the present invention can limit the lower limit of the boron (B) content to 0.0005%. On the other hand, when the content of boron (B) exceeds a certain range, it causes segregation at the austenite grain boundary, thereby increasing the sensitivity of high temperature cracking of the steel, so the surface quality of the steel may be lowered. ) The upper limit of the content can be limited to 0.01%. Therefore, the boron (B) content of the present invention may be 0.0005 to 0.01%, and the more preferable content of boron (B) may be 0.002 to 0.006%.
  • the austenite-based high-manganese steel for excellent cryogenic shape may contain the balance of Fe and other unavoidable impurities in addition to the above-described components.
  • unintended impurities may be inevitably mixed from the raw material or the surrounding environment, and thus cannot be excluded. Since these impurities are known to anyone skilled in the art, they are not specifically mentioned in this specification.
  • addition of effective ingredients other than the above composition is not excluded.
  • the austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention may include 95% by area or more of austenite as a microstructure, thereby effectively securing cryogenic toughness of the steel material.
  • the average grain size of austenite may be 5 to 150 ⁇ m.
  • the average grain size of austenite that can be implemented in the manufacturing process is 5 ⁇ m or more, and when the average grain size is greatly increased, the strength of the steel material may be lowered, so the grain size of austenite may be limited to 150 ⁇ m or less.
  • the austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention may include carbide and / or ⁇ -martensite as a structure that can exist in addition to austenite.
  • carbide and / or ⁇ -martensite exceeds a certain level, the toughness and ductility of the steel may be rapidly reduced.
  • the fraction of carbide and / or ⁇ -martensite is less than 5 area%. Can be limited.
  • the austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention may have a yield strength of 350 MPa or more, a tensile strength of 700 MPa or more, and an elongation of 30% or more.
  • the austenite-based high-manganese steel material having excellent shape according to one aspect of the present invention has a Charpy impact toughness of 30 J or more (based on a thickness of 5 mm) of -196 ° C, and thus can have excellent cryogenic properties.
  • the austenite-based high-manganese steel for excellent cryogenic shape has a difference in height between the floor and the valley formed in the steel in the region within 2 m for the rolling direction even if a separate calibration operation is not performed after the steel is manufactured. Since it is within a maximum of 10 mm, excellent shape uniformity can be secured.
  • Figure 1 (a) is a view for helping to understand the bone and floor formed in the steel material in the present invention
  • Figure 1 (b) is a picture of a steel material according to an example of the present invention.
  • the austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, slab containing residual Fe and other inevitable impurities is first heated to a temperature range of 1050 to 1300 ° C , First heating the slab at a final rolling temperature of 800 to 1100 ° C at a total rolling reduction of 35 to 80% to provide an intermediate material, and secondarily heating the intermediate material to a temperature range of 1050 to 1300 ° C, The secondary heated intermediate material is subjected to secondary hot rolling at a finish rolling temperature of (Tnr-120) to Tnr ° C to provide a hot rolled material, and the hot rolled material is cooled to a temperature of 600 ° C.
  • Cooling to the range it can be prepared by controlling the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) ⁇ Tnr °C during the second hot rolling to 5-25%.
  • composition of the slab provided in the manufacturing method of the present invention corresponds to the steel composition of the austenitic high-manganese steel described above
  • description of the steel composition of the slab is described for the steel composition of the austenitic high-manganese steel described above. Instead.
  • the slab provided with the above-described steel composition may be primary heated in a temperature range of 1050 to 1300 ° C.
  • the primary heating temperature is less than a predetermined range, a problem that excessive rolling load may occur during primary hot rolling or a problem that an alloy component is not sufficiently dissolved may occur, and the present invention provides a lower limit of the primary heating temperature range. It can be limited to 1050 °C.
  • the primary heating temperature exceeds a certain range, there is a fear that the grains are excessively grown and the strength is lowered or the hot rollability of the steel material is deteriorated by heating the steel above the solidus temperature of the steel material.
  • the upper limit of the silver slab primary heating temperature range may be limited to 1300 ° C.
  • the primary hot rolling process includes a rough rolling process and a finish rolling process, and the primary heated slab may be sized in the primary hot rolling to be provided as an intermediate material.
  • the total rolling reduction of the primary hot rolling may be 35 to 80%, and the finishing rolling of the primary hot rolling is preferably performed in a temperature range of 800 to 1100 ° C.
  • the finish rolling temperature of the primary hot rolling is less than a certain range, excessive rolling load due to an increase in the rolling load may be a problem, and when the finish rolling temperature of the primary hot rolling exceeds a certain range, the grains grow coarsely and target This is because strength cannot be obtained.
  • the intermediate material may be cut to an appropriate length according to the thickness of the intermediate material, and preferably, the intermediate material may be cut to a length of 1500 to 4000 mm. This is because when the length of the intermediate material is less than 1500 mm, tracking in the heating furnace is difficult, and when the length of the intermediate material exceeds 4000 mm, bending may occur along the longitudinal direction.
  • the intermediate material may be secondarily heated in a temperature range of 1050 to 1300 ° C. If the secondary heating temperature is less than a certain range, a problem may occur that excessive rolling load occurs during secondary hot rolling, or a problem that an alloy component is not sufficiently dissolved may occur, and the present invention provides a lower limit of the secondary heating temperature range. It can be limited to 1050 °C. On the other hand, when the secondary heating temperature exceeds a certain range, the crystal grains grow excessively and the strength is lowered, or the hot rollability of the steel material may be deteriorated by heating the steel above the solidus temperature of the steel bar. The upper limit of the secondary heating temperature range of the silver intermediate may be limited to 1300 ° C.
  • the secondary hot rolling process includes a rough rolling process and a finish rolling process, and the secondary reheated intermediate material may be provided as an intermediate material by secondary hot rolling.
  • the finish rolling is preferably performed in a temperature range of (Tnr-120) to Tnr ° C.
  • Tnr can be derived by Equation 1 below.
  • Tnr (°C) 840 + 150 * C + 2.5 * Mn + 3.5 * Cr-50 * Si
  • the present invention can limit the finish rolling temperature of the secondary hot rolling to the range of (Tnr-120) to Tnr ° C.
  • the present invention can control the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) to Tnr ° C during the secondary hot rolling to 5 to 25%. If the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) to Tnr ° C is less than 5%, the desired shape correction effect cannot be achieved, and the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) to Tnr ° C. This is because if the amount exceeds 25%, the impact toughness may decrease due to excessive pressure reduction.
  • the second hot-rolled hot rolled material can be accelerated to a cooling stop temperature of 600 ° C. or less at a cooling rate of 1 to 100 ° C./s. If the cooling rate is less than a certain range, the ductility of the steel may be reduced due to carbides precipitated at the grain boundary during cooling, and thus deterioration of abrasion resistance may be a problem. Therefore, the present invention can limit the cooling rate of the hot rolled material to 1 ° C / s or more. have. The lower limit of the preferred cooling rate may be 10 ° C / s, and the cooling method may be accelerated cooling.
  • the present invention sets the upper limit of the cooling rate to 100 ° C. Can be limited to / s.
  • the present invention limits the cooling stop temperature to 600 ° C. or less. You can.
  • the austenitic high-manganese steel material prepared as described above contains 95% by area or more of austenite, yield strength of 350MPa or more, tensile strength of 700MPa or more, elongation of 30% or more, and Charpy of 30J or more (based on 5mm thickness) at -196 ° C. Impact toughness can be provided.
  • austenite-based high-manganese steel manufactured as described above can ensure excellent shape uniformity because the height difference between the floor and the valley formed in the steel is within 10 mm or less in the region within 2 m along the length direction of the steel.
