KR20130085990A - 파티클 저감 방법 및 성막 방법 - Google Patents

파티클 저감 방법 및 성막 방법 Download PDF

Info

Publication number
KR20130085990A
KR20130085990A KR1020130005859A KR20130005859A KR20130085990A KR 20130085990 A KR20130085990 A KR 20130085990A KR 1020130005859 A KR1020130005859 A KR 1020130005859A KR 20130005859 A KR20130005859 A KR 20130005859A KR 20130085990 A KR20130085990 A KR 20130085990A
Authority
KR
South Korea
Prior art keywords
gas
susceptor
plasma
substrate
vacuum container
Prior art date
Application number
KR1020130005859A
Other languages
English (en)
Other versions
KR101575395B1 (ko
Inventor
히토시 가토
히로유키 기쿠치
다케시 구마가이
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20130085990A publication Critical patent/KR20130085990A/ko
Application granted granted Critical
Publication of KR101575395B1 publication Critical patent/KR101575395B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32825Working under atmospheric pressure or higher
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/03Mounting, supporting, spacing or insulating electrodes
    • H01J2237/032Mounting or supporting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/201Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated for mounting multiple objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

내부에, 절연물로 형성되는 동시에, 표면에 기판 적재부가 설치된 서셉터가 회전 가능하게 설치되는 진공 용기로 제1 가스를 공급하는 스텝과, 상기 진공 용기에 대하여 설치되는 플라즈마 발생원에 대하여 고주파를 공급하고, 상기 제1 가스로부터 플라즈마를 생성하는 스텝과, 상기 서셉터를 회전하고, 상기 기판 적재부가 노출된 상태에서, 당해 기판 적재부를 상기 플라즈마에 노출시키는 스텝을 포함하는, 파티클 저감 방법이다.

