KR101778598B1 - Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby - Google Patents

Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby Download PDF

Info

Publication number
KR101778598B1
KR101778598B1 KR1020160063261A KR20160063261A KR101778598B1 KR 101778598 B1 KR101778598 B1 KR 101778598B1 KR 1020160063261 A KR1020160063261 A KR 1020160063261A KR 20160063261 A KR20160063261 A KR 20160063261A KR 101778598 B1 KR101778598 B1 KR 101778598B1
Authority
KR
South Korea
Prior art keywords
weight
slab
line pipe
steel plate
rolling
Prior art date
Application number
KR1020160063261A
Other languages
Korean (ko)
Inventor
성준호
김윤규
Original Assignee
동국제강주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국제강주식회사 filed Critical 동국제강주식회사
Priority to KR1020160063261A priority Critical patent/KR101778598B1/en
Application granted granted Critical
Publication of KR101778598B1 publication Critical patent/KR101778598B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to a method for manufacturing a thick steel plate for a low yield ratio high strength line pipe and a thick steel plate for a low yield ratio high strength line pipe manufactured thereby. The method for manufacturing a thick steel plate for a low yield ratio high strength line pipe includes: a heating step of re-heating a slab in a heating furnace; a rolling step of manufacturing a thick steel plate by rolling the slab; and a cooling step of cooling the thick steel plate manufactured in the rolling step. The slab contains 0.06 to 0.1 wt% of C, 0.1 to 0.4 wt% of Si, 1.3 to 1.7 wt% of Mn, 0.01 to 0.05 wt% of Al, 0.008 to 0.02 wt% of Ti, 0.03 to 0.06 wt% of Nb, 0.03 to 0.06 wt% of V, greater than 0 equal to or less than 180 ppm of P, greater than 0 equal to or less than 50 ppm of S, greater than 0 equal to or less than 60 ppm of N, greater than 0 equal to or less than 30 ppm of O, remaining Fe and other unavoidable impurities. The thick steel plate is satisfied with greater than or equal to 0.34 Ceq, and greater than 1 less than 8 of Ti/N, has a yield strength of greater than or equal to 450 MPa, a yield ratio of greater than or equal to 85%, and -40C shock absorbing energy of greater than or equal to 200 J. The method for manufacturing a thick steel plate for a low yield ratio high strength line pipe can minimize addition of an alloy element and allow a thick steel plate for a line pipe which has a yield strength of 450 MPa level or greater with a performance of a low temperature and a low yield ratio without an expensive alloy element, such as Ni and Mo, to be manufactured.

Description

저항복비 고강도 라인파이프용 후강판 제조방법 및 이 방법에 의해 제조된 저항복비 고강도 라인파이프용 후강판{MANUFACTURING METHOD OF HIGH STRENGTH STEEL PLATE FOR LINE PIPE HAVING EXCELLENT LOW YIELD RATIO PROPERTY AND HIGH STRENGTH STEEL PLATE FOR LINE PIPE HAVING EXCELLENT LOW YIELD RATIO PROPERTY THEREBY}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a post-steel plate for a high-strength and high-strength line pipe, and a post-steel plate for a low-resistance double-high-strength line pipe manufactured by the method. HAVING EXCELLENT LOW YIELD RATIO PROPERTY THEREBY}

본 발명은 저항복비 고강도 라인파이프용 후강판 제조방법 및 이 방법에 의해 제조된 저항복비 고강도 라인파이프용 후강판에 관한 것으로 더 상세하게 Mo, Ni 등의 고가의 합금원소를 첨가하지 않고 고강도, 저온인성 및 저항복비 특성을 가지는 항복강도 450 MPa급 이상의 저항복비 고강도 라인파이프용 후강판 제조방법 및 이 방법에 의해 제조된 저항복비 고강도 라인파이프용 후강판에 관한 발명이다.The present invention relates to a method of manufacturing a steel sheet for a low-resistance high-strength line pipe and a steel sheet for a low-resistance high-strength line pipe manufactured by the method. More specifically, The present invention relates to a method for manufacturing a post-steel plate for a high-strength line pipe having a yield strength of 450 MPa or higher and a post-steel plate for a low-resistance, high-strength line pipe manufactured by the method.

일반적으로 가스나 원유 등의 이송에 사용되는 라인파이프는 생산지와 소비지의 효율적인 장거리 수송을 위해 파이프 내에 높은 압력이 작용된다.In general, the line pipe used to transport gas or crude oil is subjected to high pressure in the pipe for efficient long-distance transportation of the production site and the consumer site.

석유 및 천연가스 자원은 중동지역에서 주로 채굴되고 있으나, 근래에 들어 시베리아 및 북극해, 남극대륙 등의 극한지에서 채굴되는 채굴량이 점차 증가하고 있고, 이외에도 다양한 지역에서 채굴되고 있는 실정이다.Petroleum and natural gas resources are mainly mined in the Middle East, but recently, the amount of mined mined in extreme places such as Siberia, Arctic Ocean and Antarctica has been gradually increasing and mined in various regions.

이에 따라 0℃ 이하의 저온, 특히 -20℃ 이하의 극한의 조건에서도 내구성이 우수한 라인파이프가 요구되고 있다.Accordingly, there is a demand for a line pipe excellent in durability even at a low temperature of 0 占 폚 or lower, particularly an extreme condition of -20 占 폚 or below.

따라서, 0℃ 이하의 저온, 특히 -20℃ 이하의 극한의 조건에서 인성이 우수한 상기 라인 파이프용 강재 개발에 대한 필요성이 증가하고 있다.Therefore, there is an increasing need for the development of a steel material for a line pipe excellent in toughness at a low temperature of 0 占 폚 or lower, particularly at an extreme temperature of -20 占 폚 or lower.

통상적으로 저온 인성이 우수한 라인 파이프용 강재는 인장강도 500MPa급 이상의 고강도, 저항복비 및 저온인성 특성 모두 만족하기 위해 Mo, Ni 등의 고가의 합금원소를 첨가하거나 연속항복 거동을 통해 저항복비를 구현하고 있다.In general, the steel material for a line pipe excellent in low temperature toughness can be obtained by adding an expensive alloying element such as Mo and Ni or satisfying a low resistance through a continuous yielding behavior in order to satisfy both high tensile strength of 500 MPa or more in high strength, low resistance and low temperature toughness have.

그러나 종래 라인 파인프용 강재는 Mo, Ni 등의 고가의 합금원소를 첨가하므로 제조원가가 많이 소요되고 있다. 또한, 종래 라인파이프용 강재는 연속항복 거동을 통해 저항복비를 구현하는 경우 조관 이후 항복강도가 상승하여 항복비가 상승하는 문제점이 있었다.However, conventional steels for linefine require a high production cost because of the addition of expensive alloying elements such as Mo and Ni. Further, in the case of conventional steel for a line pipe, when yielding a low resistance through a continuous yielding behavior, there is a problem that the yield strength increases and the yield ratio increases.

즉, 대한민국 공개특허 제2001-0060759호 '저항복비를 갖는 고강도 강 및 그 제조방법'에서는 연속항복 거동을 이용하여 저항복비 특성을 구현하였으나, '저항복비를 갖는 고강도 강 및 그 제조방법'은 파이프 조관 이후 가공경화에 의해 항복상승에 따른 항복비가 높아질 수 있는 문제점이 있다.That is, Korean Patent Laid-Open Publication No. 2001-0060759 'High Strength Steel Having Low Resistance and Method for Manufacturing the Same " has realized the resistance reduction property by using the continuous yielding behavior. However,' high strength steel having low resistance and its manufacturing method ' There is a problem that the yield ratio due to rise in yield may be increased due to work hardening after joining.