  • a slab having an alloy composition of Table 1 and a thickness of 250 mm was produced. Each slab was first heated in a temperature range of 1200 ° C, and then first hot rolled at a total rolling reduction rate of 50 to 60% at a finish rolling temperature of 1000 ° C to prepare an intermediate material. Each intermediate material was subjected to secondary heating and secondary hot rolling under the conditions of Table 2 to prepare a hot-rolled material specimen, yield strength, tensile strength, elongation, Charpy impact toughness at -196 ° C, and The shape uniformity was measured and is shown in Table 3 below. At this time, the shape uniformity was described by measuring the maximum height difference between the floor and the valley formed in the 2 m region along the rolling direction of the specimen. Here, the tensile properties were tested at room temperature in accordance with ASTM A370, and the impact toughness was measured at -196 ° C by processing into 5mm thick impact specimens according to the conditions of the same standard.
  • the alloy composition and manufacturing process of the present invention secures the desired physical properties and shape uniformity of the present invention in the case of a satisfactory invention example, whereas the alloy composition or manufacturing process of the present invention is not satisfied. In the case of the comparative example, it can be confirmed that the present invention does not secure the desired physical properties or shape uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The cryogenic austenitic high-manganese steel having an excellent shape, according to one aspect of the present invention, comprises 0.2-0.5 wt% of C, 23-28 wt% of Mn, 0.05-0.5 wt% of Si, at most 0.03 wt% of P, at most 0.005 wt% of S, at most 0.5 wt% of Al, 2.5-4.5 wt% of Cr, and 0.0005-0.01 wt% of B, with the remainder being Fe and other unavoidable impurities, and also comprises at least 95 area% of austenite as a microstructure, wherein the Charpy impact toughness at -196°C is at least 30 J (based on a thickness of 5 mm), and the maximum difference in height between a crest and a trough formed within an area of 2 m along the direction of rolling may be at most 10 mm.

Description

형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법Austenitic high-manganese steel for excellent cryogenic shape and its manufacturing method
본 발명은 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것이며, 상세하게는 극저온인성이 우수하면서도, 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것이다. The present invention relates to an austenitic high-manganese steel and a method for manufacturing the same, and more particularly, to an ultra-low-temperature austenite-based high-manganese steel for excellent cryogenic toughness and a method for manufacturing the same.
오스테나이트계 고망간 강재는 오스테나이트의 안정성을 높여주는 원소인 망간(Mn)과 탄소(C)의 함량을 조율하여 상온 또는 극저온의 환경에서도 오스테나이트가 안정하여 높은 인성을 가지는바, LNG 저장용 탱크 및 LNG 수송용 탱크 등 극저온 구조물의 소재로 특히 적합한 물성을 가진다.Austenitic high-manganese steel materials have high toughness by stabilizing austenite even at ambient or cryogenic environments by adjusting the content of manganese (Mn) and carbon (C), which are elements that increase the stability of austenite, for LNG storage. It has particularly suitable properties as a material for cryogenic structures such as tanks and tanks for transporting LNG.
그러나, 고망간(Mn) 강은 고온에서의 변형 저항이 높으며, 특히 박물재의 경우 압연 패스, 압하율 등에 따라서 길이 방향의 균일한 형상을 확보하기 어려운 실정이다. 열연재의 형상이 열위한 경우 냉각 안전성이 낮아지며, 이송 등의 공정에서 설비 파손 등을 유발할 가능성이 존재한다. 또한, 열연재의 길이 방향 형상이 열위한 경우, 형상 교정 작업 등의 후속작업이 수반되어야 하므로, 경제성 및 생산성 측면에서 바람직하지 않다. 더불어, 냉각 후 추가적인 형상 교정 작업 등에 의하더라도 균일한 형상을 확보하는데 기술적 한계가 존재하므로, 형상 고정과 같은 추가적인 작업을 수반하지 않고서도 우수한 형상 균일성을 가지는 고망간 강재 및 그 제조방법이 요구되는 실정이다. However, high manganese (Mn) steel has high deformation resistance at high temperatures, and in particular, in the case of thin materials, it is difficult to secure a uniform shape in the longitudinal direction according to a rolling pass, a rolling reduction, and the like. When the shape of the hot rolled material is inferior, cooling safety is lowered, and there is a possibility of causing equipment damage in a process such as transfer. In addition, when the longitudinal shape of the hot rolled material is inferior, it is not preferable in terms of economical efficiency and productivity since subsequent work such as shape correction work must be performed. In addition, since there are technical limitations in securing a uniform shape even after additional shape correction work after cooling, a high-manganese steel material having excellent shape uniformity and a method of manufacturing the same are required without involving additional work such as shape fixing. This is true.
(선행기술문헌)(Advanced technical literature)
(특허문헌 1) 대한민국 공개특허공보 제10-1994-0002370호 (1994.02.17. 공개)(Patent Document 1) Republic of Korea Patent Publication No. 10-1994-0002370 (published on February 17, 1994)
본 발명의 일 측면에 따르면 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법이 제공될 수 있다According to an aspect of the present invention, an austenite-based high-manganese steel material having excellent shape and a method of manufacturing the same can be provided.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The subject of this invention is not limited to the above-mentioned content. Those skilled in the art will have no difficulty in understanding the additional subject matter of the present invention from the general contents of this specification.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.2~0.5%, Mn: 23~28%, Si: 0.05~0.5%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.5% 이하, Cr: 2.5~4.5%, B: 0.0005~0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 미세조직으로 95면적% 이상의 오스테나이트를 포함하되, -196℃의 샤르피 충격인성이 30J 이상(5mm 두께 기준)이고, 압연방향을 따라 2m 이내의 영역에서 형성된 마루와 골의 최대 높이 차이가 10mm 이내일 수 있다.The austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, the balance includes Fe and other unavoidable impurities, and includes austenite of 95 area% or more as a microstructure, Charpy impact toughness of -196 ℃ is more than 30J (based on 5mm thickness), and the maximum height difference between the floor and the valley formed in the region within 2m along the rolling direction may be within 10mm.
상기 오스테나이트의 결정립도는 5~150㎛일 수 있다.The grain size of the austenite may be 5 ~ 150㎛.
상기 강재의 항복강도는 350MPa 이상, 인장강도는 700MPa 이상, 연신율은 30% 이상일 수 있다.The yield strength of the steel material may be 350 MPa or more, tensile strength 700 MPa or more, and elongation 30% or more.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.2~0.5%, Mn: 23~28%, Si: 0.05~0.5%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.5% 이하, Cr: 2.5~4.5%, B: 0.0005~0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1050~1300℃의 온도범위로 1차 가열하고, 상기 가열된 슬라브를 800~1100℃의 마무리 압연 온도에서 35~80%의 총 압하율로 1차 열간압연하여 중간재를 제공하고, 상기 중간재를 1050~1300℃의 온도범위로 2차 가열하고, 상기 2차 가열된 중간재를 (Tnr-120)~Tnr℃의 마무리 압연 온도에서 2차 열간압연하여 열연재를 제공하고, 상기 열연재를 1~100℃/s의 냉각속도로 600℃ 이하의 온도범위까지 냉각하되, 상기 2차 열간압연 중 (Tnr-120)~Tnr℃의 온도범위에서의 상기 중간재의 총 압하량을 5~25%로 제어하여 제조될 수 있다.The austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, slab containing residual Fe and other inevitable impurities is first heated to a temperature range of 1050 to 1300 ° C , First heating the slab at a final rolling temperature of 800 to 1100 ° C at a total rolling reduction of 35 to 80% to provide an intermediate material, and secondarily heating the intermediate material to a temperature range of 1050 to 1300 ° C, The secondary heated intermediate material is subjected to secondary hot rolling at a finish rolling temperature of (Tnr-120) to Tnr ° C to provide a hot rolled material, and the hot rolled material is cooled to a temperature of 600 ° C. or less at a cooling rate of 1 to 100 ° C./s. Cooling to the range, it can be prepared by controlling the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) ~ Tnr ℃ during the second hot rolling to 5-25%.