Description

파티클 저감 방법 및 성막 방법{METHOD FOR REDUCING PARTICLES AND METHOD FOR FILM FORMING}
본 출원은 2012년 1월 20일자로 출원된 일본 특허 출원 번호 제2012-010162호에 기초한 것으로, 그 내용은 본원에 참조로서 인용된다.
본 발명은, 기판 처리 장치에 있어서의 파티클 저감 방법 및 성막 방법에 관한 것이다.
반도체 집적 회로의 제조 공정의 하나로, 반도체 웨이퍼(이하, 웨이퍼) 위에 박막을 성막하는 성막 공정이 있다. 성막 공정에 사용되는 성막 장치는, 밀폐 가능한 용기와, 이 용기 내에 배치되고, 웨이퍼가 적재되는 서셉터와, 서셉터에 적재되는 웨이퍼에 대하여 원료 가스를 공급하는 원료 가스 공급부와, 상기의 용기에 접속되어 원료 가스를 배기하는 배기 장치를 구비한다.
이와 같은 성막 장치를 사용하여 웨이퍼 위에 박막을 성막하는 경우, 용기의 내면에도 퇴적물이 퇴적되어 버리고, 이것이 박리됨으로써 파티클이 발생한다고 하는 문제가 있다. 이 문제를 해결하기 위해, 용기 내면의 퇴적물을 제거하는 방법이 종래부터 검토되어 있다(예를 들어 특허 문헌 1).
그런데, 웨이퍼 위에 형성되는 회로 요소가 점점 미세화되는 데에 수반하여, 박막의 막 두께 균일성 및 막 두께 제어성의 향상이 한층 더 요구되고 있다. 그와 같은 요구에 따르는 것이 가능한 성막 방법으로서, 원자층 성막(ALD)법[또는 분자층 성막(MLD)법]이 주목받고 있다.
이 성막 방법은, 진공 용기 내에 회전 가능하게 배치되고, 복수의 웨이퍼가 적재되는 서셉터와, 서셉터에 적재된 웨이퍼에 대해 제1 반응 가스를 공급 가능한 제1 반응 가스 공급부와, 제1 반응 가스 공급부로부터 서셉터의 회전 방향을 따라서 이격하여 설치되고, 서셉터에 적재된 웨이퍼에 대하여, 제1 반응 가스와 반응하는 제2 반응 가스를 공급 가능한 제2 반응 가스 공급부를 갖는 성막 장치에 있어서 실시되는 경우가 있다. 즉, 제1 반응 가스 공급부로부터 제1 반응 가스를 공급하고, 제2 반응 가스 공급부로부터 제2 반응 가스를 공급하면서 서셉터를 회전시키면, 서셉터 위의 웨이퍼의 표면에는 제1 반응 가스와 제2 반응 가스가 교대로 흡착되어, 표면 반응에 의해 웨이퍼 위에 반응 생성물의 박막이 성막된다.
특히, 본 출원인이 제안하는 ALD 장치에서는, 제1 반응 가스와 제2 반응 가스를 충분히 분리할 수 있기 때문에(특허 문헌 2 참조), 진공 용기의 내면에 퇴적물이 퇴적되는 일은 거의 없고, 따라서 진공 용기 내면의 퇴적물로부터의 파티클의 발생도 충분히 저감되어 있다.
그러나, 최근, 파티클의 저감에 대한 요구도 점점 높아지고 있어, 상술한 바와 같이 진공 용기의 내면에 퇴적물이 거의 퇴적되지 않는 경우에 있어서도, 파티클의 저감이 한층 더 요구되고 있다.
일본 특허 출원 공개 제2008-159787호 공보 특허 제4661990호 공보
본 발명은, 상술한 사정을 감안하여 이루어지고, 기판이 적재되는 서셉터에 유래하는 파티클을 저감 가능한, 파티클 저감 방법을 제공한다.
본 발명의 일 형태에 따르면, 내부에, 절연물로 형성되는 동시에, 표면에 기판 적재부가 설치된 서셉터가 회전 가능하게 설치되는 진공 용기로 제1 가스를 공급하는 스텝과, 상기 진공 용기에 대하여 설치되는 플라즈마 발생원에 대하여 고주파를 공급하고, 상기 제1 가스로부터 플라즈마를 생성하는 스텝과, 상기 서셉터를 회전하고, 상기 기판 적재부가 노출된 상태에서, 당해 기판 적재부를 상기 플라즈마에 노출시키는 스텝을 포함하는, 파티클 저감 방법이 제공된다.
도 1은 본 실시 형태에 의한 파티클 저감 방법을 실시하는 데 적합한 성막 장치를 도시하는 개략 단면도이다.
도 2는 도 1의 성막 장치의 진공 용기 내의 구성을 도시하는 개략 사시도이다.
도 3은 도 1의 성막 장치의 진공 용기 내의 구성을 도시하는 개략 평면도이다.
도 4는 도 1의 성막 장치의 진공 용기 내에 회전 가능하게 설치되는 회전 테이블의 동심원을 따른, 당해 진공 용기의 개략 단면도이다.
도 5는 도 1의 성막 장치의 다른 개략 단면도이다.
도 6은 도 1의 성막 장치에 설치되는 플라즈마 발생원을 도시하는 개략 단면도이다.
도 7은 도 1의 성막 장치에 설치되는 플라즈마 발생원을 도시하는 다른 개략 단면도이다.
도 8은 도 1의 성막 장치에 설치되는 플라즈마 발생원을 도시하는 개략 상면도이다.
도 9는 본 실시 형태에 의한 파티클 저감 방법을 도시하는 흐름도이다.
도 10은 도 1의 성막 장치의 플라즈마 발생원에 의해 대전되는 서셉터(기판 적재부)를 도시하는 모식도이다.
도 11은 본 실시 형태에 의한 성막 처리 수순을 도시하는 흐름도이다.
우선, 기판 처리 장치에서 파티클이 발생하는 메커니즘에 대해서 설명한다.
파티클의 가일층의 저감을 위하여 본 발명자들이 예의 검토한 결과, 이하와 같은 이유에 의해 파티클이 발생할 수 있는 것을 알 수 있었다.
상술한 ALD 장치에 있어서의 서셉터는, 예를 들어 석영제의 원판에 웨이퍼가 적재 가능한 오목부를 형성함으로써 제작된다. 구체적으로는, 소정의 매수의 웨이퍼가 적재 가능한 사이즈(직경)를 갖는 석영제 원판이 준비되고, 석영제 원판의 표면에 오목부가 연삭된다. 석영제 부재를 연삭한 후에는, 통상, 그 부재를 소정의 온도로 가열하는 어닐(어닐링)이 행해지지만, 서셉터를 제작하는 경우에 있어서는, 가열에 의한 변형 등을 피하기 위해, 어닐을 행하지 않는 경우가 많다. 이로 인해, 오목부의 저면에는 연삭에 의한 미세한 요철이 남아 있다.
또한, 오목부는, 웨이퍼를 적재하기 쉽도록, 웨이퍼의 직경보다도 예를 들어 2 내지 4㎜ 큰 내경을 갖고 있기 때문에, 예를 들어, 웨이퍼를 오목부에 적재한 후에 서셉터를 회전시키기 시작할 때에, 웨이퍼가 오목부 내로 이동하고, 웨이퍼의 이면이 오목부의 저면과 마찰되게 된다. 여기서, 오목부의 저면에는 미세한 요철이 있는 한편, 웨이퍼의 이면은 경면으로 연마되어 있기 때문에, 오목부 저면의 요철이 깎여져 석영의 미립자가 발생하는 것이 판명되었다.
이와 같은 석영의 미립자가, 오목부의 저면에 부착되어 있으면, 예를 들어 오목부에 웨이퍼를 적재할 때 또는 오목부로부터 웨이퍼를 꺼낼 때에, 오목부의 저면에 부착된 석영의 미립자가 비산하여, 웨이퍼의 표면에 부착되어 버리는 경우가 있다. 이로 인해, 웨이퍼의 표면이 파티클에 의해 오염되게 된다.
그와 같은 미립자를 제거하면, 파티클을 저감할 수 있지만, 석영의 미립자는 진공 용기 내의 서셉터의 오목부에 웨이퍼를 적재할 때마다 발생하기 때문에, 예를 들어 약액 등에 의해 제거할 수 없다. 또한, 석영의 미립자가 미세한 요철의 오목부에 끼워 넣어져 있으면, 퍼지 가스 등으로 제거하는 것은 용이하지는 않다.
이하, 첨부의 도면을 참조하면서, 본 발명의 한정적이 아닌 예시의 실시 형태에 대해서 설명한다. 첨부의 전체 도면 중, 동일 또는 대응하는 부재 또는 부품에 대해서는, 동일 또는 대응하는 참조 번호를 부여하고, 중복되는 설명을 생략한다. 또한, 도면은, 부재 혹은 부품간의 상대비를 나타내는 것을 목적으로 하지 않고, 따라서, 구체적인 치수는, 이하의 한정적이 아닌 실시 형태에 비추어, 당업자에 의해 결정되어야 할 것이다.
(성막 장치)
처음에, 본 실시 형태에 의한 성막 방법을 실시하는 데 적합한 성막 장치에 대해서 설명한다. 도 1로부터 도 3까지를 참조하면, 이 성막 장치는, 대략 원형의 평면 형상을 갖는 편평한 진공 용기(1)와, 이 진공 용기(1) 내에 설치되고, 진공 용기(1)의 중심에 회전 중심을 갖는 서셉터(2)를 구비하고 있다. 진공 용기(1)는, 바닥이 있는 원통 형상을 갖는 용기 본체(12)와, 용기 본체(12)의 상면에 대하여, 예를 들어 O링 등의 시일 부재(13)(도 1)를 통하여 기밀하게 착탈 가능하게 배치되는 천정판(11)을 갖고 있다.
서셉터(회전 테이블)(2)는, 예를 들어 석영에 의해 제작되어 있고, 중심부에서 원통 형상의 코어부(21)에 고정되어 있다. 코어부(21)는 연직 방향으로 신장하는 회전축(22)의 상단부에 고정되어 있다. 회전축(22)은 진공 용기(1)의 저부(14)를 관통하고, 그 하단부가 회전축(22)(도 1)을 연직축 주위로 회전시키는 구동부(23)에 장착되어 있다. 회전축(22) 및 구동부(23)는, 상면이 개방된 통 형상의 케이스체(20) 내에 수납되어 있다. 이 케이스체(20)는 그 상면에 설치된 플랜지 부분이 진공 용기(1)의 저부(14)의 하면에 기밀하게 장착되어 있고, 케이스체(20)의 내부 분위기와 외부 분위기의 기밀 상태가 유지되어 있다.