또한, 대한민국 공개특허 2013-0036545 '저항복비 특성이 우수한 라인파이프용 강재 및 그 제조방법은 강의 조성비 및 조업을 조절하여 적절한 미세조직을 구현하고 있으나 고가의 Ni 및 Mo가 필수적으로 첨가되므로 제조원가가 많이 소요되는 문제점이 있었다. 또한, 대한민국 공개특허 2013-0036545 '저항복비 특성이 우수한 라인파이프용 강재 및 그 제조방법은 가속냉각시 1차 및 2차에 걸쳐 냉각하는 기술은 일반적인 가속냉각설비에서는 실제로 구현이 어려운 문제점이 있었다.In addition, Korean Patent Laid-Open Publication No. 2013-0036545 ', a steel material for a line pipe excellent in resistivity characteristics and a method of manufacturing the steel pipe have a proper microstructure by controlling the composition ratio and operation of steel. However, since expensive Ni and Mo are essentially added, There was a problem. Also, in the steel material for a line pipe excellent in resistivity reduction characteristics of Korean Patent Laid-Open Publication No. 2013-0036545 and its manufacturing method, there is a problem that it is difficult to actualize the technique of cooling the primary and secondary coils during accelerated cooling in a general accelerated cooling facility.

본 발명의 목적은 고가의 Ni 및 Mo와 같은 합금원소 첨가를 최소화하고 고강도, 저온인성 및 저항복비 특성을 가지는 항복강도 450 MPa급 이상의 라인파이프용 후강판을 제조할 수 있어 제조원가를 절감하는 저항복비 고강도 라인파이프용 후강판 제조방법 및 이 방법에 의해 제조된 저항복비 고강도 라인파이프용 후강판을 제공하는 것이다.It is an object of the present invention to provide a steel sheet for a line pipe having a yield strength of 450 MPa or more having a high strength, a low temperature toughness and a resistance to abrasion property with a minimum addition of expensive alloying elements such as Ni and Mo, To provide a method for manufacturing a steel plate for a high strength line pipe and a steel plate for a steel plate having a high resistance to a high strength line manufactured by the method.

본 발명의 다른 목적은 연속항복거동을 이용하지 않고 저온인성 및 저항복비 특성을 가지는 항복강도 450 MPa급 이상의 라인파이프용 후강판을 제조할 수 있어 파이프 조관 이후 가공경화에 의해 항복상승에 따른 항복비가 높아지는 문제를 방지하며 파이프 조관 이후에도 항복비를 유지할 수 있는 저항복비 고강도 라인파이프용 후강판 제조방법 및 이 방법에 의해 제조된 저항복비 고강도 라인파이프용 후강판을 제공하는 것이다.Another object of the present invention is to provide a steel sheet for a line pipe having a yield strength of 450 MPa or more having low temperature toughness and low resistance properties without using a continuous yielding behavior, Which is capable of maintaining the yield ratio even after piping, and to provide a post-steel plate for a low-resistance, high-strength line pipe manufactured by the method.

상기와 같은 목적을 달성하기 위하여 본 발명은 슬래브를 가열로에서 재가열하는 가열단계, 상기 슬래브를 압연하는 압연하여 후강판을 제조하는 압연단계 및 상기 압연단계에서 제조된 후강판을 냉각하는 냉각단계를 포함하며, 상기 슬래브는 중량%로 C : 0.06~0.1%, Si : 0.1~0.4%, Mn : 1.3~1.7%, Al : 0.01~0.05%, Ti : 0.008~0.02%, Nb : 0.03~0.06%, V : 0.03 ~ 0.06%, P : 0 초과 180 ppm이하, S : 0 초과 50 ppm이하, N : 0 초과 60 ppm 이하, O : 0 초과 30 ppm 이하 및 나머지 Fe 및 기타 불가피한 불순물로 구성되며 Ceq 0.34 이상, 1 < Ti/N < 8 을 만족하는 것을 특징으로 하는 저항복비 고강도 라인파이프용 후강판 제조방법을 제공한다.In order to accomplish the above object, the present invention provides a method of manufacturing a slab, comprising the steps of: heating a slab in a heating furnace to reheat, rolling the slab to produce a rolled steel sheet, and cooling the rolled steel sheet Wherein the slab comprises 0.06 to 0.1% of C, 0.1 to 0.4% of Si, 1.3 to 1.7% of Mn, 0.01 to 0.05% of Al, 0.008 to 0.02% of Ti, 0.03 to 0.06% of Nb, , V: 0.03 to 0.06%, P: more than 0 and not more than 180 ppm, S: more than 0 and not more than 50 ppm, N: more than 0 and not more than 60 ppm, O: more than 0 and not more than 30 ppm and other Fe and other unavoidable impurities Ceq 0.34 or more and 1 < Ti / N < 8 is satisfied.

본 발명에서는 압하비 3 < (slab 두께(t) × 전체압하량(%))/(제품두께) < 18인 조건을 만족할 수 있다.In the present invention, the condition that the compression ratio 3 <(slab thickness (t) x total reduction amount (%)) / (product thickness) <18 can be satisfied.

본 발명에서는 상기 슬래브를 가열로에서 재가열하는 가열단계는 슬래브를 Tslab ± 50℃의 온도로 재가열하며, 상기 Tslab는 하기의 수학식 1로 계산되는 저항복비 고강도 라인파이프용 후강판 제조방법을 제공한다.In the present invention, the heating step of reheating the slab in a heating furnace reheats the slab to a temperature of T slab ± 50 ° C, and the T slab is calculated by the following equation 1: to provide.

[수학식 1][Equation 1]

Tslab = {-6770/(log[Nb][C+(12/14)N]-2.26} - 273 T slab = {-6770 / (log [Nb] [C + (12/14) N] -2.26} - 273

(Nb : Nb의 중량%, C : C의 중량%, N : N의 중량%)(Nb: wt% of Nb, C: wt% of C, N: wt% of N)

본 발명에서는 상기 압연단계는 복수의 압연기를 패쓰시켜 압연하는 재결정 압연과정 및 최종 사상압연기를 패쓰시켜 압연하는 사상압연과정을 포함하고, 상기 재결정 압연과정은 Tnr+50℃ 이상에서 패스당 평균 압하율 10% 이상으로 압연하고, 상기 사상압연과정은 누적압하율 50% 이상 및 Ar3+50 ~ Ar3+120℃의 조건에서 압연을 종료하며, 상기 Tnr은 하기의 수학식 2에 의해 계산되고, 상기 Ar3는 하기의 수학식 3으로 계산되는 저항복비 고강도 라인파이프용 후강판 제조방법을 제공한다.In the present invention, the rolling step includes a recrystallization rolling step of rolling a plurality of rolling mills and a finishing rolling step of rolling a final finishing mill, wherein the recrystallization rolling step is carried out at a temperature of T nr + The rolling is finished at a cumulative rolling reduction of 50% or more and Ar3 + 50 to Ar3 + 120 deg. C, and Tnr is calculated by the following equation (2) And Ar3 is calculated by the following equation (3).

[수학식 2]&Quot; (2) &quot;

Figure 112016049646314-pat00001
Figure 112016049646314-pat00001

(Nb : Nb의 중량%, C : C의 중량%, N : N의 중량%, V : V의 중량%, Ti : Ti의 중량%, Al : Al의 중량%, Si : Si의 중량%)(% By weight of Nb,% by weight of Nb,% by weight of C,% by weight of N,% by weight of V,% by weight of Ti,% by weight of Al,% by weight of Al,

[수학식 3]&Quot; (3) &quot;

Ar3 = 910 - (273×C) - (74×Mn) - (57×Ni) - (16×Cr) - (9×Mo) - (5×Cu)Ar 3 = 910 - (273 × C) - (74 × Mn) - (57 × Ni) - (16 × Cr) - (9 × Mo)

(C : C의 중량%, Mn : Mn의 중량%, Ni : Ni의 중량%, Cr : Cr의 중량%, Mo : Mo의 중량%, Cu : Cu의 중량%)(C:% by weight of C, Mn:% by weight of Mn,% by weight of Ni,% by weight of Cr,% by weight of Mo,% by weight of Cu,

본 발명에서는 상기 냉각단계는 Ar3+20℃ 이상 Ar3+90℃ 이하의 온도에서 냉각을 시작하여 10℃/sec ~ 50℃/sec의 냉각속도로 Ms ~ Ms+120℃의 온도로 냉각을 종료하는 수냉과정(S310)과 상기 수냉과정 후 공냉하는 공냉과정을 포함하며, 상기 Ms는 하기의 수학식 4로 계산되는 저항복비 고강도 라인파이프용 후강판 제조방법을 제공한다.In the present invention, the cooling step starts cooling at a temperature of Ar 3 + 20 ° C or higher and Ar 3 + 90 ° C or lower and terminates the cooling to a temperature of Ms ~ Ms + 120 ° C at a cooling rate of 10 ° C / sec to 50 ° C / (S310) and air-cooling after the water-cooling process, and Ms is calculated by the following equation (4).