상기 냉각이 종료된 열연재는 압연방향을 따라 2m 이내의 영역에서 형성된 마루와 골의 최대 높이 차이가 10mm 이내일 수 있다.The hot-rolled material that has been cooled may have a maximum height difference between a floor and a valley formed in a region within 2 m along the rolling direction within 10 mm.
상기 과제의 해결 수단은 본 발명의 특징을 모두 열거한 것은 아니며, 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시예를 참조하여 보다 상세하게 이해될 수 있을 것이다.The solving means of the above problems does not list all the features of the present invention, and various features of the present invention and the advantages and effects thereof may be understood in more detail with reference to specific embodiments below.
본 발명의 바람직한 일 측면에 따르면, 극저온인성이 우수하면서도, 형상이 우수한 오스테나이트계 고망간 강재 및 그 제조방법을 제공할 수 있다.According to one preferred aspect of the present invention, it is possible to provide an austenite-based high-manganese steel material having excellent cryogenic toughness and excellent shape.
도 1의 (a)는 본 발명에서 강재에 형성된 골과 마루의 이해를 돕기 위한 도면이며, 도 1의 (b)는 본 발명의 일 예에 의한 강재를 촬영한 사진이다. Figure 1 (a) is a view for helping to understand the bone and floor formed in the steel material in the present invention, Figure 1 (b) is a picture of a steel material according to an example of the present invention.
본 발명은 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법에 관한 것으로, 이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 구현예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하기 위하여 제공되는 것이다.The present invention relates to an austenitic high-manganese steel for excellent cryogenic shape and a method for manufacturing the same, hereinafter, to describe preferred embodiments of the present invention. The embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. These embodiments are provided to those skilled in the art to further detail the present invention.
이하, 본 발명의 강 조성에 대하여 보다 상세히 설명한다. 이하, 특별히 달리 표시하지 않는 한 각 원소의 함량을 나타내는 %는 중량을 기준으로 한다.Hereinafter, the steel composition of the present invention will be described in more detail. Hereinafter, unless otherwise indicated,% representing the content of each element is based on weight.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.2~0.5%, Mn: 23~28%, Si: 0.05~0.5%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.5% 이하, Cr: 2.5~4.5%, B: 0.0005~0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.The austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, balance Fe and other inevitable impurities.
탄소(C): 0.2~0.5%Carbon (C): 0.2 ~ 0.5%
탄소(C)는 오스테나이트 안정화 원소일 뿐만 아니라, 고용강화에 의해 강도를 확보하는데 효과적인 원소이다. 따라서, 본 발명은 저온인성 및 강도 확보를 위하여 탄소(C) 함량의 하한을 0.2%로 제한할 수 있다. 즉, 탄소(C) 함량이 0.2% 미만인 경우, 오스테나이트의 안정도가 부족하여 극저온에서 안정한 오스테나이트를 얻을 수 없으며, 외부 응력에 의해 쉽게 ε-마르텐사이트 및 α'-마르텐사이트로 가공유기변태를 일으켜 강재의 인성 및 강도를 감소시킬 수 있기 때문이다. 반면, 탄소(C) 함량이 일정 범위를 초과하는 경우, 탄화물 석출로 인하여 강재의 인성이 급격히 열화될 수 있으며, 강재의 강도가 지나치게 높아져 강재의 가공성이 현저히 저하될 수 있는바, 본 발명은 탄소(C) 함량의 상한을 0.5%로 제한할 수 있다. 따라서, 본 발명의 탄소(C) 함량은 0.2~0.5%일 수 있으며, 바람직한 탄소(C) 함량은 0.3~0.5%일 수 있으며, 보다 바람직한 탄소(C) 함량은 0.3~0.45%일 수 있다.Carbon (C) is not only an austenite stabilizing element, but also an effective element for securing strength by solid solution strengthening. Therefore, the present invention can limit the lower limit of the carbon (C) content to 0.2% in order to secure low-temperature toughness and strength. That is, when the carbon (C) content is less than 0.2%, the stability of austenite is insufficient to obtain a stable austenite at cryogenic temperatures, and it is easy to process organic transformation into ε-martensitic and α'-martensitic due to external stress. This is because it can reduce the toughness and strength of steel materials. On the other hand, when the carbon (C) content exceeds a certain range, the toughness of the steel may be rapidly deteriorated due to the precipitation of carbides, and the strength of the steel may be excessively high, thereby significantly reducing the workability of the steel. (C) The upper limit of the content can be limited to 0.5%. Therefore, the carbon (C) content of the present invention may be 0.2 to 0.5%, the preferred carbon (C) content may be 0.3 to 0.5%, and the more preferable carbon (C) content may be 0.3 to 0.45%.
망간(Mn): 23~28%Manganese (Mn): 23-28%
망간(Mn)은 오스테나이트 안정화에 효과적으로 기여하는 원소이므로, 본 발명은 이와 같은 효과 달성을 위해 망간(Mn) 함량의 하한을 23%로 제한할 수 있다. 즉, 본 발명은 23% 이상의 망간(Mn)을 포함하므로 오스테나이트의 안정도를 효과적으로 증가시킬 수 있으며, 그에 따라 페라이트, ε-마르텐사이트 및 α'-마르텐사이트의 형성을 억제하여 강재의 저온인성을 효과적으로 확보할 수 있다. 반면, 망간(Mn) 함량이 일정 수준 범위를 초과하는 경우, 오스테나이트의 안정도 증가 효과는 포화되는 반면 제조원가가 크게 증가하고, 열간압연 중 내부산화가 과도하게 발생하여 표면품질이 열위해질 수 있는바, 본 발명은 망간(Mn) 함량의 상한을 28%로 제한할 수 있다. 따라서, 본 발명의 망간(Mn) 함량은 23~28%일 수 있으며, 보다 바람직한 망간(Mn) 함량은 23~25%일 수 있다.Manganese (Mn) is an element that effectively contributes to the stabilization of austenite, so the present invention can limit the lower limit of the manganese (Mn) content to 23% to achieve this effect. That is, the present invention can effectively increase the stability of austenite because it contains 23% or more of manganese (Mn), thereby suppressing the formation of ferrite, ε-martensite and α'-martensite, thereby improving the low-temperature toughness of steel. It can be secured effectively. On the other hand, when the manganese (Mn) content exceeds a certain level range, the effect of increasing the stability of austenite is saturated, while the manufacturing cost is greatly increased, and surface oxidation may be deteriorated due to excessive internal oxidation during hot rolling. , The present invention can limit the upper limit of the manganese (Mn) content to 28%. Therefore, the manganese (Mn) content of the present invention may be 23 to 28%, and a more preferable manganese (Mn) content may be 23 to 25%.
규소(Si): 0.05~0.5%Silicon (Si): 0.05 ~ 0.5%
규소(Si)는 알루미늄(Al)과 같이 탈산제로서 필수불가결하게 미량 첨가되는 원소이다. 다만, 규소(Si)가 과도하게 첨가되는 경우 입계에 산화물을 형성하여 고온연성을 감소시키고, 크랙 등을 유발하여 표면품질을 저하시킬 우려가 있는바, 본 발명은 규소(Si) 함량의 상한을 0.5%로 제한할 수 있다. 반면, 강 중에서 Si 함량을 줄이기 위해서는 과도한 비용이 소요되는바, 본 발명은 규소(Si) 함량의 하한을 0.05%로 제한할 수 있다. 따라서, 본 발명의 규소(Si) 함량은 0.05~0.5%일 수 있다. Silicon (Si) is an element that is indispensably added in trace amounts as a deoxidizer, such as aluminum (Al). However, when silicon (Si) is excessively added, an oxide is formed at a grain boundary to reduce high temperature ductility, and there is a fear that surface quality may be lowered by causing cracks, etc., so that the present invention has an upper limit of the silicon (Si) content. It can be limited to 0.5%. On the other hand, an excessive cost is required to reduce the Si content in the steel, and the present invention can limit the lower limit of the silicon (Si) content to 0.05%. Therefore, the silicon (Si) content of the present invention may be 0.05 to 0.5%.