서셉터(2)의 표면에는, 도 2 및 도 3에 도시하는 바와 같이 회전 방향(둘레 방향)을 따라서 복수(도시의 예에서는 5매)의 기판인 반도체 웨이퍼(이하 「웨이퍼」라고 함)(W)를 적재하기 위한 원형 형상의 오목부(24)가 형성되어 있다. 또한 도 3에는 편의상 1개의 오목부(24)에만 웨이퍼(W)를 도시한다. 이 오목부(24)는, 웨이퍼(W)의 직경보다도 약간 예를 들어 4㎜ 큰 내경과, 웨이퍼(W)의 두께에 거의 동등한 깊이를 갖고 있다. 따라서, 웨이퍼(W)가 오목부(24)에 수용되면, 웨이퍼(W)의 표면과 서셉터(2)의 표면[웨이퍼(W)가 적재되지 않는 영역]이 동일한 높이로 된다. 오목부(24)의 저면에는, 웨이퍼(W)의 이면을 지지하여 웨이퍼(W)를 승강시키기 위한 예를 들어 3개의 승강 핀이 관통하는 관통 구멍(모두 도시하지 않음)이 형성되어 있다.
도 2 및 도 3은, 진공 용기(1) 내의 구조를 설명하는 도면이며, 설명의 편의상, 천정판(11)의 도시를 생략하고 있다. 도 2 및 도 3에 도시하는 바와 같이, 서셉터(2)의 상방에는, 각각 예를 들어 석영으로 이루어지는 반응 가스 노즐(31), 반응 가스 노즐(32), 분리 가스 노즐(41, 42) 및 가스 도입 노즐(92)이 진공 용기(1)의 둘레 방향[서셉터(2)의 회전 방향(도 3의 화살표 A)]으로 서로 간격을 두고 배치되어 있다. 도시의 예에서는, 후술하는 반송구(15)로부터 시계 방향[서셉터(2)의 회전 방향]으로, 가스 도입 노즐(92), 분리 가스 노즐(41), 반응 가스 노즐(31), 분리 가스 노즐(42) 및 반응 가스 노즐(32)이 이 순번으로 배열되어 있다. 이들의 노즐(92, 31, 32, 41, 42)은, 각 노즐(92, 31, 32, 41, 42)의 기단부인 가스 도입 포트(92a, 31a, 32a, 41a, 42a)(도 3)를 용기 본체(12)의 외주벽에 고정함으로써, 진공 용기(1)의 외주벽으로부터 진공 용기(1) 내에 도입되고, 용기 본체(12)의 반경 방향을 따라서 서셉터(2)에 대하여 수평으로 신장되도록 장착되어 있다.
또한, 가스 도입 노즐(92)의 상방에는, 도 3에 있어서, 파선으로 간략화하여 나타내는 바와 같이 플라즈마 발생원(80)이 설치되어 있다. 플라즈마 발생원(80)에 대해서는 후술한다.
본 실시 형태에 있어서는, 반응 가스 노즐(31)은, 도시하지 않은 배관 및 유량 제어기 등을 통하여, 제1 반응 가스로서의 Si(실리콘) 함유 가스의 공급원(도시하지 않음)에 접속되어 있다. 반응 가스 노즐(32)은, 도시하지 않은 배관 및 유량 제어기 등을 통하여, 제2 반응 가스로서의 산화 가스의 공급원(도시하지 않음)에 접속되어 있다. 분리 가스 노즐(41, 42)은, 모두 도시하지 않은 배관 및 유량 제어 밸브 등을 통하여, 분리 가스로서의 질소(N2) 가스의 공급원(도시하지 않음)에 접속되어 있다.
본 실시 형태에 있어서는, Si 함유 가스로서 유기 아미노실란 가스가 사용되고, 산화 가스로서 O3(오존) 가스가 사용되고 있다.
반응 가스 노즐(31, 32)에는, 서셉터(2)를 향해 개구되는 복수의 가스 토출 구멍(33)이, 반응 가스 노즐(31, 32)의 길이 방향을 따라서, 예를 들어 10㎜의 간격으로 배열되어 있다. 반응 가스 노즐(31)의 하방 영역은, Si 함유 가스를 웨이퍼(W)에 흡착시키기 위한 제1 처리 영역(P1)이 된다. 반응 가스 노즐(32)의 하방 영역은, 제1 처리 영역(P1)에 있어서 웨이퍼(W)에 흡착된 Si 함유 가스를 산화시키는 제2 처리 영역(P2)이 된다.
도 2 및 도 3을 참조하면, 진공 용기(1) 내에는 2개의 볼록 형상부(4)가 형성되어 있다. 볼록 형상부(4)는 분리 가스 노즐(41, 42)과 함께 분리 영역(D)을 구성하기 위해, 후술하는 바와 같이, 서셉터(2)를 향해 돌출되도록 천정판(11)의 이면에 장착되어 있다. 또한, 볼록 형상부(4)는 정상부가 원호 형상으로 절단된 부채형의 평면 형상을 갖고, 본 실시 형태에 있어서는, 내원호가 돌출부(5)(후술)에 연결되고, 외원호가, 진공 용기(1)의 용기 본체(12)의 내주면을 따르도록 배치되어 있다.
도 4는, 반응 가스 노즐(31)로부터 반응 가스 노즐(32)까지 서셉터(2)의 동심원을 따른 진공 용기(1)의 단면을 도시하고 있다. 도시하는 바와 같이, 천정판(11)의 이면에 볼록 형상부(4)가 형성되어 있기 때문에, 진공 용기(1) 내에는, 볼록 형상부(4)의 하면인 평탄한 낮은 천정면(44)(제1 천정면)과, 이 천정면(44)의 둘레 방향 양측에 위치하는, 천정면(44)보다도 높은 천정면(45)(제2 천정면)이 존재한다. 천정면(44)은 정상부가 원호 형상으로 절단된 부채형의 평면 형상을 갖고 있다. 또한, 도시하는 바와 같이, 볼록 형상부(4)에는 둘레 방향 중앙에 있어서, 반경 방향으로 신장하도록 형성된 홈부(43)가 형성되고, 분리 가스 노즐(42)이 홈부(43) 내에 수용되어 있다. 또 하나의 볼록 형상부(4)에도 마찬가지로 홈부(43)가 형성되고, 여기에 분리 가스 노즐(41)이 수용되어 있다. 또한, 높은 천정면(45)의 하방의 공간에 반응 가스 노즐(31, 32)이 각각 설치되어 있다. 이들의 반응 가스 노즐(31, 32)은, 천정면(45)으로부터 이격하여 웨이퍼(W)의 근방에 설치되어 있다. 또한, 설명의 편의상, 도 4에 도시하는 바와 같이, 반응 가스 노즐(31)이 설치되는, 높은 천정면(45)의 하방의 공간을 참조 부호 481로 나타내고, 반응 가스 노즐(32)이 설치되는, 높은 천정면(45)의 하방의 공간을 참조 부호 482로 나타낸다.
또한, 볼록 형상부(4)의 홈부(43)에 수용되는 분리 가스 노즐(41, 42)에는, 서셉터(2)를 향해 개방되는 복수의 가스 토출 구멍(42h)(도 4 참조)이, 분리 가스 노즐(41, 42)의 길이 방향을 따라서, 예를 들어 10㎜의 간격으로 배열되어 있다.
천정면(44)은, 좁은 공간인 분리 공간(H)[분리 공간(D)]을 서셉터(2)에 대하여 형성하고 있다. 분리 가스 노즐(42)의 토출 구멍(42h)으로부터 N2 가스가 공급되면, 이 N2 가스는, 분리 공간(H)을 통하여 공간(481) 및 공간(482)을 향해 흐른다. 이때, 분리 공간(H)의 용적은 공간(481, 482)의 용적보다도 작기 때문에, N2 가스에 의해 분리 공간(H)의 압력을 공간(481, 482)의 압력에 비해 높게 할 수 있다. 즉, 공간(481, 482)의 사이에 압력이 높은 분리 공간(H)이 형성된다. 또한, 분리 공간(H)으로부터 공간(481, 482)으로 흘러 나오는 N2 가스가, 제1 영역(P1)으로부터의 Si 함유 가스와, 제2 영역(P2)으로부터의 산화 가스에 대한 카운터 플로우로서 작용한다. 따라서, 제1 영역(P1)으로부터의 Si 함유 가스와, 제2 영역(P2)으로부터의 산화 가스가 분리 공간(H)에 의해 분리된다. 따라서, 진공 용기(1) 내에 있어서 Si 함유 가스와 산화 가스가 혼합되어, 반응하는 것이 억제된다.
또한, 서셉터(2)의 상면에 대한 천정면(44)의 높이 h1은, 성막시의 진공 용기(1) 내의 압력, 서셉터(2)의 회전 속도, 공급하는 분리 가스(N2 가스)의 공급량 등을 고려하여, 분리 공간(H)의 압력을 공간(481, 482)의 압력에 비해 높게 하는 데 적합한 높이로 설정하는 것이 바람직하다.
한편, 천정판(11)의 하면에는, 서셉터(2)를 고정하는 코어부(21)의 외주를 둘러싸는 돌출부(5)(도 2 및 도 3)가 설치되어 있다. 이 돌출부(5)는, 본 실시 형태에 있어서는, 볼록 형상부(4)에 있어서의 회전 중심측의 부위와 연속되어 있고, 그 하면이 천정면(44)과 동일한 높이로 형성되어 있다.
앞서 참조한 도 1은, 도 3의 I-I'선을 따른 단면도이며, 천정면(45)이 설치되어 있는 영역을 도시하고 있다. 한편, 도 5는, 천정면(44)이 설치되어 있는 영역을 도시하는 단면도이다. 도 5에 도시하는 바와 같이, 부채형의 볼록 형상부(4)의 주연부[진공 용기(1)의 외연측의 부위]에는, 서셉터(2)의 외측 단부면에 대향하도록 L자형으로 굴곡하는 굴곡부(46)가 형성되어 있다. 이 굴곡부(46)는 볼록 형상부(4)와 마찬가지로, 분리 영역(D)의 양측으로부터 반응 가스가 침입하는 것을 억제하여, 양쪽 반응 가스의 혼합을 억제한다. 부채형의 볼록 형상부(4)는 천정판(11)에 설치되고, 천정판(11)을 용기 본체(12)로부터 제거할 수 있도록 되어 있으므로, 굴곡부(46)의 외주면과 용기 본체(12) 사이에는 약간 간극이 있다. 굴곡부(46)의 내주면과 서셉터(2)의 외측 단부면의 간극 및 굴곡부(46)의 외주면과 용기 본체(12)의 간극은, 예를 들어 서셉터(2)의 상면에 대한 천정면(44)의 높이와 마찬가지의 치수로 설정되어 있다.