[수학식 4]&Quot; (4) &quot;

Ms = 561 - (474×C) - (33×Mn) - (17×Ni) - (17×Cr) - (21×Mo)Ms = 561 - (474 x C) - (33 x Mn) - (17 x Ni) - (17 x Cr) - (21 x Mo)

(C : C의 중량%, Mn : Mn의 중량%, Ni : Ni의 중량%, Cr : Cr의 중량%, Mo : Mo의 중량%)(C:% by weight of C,% by weight of Mn,% by weight of Ni,% by weight of Cr,% by weight of Mo)

또한, 상기와 같은 목적을 달성하기 위하여 본 발명은, 본 발명에 따른 인성이 우수한 라인 파이프용 후강판 제조방법으로 제조되며, 항복강도 450MPa 이상, 항복비 85% 이하, -40℃ 충격흡수에너지 200J 이상인 저항복비 고강도 라인파이프용 후강판을 제공한다.In order to achieve the above object, the present invention provides a method for manufacturing a steel sheet for a line pipe excellent in toughness according to the present invention, which has a yield strength of 450 MPa or higher, a yield ratio of 85% Or more of the high strength line pipe.

또한, 상기와 같은 목적을 달성하기 위하여 본 발명은 중량%로 C : 0.06~0.1%, Si : 0.1~0.4%, Mn : 1.3~1.7%, Al : 0.01~0.05%, Ti : 0.008~0.02%, Nb : 0.03~0.06%, V : 0.03 ~ 0.06%, P : 0 초과 180 ppm이하, S : 0 초과 50 ppm이하, N : 0 초과 60 ppm 이하, O : 0 초과 30 ppm 이하 및 나머지 Fe 및 기타 불가피한 불순물로 구성되며 Ceq 0.34 이상, 1 < Ti/N < 8 을 만족하며, 항복강도 450MPa 이상, 항복비 85% 이하, -40℃ 충격흡수에너지 200J 이상인 것을 특징으로 하는 저항복비 고강도 라인파이프용 후강판을 제공한다.In order to achieve the above object, the present invention provides a ferritic stainless steel comprising 0.06 to 0.1% of C, 0.1 to 0.4% of Si, 1.3 to 1.7% of Mn, 0.01 to 0.05% of Al, 0.008 to 0.02% of Ti, S: more than 0 and not more than 50 ppm, N: more than 0 and not more than 60 ppm, O: more than 0 and not more than 30 ppm, and the balance of Fe and O, Characterized in that it has Ceq 0.34 or more and satisfies 1 < Ti / N < 8, and has a yield strength of 450 MPa or more, a yield ratio of 85% or less, Provide post-steel plate.

본 발명에서는 압하비 3 < (slab 두께(t) × 전체압하량(%))/(제품두께) < 18인 조건을 만족하는 저항복비 고강도 라인파이프용 후강판을 제공한다.The present invention provides a steel sheet for a low-resistance high-strength line pipe satisfying the following conditions: the slab thickness (t) x total reduction (%)) / (product thickness)

본 발명에서는 50~80%의 침상형 페라이트와 쿼시폴리고날 페라이트를 기지조직으로 하고, 15~20%의 베이나이트를 포함하는 저항복비 고강도 라인파이프용 후강판을 제공한다. The present invention provides a steel sheet for a low-resistance high-strength line pipe comprising 50 to 80% of needle-like ferrite and quasi-polygonal ferrite as a base structure and containing 15 to 20% of bainite.

본 발명에서는 Ceq 0.34 이상, 1 < Ti/N < 8 을 만족하며, 항복강도 450MPa 이상, 항복비 85% 이하, -40℃ 충격흡수에너지 200J 이상인 저항복비 고강도 라인파이프용 후강판을 제공한다.The present invention provides a steel sheet for a low-resistance high-strength line pipe satisfying a Ceq of 0.34 or more and 1 < Ti / N < 8, a yield strength of 450 MPa or more, a yield ratio of 85% or less,

본 발명은 합금원소 첨가를 최소화하고 고가의 Ni 및 Mo와 같은 고가의 합금원소를 첨가하지 않고도 저온인성 및 저항복비 특성을 가지는 항복강도 450 MPa급 이상의 라인파이프용 후강판을 제조할 수 있어 제조원가를 크게 절감하는 효과를 발휘한다. The present invention can produce a steel sheet for a line pipe having a low-temperature toughness and low-temperature resistance characteristics and a yield strength of 450 MPa or higher without adding expensive alloying elements, such as Ni and Mo, The effect is greatly reduced.

본 발명은 연속항복거동을 이용하지 않고 저온인성 및 저항복비 특성을 가지는 항복강도 450 MPa급 이상의 라인파이프용 후강판을 제조할 수 있어 파이프 조관 이후 가공경화에 의해 항복상승에 따른 항복비가 높아지는 문제를 방지하며 파이프 조관 이후에도 항복비를 유지할 수 있어 제품의 품질을 향상시키고 불량율을 크게 저하시키며 라인파이프용 후강판의 품질을 장기간 안정적으로 보증할 수 있는 효과가 있다. The present invention can produce a steel sheet for a line pipe having a yield strength of 450 MPa or more having a low temperature toughness and a low resistance property without using a continuous yielding behavior, It is possible to maintain the yield ratio even after piping, thereby improving the quality of the product, greatly reducing the defect rate, and ensuring the quality of the steel sheet for the line pipe stably for a long period of time.

도 1은 본 발명에 따른 저항복비 고강도 라인파이프용 후강판 제조방법의 전체 흐름도이다.BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an overall flow chart of a method for manufacturing a steel plate for a low-resistance, high-strength line pipe according to the present invention.

본 발명의 바람직한 실시 예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다. 본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니된다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to the detailed description of the present invention, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms. Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.

도 1은 본 발명에 따른 저항복비 고강도 라인파이프용 후강판 제조방법의 전체 흐름도이다. BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an overall flow chart of a method for manufacturing a steel plate for a low-resistance, high-strength line pipe according to the present invention.

도 1을 참고하면, 본 발명에 따른 저항복비 고강도 라인파이프용 후강판 제조방법은 슬래브를 가열로에서 재가열하는 가열단계(S100), 상기 슬래브를 압연하는 압연하여 후강판을 제조하는 압연단계(S200) 및 상기 압연단계에서 제조된 후강판을 냉각하는 냉각단계(S300)를 포함한다.Referring to FIG. 1, the method for manufacturing a steel sheet for a low-resistance double-high-strength line pipe according to the present invention includes a heating step S100 for reheating the slab in a heating furnace, a rolling step S200 for rolling the slab, And a cooling step (S300) of cooling the steel sheet produced in the rolling step.

상기 슬래브는 중량%로 C : 0.06~0.1%, Si : 0.1~0.4%, Mn : 1.3~1.7%, Al : 0.01~0.05%, Ti : 0.008~0.02%, Nb : 0.03~0.06%, V : 0.03 ~ 0.06%, P : 0 초과 180 ppm이하, S : 0 초과 50 ppm이하, N : 0 초과 60 ppm 이하, O : 0 초과 30 ppm 이하 및 나머지 Fe 및 기타 불가피한 불순물로 구성되며 Ceq 0.34 이상, 1 < Ti/N < 8 을 만족하는 것을 일 예로 한다. Wherein the slab comprises 0.06 to 0.1% of C, 0.1 to 0.4% of Si, 1.3 to 1.7% of Mn, 0.01 to 0.05% of Al, 0.008 to 0.02% of Ti, 0.03 to 0.06% of Nb, More than 0 and not more than 60 ppm, more than 0 and not more than 30 ppm, and the balance of Fe and other inevitable impurities, and Ceq of 0.34 or more, 0.03 to 0.06%, P: more than 0 and not more than 180 ppm, S: more than 0 and not more than 50 ppm, 1 < Ti / N < 8.