인(P): 0.03% 이하Phosphorus (P): 0.03% or less
인(P)은 불가피하게 유입되는 불순물 원소일 뿐만 아니라, 쉽게 편석되는 원소로서 주조 시 균열발생을 유발하거나, 용접성을 저하시키는 원소이기도 하다. 따라서, 본 발명은 주조성 악화 및 용접성 저하를 방지하기 위하여 인(P) 함량의 상한을 0.03%로 제한할 수 있다. Phosphorus (P) is not only an inevitably introduced impurity element, but also an element that is easily segregated and causes cracking during casting or deteriorates weldability. Therefore, the present invention can limit the upper limit of the phosphorus (P) content to 0.03% in order to prevent deterioration of castability and deterioration of weldability.
황(S): 0.005% 이하Sulfur (S): 0.005% or less
황(S)은 불가피하게 유입되는 불순물 원소일 뿐만 아니라, 개재물 형성에 의해 열간취성 결함을 유발한 원소이기도 하다. 따라서, 본 발명은 열간취성 발생을 억제하기 위하여 황(S) 함량의 상한을 0.005%로 제한할 수 있다.Sulfur (S) is not only an inevitably introduced impurity element, but also an element that causes hot embrittlement defects by inclusion formation. Therefore, the present invention can limit the upper limit of the sulfur (S) content to 0.005% to suppress the occurrence of hot embrittlement.
알루미늄(Al): 0.5% 이하Aluminum (Al): 0.5% or less
알루미늄(Al)은 탈산제로 첨가되는 대표적인 원소이다. 다만, 알루미늄(Al)은 탄소(C) 및 질소(N)와 반응하여 석출물을 형성할 수 있으며, 이들 석출물에 의해 열간 가공성이 저하될 수 있는바, 본 발명은 알루미늄(Al) 함량의 상한을 0.5%로 제한할 수 있다. 보다 바람직한 알루미늄(Al)의 함량은 0.05~0.5% 일 수 있다.Aluminum (Al) is a representative element added as a deoxidizer. However, aluminum (Al) may form precipitates by reacting with carbon (C) and nitrogen (N), and the hot workability may be deteriorated by these precipitates, and the present invention provides an upper limit of the aluminum (Al) content. It can be limited to 0.5%. The more preferable content of aluminum (Al) may be 0.05 to 0.5%.
크롬(Cr): 2.5~4.5%Chromium (Cr): 2.5-4.5%
크롬(Cr)은 적정 첨가량의 범위까지는 오스테나이트를 안정화시켜 저온에서의 충격 인성 향상에 기여하며, 오스테나이트 내에 고용되어 강재의 강도를 증가시키는 윈소이다. 또한, 크롬은 강재의 내식성을 향상시키는 원소이기도 하다. 따라서, 본 발명은 이와 같은 효과를 달성하기 위하여 2.5% 이상의 크롬(Cr)을 첨가할 수 있다. 다만, 크롬(Cr)은 탄화물 형성 원소로서, 오스테나이트 입계에 탄화물을 형성하여 저온 충격을 감소시키는 원소이기도 하므로, 본 발명은 탄소(C) 및 기타 함께 첨가되는 원소들과의 함량 관계를 고려하여 크롬(Cr) 함량의 상한을 4.5%로 제한할 수 있다. 따라서, 본 발명의 크롬(Cr) 함량은 2.5~4.5%일 수 있으며, 보다 바람직한 크롬(Cr) 함량은 3~4%일 수 있다.Chromium (Cr) is a winso that stabilizes austenite up to a range of an appropriate addition amount, thereby contributing to the improvement of impact toughness at low temperatures, and is employed in austenite to increase the strength of steel. In addition, chromium is also an element that improves the corrosion resistance of steel materials. Therefore, the present invention can add more than 2.5% chromium (Cr) to achieve this effect. However, chromium (Cr) is a carbide-forming element, and is also an element that forms a carbide at the austenite grain boundary to reduce low-temperature impact, so the present invention takes into account the content relationship with carbon (C) and other elements added together The upper limit of the chromium (Cr) content may be limited to 4.5%. Therefore, the chromium (Cr) content of the present invention may be 2.5 to 4.5%, and a more preferable chromium (Cr) content may be 3 to 4%.
붕소(B): 0.0005~0.01%Boron (B): 0.0005 ~ 0.01%
붕소(B)은 오스테나이트 입계를 강화하는 입계 강화 원소로서, 소량 첨가에 의하더라도 오스테나이트 입계를 강화하여 강재의 고온 균열 민감도를 효과적으로 낮출 수 있는 원소이다. 따라서, 이와 같은 효과를 달성하기 위하여, 본 발명은 붕소(B) 함량의 하한을 0.0005%로 제한할 수 있다. 반면, 붕소(B)의 함량이 일정 범위를 초과하는 경우, 오스테나이트 입계에 편석을 유발하여 강재의 고온 균열 민감도를 증가시키므로, 강재의 표면 품질이 저하될 수 있는바, 본 발명은 붕소(B) 함량의 상한을 0.01%로 제한할 수 있다. 따라서, 본 발명의 붕소(B) 함량은 0.0005~0.01%일 수 있으며, 보다 바람직한 붕소(B)의 함량은 0.002~0.006%일 수 있다.Boron (B) is a grain boundary strengthening element for strengthening the austenite grain boundary, and is an element capable of effectively lowering the high temperature cracking sensitivity of steel materials by strengthening the austenite grain boundary even with a small amount added. Therefore, in order to achieve this effect, the present invention can limit the lower limit of the boron (B) content to 0.0005%. On the other hand, when the content of boron (B) exceeds a certain range, it causes segregation at the austenite grain boundary, thereby increasing the sensitivity of high temperature cracking of the steel, so the surface quality of the steel may be lowered. ) The upper limit of the content can be limited to 0.01%. Therefore, the boron (B) content of the present invention may be 0.0005 to 0.01%, and the more preferable content of boron (B) may be 0.002 to 0.006%.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는 상기한 성분 이외에 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다.The austenite-based high-manganese steel for excellent cryogenic shape according to one aspect of the present invention may contain the balance of Fe and other unavoidable impurities in addition to the above-described components. However, in the normal manufacturing process, unintended impurities may be inevitably mixed from the raw material or the surrounding environment, and thus cannot be excluded. Since these impurities are known to anyone skilled in the art, they are not specifically mentioned in this specification. In addition, addition of effective ingredients other than the above composition is not excluded.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는 95면적% 이상의 오스테나이트를 미세조직으로 포함할 수 있으며, 그에 따라 강재의 극저온인성을 효과적으로 확보할 수 있다. 오스테나이트의 평균 결정립도는 5~150㎛일 수 있다. 제조 공정상 구현 가능한 오스테나이트의 평균 결정립도는 5㎛ 이상이며, 평균 결정립도가 크게 증가하는 경우 강재의 강도 저하가 우려되는바, 오스테나이트의 결정립도는 150㎛ 이하로 제한될 수 있다.The austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention may include 95% by area or more of austenite as a microstructure, thereby effectively securing cryogenic toughness of the steel material. The average grain size of austenite may be 5 to 150 μm. The average grain size of austenite that can be implemented in the manufacturing process is 5 µm or more, and when the average grain size is greatly increased, the strength of the steel material may be lowered, so the grain size of austenite may be limited to 150 µm or less.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는 오스테나이트 이외에 존재 가능한 조직으로서 탄화물 및/또는 ε-마르텐사이트를 포함할 수 있다. 탄화물 및/또는 ε-마르텐사이트의 분율이 일정 수준을 초과하는 경우, 강재의 인성 및 연성이 급격히 저하될 수 있는바, 본 발명은 탄화물 및/또는 ε-마르텐사이트의 분율을 5면적% 이하로 제한할 수 있다.The austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention may include carbide and / or ε-martensite as a structure that can exist in addition to austenite. When the fraction of carbide and / or ε-martensite exceeds a certain level, the toughness and ductility of the steel may be rapidly reduced. In the present invention, the fraction of carbide and / or ε-martensite is less than 5 area%. Can be limited.