용기 본체(12)의 내주벽은, 분리 영역(D)에 있어서는 도 4에 도시하는 바와 같이 굴곡부(46)의 외주면과 접근하여 수직면으로 형성되어 있지만, 분리 영역(D) 이외의 부위에 있어서는, 도 1에 도시하는 바와 같이 예를 들어 서셉터(2)의 외측 단부면과 대향하는 부위로부터 저부(14)에 걸쳐서 외측으로 움푹 들어가 있다.
이하, 설명의 편의상, 대략 직사각형의 단면 형상을 갖는 움푹 들어간 부분을 배기 영역이라고 기재한다. 구체적으로는, 제1 처리 영역(P1)에 연통하는 배기 영역을 제1 배기 영역(E1)이라고 기재하고, 제2 처리 영역(P2)에 연통하는 영역을 제2 배기 영역(E2)이라고 기재한다. 이들의 제1 배기 영역(E1) 및 제2 배기 영역(E2)의 저부에는, 도 1 내지 도 3에 도시하는 바와 같이, 각각, 제1 배기구(610) 및 제2 배기구(620)가 형성되어 있다. 본 실시 형태에 있어서, 배기 영역은 서셉터(2)의 외주 외측에 위치하도록 설치되어 있다. 즉, 제1 배기구(610) 및 제2 배기구(620)도, 서셉터(2)의 외주 외측에 위치하도록 설치되어 있다.
제1 배기구(610) 및 제2 배기구(620)는, 도 1에 도시하는 바와 같이 각각 배기관(630)을 통하여 진공 배기 수단인 예를 들어 진공 펌프(640)에 접속되어 있다. 또한 도 1 중, 참조 부호 650은 압력 제어기이다.
서셉터(2)와 진공 용기(1)의 저부(14) 사이의 공간에는, 도 1 및 도 4에 도시하는 바와 같이 가열 수단인 히터 유닛(7)이 설치되고, 서셉터(2)를 통하여 서셉터(2) 위의 웨이퍼(W)가, 프로세스 레시피로 결정된 온도(예를 들어 450℃)로 가열된다. 서셉터(2)의 주연 부근의 하방측에는, 서셉터(2)의 상방 공간으로부터 배기 영역(E1, E2)에 이르기까지의 분위기와 히터 유닛(7)이 놓여져 있는 분위기를 구획하여 서셉터(2)의 하방 영역으로의 가스의 침입을 억제하기 위해, 링 형상의 커버 부재(71)가 설치되어 있다(도 5). 이 커버 부재(71)는, 서셉터(2)의 외측 테두리부 및 외측 테두리부보다도 외주측을 하방측으로부터 면하도록 설치된 내측 부재(71a)와, 이 내측 부재(71a)와 진공 용기(1)의 내벽면 사이에 설치된 외측 부재(71b)를 구비하고 있다. 외측 부재(71b)는, 분리 영역(D)에 있어서 볼록 형상부(4)의 외측 테두리부에 형성된 굴곡부(46)의 하방에서, 굴곡부(46)와 근접하여 설치되고, 내측 부재(71a)는 서셉터(2)의 외측 테두리부 하방(및 외측 테두리부보다도 약간 외측 부분의 하방)에 있어서, 히터 유닛(7)을 전체 둘레에 걸쳐서 둘러싸고 있다.
히터 유닛(7)이 배치되어 있는 공간보다도 회전 중심 부근의 부위에 있어서의 저부(14)는, 서셉터(2)의 하면의 중심부 부근에 있어서의 코어부(21)에 접근하도록 상방측으로 돌출되어 돌출부(12a)를 이루고 있다. 이 돌출부(12a)와 코어부(21) 사이는 좁은 공간으로 되어 있고, 또한 저부(14)를 관통하는 회전축(22)의 관통 구멍의 내주면과 회전축(22)의 간극이 좁게 되어 있고, 이들 좁은 공간은 케이스체(20)에 연통하고 있다. 그리고 케이스체(20)에는 퍼지 가스인 N2 가스를 좁은 공간 내에 공급하여 퍼지하기 위한 퍼지 가스 공급관(72)이 설치되어 있다. 또한 진공 용기(1)의 저부(14)에는 히터 유닛(7)의 하방에 있어서 둘레 방향으로 소정의 각도 간격으로, 히터 유닛(7)의 배치 공간을 퍼지하기 위한 복수의 퍼지 가스 공급관(73)이 설치되어 있다[도 5에는 하나의 퍼지 가스 공급관(73)을 도시함]. 또한, 히터 유닛(7)과 서셉터(2) 사이에는, 히터 유닛(7)이 설치된 영역으로의 가스의 침입을 억제하기 위해, 외측 부재(71b)의 내주벽[내측 부재(71a)의 상면]으로부터 돌출부(12a)의 상단부와의 사이를 둘레 방향에 걸쳐서 덮는 덮개 부재(7a)가 설치되어 있다. 덮개 부재(7a)는 예를 들어 석영으로 제작할 수 있다.
또한, 진공 용기(1)의 천정판(11)의 중심부에는 분리 가스 공급관(51)이 접속되어 있어서, 천정판(11)과 코어부(21) 사이의 공간(52)에 분리 가스인 N2 가스를 공급하도록 구성되어 있다. 이 공간(52)에 공급된 분리 가스는, 돌출부(5)와 서셉터(2)의 좁은 간극(50)을 통하여 서셉터(2)의 오목부(24)측의 표면을 따라서 주연을 향해 토출된다. 공간(50)은 분리 가스에 의해 공간(481) 및 공간(482)보다도 높은 압력으로 유지될 수 있다. 따라서, 공간(50)에 의해, 제1 처리 영역(P1)에 공급되는 Si 함유 가스와 제2 처리 영역(P2)에 공급되는 산화 가스가, 중심 영역(C)을 통과하여 혼합되는 것이 억제된다. 즉, 공간(50)[또는 중심 영역(C)]은 분리 공간(H)[또는 분리 영역(D)]과 마찬가지로 기능할 수 있다.
또한, 진공 용기(1)의 측벽에는, 도 2, 도 3에 도시하는 바와 같이, 외부의 반송 아암(10)과 서셉터(2) 사이에서 기판인 웨이퍼(W)의 전달을 행하기 위한 반송구(15)가 형성되어 있다. 이 반송구(15)는 도시하지 않은 게이트 밸브에 의해 개폐된다. 또한 서셉터(2)에 있어서의 웨이퍼 적재 영역인 오목부(24)는 이 반송구(15)에 면하는 위치에서 반송 아암(10)과의 사이에서 웨이퍼(W)의 전달이 행해지므로, 서셉터(2)의 하방측에 있어서 전달 위치에 대응하는 부위에, 오목부(24)를 관통하여 웨이퍼(W)를 이면으로부터 들어 올리기 위한 전달용의 승강 핀 및 그 승강 기구(모두 도시하지 않음)가 설치되어 있다.
다음에, 도 6으로부터 도 8까지를 참조하면서, 플라즈마 발생원(80)에 대해서 설명한다. 도 6은, 서셉터(2)의 반경 방향을 따른 플라즈마 발생원(80)의 개략 단면도이며, 도 7은, 서셉터(2)의 반경 방향과 직교하는 방향을 따른 플라즈마 발생원(80)의 개략 단면도이며, 도 8은, 플라즈마 발생원(80)의 개략을 도시하는 상면도이다. 도시의 편의상, 이들의 도면에 있어서 일부의 부재를 간략화하고 있다.
도 6을 참조하면, 플라즈마 발생원(80)은 고주파 투과성의 재료로 제작되고, 상면으로부터 움푹 들어간 오목부를 갖고, 천정판(11)에 형성된 개구부(11a)에 끼워 넣어지는 프레임 부재(81)와, 프레임 부재(81)의 오목부 내에 수용되고, 상부가 개방된 대략 상자 형상의 형상을 갖는 패러데이 차폐판(82)과, 패러데이 차폐판(82)의 저면 위에 배치되는 절연판(83)과, 절연판(83)의 상방에 지지되고, 대략 팔각형의 상면 형상을 갖는 코일 형상의 안테나(85)를 구비한다.
천정판(11)의 개구부(11a)는 복수의 단차부를 갖고 있고, 그 중 하나의 단차부에는 전체 둘레에 걸쳐서 홈부가 형성되고, 이 홈부에 예를 들어 O링 등의 시일 부재(81a)가 끼워 넣어져 있다. 한편, 프레임 부재(81)는, 개구부(11a)의 단차부에 대응하는 복수의 단차부를 갖고 있고, 프레임 부재(81)를 개구부(11a)에 끼워 넣으면, 복수의 단차부 중 하나의 단차부의 이면이, 개구부(11a)의 홈부에 끼워 넣어진 시일 부재(81a)와 접하고, 이에 의해, 천정판(11)과 프레임 부재(81) 사이의 기밀성이 유지된다. 또한, 도 6에 도시하는 바와 같이, 천정판(11)의 개구부(11a)에 끼워 넣어지는 프레임 부재(81)의 외주를 따른 압박 부재(81c)가 설치되고, 이에 의해, 프레임 부재(81)가 천정판(11)에 대하여 하방으로 압박된다. 이로 인해, 천정판(11)과 프레임 부재(81) 사이의 기밀성이 보다 확실하게 유지된다.
프레임 부재(81)의 하면은, 진공 용기(1) 내의 서셉터(2)에 대향하고 있고, 그 하면의 외주에는 전체 둘레에 걸쳐서 하방으로[서셉터(2)를 향하여] 돌기하는 돌기부(81b)가 설치되어 있다. 돌기부(81b)의 하면은 서셉터(2)의 표면에 근접하고 있고, 돌기부(81b)와, 서셉터(2)의 표면과, 프레임 부재(81)의 하면에 의해 서셉터(2)의 상방으로 공간[이하, 내부 공간(S)]이 형성되어 있다. 또한, 돌기부(81b)의 하면과 서셉터(2)의 표면의 간격은, 분리 공간(H)(도 4)에 있어서의 천정면(11)의 서셉터(2)의 상면에 대한 높이 h1과 거의 동일해도 좋다.