더 상세하게 상기 슬래브는 C : 0.06~0.1%, Si : 0.1~0.4%, Mn : 1.3~1.7%, Al : 0.01~0.05%, Ti : 0.008~0.02%, Nb : 0.03~0.06%, V : 0.03 ~ 0.06%, P : 0 초과 180 ppm이하, S : 0 초과 50 ppm이하, N : 0 초과 60 ppm 이하, O : 0 초과 30 ppm 이하 및 나머지 Fe 및 기타 불가피한 불순물로만 구성되고, 고가의 Ni 및 Mo와 같은 합금원소가 첨가되지 않음으로써 제조원가를 크게 절감할 수 있다.In more detail, the slab is made of a steel slab including 0.06 to 0.1% of C, 0.1 to 0.4% of Si, 1.3 to 1.7% of Mn, 0.01 to 0.05% of Al, 0.008 to 0.02% of Ti, 0.03 to 0.06% of Nb, More than 0 and not more than 30 ppm, and the balance of Fe and other inevitable impurities, and more preferably not less than 0.03 to 0.06%, P: more than 0 and not more than 180 ppm, S: more than 0 and not more than 50 ppm, N: more than 0 and not more than 60 ppm, And alloying elements such as Mo are not added, so that the manufacturing cost can be greatly reduced.

상기 C(탄소)는 강의 강도를 향상시키는데 가장 효과적인 원소이나, 지나치게 다량 첨가될 경우에는 오히려 용접성, 성형성 및 인성 등을 저하시킬 수 있다. 탄소의 함량이 0.03 중량% 미만인 경우에는 탄소의 함량이 너무 낮기 때문에, 원하는 강도를 얻기 어려워서 고가의 합금원소를 추가적으로 포함하여야 원하는 강도를 얻을 수 있다. 그러나, 0.1 중량%를 초과하는 경우에는 탄소의 함량이 너무 높아 상술한 바와 같이, 용접성, 성형성 및 인성이 저하되는 문제점이 생길 수 있으므로 그 함유량은 0.03~0.1 중량%의 범위로 제한하는 것이 바람직하다. The carbon (C) is the most effective element for improving the strength of the steel, but when it is added in an excessively large amount, the weldability, formability and toughness can be lowered. If the content of carbon is less than 0.03 wt%, it is difficult to obtain the desired strength because the content of carbon is too low, so that a desired strength can be obtained by additionally containing a high-priced alloy element. However, when the content is more than 0.1% by weight, the content of carbon is too high to cause a problem of deterioration in weldability, formability and toughness as described above. Therefore, the content thereof is preferably limited to a range of 0.03 to 0.1% by weight Do.

상기 Si(규소)는 철강의 탈산에 필수적인 원소이며, 강도상승에 효과가 있는 원소이다. 그러나, 함유량이 0.1 중량% 이하이면 원하는 고강도가 얻어지지 않는다. 더욱이, 0.4 중량%를 넘으면 인성 및 용접성의 저하를 초래한다. 따라서, 그 함유량은 0.1~0.4 중량%의 범위로 제한하는 것이 바람직하다.The above-mentioned Si (silicon) is an element essential for deoxidation of steel and is an element effective for increasing the strength. However, if the content is 0.1% by weight or less, desired high strength can not be obtained. Moreover, when the content exceeds 0.4% by weight, toughness and weldability are deteriorated. Therefore, the content thereof is preferably limited to a range of 0.1 to 0.4% by weight.

상기 Mn(망간)은 열처리 시에 강도를 상승시키는 효과가 있으며, 탄소의 첨가량이 제한됨에 따른 강도보상을 위해 필수적으로 첨가되는 원소이기도 하다. 그런데, 망간은 첨가량이 너무 낮으면 소입성 향상효과가 거의 없고, 일정범위를 넘으면 비금속개재물인 황화망간(MnS)을 형성하여 용접성 및 인내구성을 저하시키므로, 1.3 ~ 1.7 중량%로 제한하는 것이 바람직하다. The Mn (manganese) has an effect of increasing the strength at the time of heat treatment, and is also an essential element added to compensate the strength due to the limited amount of carbon added. However, if the amount of manganese is too low, the effect of improving the sintering property is hardly obtained. If it exceeds a certain range, manganese sulfide (MnS), which is a nonmetallic inclusion, is formed to lower the weldability and the structure of the phosphorus. Do.

상기 Al(알루미늄)은 용강에 존재하는 산소와 반응하여 산소를 제거하는 탈산제로서의 역할을 수행하는 원소이지만, 그 양이 너무 많으면 산화물계 개재물이 다량 형성되어 소재의 충격인성을 저해하게 되므로, 그 함유량은 0.01~0.05 중량%로 제한하는 것이 바람직하다. Al (aluminum) is an element that acts as a deoxidizer for removing oxygen by reacting with oxygen present in molten steel. When the amount is too large, however, a large amount of oxide inclusions is formed to deteriorate the impact toughness of the material. Is preferably limited to 0.01 to 0.05% by weight.

상기 Ti(티타늄)은 결정립 미세화를 통한 저온인성 향상을 위한 핵심적인 역할을 한다. 따라서, 효과를 충분히 얻기 위해서는 0.008 중량% 이상 첨가되는 것이 바람직하나, 다만, 그 양이 너무 많으면 오히려 저온에서의 충격인성이 열화되기 때문에, 그 상한을 0.02 중량%로 한정하는 것이 바람직하므로 그 함유량은 0.008 중량% ~ 0.02 중량%로 제한하는 것이 바람직하다.Ti (titanium) plays a key role in improving the low temperature toughness through grain refinement. However, if the amount is too large, impact toughness at low temperature deteriorates. Therefore, it is preferable to limit the upper limit to 0.02% by weight, But is preferably limited to 0.008 wt% to 0.02 wt%.

상기 Nb(니오븀)은 결정립을 미세화시키는데 매우 유용한 원소이고, 고강도 조직인 침상페라이트 또는 베이나이트의 형성을 촉진시켜 강도를 향상시키는데 효과적인 원소이다. 상기 Nb(니오븀)은 0.07 중량%를 초과하여 포함되는 경우에는 용접성을 저하시키기 때문에, 그 함유량을 0.03 ~ 0.06 중량%로 제한하는 것이 바람직하다. The Nb (niobium) is an element which is very useful for refining the crystal grains, and is an element effective for enhancing the strength by promoting the formation of acicular ferrite or bainite which is a high strength texture. When the content of Nb (niobium) exceeds 0.07% by weight, the weldability is lowered. Therefore, the content thereof is preferably limited to 0.03 to 0.06% by weight.

상기 V(바나듐)은 탄소와 반응하여 바나듐 석출물을 형성하고, 바나듐 석출물에 의하여 석출강화 및 소입성을 향상시킬 수 있다. 다만, 0.08 중량% 이상으로 포함되는 경우에는 용접성 및 인성이 저하될 수 있기 때문에, 그 함유량을 0.03 ~ 0.06 중량%로 제한하는 것이 바람직하다. The V (vanadium) reacts with carbon to form a vanadium precipitate, and precipitation strengthening and entrapping properties can be improved by vanadium precipitates. However, when it is contained in an amount of 0.08% by weight or more, the weldability and toughness may deteriorate. Therefore, the content thereof is preferably limited to 0.03 to 0.06% by weight.

상기 P(인)은 강 제조시 불가피하게 함유되며, 응고시 슬래브 중심부에 쉽게 편석되는 원소로서 취성을 유발하므로 되도록 낮게 제어하는 것이 바람직하며, 이론상 인의 함량을 0 중량%로 제한하는 것이 가능하나, 제조공정상 필연적으로 첨가될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하고, 인의 함량의 상한은 0.020 중량% 즉, 200ppm 이하로 제한하는 것이 바람직하다.The P (phosphorous) is inevitably contained in steel production, and it is preferable to control it as low as possible because it induces brittleness as an element easily segregated at the center of the slab during solidification, and theoretically the content of phosphorus can be limited to 0 wt% The manufacturing process is inevitably added. Therefore, it is important to manage the upper limit, and the upper limit of the content of phosphorus is preferably limited to 0.020 wt%, that is, 200 ppm or less.