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는 350MPa 이상의 항복강도, 700MPa 이상의 인장강도, 30% 이상의 연신율을 구비할 수 있다. 또한, 본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는 -196℃의 샤르피 충격인성이 30J 이상(5mm 두께 기준)이므로, 우수한 극저온 물성을 구비할 수 있다.The austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention may have a yield strength of 350 MPa or more, a tensile strength of 700 MPa or more, and an elongation of 30% or more. In addition, the austenite-based high-manganese steel material having excellent shape according to one aspect of the present invention has a Charpy impact toughness of 30 J or more (based on a thickness of 5 mm) of -196 ° C, and thus can have excellent cryogenic properties.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는 강재 제조 후 별도의 교정 작업 등을 수행하지 않더라도 압연방향에 대한 2m 이내의 영역에서 강재에 형성된 마루와 골의 높이 차이가 최대 10mm 이내이므로, 우수한 형상 균일성을 확보할 수 있다. 도 1의 (a)는 본 발명에서 강재에 형성된 골과 마루의 이해를 돕기 위한 도면이며, 도 1의 (b)는 본 발명의 일 예에 의한 강재를 촬영한 사진이다. The austenite-based high-manganese steel for excellent cryogenic shape according to an aspect of the present invention has a difference in height between the floor and the valley formed in the steel in the region within 2 m for the rolling direction even if a separate calibration operation is not performed after the steel is manufactured. Since it is within a maximum of 10 mm, excellent shape uniformity can be secured. Figure 1 (a) is a view for helping to understand the bone and floor formed in the steel material in the present invention, Figure 1 (b) is a picture of a steel material according to an example of the present invention.
이하, 본 발명의 제조방법에 대해 보다 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in more detail.
본 발명의 일 측면에 따른 형상이 우수한 극저온용 오스테나이트계 고망간 강재는, 중량%로, C: 0.2~0.5%, Mn: 23~28%, Si: 0.05~0.5%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.5% 이하, Cr: 2.5~4.5%, B: 0.0005~0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1050~1300℃의 온도범위로 1차 가열하고, 상기 가열된 슬라브를 800~1100℃의 마무리 압연 온도에서 35~80%의 총 압하율로 1차 열간압연하여 중간재를 제공하고, 상기 중간재를 1050~1300℃의 온도범위로 2차 가열하고, 상기 2차 가열된 중간재를 (Tnr-120)~Tnr℃의 마무리 압연 온도에서 2차 열간압연하여 열연재를 제공하고, 상기 열연재를 1~100℃/s의 냉각속도로 600℃ 이하의 온도범위까지 냉각하되, 상기 2차 열간압연 중 (Tnr-120)~Tnr℃의 온도범위에서의 상기 중간재의 총 압하량을 5~25%로 제어하여 제조될 수 있다.The austenite-based high-manganese steel material having excellent shape according to an aspect of the present invention is in weight%, C: 0.2 to 0.5%, Mn: 23 to 28%, Si: 0.05 to 0.5%, P: 0.03% or less , S: 0.005% or less, Al: 0.5% or less, Cr: 2.5 to 4.5%, B: 0.0005 to 0.01%, slab containing residual Fe and other inevitable impurities is first heated to a temperature range of 1050 to 1300 ° C , First heating the slab at a final rolling temperature of 800 to 1100 ° C at a total rolling reduction of 35 to 80% to provide an intermediate material, and secondarily heating the intermediate material to a temperature range of 1050 to 1300 ° C, The secondary heated intermediate material is subjected to secondary hot rolling at a finish rolling temperature of (Tnr-120) to Tnr ° C to provide a hot rolled material, and the hot rolled material is cooled to a temperature of 600 ° C. or less at a cooling rate of 1 to 100 ° C./s. Cooling to the range, it can be prepared by controlling the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) ~ Tnr ℃ during the second hot rolling to 5-25%.
슬라브 1차 가열Primary slab heating
본 발명의 제조방법에 제공되는 슬라브의 조성은, 전술한 오스테나이트계 고망간 강재의 강 조성과 대응하므로, 슬라브의 강 조성에 대한 설명은 전술한 오스테나이트계 고망간 강재의 강 조성에 대한 설명으로 대신한다.Since the composition of the slab provided in the manufacturing method of the present invention corresponds to the steel composition of the austenitic high-manganese steel described above, the description of the steel composition of the slab is described for the steel composition of the austenitic high-manganese steel described above. Instead.
전술한 강 조성으로 제공되는 슬라브를 1050~1300℃의 온도범위에서 1차 가열 할 수 있다. 1차 가열 온도가 일정 범위 미만인 경우, 1차 열간압연 중에 과도한 압연부하가 걸리는 문제가 발생하거나, 합금성분이 충분히 고용되지 않는 문제가 발생할 수 있는바, 본 발명은 1차 가열 온도범위의 하한을 1050℃로 제한할 수 있다. 반면, 1차 가열 온도가 일정 범위를 초과하는 경우, 결정립이 과도하게 성장하여 강도가 저하되거나, 강재의 고상선 온도를 초과하여 가열됨으로써 강재의 열간압연성이 열위해질 우려가 있는바, 본 발명은 슬라브 1차 가열 온도범위의 상한을 1300℃로 제한할 수 있다.The slab provided with the above-described steel composition may be primary heated in a temperature range of 1050 to 1300 ° C. When the primary heating temperature is less than a predetermined range, a problem that excessive rolling load may occur during primary hot rolling or a problem that an alloy component is not sufficiently dissolved may occur, and the present invention provides a lower limit of the primary heating temperature range. It can be limited to 1050 ℃. On the other hand, when the primary heating temperature exceeds a certain range, there is a fear that the grains are excessively grown and the strength is lowered or the hot rollability of the steel material is deteriorated by heating the steel above the solidus temperature of the steel material. The upper limit of the silver slab primary heating temperature range may be limited to 1300 ° C.
1차 열간압연1st hot rolling
1차 열간압연 공정은 조압연 공정 및 마무리 압연 공정을 포함하며, 1차 가열된 슬라브는 1차 열간압연에서 사이징 압연되어 중간재로 제공될 수 있다. 1차 열간압연의 총 압하율은 35~80%일 수 있으며, 1차 열간압연의 마무리압연은 800~1100℃의 온도범위에서 수행되는 것이 바람직하다. 1차 열간압연의 마무리압연 온도가 일정 범위 미만인 경우 압연 하중 증가에 따른 과도한 압연부하가 문제될 수 있으며, 1차 열간압연의 마무리압연 온도가 일정 범위를 초과하는 경우 결정립이 조대하게 성장하여 목표하는 강도를 얻을 수 없기 때문이다.The primary hot rolling process includes a rough rolling process and a finish rolling process, and the primary heated slab may be sized in the primary hot rolling to be provided as an intermediate material. The total rolling reduction of the primary hot rolling may be 35 to 80%, and the finishing rolling of the primary hot rolling is preferably performed in a temperature range of 800 to 1100 ° C. When the finish rolling temperature of the primary hot rolling is less than a certain range, excessive rolling load due to an increase in the rolling load may be a problem, and when the finish rolling temperature of the primary hot rolling exceeds a certain range, the grains grow coarsely and target This is because strength cannot be obtained.