또한, 이 내부 공간(S)에는, 돌기부(81b)를 관통한 가스 도입 노즐(92)이 연장되어 있다. 가스 도입 노즐(92)에는, 본 실시 형태에 있어서는, 도 6에 도시하는 바와 같이, 아르곤(Ar) 가스가 충전되는 아르곤 가스 공급원(93a)과, 산소(O2) 가스가 충전되는 산소 가스 공급원(93b)과, 수소 함유 가스로서의 암모니아(NH3) 가스가 충전되는 암모니아 가스 공급원(93c)이 접속되어 있다.
또한, 가스 도입 노즐(92)에는, 그 길이 방향을 따라서 소정의 간격(예를 들어 10㎜)으로 복수의 토출 구멍(92h)이 형성되어 있고, 토출 구멍(92h)으로부터 상술한 Ar 가스 등이 토출된다. 토출 구멍(92h)은, 도 7에 도시하는 바와 같이, 서셉터(2)에 대하여 수직한 방향으로부터 서셉터(2)의 회전 방향의 상류측을 향해 기울어져 있다. 이로 인해, 가스 도입 노즐(92)로부터 공급되는 가스는, 서셉터(2)의 회전 방향과 반대 방향으로, 구체적으로는, 돌기부(81b)의 하면과 서셉터(2)의 표면 사이의 간극을 향해 토출된다. 이에 의해, 서셉터(2)의 회전 방향을 따라서 플라즈마 발생원(80)보다도 상류측에 위치하는 천정면(45)의 하방의 공간으로부터 반응 가스나 분리 가스가, 내부 공간(S) 내로 유입되는 것이 억지된다. 또한, 상술한 바와 같이, 프레임 부재(81)의 하면의 외주를 따라서 형성되는 돌기부(81b)가 서셉터(2)의 표면에 근접하고 있기 때문에, 가스 도입 노즐(92)로부터의 가스에 의해 내부 공간(S) 내의 압력을 용이하게 높게 유지할 수 있다. 이에 의해서도, 반응 가스나 분리 가스가 내부 공간(S) 내로 유입되는 것이 억지된다.
패러데이 차폐판(82)은, 금속 등의 도전성 재료로 제작되고, 도시는 생략하지만 접지되어 있다. 도 8에 명확하게 도시되는 바와 같이, 패러데이 차폐판(82)의 저부에는, 복수의 슬릿(82s)이 형성되어 있다. 각 슬릿(82s)은, 대략 팔각형의 평면 형상을 갖는 안테나(85)가 대응하는 변과 거의 직교하도록 연장되어 있다.
또한, 패러데이 차폐판(82)은, 도 7 및 도 8에 도시하는 바와 같이, 상단부의 2군데에 있어서 외측으로 절곡되는 지지부(82a)를 갖고 있다. 지지부(82a)가 프레임 부재(81)의 상면에 지지됨으로써, 프레임 부재(81) 내의 소정의 위치에 패러데이 차폐판(82)이 지지된다.
절연판(83)은, 예를 들어 석영 글래스에 의해 제작되고, 패러데이 차폐판(82)의 저면보다도 약간 작은 크기를 갖고, 패러데이 차폐판(82)의 저면에 적재된다. 절연판(83)은 패러데이 차폐판(82)과 안테나(85)를 절연하는 한편, 안테나(85)로부터 방사되는 고주파를 하방으로 투과시킨다.
안테나(85)는, 평면 형상이 대략 팔각형이 되도록 구리제의 중공관(파이프)을 예를 들어 삼중으로 권회함으로써 형성된다. 파이프 내에 냉각수를 순환시킬 수 있고, 이에 의해, 안테나(85)로 공급되는 고주파에 의해 안테나(85)가 고온으로 가열되는 것이 방지된다. 또한, 안테나(85)에는 기립부(85a)가 설치되어 있고, 기립부(85a)에 지지부(85b)가 장착되어 있다. 지지부(85b)에 의해, 안테나(85)가 패러데이 차폐판(82) 내의 소정의 위치에 유지된다. 또한, 지지부(85b)에는, 매칭 박스(86)를 통하여 고주파 전원(87)이 접속되어 있다. 고주파 전원(87)은, 예를 들어 13.56㎒의 주파수를 갖는 고주파를 발생할 수 있다.
이와 같은 구성을 갖는 플라즈마 발생원(80)에 따르면, 매칭 박스(86)를 통하여 고주파 전원(87)으로부터 안테나(85)에 고주파 전력을 공급하면, 안테나(85)에 의해 전자계가 발생한다. 이 전자계 중 전계 성분은, 패러데이 차폐판(82)에 의해 차폐되기 때문에, 하방으로 전파할 수는 없다. 한편, 자계 성분은 패러데이 차폐판(82)의 복수의 슬릿(82s)을 통하여 내부 공간(S) 내로 전파한다. 이 자계 성분에 의해, 가스 도입 노즐(92)로부터 소정의 유량비(혼합비)로 내부 공간(S)에 공급되는 Ar 가스, O2 가스 및 NH3 가스 등의 가스로부터 플라즈마가 발생한다. 이와 같이 하여 발생하는 플라즈마에 따르면, 웨이퍼(W) 위에 퇴적되는 박막으로의 조사 손상이나, 진공 용기(1) 내의 각 부재의 손상 등을 저감할 수 있다.
또한, 본 실시 형태에 의한 성막 장치에는, 도 1에 도시하는 바와 같이, 장치 전체의 동작의 컨트롤을 행하기 위한 컴퓨터로 이루어지는 제어부(100)가 설치되어 있고, 이 제어부(100)의 메모리 내에는, 제어부(100)의 제어 하에, 후술하는 성막 방법을 성막 장치에 실시시키는 프로그램이 저장되어 있다. 이 프로그램은 후술하는 성막 방법을 실행하도록 스텝군이 짜여져 있고, 하드 디스크, 콤팩트 디스크, 광자기 디스크, 메모리 카드, 플렉시블 디스크 등의 매체(102)에 기억되어 있고, 소정의 판독 장치에 의해 기억부(101)에 판독되어, 제어부(100) 내에 인스톨된다.
(파티클 저감 방법)
다음에, 도 9 및 도 10을 참조하면서, 본 실시 형태에 의한 파티클 저감 방법에 대해서, 상술한 성막 장치를 사용하여 실시하는 경우를 예로 설명한다.
또한, 본 실시 형태에 있어서는, 하나의 로트의 모든 웨이퍼(W)에 대한 성막이 종료되고, 서셉터(2) 위에 웨이퍼(W)가 적재되어 있지 않은 것을 전제로 한다. 또한, 반송구(15)(도 2 및 도 3)는 도시하지 않은 게이트 밸브에 의해 폐쇄되어 있는 것으로 한다.
처음에, 스텝 S91(도 9)에 있어서, 진공 용기(1) 내가 소정의 압력으로 조정된다. 구체적으로는, 진공 펌프(640)에 의해 진공 용기(1)를 최저 도달 진공도까지 배기한 후, 분리 가스 노즐(41, 42)로부터 분리 가스인 N2 가스(제2 가스)를 소정의 유량으로 토출하고, 분리 가스 공급관(51) 및 퍼지 가스 공급관(72, 72)으로부터도 N2 가스를 소정의 유량으로 토출한다. 이에 수반하여, 압력 조정기(650)에 의해 진공 용기(1) 내를 미리 설정한 압력으로 조정한다. 또한, 스텝 S92에 있어서, 서셉터(2)가 소정의 회전 속도로 회전된다.
다음에, 스텝 S93에 있어서, 아르곤 가스 공급원(93a)으로부터 가스 도입 노즐(92)을 통하여 소정의 유량으로 플라즈마 생성 가스(제1 가스)로서의 Ar 가스가 내부 공간(S)에 공급되고, 스텝 S94에 있어서, 고주파 전원(87)으로부터 플라즈마 발생원(80)의 안테나(85)에 고주파가 예를 들어 700W의 전력으로 공급된다. 이에 의해, 내부 공간(S)에 플라즈마가 생성된다.
서셉터(2)의 회전에 의해, 서셉터(2) 위의 하나의 오목부(24)가, 플라즈마 발생원(80)의 하방에 도달하면, 그 오목부(24)는, 내부 공간(S)에 생성되는 플라즈마에 노출된다. 이때, 도 10의 (a)에 도시하는 바와 같이 플라즈마 중의 전자(e-)가 플러스 이온(ion+)보다도 빨리 오목부(24)의 저면[서셉터(2)]에 도달하므로, 오목부(24)의 저면이 마이너스로 대전된다. 이에 의해, 오목부(24)의 저면의 상방에는 도 10의 (b)에 도시하는 바와 같이 시스 영역(SR)이 형성된다.
서셉터(2)가 더 회전하면, 그 오목부(24)는 플라즈마 발생원(80)의 하방으로부터 이격되는 동시에, 다음의 오목부(24)가 플라즈마 발생원(80)의 하방에 도달한다. 그리고, 마찬가지로 오목부(24)의 저면이 마이너스로 대전된다.
이와 같이 하여, 서셉터(2)가 1회전하면, 모든 오목부(24)가 플라즈마 발생원(80)의 하방을 통과할 때에, 그 저면[서셉터(2)]은 마이너스로 대전된다. 이 후, 스텝 S95에 있어서, 고주파 전원(87)으로부터의 고주파의 공급을 정지하고, 가스 도입 노즐(92)로부터의 혼합 가스의 공급을 정지함으로써, 본 실시 형태에 의한 파티클 저감 방법이 종료된다. 또한, 서셉터(2)의 회전수는, 1회에 한정되지 않고, 2회 이상이어도 좋다.