상기 S(황)은 강 제조시 불가피하게 함유되는 원소이며, 망간(Mn)과 친화력이 좋기 때문에 황화망간(MnS) 형태로 존재하여 압연시 압착되지 않으며, 길게 연신되는 특징을 가진다. 또한, 적열취성을 일으키므로 그 함량을 최대한 억제하는 것이 바람직하다. 이론상 황의 함량을 0 중량%로 제한하는 것이 가능하나, 제조공정상 필연적으로 첨가될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 황의 함량의 상한을 0.005 중량% 즉, 50ppm 이하로 제한하는 것이 바람직하다. S (sulfur) is an element which is inevitably contained in the production of steel and exists in the form of manganese sulfide (MnS) because it has good affinity with manganese (Mn), and is not squeezed during rolling and is elongated. Further, since it causes red embrittlement, it is preferable to suppress the content to the maximum. In theory, it is possible to limit the content of sulfur to 0% by weight, but it is inevitably added to the manufacturing process inevitably. Therefore, it is important to manage the upper limit, and it is preferable to limit the upper limit of the content of sulfur to 0.005 wt%, that is, 50 ppm or less.

또한, 본 발명에 따른 저항복비 고강도 라인파이프용 후강판 제조방법은 압하비 3 < (slab 두께(t) × 전체압하량(%))/(제품두께) < 18인 조건을 만족한다. In addition, the method for manufacturing a steel sheet for a low-resistance, high-strength line pipe in accordance with the present invention satisfies the condition that the slab thickness (t) × total reduction (%) / (product thickness) <18.

또한, 상기 슬래브를 가열로에서 재가열하는 가열단계(S100)는 슬래브를 Tslab ± 50℃의 온도로 재가열한다.In addition, the heating step (S100) of reheating the slab in the heating furnace reheats the slab to a temperature of T slab ± 50 ° C.

상기 Tslab는 하기의 수학식 1로 계산되는 것을 일 예로 한다.The T slab is calculated by the following equation (1).

[수학식 1][Equation 1]

Tslab = {-6770/(log[Nb][C+(12/14)N]-2.26} - 273 T slab = {-6770 / (log [Nb] [C + (12/14) N] -2.26} - 273

(Nb : Nb의 중량%, C : C의 중량%, N : N의 중량%)(Nb: wt% of Nb, C: wt% of C, N: wt% of N)

또한, 상기 압연단계(S200)는 복수의 압연기를 패쓰시켜 압연하는 재결정 압연과정(S210) 및 최종 사상압연기를 패쓰시켜 압연하는 사상압연과정(S220)을 포함하고, 상기 재결정 압연과정(S210)은 Tnr+50℃ 이상에서 패스당 평균 압하율 10% 이상으로 압연하고, 상기 사상압연과정(S220)은 누적압하율 50% 이상 및 Ar3+50 ~ Ar3+120℃의 조건에서 압연을 종료하는 것이 바람직하다.The rolling step S200 includes a recrystallization rolling step S210 for rolling a plurality of rolling mills and a finishing rolling process S220 for rolling the final finishing mill, Rolling at an average rolling reduction rate of 10% or more per pass at a temperature of T nr + 50 ° C or more, and rolling in the finishing rolling process (S220) at a cumulative rolling reduction of 50% or more and Ar3 + 50 to Ar3 + 120 ° C desirable.

상기 Tnr은 하기의 수학식 2에 의해 계산되는 것을 일 예로 한다. The T nr is calculated by the following equation (2).

[수학식 2]&Quot; (2) &quot;

Figure 112016049646314-pat00002
Figure 112016049646314-pat00002

(Nb : Nb의 중량%, C : C의 중량%, N : N의 중량%, V : V의 중량%, Ti : Ti의 중량%, Al : Al의 중량%, Si : Si의 중량%)(% By weight of Nb,% by weight of Nb,% by weight of C,% by weight of N,% by weight of V,% by weight of Ti,% by weight of Al,% by weight of Al,

또한, 상기 Ar3는 하기의 수학식 3으로 계산되는 것을 일 예로 한다.The above-mentioned Ar3 is calculated by the following equation (3).

[수학식 3]&Quot; (3) &quot;

Ar3 = 910 - (273×C) - (74×Mn) - (57×Ni) - (16×Cr) - (9×Mo) - (5×Cu)Ar 3 = 910 - (273 × C) - (74 × Mn) - (57 × Ni) - (16 × Cr) - (9 × Mo)

(C : C의 중량%, Mn : Mn의 중량%, Ni : Ni의 중량%, Cr : Cr의 중량%, Mo : Mo의 중량%, Cu : Cu의 중량%)(C:% by weight of C, Mn:% by weight of Mn,% by weight of Ni,% by weight of Cr,% by weight of Mo,% by weight of Cu,

한편, 상기 냉각단계(S300)는 Ar3+20℃ 이상 Ar3+90℃ 이하의 온도에서 냉각을 시작하여 10℃/sec ~ 50℃/sec의 냉각속도로 Ms ~ Ms+120℃의 온도로 냉각을 종료하는 수냉과정(S310)과 상기 수냉과정(S310) 후 공냉하는 공냉과정(S320)을 포함한다.Meanwhile, the cooling step (S300) starts cooling at a temperature of Ar 3 + 20 ° C or higher and Ar 3 + 90 ° C or lower and cooling to a temperature of Ms ~ Ms + 120 ° C at a cooling rate of 10 ° C / sec to 50 ° C / (S310) for cooling the water-cooling process (S310), and an air-cooling process (S320) for air-cooling the water-cooling process (S310).

상기 Ms는 하기의 수학식 4로 계산되는 것을 일 예로 한다.The Ms is calculated by the following equation (4).

[수학식 4]&Quot; (4) &quot;

Ms = 561 - (474×C) - (33×Mn) - (17×Ni) - (17×Cr) - (21×Mo)Ms = 561 - (474 x C) - (33 x Mn) - (17 x Ni) - (17 x Cr) - (21 x Mo)

(C : C의 중량%, Mn : Mn의 중량%, Ni : Ni의 중량%, Cr : Cr의 중량%, Mo : Mo의 중량%)(C:% by weight of C,% by weight of Mn,% by weight of Ni,% by weight of Cr,% by weight of Mo)

상기한 본 발명에 따른 저항복비 고강도 라인파이프용 후강판 제조방법으로 제조된 저항복비 고강도 라인파이프용 후강판은 중량%로 C : 0.06~0.1%, Si : 0.1~0.4%, Mn : 1.3~1.7%, Al : 0.01~0.05%, Ti : 0.008~0.02%, Nb : 0.03~0.06%, V : 0.03 ~ 0.06%, P : 0 초과 180 ppm이하, S : 0 초과 50 ppm이하, N : 0 초과 60 ppm 이하, O : 0 초과 30 ppm 이하 및 나머지 Fe 및 기타 불가피한 불순물로 구성되며 Ceq 0.34 이상, 1 < Ti/N < 8 을 만족하며, 항복강도 450MPa 이상, 항복비 85% 이하, -40℃ 충격흡수에너지 200J 이상인 것이다.The steel sheet for a low-resistance, high-strength line pipe manufactured by the method for manufacturing a steel plate for a low-resistance double-high-strength line pipe according to the present invention comprises 0.06 to 0.1% of C, 0.1 to 0.4% of Si, P: more than 0 and not more than 180 ppm, S: more than 0 and not more than 50 ppm, N: more than 0:%, Al: 0.01 to 0.05%, Ti: 0.008 to 0.02%, Nb: 0.03 to 0.06% Not more than 60 ppm, not more than 0 and not more than 30 ppm and the balance of Fe and other unavoidable impurities Ceq 0.34 or more and 1 <Ti / N <8, a yield strength of 450 MPa or more, a yield ratio of 85% The shock absorption energy is more than 200J.