중간재 1차 가열Primary heating of intermediate materials
중간재를 가열로에 장입하기 위해서 중간재의 두께에 따라 적정 길이로 중간재를 절단할 수 있으며, 바람직하게는 1500~4000mm의 길이로 중간재를 절단할 수 있다. 중간재의 길이가 1500mm 미만의 경우 가열로 내에서의 추적(tracking)이 어려우며, 중간재의 길이가 4000mm를 초과하는 경우 길이방향을 따라 굽힘이 발생할 우려가 있기 때문이다.In order to charge the intermediate material to the heating furnace, the intermediate material may be cut to an appropriate length according to the thickness of the intermediate material, and preferably, the intermediate material may be cut to a length of 1500 to 4000 mm. This is because when the length of the intermediate material is less than 1500 mm, tracking in the heating furnace is difficult, and when the length of the intermediate material exceeds 4000 mm, bending may occur along the longitudinal direction.
중간재는 1050~1300℃의 온도범위에서 2차 가열될 수 있다. 2차 가열 온도가 일정 범위 미만인 경우, 2차 열간압연 중에 과도한 압연부하가 걸리는 문제가 발생하거나, 합금성분이 충분히 고용되지 않는 문제가 발생할 수 있는바, 본 발명은 2차 가열 온도범위의 하한을 1050℃로 제한할 수 있다. 반면, 2차 가열 온도가 일정 범위를 초과하는 경우, 결정립이 과도하게 성장하여 강도가 저하되거나, 강재의 고상선 온도를 초과하여 가열됨으로써 강재의 열간압연성이 열위해질 우려가 있는바, 본 발명은 중간재 2차 가열 온도범위의 상한을 1300℃로 제한할 수 있다.The intermediate material may be secondarily heated in a temperature range of 1050 to 1300 ° C. If the secondary heating temperature is less than a certain range, a problem may occur that excessive rolling load occurs during secondary hot rolling, or a problem that an alloy component is not sufficiently dissolved may occur, and the present invention provides a lower limit of the secondary heating temperature range. It can be limited to 1050 ℃. On the other hand, when the secondary heating temperature exceeds a certain range, the crystal grains grow excessively and the strength is lowered, or the hot rollability of the steel material may be deteriorated by heating the steel above the solidus temperature of the steel bar. The upper limit of the secondary heating temperature range of the silver intermediate may be limited to 1300 ° C.
2차 열간압연2nd hot rolling
2차 열간압연 공정은 조압연 공정 및 마무리 압연 공정을 포함하며, 2차 재가열된 중간재는 2차 열간압연에 의해 중간재로 제공될 수 있다. 이때 마무리압연은 (Tnr-120)~Tnr℃의 온도범위에서 수행되는 것이 바람직하다. 여기서 Tnr은 아래의 식 1에 의해 도출될 수 있다.The secondary hot rolling process includes a rough rolling process and a finish rolling process, and the secondary reheated intermediate material may be provided as an intermediate material by secondary hot rolling. At this time, the finish rolling is preferably performed in a temperature range of (Tnr-120) to Tnr ° C. Here, Tnr can be derived by Equation 1 below.
[식 1][Equation 1]
Tnr(℃) = 840 + 150*C + 2.5*Mn + 3.5*Cr - 50*SiTnr (℃) = 840 + 150 * C + 2.5 * Mn + 3.5 * Cr-50 * Si
(여기서 C, Mn, Cr 및 Si는 각 성분의 중량%를 의미함)(Where C, Mn, Cr, and Si mean the weight percent of each component)
2차 열간압연의 마무리압연 온도가 (Tnr-120)℃ 미만인 경우 강도가 급격하게 상승하여 충격인성이 열위한 경향이 있으며, 2차 열간압연의 마무리압연 온도가 Tnr℃를 초과하는 경우 결정립 성장에 따른 강도 저하가 우려되는바, 본 발명은 2차 열간압연의 마무리압연 온도를 (Tnr-120)~Tnr℃의 범위로 제한할 수 있다.When the finish rolling temperature of the secondary hot rolling is less than (Tnr-120) ℃, the strength tends to rise and impact toughness tends to deteriorate, and when the finish rolling temperature of the secondary hot rolling exceeds Tnr ℃, Since the strength decrease is concerned, the present invention can limit the finish rolling temperature of the secondary hot rolling to the range of (Tnr-120) to Tnr ° C.
또한, 본원발명은 2차 열간압연 중 (Tnr-120)~Tnr℃의 온도범위에서의 중간재의 총 압하량을 5~25%로 제어할 수 있다. (Tnr-120)~Tnr℃의 온도범위에서의 중간재의 총 압하량이 5% 미만인 경우 목적하는 형상 교정효과를 달성할 수 없으며, (Tnr-120)~Tnr℃의 온도범위에서의 중간재의 총 압하량이 25%를 초과하는 경우 과도한 압하에 의한 충격인성 저하가 우려되기 때문이다. In addition, the present invention can control the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) to Tnr ° C during the secondary hot rolling to 5 to 25%. If the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) to Tnr ° C is less than 5%, the desired shape correction effect cannot be achieved, and the total rolling reduction of the intermediate material in the temperature range of (Tnr-120) to Tnr ° C. This is because if the amount exceeds 25%, the impact toughness may decrease due to excessive pressure reduction.
냉각Cooling
2차 열간압연된 열연재는 1~100℃/s의 냉각속도로 600℃ 이하의 냉각정지 온도까지 가속냉각될 수 있다. 냉각속도가 일정 범위 미만인 경우 냉각 도중 입계에 석출된 탄화물에 의해 강재의 연성 감소 및 이로 인한 내마모성의 열화가 문제될 수 있으므로, 본 발명은 열연재의 냉각속도를 1℃/s 이상으로 제한할 수 있다. 바람직한 냉각 속도의 하한은 10℃/s일 수 있으며, 냉각 방식은 가속냉각일 수 있다. 다만, 냉각속도가 빠를수록 탄화물 석출 억제 효과에는 유리하나, 통상의 냉각에 있어서 100℃/s를 초과하는 냉각속도는 설비 특성상 구현하기 어려운 사정을 고려하여, 본 발명은 냉각속도의 상한을 100℃/s로 제한할 수 있다. The second hot-rolled hot rolled material can be accelerated to a cooling stop temperature of 600 ° C. or less at a cooling rate of 1 to 100 ° C./s. If the cooling rate is less than a certain range, the ductility of the steel may be reduced due to carbides precipitated at the grain boundary during cooling, and thus deterioration of abrasion resistance may be a problem. Therefore, the present invention can limit the cooling rate of the hot rolled material to 1 ° C / s or more. have. The lower limit of the preferred cooling rate may be 10 ° C / s, and the cooling method may be accelerated cooling. However, the faster the cooling rate is, the more advantageous the effect of suppressing the precipitation of carbides, but considering the circumstances in which the cooling rate exceeding 100 ° C / s in normal cooling is difficult to implement due to the characteristics of the facility, the present invention sets the upper limit of the cooling rate to 100 ° C. Can be limited to / s.
또한, 10℃/s 이상의 냉각속도를 적용하여 열연재를 냉각하더라도, 높은 온도에서 냉각이 정지되는 경우 탄화물이 생성 및 성장될 가능성이 높으므로, 본 발명은 냉각 정지 온도를 600℃ 이하로 제한할 수 있다.In addition, even if the hot-rolled material is cooled by applying a cooling rate of 10 ° C./s or more, when the cooling is stopped at a high temperature, there is a high possibility that carbides are generated and grown, so the present invention limits the cooling stop temperature to 600 ° C. or less. You can.