오목부(24)는, 석영제의 서셉터를 예를 들어 연삭함으로써 형성되므로, 저면에는 미세한 요철이 남아 있는 경우가 있다. 이와 같은 오목부(24)에 웨이퍼(W)를 적재하고, 서셉터(2)를 회전시키면, 오목부(24) 내에서 웨이퍼(W)가 움직여, 웨이퍼(W)의 이면과 오목부(24)의 저면이 마찰된다. 이 경우, 미러 상태로 평탄한 웨이퍼(W)의 이면보다도 오목부(24)의 저면의 쪽이 깎여지기 쉬워, 그 결과, 석영의 미립자가 발생한다. 이 미립자가 오목부(24)의 저면에 부착되어 있으면, 예를 들어 오목부(24)에 웨이퍼(W)를 적재할 때, 또는 오목부(24)로부터 웨이퍼(W)를 꺼낼 때에, 오목부(24)의 저면으로부터 비산하여 웨이퍼(W)의 표면측으로 돌아 들어가, 웨이퍼(W)의 표면을 오염시키는 경우가 있다. 또한, 웨이퍼(W)의 이면에 석영의 미립자가 부착되면, 예를 들어 웨이퍼(W)가 수용되는 웨이퍼 캐리어 내에 있어서, 인접하는 다른 웨이퍼(W)의 표면에 부착되고, 이로 인해, 그 웨이퍼(W)가 오염되게 된다.
따라서, 웨이퍼(W)의 오염을 저감하기 위해서는, 오목부(24)의 저면에 부착되어 있는 석영의 미립자를 제거할 필요가 있다. 그런데, 석영의 미립자는, 오목부(24)의 저면이 웨이퍼(W)의 이면과 마찰될 때에 발생하기 때문에, 마찰 대전에 의해 역극성으로 오목부(24)의 저면에 부착되어 있는 경우가 있다. 또한, 석영의 미립자는, 오목부(24)의 저면에 남는 미세한 요철의 오목부에 끼워 넣어져 있는 경우도 있다. 이로 인해, 석영의 미립자를 예를 들어 퍼지 가스 등으로 제거하는 것은 용이하지는 않다. 또한, 서셉터(2)는 진공 용기(1) 내에 배치되어 있고, 게다가, 웨이퍼(W)의 이면과 서셉터(2)의 오목부(24)의 저면이 마찰됨으로써 미립자가 형성되므로, 서셉터(2)를 세정함으로써 석영의 미립자를 제거하는 것도 용이하지는 않다.
그러나, 본 실시 형태의 파티클 저감 방법에 따르면, 오목부(24)의 저면[서셉터(2)]을 플라즈마에 노출시킴으로써, 도 10의 (b)에 도시하는 바와 같이, 오목부(24)의 저면도, 저면에 부착되는 미립자(P)도 모두 마이너스로 대전하게 된다. 이로 인해, 도 10의 (c)에 도시하는 바와 같이, 오목부(24)의 저면과 미립자(P) 사이에 반발력이 작용하여, 미립자(P)는 오목부(24)의 저면으로부터 용이하게 이탈할 수 있다. 오목부(24)의 저면으로부터 이탈한 미립자(P)는, Ar 가스와 함께 내부 공간(S)으로부터 배출되고, 진공 용기(1) 내를 흐르는 N2 가스(분리 가스)와 함께 제2 배기구(620)(도 3)로부터 배기된다. 따라서, 오목부(24)의 저면의 석영의 미립자(P)가 효과적으로 제거되어, 서셉터(2)의 오목부(24)로부터 발생하는 파티클을 저감할 수 있다.
본 실시 형태에 있어서, 상술한 바와 같이, 분리 가스 공급관(51) 및 퍼지 가스 공급관(72, 72)으로부터도 N2 가스를 소정의 유량으로 토출한다. 이에 의해, 분리 가스 공급관(51)에 공급된 N2 가스가 서셉터(2)의 오목부(24)의 표면을 따라서 배기구(620)를 향하는 가스의 흐름이 발생한다. 본 실시 형태에 있어서, 이와 같은 가스의 흐름이 발생한 상태에서, 도 9의 스텝 S93 내지 스텝 S94의 처리가 행해진다. 그로 인해, 오목부(24)의 저면의 석영의 미립자(P)가 효과적으로 제거되어, 서셉터(2)의 오목부(24)로부터 발생하는 파티클을 저감할 수 있다.
또한, 이때, 분리 가스 노즐(41, 42)로부터도, 분리 가스가 공급되고 있다. 그로 인해, 낮은 천정면(44) 하부의 분리 공간(H)의 압력을 공간(481, 482)의 압력에 비해 높게 할 수 있어, 서셉터(2)의 오목부(24)로부터 발생하는 파티클이 분리 공간(H)에 인입되는 것을 방지할 수도 있다.
또한, 본 실시 형태에 의한 파티클 저감 방법에 따르면, 진공 용기(1)를 분해하여 서셉터(2)를 세정할 필요가 없기 때문에, 용이하고 또한 단시간의 작업으로 파티클을 저감할 수 있다. 또한, 본 실시 형태에 의한 파티클 저감 방법은, 예를 들어 하나의 로트의 모든 웨이퍼(W)에 성막하고, 다음의 로트의 웨이퍼(W)에 성막을 시작할 때까지의 기간이나, 성막 장치가 아이들 상태일 때 등, 서셉터(2) 위에 웨이퍼(W)가 적재되어 있지 않을 때에 실시할 수 있기 때문에, 성막 장치의 처리량을 저하시키는 일이 없다.
또한, Ar 가스에 의해 플라즈마를 생성한 경우에는, 석영을 분해(또는 에칭)할 수는 없다. 또한, 서셉터(2)의 오목부(24) 이외의 부분에 산화 실리콘막이 퇴적되었다고 해도, 그 산화 실리콘막이, Ar 가스의 플라즈마에 의해 분해되거나 하는 일도 없다. 따라서, 본 실시 형태에 의한 파티클 제거의 효과는, 서셉터(2)에 퇴적되는 산화 실리콘막의 제거에 의해 초래되는 것이 아니라, 상술한 바와 같이, 오목부(24)의 저면에 부착되어 있는 미립자가, 그 저면과 같이 마이너스로 대전되기 때문에 제거된다고 생각된다.
또한, 도 9 및 도 10을 참조하여 설명한 파티클 저감 방법은, 서셉터(2) 위에 웨이퍼(W)를 적재하여 당해 웨이퍼(W) 위에 성막 처리를 행하는 성막 처리 스텝 앞 또는 뒤의 소정의 타이밍에 행할 수 있다.
도 11은, 본 실시 형태에 의한 성막 처리 수순을 나타내는 흐름도를 도시하는 도면이다. 여기서, 우선 도 9를 참조하여 설명한 파티클 저감 방법(이하, 파티클 저감 처리라고 함)을 행한다(스텝 S102). 파티클 저감 처리가 종료된 후, 서셉터(2) 위에 웨이퍼(W)를 적재하여, 성막 처리를 행한다(스텝 S104). 이 후, 계속해서 성막 장치로 성막 처리를 행할지 여부를 판단하여(스텝 S106), 계속해서 성막 처리를 행하는 경우(스텝 S106의 "예"), 다시 파티클 저감 처리를 행한다(스텝 S102). 한편, 성막 처리를 행하지 않는 경우(스텝 S106의 "아니오"), 처리를 종료한다.
단, 일례의 성막 처리를 행할 때마다 파티클 저감 처리를 행하는 것이 아니라, 성막 처리를 복수회 행할 때마다 파티클 저감 처리를 행하는 구성으로 해도 좋다. 또한, 스텝 S106에서 성막 처리를 행하지 않는다고 판단한 경우라도, 파티클 저감 처리를 행하고 나서 처리를 종료하도록 해도 좋다. 또한, 예를 들어 생성된 막의 성막 상태에 따라서, 또는 센서 등으로 감시함으로써, 파티클의 발생 상태를 판단하고, 성막 처리의 사이의 필요할 때에 파티클 저감 처리를 행하도록 해도 좋다.
이상, 몇 개의 실시 형태 및 실시예를 참조하면서 본 발명을 설명하였지만, 본 발명은 상술한 실시 형태 및 실시예에 한정되는 일 없이, 첨부한 특허청구의 범위에 비추어, 다양하게 변형 또는 변경이 가능하다.
예를 들어, 플라즈마에 의해서, 서셉터(2)의 오목부(24)의 저면(및 그 저면에 부착되는 미립자)을 대전시키는 것이 가능한 한에 있어서, Ar 가스 대신에 다른 가스를 사용해도 상관없다. 이 경우에 있어서도, 서셉터(2)에 대하여 반응성을 갖지 않는 가스를 사용해도 좋다.
또한, 스텝 S91에 앞서서, 서셉터(2) 위에 웨이퍼(W)가 적재되어 있지 않은 것을 확인하는 스텝을 행해도 좋다. 이 확인은, 예를 들어 진공 용기(1)에 설치되는 웨이퍼 위치 검출 장치에 의해 행할 수 있다. 또한, 상술한 승강 핀을 사용한, 오목부(24)에 적재되는 웨이퍼(W)를 반송 아암(10)(도 3)에 전달하는 동작에 의해 행할 수 있다. 구체적으로는, 서셉터(2)를 회전시킴으로써 오목부(24)의 하나를 반송구(15)(도 3)에 면하는 위치에 배치하고, 상술한 승강 핀을 관통 구멍을 통과시켜서 서셉터(2)의 상방으로 돌출시킨다. 계속해서, 반송구(15)를 통하여 반송 아암(10)(도 3)을 진공 용기(1) 내로 삽입하고, 승강 핀을 내린다. 오목부(24)에 웨이퍼(W)가 없었던 경우에는, 반송 아암(10)은 웨이퍼(W)를 수취할 수 없고, 그 사실은, 예를 들어 반송 아암(10)에 설치된 센서에 의해 검출된다. 즉, 그 오목부(24)에 웨이퍼(W)가 적재되어 있지 않은 것이 검출된다.
또한, 상술한 실시 형태에 있어서는, 석영제의 서셉터(2)를 갖는 성막 장치에 대하여 파티클 저감 방법을 실시하는 경우를 설명하였지만, 서셉터(2)는 석영제에 한정되지 않고, 예를 들어 카본이나 실리콘 카바이드(SiC) 등의 절연물에 의해 제작되어도 좋다. 또한, 표면이 SiC로 코팅된 카본제의 서셉터(2)를 사용해도 상관없다. 이와 같은 절연물로 제작되는 서셉터(2)가 플라즈마에 노출되면, 그 표면이 마이너스로 대전되므로, 상술한 효과와 마찬가지의 효과가 발휘된다.
상술한 실시 형태에 있어서, 플라즈마 발생원(80)은 안테나(85)를 갖는 소위 유도 결합 플라즈마(ICP)원으로서 구성되었지만, 용량성 결합 플라즈마(CCP)원으로서 구성되어도 좋다.
본 실시 형태에 따르면, 기판이 적재되는 서셉터에 유래하는 파티클을 저감 가능한, 파티클 저감 방법이 제공된다.

Claims (9)

  1. 내부에, 절연물로 형성되는 동시에, 표면에 기판 적재부가 설치된 서셉터가 회전 가능하게 설치되는 진공 용기로 제1 가스를 공급하는 스텝과,
    상기 진공 용기에 대하여 설치되는 플라즈마 발생원에 대하여 고주파를 공급하여, 상기 제1 가스로부터 플라즈마를 생성하는 스텝과,
    상기 서셉터를 회전시켜, 상기 기판 적재부가 노출된 상태에서, 당해 기판 적재부를 상기 플라즈마에 노출시키는 스텝
    을 포함하는, 파티클 저감 방법.
  2. 제1항에 있어서,
    상기 서셉터가 석영제이며, 상기 기판 적재부가 당해 서셉터에 형성되는 오목부인, 파티클 저감 방법.
  3. 제1항에 있어서,
    상기 제1 가스가 상기 절연물에 대한 반응성을 갖지 않는, 파티클 저감 방법.
  4. 제1항에 있어서,
    상기 제1 가스가 아르곤 가스를 포함하는, 파티클 저감 방법.
  5. 제4항에 있어서,
    상기 제1 가스가 산소 가스 및 수소 함유 가스를 더 포함하는, 파티클 저감 방법.
  6. 제1항에 있어서,
    상기 플라즈마 발생원이 유도 결합 플라스마원인, 파티클 저감 방법.
  7. 제1항에 있어서,
    상기 서셉터의 상기 기판 적재부에 기판이 적재되어 있지 않은 것을 확인하는 스텝을 더 포함하고, 상기 서셉터의 상기 기판 적재부에 기판이 적재되어 있지 않은 경우에, 상기 제1 가스를 공급하는 스텝, 상기 플라즈마를 생성하는 스텝 및 상기 기판 적재부를 상기 플라즈마에 노출시키는 스텝을 행하는, 파티클 저감 방법.
  8. 제1항에 있어서,
    상기 서셉터에는, 상기 표면에 당해 서셉터의 둘레 방향을 따라서 복수의 상기 기판 적재부가 설치되어 있고,
    상기 진공 용기는, 상기 서셉터의 외주 외측에 위치하는 배기구와, 상기 서셉터의 중심부로부터 가스를 공급하는 가스 공급관을 포함하고,
    상기 가스 공급관으로부터 제2 가스를 공급하여 당해 제2 가스를 상기 서셉터의 상기 기판 적재부의 표면을 따라서 상기 배기구를 향하는 가스의 흐름을 발생시키는 스텝을 더 포함하고,
    상기 가스의 흐름을 발생시키는 스텝에 있어서, 당해 가스의 흐름을 발생시킨 상태에서, 상기 제1 가스를 공급하는 스텝, 상기 플라즈마를 생성하는 스텝 및 상기 기판 적재부를 상기 플라즈마에 노출시키는 스텝을 행하는, 파티클 저감 방법.
  9. 내부에, 절연물로 형성되는 동시에, 표면에 기판 적재부가 설치된 서셉터가 회전 가능하게 설치되는 진공 용기를 포함하는 성막 장치를 사용하여 성막하는 방법이며,
    상기 기판 적재부에 기판을 적재하여, 당해 기판 위에 성막 처리를 행하는 성막 처리 스텝과,
    상기 성막 처리 스텝 앞 또는 뒤에, 상기 기판 적재부에 기판을 적재하지 않은 상태에서, 상기 진공 용기 내의 파티클을 저감하는 처리를 행하는 파티클 저감 처리 스텝
    을 포함하고,
    상기 파티클 저감 처리 스텝은,
    상기 진공 용기로 제1 가스를 공급하는 스텝과,
    상기 진공 용기에 대하여 설치되는 플라즈마 발생원에 대하여 고주파를 공급하여, 상기 제1 가스로부터 플라즈마를 생성하는 스텝과,
    상기 서셉터를 회전시켜, 상기 기판 적재부를 상기 플라즈마에 노출시키는 스텝
    을 포함하는, 성막 방법.
KR1020130005859A 2012-01-20 2013-01-18 파티클 저감 방법 및 성막 방법 KR101575395B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2012-010162 2012-01-20
JP2012010162A JP5993154B2 (ja) 2012-01-20 2012-01-20 パーティクル低減方法

Publications (2)

Publication Number Publication Date
KR20130085990A true KR20130085990A (ko) 2013-07-30
KR101575395B1 KR101575395B1 (ko) 2015-12-21

Family

ID=48797565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130005859A KR101575395B1 (ko) 2012-01-20 2013-01-18 파티클 저감 방법 및 성막 방법

Country Status (4)

Country Link
US (2) US8853097B2 (ko)
JP (1) JP5993154B2 (ko)
KR (1) KR101575395B1 (ko)
TW (1) TWI560308B (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107185B2 (ja) * 2008-09-04 2012-12-26 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
JP5131240B2 (ja) * 2009-04-09 2013-01-30 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5423529B2 (ja) * 2010-03-29 2014-02-19 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5993154B2 (ja) * 2012-01-20 2016-09-14 東京エレクトロン株式会社 パーティクル低減方法
JP6115244B2 (ja) * 2013-03-28 2017-04-19 東京エレクトロン株式会社 成膜装置
SG11201601709WA (en) 2013-09-06 2016-04-28 3M Innovative Properties Co Multilayer optical film
JP2015056632A (ja) * 2013-09-13 2015-03-23 東京エレクトロン株式会社 シリコン酸化膜の製造方法
JP5837962B1 (ja) * 2014-07-08 2015-12-24 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびガス整流部
JP6339004B2 (ja) * 2014-12-25 2018-06-06 東京エレクトロン株式会社 パージ方法
JP6407762B2 (ja) * 2015-02-23 2018-10-17 東京エレクトロン株式会社 成膜装置
US10954597B2 (en) * 2015-03-17 2021-03-23 Asm Ip Holding B.V. Atomic layer deposition apparatus
JP6584355B2 (ja) * 2016-03-29 2019-10-02 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US10276426B2 (en) 2016-05-31 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for performing spin dry etching
CN113445015A (zh) * 2020-03-26 2021-09-28 中国科学院微电子研究所 一种集成镀膜设备的样品传输装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146832A (ja) * 2002-10-22 2004-05-20 Samsung Electronics Co Ltd チャンバーのクリーニング方法及び半導体素子製造方法
US20070017636A1 (en) * 2003-05-30 2007-01-25 Masaru Hori Plasma source and plasma processing apparatus
US20070218702A1 (en) * 2006-03-15 2007-09-20 Asm Japan K.K. Semiconductor-processing apparatus with rotating susceptor
JP2008159787A (ja) 2006-12-22 2008-07-10 Tokyo Electron Ltd 真空装置のクリーニング方法、真空装置の制御装置および制御プログラムを記憶した記憶媒体
JP2010153805A (ja) * 2008-11-19 2010-07-08 Tokyo Electron Ltd 成膜装置、成膜装置のクリーニング方法、プログラム、プログラムを記憶するコンピュータ可読記憶媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329403B2 (ja) * 2003-05-19 2009-09-09 東京エレクトロン株式会社 プラズマ処理装置
JP4245012B2 (ja) * 2006-07-13 2009-03-25 東京エレクトロン株式会社 処理装置及びこのクリーニング方法
JP5625624B2 (ja) * 2010-08-27 2014-11-19 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5993154B2 (ja) * 2012-01-20 2016-09-14 東京エレクトロン株式会社 パーティクル低減方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146832A (ja) * 2002-10-22 2004-05-20 Samsung Electronics Co Ltd チャンバーのクリーニング方法及び半導体素子製造方法
US20070017636A1 (en) * 2003-05-30 2007-01-25 Masaru Hori Plasma source and plasma processing apparatus
US20070218702A1 (en) * 2006-03-15 2007-09-20 Asm Japan K.K. Semiconductor-processing apparatus with rotating susceptor
JP2008159787A (ja) 2006-12-22 2008-07-10 Tokyo Electron Ltd 真空装置のクリーニング方法、真空装置の制御装置および制御プログラムを記憶した記憶媒体
JP2010153805A (ja) * 2008-11-19 2010-07-08 Tokyo Electron Ltd 成膜装置、成膜装置のクリーニング方法、プログラム、プログラムを記憶するコンピュータ可読記憶媒体

Also Published As

Publication number Publication date
KR101575395B1 (ko) 2015-12-21
US8932963B2 (en) 2015-01-13
TW201348501A (zh) 2013-12-01
US8853097B2 (en) 2014-10-07
JP2013149844A (ja) 2013-08-01
JP5993154B2 (ja) 2016-09-14
US20140370205A1 (en) 2014-12-18
US20130189849A1 (en) 2013-07-25
TWI560308B (en) 2016-12-01

Similar Documents

Publication Publication Date Title
KR101575395B1 (ko) 파티클 저감 방법 및 성막 방법
KR101572309B1 (ko) 기판 처리 장치
US9209011B2 (en) Method of operating film deposition apparatus and film deposition apparatus
KR101595148B1 (ko) 성막 방법
KR101786167B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20170072805A (ko) 성막 방법 및 성막 장치
US11367611B2 (en) Film forming method and film forming apparatus
US11359279B2 (en) Cleaning method and film deposition method
KR102397199B1 (ko) 서셉터의 드라이 클리닝 방법 및 기판 처리 장치
KR20140005817A (ko) 성막 방법
TWI725304B (zh) 成膜方法
KR101989657B1 (ko) 기판 처리 장치 및 기판 처리 방법
TW201621081A (zh) 電漿處理裝置及電漿處理方法
KR102119299B1 (ko) 성막 장치
JP7278146B2 (ja) 成膜方法
TW201809340A (zh) 成膜方法
JP2020191340A (ja) 成膜方法
JP2020012136A (ja) 成膜方法
US20220223463A1 (en) Deposition apparatus and deposition method
KR101512880B1 (ko) 성막 방법 및 성막 장치
CN112391605B (zh) 成膜方法
JP2024075183A (ja) 成膜方法及び成膜装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191118

Year of fee payment: 5