또한, 본 발명에 따른 저항복비 고강도 라인파이프용 후강판은 50~80%의 침상형 페라이트와 쿼시폴리고날 페라이트를 기지조직으로 하고, 15~20%의 베이나이트를 포함한다. In addition, the steel sheet for a low-resistance, high-strength line pipe according to the present invention comprises acicular ferrite of 50 to 80% and quasi-polygonal ferrite as a base and includes 15 to 20% of bainite.

본 발명에 따른 저항복비 고강도 라인파이프용 후강판 제조방법 및 저항복비 고강도 라인파이프용 후강판은 합금원소 첨가를 최소화하고, 특히 고가의 Ni 및 Mo와 같은 고가의 합금원소를 첨가하지 않고도 조업조건 최적화 및 2상의 분율을 적절히 조절하여 고강도, 저온인성 및 저항복비 특성을 모두 만족하는 라인파이프용 후강판을 제조하는 것이다.The method for manufacturing a post-steel plate for a low-resistance, high-strength line pipe according to the present invention and a post-steel plate for a low-resistance, high-strength line pipe minimize the addition of alloying elements and optimize operating conditions without adding expensive alloying elements such as Ni and Mo And the two-phase fraction are appropriately adjusted to produce a steel sheet for a line pipe satisfying all of high strength, low temperature toughness and low resistance properties.

구분division CC SiSi MnMn AlAl NbNb VV TiTi PP SS OO NN 발명강Invention river 0.080.08 0.20.2 1.61.6 0.030.03 0.0450.045 0.040.04 0.0150.015 0.0150.015 0.0060.006 0.0030.003 0.0040.004 비교강1Comparative River 1 0.120.12 0.20.2 1.61.6 0.030.03 0.0450.045 0.040.04 0.0150.015 0.0150.015 0.0030.003 0.0030.003 0.0040.004 비교강2Comparative River 2 0.050.05 0.20.2 1.61.6 0.030.03 0.0450.045 0.040.04 0.0150.015 0.0120.012 0.0020.002 0.0030.003 0.0040.004 비교강3Comparative Steel 3 0.040.04 0.250.25 1.251.25 0.030.03 0.0450.045 0.030.03 0.0150.015 0.010.01 0.0010.001 0.0020.002 0.0050.005

상기 표 1은 본 발명의 조성비에 만족하는 본 발명강 및 본 발명의 조성비를 만족하지 않는 비교강1 내지 비교강3의 조성비를 나타내고 있으며, 본 발명강, 비교강1 내지 비교강3의 각 합금원소의 단위는 중량%이고, 상기 표 1에서 표시된 조성 이외의 나머지로 Fe 및 기타 불가피한 불순물을 포함함을 밝혀둔다. Table 1 shows composition ratios of the steels of the present invention satisfying the composition ratio of the present invention and the comparative steels 1 to 3 not meeting the composition ratios of the present invention, It is to be noted that the unit of the element is% by weight and includes Fe and other unavoidable impurities other than the composition shown in Table 1 above.

구분division Ti/NTi / N Ceq Ceq Ar3온도(℃)Ar3 temperature (占 폚) 발명강Invention river 3.753.75 0.350.35 770770 비교강1Comparative River 1 3.753.75 0.390.39 759759 비교강2Comparative River 2 2.02.0 0.320.32 807807 비교강3Comparative Steel 3 5.05.0 0.270.27 778778

상기 표2는 상기 표 1의 본 발명강 및 비교강1 내지 비교강3의 Ti/N, Ceq 및 Ar3온도를 나타내고 있다.Table 2 shows Ti / N, Ceq and Ar3 temperatures of the inventive steels and the comparative steels 1 to 3 in Table 1 above.

구분division 강종Steel grade 재가열온도(℃)Reheating temperature (℃) 압하비Abjabi 누적압하량(%)Cumulative rolling reduction (%) 사상압연종료온도(℃)Finishing finish temperature (° C) 수냉시작온도(℃)Water cooling start temperature (℃) 수냉종료온도(℃)Water cooling end temperature (캜) 냉각속도(℃/sec)Cooling rate (° C / sec) 실시예1Example 1 발명강Invention river 11401140 9.49.4 7575 880880 820820 450450 3030 실시예2Example 2 발명강Invention river 11401140 9.49.4 7575 860860 800800 580580 2020 비교예1Comparative Example 1 발명강Invention river 11401140 18.818.8 7575 890890 800800 590590 3030 비교예2Comparative Example 2 발명강Invention river 11501150 12.512.5 7575 820820 750750 600600 1515 비교예3Comparative Example 3 발명강Invention river 11501150 19.919.9 7575 800800 공냉Air cooling 비교예4Comparative Example 4 발명강Invention river 11501150 2.52.5 5050 840840 800800 350350 1010 비교예5Comparative Example 5 발명강Invention river 11501150 13.413.4 7575 870870 800800 620620 2525 비교예6Comparative Example 6 발명강Invention river 11501150 18.818.8 7575 820820 공냉Air cooling 비교예7Comparative Example 7 비교강1Comparative River 1 11501150 9.49.4 7575 850850 790790 550550 2020 비교예8Comparative Example 8 비교강2Comparative River 2 11401140 9.49.4 7575 860860 800800 560560 2525 비교예9Comparative Example 9 비교강3Comparative Steel 3 11501150 12.512.5 7575 850850 780780 580580 2020

상기 표 3은 상기 표 1의 본 발명강을 이용하여 본 발명에 따른 압연조건과 냉각조건에 만족하여 제조된 저항복비 고강도 라인파이프용 후강판의 실시예1과 실시예2, 상기 표 1의 본 발명강을 이용하여 본 발명에 따른 압연조건과 냉각조건에서 벗어난 압연조건과 냉각조건으로 제조된 저항복비 고강도 라인파이프용 후강판의 비교예1 내지 비교예6, 상기 표 1의 비교강1 내지 비교강3을 이용하여 본 발명에 따른 압연조건과 냉각조건에 만족하여 제조된 저항복비 고강도 라인파이프용 후강판의 비교예7 내지 비교예9의 압연조건과 냉각조건을 나타내고 있다. Table 3 shows the results of Examples 1 and 2 of the steel sheets for low-resistance, high-strength and high-strength line pipes manufactured by satisfying the rolling conditions and cooling conditions according to the present invention, Comparative Example 1 to Comparative Example 6 of the steel sheet for low-resistance, high strength, and high-strength line manufactured by rolling conditions and cooling conditions outside the rolling conditions and cooling conditions according to the present invention using the inventive steel, And rolling conditions and cooling conditions of Comparative Examples 7 to 9 of a steel plate for a low-resistance, high-strength and high-strength line pipe manufactured by satisfying rolling conditions and cooling conditions according to the present invention using steel 3.

구분division 강종Steel grade 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 항복비
(%)
Yield ratio
(%)
-40℃ CVN(J)-40 C CVN (J) AF+QPF분율AF + QPF fraction 베이나이트분율(%)Bainite fraction (%)
실시예1Example 1 발명강Invention river 526526 632632 83.283.2 220220 5555 1515 실시예2Example 2 발명강Invention river 506506 603603 83.983.9 260260 5050 1515 비교예1Comparative Example 1 발명강Invention river 535535 605605 88.488.4 310310 8585 55 비교예2Comparative Example 2 발명강Invention river 519519 593593 87.587.5 280280 3030 00 비교예3Comparative Example 3 발명강Invention river 545545 586586 93.093.0 172172 00 00 비교예4Comparative Example 4 발명강Invention river 488488 602602 81.181.1 183183 4040 2020 비교예5Comparative Example 5 발명강Invention river 520520 595595 87.487.4 315315 6565 1010 비교예6Comparative Example 6 발명강Invention river 476476 569569 83078307 168168 00 00 비교예7Comparative Example 7 비교강1Comparative River 1 547547 661661 82.882.8 181181 7070 1515 비교예8Comparative Example 8 비교강2Comparative River 2 513513 599599 85.685.6 330330 5050 55 비교예9Comparative Example 9 비교강3Comparative Steel 3 469469 537537 87.387.3 435435 4040 00

상기 표 4는 표 3의 실시예1와 실시예2, 비교예1 내지 비교예9의 항복강도, 인장강도, 항복비, -40℃ CVN(J), AF+QPF분율 및 베이나이트분율(%)를 나타내고 있다. Table 4 shows the yield strength, tensile strength, yield ratio, -40 캜 CVN (J), AF + QPF fraction and bainite fraction (%) of Examples 1 and 2 and Comparative Examples 1 to 9 of Table 3, ).