상기와 같이 제조된 오스테나이트계 고망간 강재는 95면적% 이상의 오스테나이트를 포함하고, 350MPa 이상의 항복강도, 700MPa 이상의 인장강도, 30% 이상의 연신율 및 -196℃에서 30J 이상(5mm 두께 기준)의 샤르피 충격인성을 구비할 수 있다.The austenitic high-manganese steel material prepared as described above contains 95% by area or more of austenite, yield strength of 350MPa or more, tensile strength of 700MPa or more, elongation of 30% or more, and Charpy of 30J or more (based on 5mm thickness) at -196 ° C. Impact toughness can be provided.
또한, 상기와 같이 제조된 오스테나이트계 고망간 강재는 강재의 길이방향을 따라 2m 이내의 영역에서 강재에 형성된 마루와 골의 높이 차이가 최대 10mm 이내이므로, 우수한 형상 균일성을 확보할 수 있다.In addition, the austenite-based high-manganese steel manufactured as described above can ensure excellent shape uniformity because the height difference between the floor and the valley formed in the steel is within 10 mm or less in the region within 2 m along the length direction of the steel.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 보다 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것은 아니라는 점에 유의할 필요가 있다.Hereinafter, the present invention will be described in more detail through examples. However, it is necessary to note that the embodiments described below are only intended to further illustrate the present invention and are not intended to limit the scope of the present invention.
(실시예)(Example)
아래 표 1의 합금조성을 가지며 두께가 250mm인 슬라브를 제작하였다. 각각의 슬라브를 1200℃의 온도범위에서 1차 가열한 후 1000℃의 마무리압연 온도에서 50~60%의 총 압하율로 1차 열간압연하여 중간재를 제조하였다. 각각의 중간재에 대해 표 2의 조건으로 2차 가열 및 2차 열간압연을 실시하여 열연재 시편을 제작하였으며, 각각의 시편에 대해 항복강도, 인장강도, 연신율, -196℃에서의 샤르피 충격인성 및 형상 균일성을 측정하여 아래의 표 3에 나타내었다. 이 때, 형상 균일성은 시편의 압연방향을 따라 2m 영역에서 형성된 마루와 골의 최대 높이 차를 측정하여 기재하였다. 여기서, 인장특성은 ASTM A370에 따라 상온에서 시험을 진행하였으며, 충격인성도 동일 규격의 조건에 따라 5mm 두께의 충격시편으로 가공하여 -196℃에서 측정하였다.A slab having an alloy composition of Table 1 and a thickness of 250 mm was produced. Each slab was first heated in a temperature range of 1200 ° C, and then first hot rolled at a total rolling reduction rate of 50 to 60% at a finish rolling temperature of 1000 ° C to prepare an intermediate material. Each intermediate material was subjected to secondary heating and secondary hot rolling under the conditions of Table 2 to prepare a hot-rolled material specimen, yield strength, tensile strength, elongation, Charpy impact toughness at -196 ° C, and The shape uniformity was measured and is shown in Table 3 below. At this time, the shape uniformity was described by measuring the maximum height difference between the floor and the valley formed in the 2 m region along the rolling direction of the specimen. Here, the tensile properties were tested at room temperature in accordance with ASTM A370, and the impact toughness was measured at -196 ° C by processing into 5mm thick impact specimens according to the conditions of the same standard.
구분division 합금조성(중량%)Alloy composition (% by weight)
CC MnMn SiSi PP SS AlAl CrCr BB
강종 1Steel type 1 0.410.41 24.524.5 0.280.28 0.0160.016 0.00310.0031 0.270.27 3.213.21 0.00150.0015
강종 2Steel type 2 0.460.46 25.925.9 0.240.24 0.0150.015 0.00290.0029 0.310.31 3.623.62 0.00150.0015
강종 3Steel type 3 0.610.61 26.926.9 0.250.25 0.0160.016 0.00330.0033 0.280.28 3.913.91 0.00210.0021
강종Steel 구분division 가열로온도(℃)Furnace temperature (℃) 추출온도(℃)Extraction temperature (℃) 최종폭(mm)Final width (mm) Tnr(℃)Tnr (℃) Tnr-120(℃)Tnr-120 (℃) 2차 압연종료 온도(℃)Second rolling end temperature (℃) Tnr 이하총 압하율(%)Total reduction rate under Tnr (%)
강종1Gangjong 1 1-11-1 12051205 11921192 24102410 960960 840840 955955 44
1-21-2 780780 2020
1-31-3 880880 2222
1-41-4 920920 1616
강종2Gangjong 2 2-12-1 11901190 11801180 24102410 974974 854854 806806 2727
2-22-2 980980 00
2-32-3 880880 2020
2-42-4 915915 1818
강종3Gangjong 3 3-13-1 12201220 12101210 25102510 10001000 880880 988988 44
3-23-2 940940 8.88.8
3-33-3 825825 2525
강종Steel 구분division 파고(mm)Wave height (mm) YS(MPa)YS (MPa) Ts(MPa)Ts (MPa) El(%)El (%) 충격인성(J, @-196℃)Impact toughness (J, @ -196 ℃) 구분division
강종1Gangjong 1 1-11-1 1818 368368 822822 6868 4646 비교예Comparative example
1-21-2 44 334334 692692 4040 3131
1-31-3 33 465465 842842 5252 4040 발명예Inventive Example
1-41-4 66 456456 856856 5454 4444
강종2Gangjong 2 2-12-1 3.53.5 585585 954954 4040 2525 비교예Comparative example
2-22-2 1313 344344 737737 6969 4949
2-32-3 66 472472 861861 5656 4545 발명예Inventive Example
2-42-4 88 456456 848848 5959 4747
강종3Gangjong 3 3-13-1 1919 504504 928928 3939 2121 비교예Comparative example
3-23-2 66 584584 969969 4545 1919
3-33-3 55 625625 977977 3838 1515
표 2 및 표 3에 나타난 바와 같이, 본 발명의 합금조성 및 제조공정은 만족하는 발명예의 경우 본 발명이 목적하는 물성 및 형상 균일성을 확보하는 반면, 본 발명의 합금조성 또는 제조공정을 만족하지 않는 비교예의 경우 본 발명이 목적하는 물성 또는 형상 균일성을 확보하지 못함을 확인할 수 있다.As shown in Table 2 and Table 3, the alloy composition and manufacturing process of the present invention secures the desired physical properties and shape uniformity of the present invention in the case of a satisfactory invention example, whereas the alloy composition or manufacturing process of the present invention is not satisfied. In the case of the comparative example, it can be confirmed that the present invention does not secure the desired physical properties or shape uniformity.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.Although the present invention has been described in detail through the above embodiments, other types of embodiments are possible. Therefore, the technical spirit and scope of the claims set forth below are not limited to the embodiments.

Claims (5)

  1. 중량%로, C: 0.2~0.5%, Mn: 23~28%, Si: 0.05~0.5%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.5% 이하, Cr: 2.5~4.5%, B: 0.0005~0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,In weight percent, C: 0.2-0.5%, Mn: 23-28%, Si: 0.05-0.5%, P: 0.03% or less, S: 0.005% or less, Al: 0.5% or less, Cr: 2.5-4.5%, B: 0.0005 to 0.01%, the balance of Fe and other inevitable impurities,
    미세조직으로 95면적% 이상의 오스테나이트를 포함하되,Microstructure contains at least 95% of austenite,
    -196℃의 샤르피 충격인성이 30J 이상(5mm 두께 기준)이고, Charpy impact toughness of -196 ℃ is more than 30J (based on 5mm thickness),
    압연방향을 따라 2m 이내의 영역에서 형성된 마루와 골의 최대 높이 차이가 10mm 이내인, 형상이 우수한 극저온용 오스테나이트계 고망간 강재.Austenitic high-manganese steel with excellent shape with a maximum difference in height between the floor and the valley formed within 2 m along the rolling direction within 10 mm.
  2. 제1항에 있어서,According to claim 1,
    상기 오스테나이트의 결정립도는 5~150㎛인, 형상이 우수한 극저온용 오스테나이트계 고망간 강재.The austenite has a crystal grain size of 5 to 150 µm, an austenite-based high-manganese steel material having excellent shape.
  3. 제1항에 있어서,According to claim 1,
    상기 강재의 항복강도는 350MPa 이상, 인장강도는 700MPa 이상, 연신율은 30% 이상인, 형상이 우수한 극저온용 스테나이트계 고망간 강재.The yield strength of the steel is 350MPa or more, the tensile strength is 700MPa or more, and the elongation is 30% or more.
  4. 중량%로, C: 0.2~0.5%, Mn: 23~28%, Si: 0.05~0.5%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.5% 이하, Cr: 2.5~4.5%, B: 0.0005~0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1050~1300℃의 온도범위로 1차 가열하고,In weight percent, C: 0.2-0.5%, Mn: 23-28%, Si: 0.05-0.5%, P: 0.03% or less, S: 0.005% or less, Al: 0.5% or less, Cr: 2.5-4.5%, B: 0.0005 ~ 0.01%, the slab containing the residual Fe and other unavoidable impurities is first heated to a temperature range of 1050 ~ 1300 ℃,
    상기 가열된 슬라브를 800~1100℃의 마무리 압연 온도에서 35~80%의 총 압하율로 1차 열간압연하여 중간재를 제공하고,The heated slab is first hot rolled at a final rolling temperature of 800 to 1100 ° C at a total rolling reduction of 35 to 80% to provide an intermediate material,
    상기 중간재를 1050~1300℃의 온도범위로 2차 가열하고,Secondary heating the intermediate material to a temperature range of 1050 ~ 1300 ℃,
    상기 2차 가열된 중간재를 (Tnr-120)~Tnr℃의 마무리 압연 온도에서 2차 열간압연하여 열연재를 제공하고,The second heated intermediate material is second hot-rolled at a finish rolling temperature of (Tnr-120) to Tnr ° C. to provide a hot rolled material,
    상기 열연재를 1~100℃/s의 냉각속도로 600℃ 이하의 온도범위까지 냉각하되,Cooling the hot rolled material to a temperature range of 600 ℃ or less at a cooling rate of 1 ~ 100 ℃ / s,
    상기 2차 열간압연 중 (Tnr-120)~Tnr℃의 온도범위에서의 상기 중간재의 총 압하량은 5~25%인, 형상이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법. The second hot rolling (Tnr-120) ~ Tnr ℃ in the temperature range of the total rolling reduction of the intermediate material is 5 to 25%, the method of manufacturing austenite-based high-manganese steel for excellent cryogenic shape.
  5. 제4항에 있어서,According to claim 4,
    상기 냉각이 종료된 열연재는 압연방향을 따라 2m 이내의 영역에서 형성된 마루와 골의 최대 높이 차이가 10mm 이내인, 형상이 우수한 극저온용 오스테나이트계 고망간 강재의 제조방법.The method of manufacturing the austenite-based high-manganese steel material having excellent shape in which the maximum height difference between the floor and the valley formed in a region within 2 m along the rolling direction is 10 mm or less, wherein the cooled hot-rolled material is finished.
PCT/KR2019/014188 2018-10-25 2019-10-25 Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor WO2020085858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19875536.5A EP3872210A4 (en) 2018-10-25 2019-10-25 Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
CN201980068654.9A CN112912529A (en) 2018-10-25 2019-10-25 Austenitic high manganese steel material for ultra-low temperature use excellent in shape and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0128504 2018-10-25
KR20180128504 2018-10-25
KR10-2019-0118924 2019-09-26
KR1020190118924A KR102255825B1 (en) 2018-10-25 2019-09-26 Ultra-low temperature austenitic high manganese steel having excellent shape and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2020085858A1 true WO2020085858A1 (en) 2020-04-30

Family

ID=70330518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014188 WO2020085858A1 (en) 2018-10-25 2019-10-25 Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2020085858A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (en) 1992-07-24 1994-02-17 정명식 Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
JP2007126715A (en) * 2005-11-04 2007-05-24 Sumitomo Metal Ind Ltd HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
KR20130088331A (en) * 2012-01-31 2013-08-08 현대제철 주식회사 High strength steel plate and method for manufacturing the same
CN107620010A (en) * 2017-10-18 2018-01-23 舞阳钢铁有限责任公司 A kind of low yield strength ratio high tenacity high manganese steel sheet and its production method
KR20180072967A (en) * 2016-12-22 2018-07-02 주식회사 포스코 High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same
KR20180074450A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Low temperature austenitic high manganese steel and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (en) 1992-07-24 1994-02-17 정명식 Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
JP2007126715A (en) * 2005-11-04 2007-05-24 Sumitomo Metal Ind Ltd HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
KR20130088331A (en) * 2012-01-31 2013-08-08 현대제철 주식회사 High strength steel plate and method for manufacturing the same
KR20180072967A (en) * 2016-12-22 2018-07-02 주식회사 포스코 High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same
KR20180074450A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Low temperature austenitic high manganese steel and method for manufacturing the same
CN107620010A (en) * 2017-10-18 2018-01-23 舞阳钢铁有限责任公司 A kind of low yield strength ratio high tenacity high manganese steel sheet and its production method

Similar Documents

Publication Publication Date Title
WO2019117536A1 (en) Steel sheet for pressure vessel having excellent tensile strength and low-temperature impact resistance and method for producing same
WO2018117712A1 (en) High manganese steel having superior low-temperature toughness and yield strength and manufacturing method
WO2019125083A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2020067686A1 (en) Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
WO2014209064A1 (en) High-strength steel sheet and manufacturing method therefor
WO2018117678A1 (en) Austenite steel material having superb surface characteristic, and method for producing same
WO2020085684A1 (en) Steel plate for pressure vessel with excellent cryogenic toughness and elongation resistance and manufacturing method thereof
KR20200047319A (en) High manganese austenitic steel having high yield strength and manufacturing method for the same
WO2020085861A1 (en) Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
WO2020060051A1 (en) Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor
WO2019125025A1 (en) High-strength austenite-based high-manganese steel material and manufacturing method for same
WO2020085852A1 (en) High manganese austenitic steel having high yield strength and manufacturing method for same
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2020085858A1 (en) Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
WO2019132179A1 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
WO2020085847A1 (en) Austenitic high manganese steel for cryogenic applications having excellent surface quality and resistance to stress corrosion cracking, and manufacturing method for same
WO2017111303A1 (en) High-strength hot-rolled steel sheet with excellent bending workability and production method therefor
WO2020085864A1 (en) Cryogenic austenitic high-manganese steel having excellent corrosion resistance, and manufacturing method therefor
WO2017111250A1 (en) Lean duplex stainless steel having improved corrosion resistance and machinability, and manufacturing method therefor
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2017095049A1 (en) Wire rod having excellent low temperature impact toughness and manufacturing method therefor
WO2019093689A1 (en) High-strength, low-toughness cold-rolled steel sheet having excellent fracture properties, and method for producing same
KR20200047317A (en) Ultra-low temperature austenitic high manganese steel having excellent shape and manufacturing method for the same
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2020085862A1 (en) Cryogenic austenitic high-manganese steel having excellent scale peeling properties, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875536

Country of ref document: EP

Effective date: 20210525