표 4에서 본 발명에 따른 저항복비 고강도 라인파이프용 후강판 제조방법에서 강의 조성비 및 압연조건과 냉각조건을 만족하는 경우 항복강도 450MPa 이상, 항복비 85% 이하, -40℃ 충격흡수에너지 200J 이상인 저항복비 고강도 라인파이프용 후강판이 제조되는 것임을 확인할 수 있다. In Table 4, when the steel composition ratio, the rolling conditions and the cooling conditions are satisfied in the method of manufacturing the steel sheet for the low-resistance double-high strength line pipe according to the present invention, the steel sheet has a yield strength of 450 MPa or higher, a yield ratio of 85% It can be confirmed that a steel sheet for a double-high strength line pipe is manufactured.

본 발명은 합금원소 첨가를 최소화하고 고가의 Ni 및 Mo와 같은 고가의 합금원소를 첨가하지 않고도 저온인성 및 저항복비 특성을 가지는 항복강도 450 MPa급 이상의 라인파이프용 후강판을 제조할 수 있어 제조원가를 절감하는 효과를 발휘한다. The present invention can produce a steel sheet for a line pipe having a low-temperature toughness and low-temperature resistance property and a yield strength of 450 MPa or higher, without adding expensive alloying elements, such as Ni and Mo, The effect is saved.

본 발명은 연속항복거동을 이용하지 않고 저온인성 및 저항복비 특성을 가지는 항복강도 450 MPa급 이상의 라인파이프용 후강판을 제조할 수 있어 파이프 조관 이후 가공경화에 의해 항복상승에 따른 항복비가 높아지는 문제를 방지하며 파이프 조관 이후에도 항복비를 유지할 수 있어 제품의 품질을 향상시키고 불량율을 크게 저하시키며 라인파이프용 후강판의 품질을 장기간 안정적으로 보증할 수 있다.The present invention can produce a steel sheet for a line pipe having a yield strength of 450 MPa or more having a low temperature toughness and a low resistance property without using a continuous yielding behavior, It is possible to maintain the yield ratio even after piping, thereby improving the quality of the product, greatly reducing the defect rate, and ensuring the quality of the steel sheet for the line pipe stably for a long period of time.

본 발명은 상기한 실시 예에 한정되는 것이 아니라, 본 발명의 요지에 벗어나지 않는 범위에서 다양하게 변경하여 실시할 수 있으며 이는 본 발명의 구성에 포함됨을 밝혀둔다.It will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the present invention.

S100 : 가열단계 S200 : 압연단계
S210 : 재결정 압연과정 S220 : 사상압연과정
S300 : 냉각단계 S310 : 수냉과정
S320 : 공냉과정
S100: heating step S200: rolling step
S210: Recrystallization rolling process S220: Finishing rolling process
S300: Cooling step S310: Water cooling process
S320: Air cooling process

Claims (10)

슬래브를 가열로에서 재가열하는 가열단계, 상기 슬래브를 압연하는 압연하여 후강판을 제조하는 압연단계 및 상기 압연단계에서 제조된 후강판을 냉각하는 냉각단계를 포함하며,
상기 슬래브는 중량%로 C : 0.06~0.1%, Si : 0.1~0.4%, Mn : 1.3~1.7%, Al : 0.01~0.05%, Ti : 0.008~0.02%, Nb : 0.03~0.06%, V : 0.03 ~ 0.06%, P : 0 초과 180 ppm이하, S : 0 초과 50 ppm이하, N : 0 초과 60 ppm 이하, O : 0 초과 30 ppm 이하 및 나머지 Fe 및 기타 불가피한 불순물로 구성되며 Ceq 0.34 이상, 1 < Ti/N < 8와 압하비 3 < (slab 두께(t) × 전체압하량(%))/(제품두께) < 18인 조건을 만족하며,
상기 슬래브를 가열로에서 재가열하는 가열단계는 슬래브를 Tslab ± 50℃의 온도로 재가열하며, 상기 Tslab는 하기의 수학식 1로 계산되며,
상기 압연단계는 복수의 압연기를 패쓰시켜 압연하는 재결정 압연과정 및 최종 사상압연기를 패쓰시켜 압연하는 사상압연과정을 포함하고,
상기 재결정 압연과정은 Tnr+50℃ 이상에서 패스당 평균 압하율 10% 이상으로 압연하고, 상기 사상압연과정은 누적압하율 50% 이상 및 Ar3+50 ~ Ar3+120℃의 조건에서 압연을 종료하며,
상기 Tnr은 하기의 수학식 2에 의해 계산되고,
상기 Ar3는 하기의 수학식 3으로 계산되며,
상기 냉각단계는 Ar3+20℃ 이상 Ar3+90℃ 이하의 온도에서 냉각을 시작하여 10℃/sec ~ 50℃/sec의 냉각속도로 Ms ~ Ms+120℃의 온도로 냉각을 종료하는 수냉과정(S310)과 상기 수냉과정 후 공냉하는 공냉과정을 포함하며,
상기 Ms는 하기의 수학식 4로 계산되어 50~80%의 침상형 페라이트와 쿼시폴리고날 페라이트를 기지조직으로 하고, 15~20%의 베이나이트를 포함하는 저항복비 고강도 라인파이프용 후강판을 제조하는 것을 특징으로 하는 저항복비 고강도 라인파이프용 후강판 제조방법.
[수학식 1]
Tslab = {-6770/(log[Nb][C+(12/14)N]-2.26} - 273
(Nb : Nb의 중량%, C : C의 중량%, N : N의 중량%)
[수학식 2]
Figure 112017039817729-pat00003

(Nb : Nb의 중량%, C : C의 중량%, N : N의 중량%, V : V의 중량%, Ti : Ti의 중량%, Al : Al의 중량%, Si : Si의 중량%)
[수학식 3]
Ar3 = 910 - (273×C) - (74×Mn) - (57×Ni) - (16×Cr) - (9×Mo) - (5×Cu)
(C : C의 중량%, Mn : Mn의 중량%, Ni : Ni의 중량%, Cr : Cr의 중량%, Mo : Mo의 중량%, Cu : Cu의 중량%)
[수학식 4]
Ms = 561 - (474×C) - (33×Mn) - (17×Ni) - (17×Cr) - (21×Mo)
(C : C의 중량%, Mn : Mn의 중량%, Ni : Ni의 중량%, Cr : Cr의 중량%, Mo : Mo의 중량%)
A heating step of reheating the slab in a heating furnace, a rolling step of rolling the slab to produce a steel sheet, and a cooling step of cooling the steel sheet produced in the rolling step,
Wherein the slab comprises 0.06 to 0.1% of C, 0.1 to 0.4% of Si, 1.3 to 1.7% of Mn, 0.01 to 0.05% of Al, 0.008 to 0.02% of Ti, 0.03 to 0.06% of Nb, More than 0 and not more than 60 ppm, more than 0 and not more than 30 ppm, and the balance of Fe and other unavoidable impurities, and Ceq of 0.34 or more, 0.03 to 0.06%, P: more than 0 to 180 ppm, 1 < Ti / N < 8 and the slab thickness (t) x total reduction (%)) / (product thickness) <
The heating step of reheating the slab in a heating furnace reheats the slab to a temperature of T slab ± 50 ° C, and the T slab is calculated by the following equation (1)
Wherein the rolling step includes a recrystallization rolling process in which a plurality of rolling mills are rolled and rolled, and a finishing rolling process in which a final finishing mill is rolled,
The recrystallization rolling process is performed at an average rolling reduction rate of 10% or more per pass at a temperature of T nr + 50 ° C or higher, and the rolling process is finished at a cumulative rolling reduction of 50% or more and Ar 3 +50 to Ar 3 + 120 ° C In addition,
T nr is calculated by the following equation (2)
The Ar3 is calculated by the following equation (3)
The cooling step starts cooling at a temperature of Ar 3 + 20 ° C or higher and Ar 3 + 90 ° C or lower and terminating the cooling to a temperature of Ms ~ Ms + 120 ° C at a cooling rate of 10 ° C / sec to 50 ° C / S310) and an air cooling process for cooling the water after the water cooling process,
The Ms is calculated by the following formula (4) to prepare a steel sheet for a low-resistance high-strength line pipe having a base structure of 50 to 80% of acicular type ferrite and quasi-polygonal ferrite and containing 15 to 20% of bainite Wherein the step of forming the steel plate comprises the steps of:
[Equation 1]
T slab = {-6770 / (log [Nb] [C + (12/14) N] -2.26} - 273
(Nb: wt% of Nb, C: wt% of C, N: wt% of N)
&Quot; (2) &quot;
Figure 112017039817729-pat00003

(% By weight of Nb,% by weight of Nb,% by weight of C,% by weight of N,% by weight of V,% by weight of Ti,% by weight of Al,% by weight of Al,
&Quot; (3) &quot;
Ar 3 = 910 - (273 × C) - (74 × Mn) - (57 × Ni) - (16 × Cr) - (9 × Mo)
(C:% by weight of C, Mn:% by weight of Mn,% by weight of Ni,% by weight of Cr,% by weight of Mo,% by weight of Cu,
&Quot; (4) &quot;
Ms = 561 - (474 x C) - (33 x Mn) - (17 x Ni) - (17 x Cr) - (21 x Mo)
(C:% by weight of C,% by weight of Mn,% by weight of Ni,% by weight of Cr,% by weight of Mo)
삭제delete 삭제delete 삭제delete 삭제delete 청구항 1의 저항복비 고강도 라인파이프용 후강판 제조방법으로 제조되며,
중량%로 C : 0.06~0.1%, Si : 0.1~0.4%, Mn : 1.3~1.7%, Al : 0.01~0.05%, Ti : 0.008~0.02%, Nb : 0.03~0.06%, V : 0.03 ~ 0.06%, P : 0 초과 180 ppm이하, S : 0 초과 50 ppm이하, N : 0 초과 60 ppm 이하, O : 0 초과 30 ppm 이하 및 나머지 Fe 및 기타 불가피한 불순물로 구성되며 Ceq 0.34 이상, 1 < Ti/N < 8 을 만족하며, 항복강도 450MPa 이상, 항복비 85% 이하, -40℃ 충격흡수에너지 200J 이상이며, 압하비 3 < (slab 두께(t) × 전체압하량(%))/(제품두께) < 18인 조건을 만족하고,
50~80%의 침상형 페라이트와 쿼시폴리고날 페라이트를 기지조직으로 하고, 15~20%의 베이나이트를 포함하는 것을 특징으로 하는 저항복비 고강도 라인파이프용 후강판.
A manufacturing method of a post-steel plate for a low-resistance high-strength line pipe according to claim 1,
The steel sheet according to any one of claims 1 to 3, wherein the steel contains 0.06 to 0.1% of C, 0.1 to 0.4% of Si, 1.3 to 1.7% of Mn, 0.01 to 0.05% of Al, 0.008 to 0.02% of Ti, 0.03 to 0.06% of Nb, %, P: more than 0 and not more than 180 ppm, S: more than 0 and not more than 50 ppm, N: more than 0 and not more than 60 ppm, O: more than 0 and not more than 30 ppm, and other Fe and other unavoidable impurities, / N <8, and has a yield strength of 450 MPa or higher, a yield ratio of 85% or lower, a shock absorption energy of 200 J or higher at -40 ° C, a compressive strength of 3 <(slab thickness t) Thickness) < 18,
Characterized in that the base structure is composed of 50 to 80% of acicular type ferrite and quasi-polygonal ferrite and contains 15 to 20% of bainite.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020160063261A 2016-05-24 2016-05-24 Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby KR101778598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160063261A KR101778598B1 (en) 2016-05-24 2016-05-24 Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160063261A KR101778598B1 (en) 2016-05-24 2016-05-24 Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby

Publications (1)

Publication Number Publication Date
KR101778598B1 true KR101778598B1 (en) 2017-09-15

Family

ID=59926858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160063261A KR101778598B1 (en) 2016-05-24 2016-05-24 Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby

Country Status (1)

Country Link
KR (1) KR101778598B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200044516A (en) 2018-10-19 2020-04-29 김영옥 Continuous manufacturing method for high-rigidity and high-strength complex resin materials
CN112553519A (en) * 2020-11-13 2021-03-26 柳州钢铁股份有限公司 Manufacturing method of Q420GJ medium steel plate for low-yield-ratio, low-cost and high-performance building structure
KR20210126995A (en) * 2020-04-13 2021-10-21 주식회사 포스코 Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
WO2022131581A1 (en) * 2020-12-15 2022-06-23 주식회사 포스코 Steel material having low surface hardness and excellent low temperature impact toughness, and method for manufacturing same
CN114774659A (en) * 2022-05-25 2022-07-22 新疆八一钢铁股份有限公司 Manufacturing method of microalloy steel coil for petroleum and natural gas conveying pipeline

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200044516A (en) 2018-10-19 2020-04-29 김영옥 Continuous manufacturing method for high-rigidity and high-strength complex resin materials
KR20210126995A (en) * 2020-04-13 2021-10-21 주식회사 포스코 Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
KR102400036B1 (en) * 2020-04-13 2022-05-19 주식회사 포스코 Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
CN112553519A (en) * 2020-11-13 2021-03-26 柳州钢铁股份有限公司 Manufacturing method of Q420GJ medium steel plate for low-yield-ratio, low-cost and high-performance building structure
CN112553519B (en) * 2020-11-13 2021-12-10 柳州钢铁股份有限公司 Manufacturing method of Q420GJ medium steel plate for low-yield-ratio, low-cost and high-performance building structure
WO2022131581A1 (en) * 2020-12-15 2022-06-23 주식회사 포스코 Steel material having low surface hardness and excellent low temperature impact toughness, and method for manufacturing same
CN114774659A (en) * 2022-05-25 2022-07-22 新疆八一钢铁股份有限公司 Manufacturing method of microalloy steel coil for petroleum and natural gas conveying pipeline

Similar Documents

Publication Publication Date Title
KR101778598B1 (en) Manufacturing method of high strength steel plate for line pipe having excellent low yield ratio property and high strength steel plate for line pipe having excellent low yield ratio property thereby
KR101417231B1 (en) Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same
KR101674775B1 (en) Hot rolled steel using for oil country and tubular goods and method for producing the same and steel pipe prepared by the same
KR20130073472A (en) Linepipe steel plate with excellent low temperature fracture toughness and high uniform elongation method for producing same
JP2022510214A (en) Ultra-high-strength steel with excellent cold workability and SSC resistance and its manufacturing method
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
US11578392B2 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
KR101560943B1 (en) Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
KR20130088331A (en) High strength steel plate and method for manufacturing the same
KR101679668B1 (en) Manufacturing method for high strength steel palte with low temperature toughness and high strength steel palte with low temperature toughness thereof
KR101795882B1 (en) Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR101786262B1 (en) Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same
KR101767771B1 (en) The steel sheet for welding structure having excellent heat affected zone toughness and method for manufacturing the same
KR101786258B1 (en) The steel sheet having high-strength and excellent heat affected zone toughness and method for manufacturing the same
KR101758527B1 (en) Steel sheet for pipe having excellent weldability, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR20160147153A (en) Manufacturing method of high strength steel plate for line pipe and high strength steel plate for line pipe
KR20160078625A (en) Hot rolled steel sheet for steel pipe having excellent strength and method for manufacturing the same
KR20170047578A (en) Manufacturing Method of Line Pipe Steel plate with Excellent Toughness and Line Pipe Steel plate with Excellent Toughness Thereby
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR101572317B1 (en) Shape steel and method of manufacturing the same
KR101382888B1 (en) Hot-rolled steel sheets with superior workability and low mechanical property deviation and method for producing the same
KR20160036991A (en) Steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant