KR101512880B1 - 성막 방법 및 성막 장치 - Google Patents
성막 방법 및 성막 장치 Download PDFInfo
- Publication number
- KR101512880B1 KR101512880B1 KR1020120052468A KR20120052468A KR101512880B1 KR 101512880 B1 KR101512880 B1 KR 101512880B1 KR 1020120052468 A KR1020120052468 A KR 1020120052468A KR 20120052468 A KR20120052468 A KR 20120052468A KR 101512880 B1 KR101512880 B1 KR 101512880B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- substrate
- plasma
- rotary table
- reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Plasma & Fusion (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명은 진공 용기 내에 기판을 반입하고, 진공 용기 내에 회전 가능하도록 설치된 회전 테이블에 기판을 적재하는 스텝과, 회전 테이블을 회전하는 스텝과, 제1 반응 가스 공급부로부터 기판에 대하여 제1 반응 가스를 공급하고, 제1 반응 가스를 기판에 흡착시키는 흡착 스텝과, 제2 반응 가스 공급부로부터 기판에 대하여, 제1 반응 가스와 반응하는 제2 반응 가스를 공급하고, 기판에 흡착되는 제1 반응 가스와 제2 반응 가스를 반응시켜서 기판에 반응 생성물을 형성하는 형성 스텝과, 제1 및 제2 반응 가스 공급부로부터 회전 테이블의 원주 방향으로 이격해서 설치되는 플라즈마 발생부에 대하여 수소 함유 가스를 공급하고, 회전 테이블의 상방에 플라즈마를 생성하는 스텝을 포함하는 성막 방법을 제공한다.
Description
본 출원은 2011년 5월 18일에 일본 특허청에 출원된 일본 특허 출원 2011-111627호 및 2011년 11월 18일에 일본 특허청에 출원된 일본 특허 출원 2011-252832호에 기초하는 우선권을 주장하는 것이며, 일본 특허 출원 2011-111627호 및 일본 특허 출원 2011-252832호의 전체 내용을 여기에 원용한다.
본 발명은 서로 반응하는 적어도 2종류의 반응 가스를 기판에 대하여 교대로 공급함으로써 기판 표면 위에 성막하는 성막 방법 및 성막 장치에 관한 것이다.
반도체 디바이스의 회로 패턴의 추가적인 미세화에 걸맞게, 반도체 디바이스를 구성하는 다양한 막의 추가적인 박막화 및 균일화가 요구되고 있다. 이와 같은 요구에 따르는 성막 방법으로서, 제1 반응 가스를 기판에 공급해서 기판의 표면에 제1 반응 가스를 흡착시키고, 다음에 제2 반응 가스를 기판에 공급해서 기판의 표면에 흡착된 제1 반응 가스와 제2 반응 가스를 반응시킴으로써, 이들의 반응 가스의 반응 생성물로 구성되는 막을 기판에 퇴적하는, 소위 분자층 성막(MLD)법(원자층 성막(ALD)법이라고도 함)이 알려져 있다(예를 들어 특허문헌 1). MLD법을 실시하는 성막 장치로서, 소위 회전 테이블식인 것이 알려져 있다.
예를 들어, 본 발명의 발명자들이 제안하고 있는 MLD 장치는, 기판이 적재되는 회전 테이블과, 회전 테이블을 향해 제1 반응 가스를 공급하는 제1 반응 가스 공급부와, 회전 테이블을 향해 제2 반응 가스를 공급하는 제2 반응 가스 공급부와, 제1 반응 가스 공급부 및 제2 반응 가스 공급부 사이에 설치되어 제1 반응 가스와 제2 반응 가스를 분리하는 분리 영역을 갖고 있다. 분리 영역에는, 제1 반응 가스가 공급되는 영역 및 제2 반응 가스가 공급되는 영역보다도 낮은 천장면과, 분리 가스를 공급하는 분리 가스 공급부가 설치되어 있다(특허문헌 2).
이러한 MLD 장치에 있어서는 회전 테이블을 회전함으로써, 회전 테이블 위의 기판 표면에 제1 반응 가스를 흡착시키고, 기판 표면에 흡착된 제1 반응 가스가 제2 반응 가스와 반응함으로써, 기판 표면에 반응 생성물이 생성되고, 반응 생성물의 막이 기판 표면에 퇴적된다. 특히, 분리 영역에 의해 제1 반응 가스와 제2 반응 가스가 충분히 분리될 수 있기 때문에, 회전 테이블의 회전 속도를 비교적 빠르게 함으로써, 스루풋(throughput)의 향상을 도모할 수 있다.
그러나 종래 기술에서는, 막 두께 분포나 막질이 우수한 박막을, 성막 속도를 유지하면서 퇴적하는 것은 어려웠다.
본 발명은 막 두께 분포나 막질이 우수한 박막을, 성막 속도를 유지하면서 퇴적할 수 있는 성막 방법 및 성막 장치를 제공한다.
본 발명의 제1 형태에 의하면, 진공 용기 내에 기판을 반입하고, 상기 진공 용기 내에 회전 가능하도록 설치된 회전 테이블에 상기 기판을 적재하는 스텝과, 상기 회전 테이블을 회전하는 스텝과, 제1 반응 가스 공급부로부터 상기 기판에 대하여 제1 반응 가스를 공급하고, 상기 제1 반응 가스를 상기 기판에 흡착시키는 흡착 스텝과, 제2 반응 가스 공급부로부터 상기 기판에 대하여, 상기 제1 반응 가스와 반응하는 제2 반응 가스를 공급하고, 상기 기판에 흡착되는 상기 제1 반응 가스와 상기 제2 반응 가스를 반응시켜서, 상기 기판에 반응 생성물을 형성하는 형성 스텝과, 상기 제1 및 상기 제2 반응 가스 공급부로부터 상기 회전 테이블의 원주 방향으로 이격해서 설치되는 플라즈마 발생부에 대하여 수소 함유 가스를 공급하고, 상기 회전 테이블의 상방에 플라즈마를 생성하는 스텝을 포함하는 성막 방법이 제공된다.
본 발명의 제2 형태에 의하면, 기판이 적재되는 기판 적재부를 포함하고, 진공 용기 내에 회전 가능하도록 설치되는 회전 테이블과, 상기 기판 적재부에 적재되는 상기 기판에 대하여 제1 반응 가스를 공급하고, 상기 제1 반응 가스를 상기 기판에 흡착시키는 제1 반응 가스 공급부와, 상기 제1 반응 가스 공급부로부터 상기 회전 테이블의 원주 방향으로 이격해서 설치되고, 상기 기판에 대하여 제2 반응 가스를 공급하고, 상기 기판에 흡착되는 상기 제1 반응 가스와 상기 제2 반응 가스를 반응시켜서 반응 생성물을 상기 기판에 형성하는 제2 반응 가스 공급부와, 상기 제1 및 상기 제2 반응 가스 공급부로부터 상기 회전 테이블의 원주 방향으로 이격해서 설치되고, 상기 회전 테이블의 상방에 플라즈마를 생성하는 플라즈마 생성부와, 상기 플라즈마 생성부에 대하여 수소 함유 가스를 공급하는 가스 공급관을 구비하는 성막 장치가 제공된다.
본 발명에 있어서의 다른 특징은, 이하의 상세한 설명을 첨부한 도면을 참조하여 읽음으로써 명확해진다.
도 1은, 본 발명의 실시 형태에 의한 성막 장치를 도시하는 개략 단면도.
도 2는, 도 1의 성막 장치의 진공 용기 내의 구성을 도시하는 개략 사시도.
도 3은, 도 1의 성막 장치의 진공 용기 내의 구성을 나타내는 개략 평면도.
도 4는, 도 1의 성막 장치의 진공 용기 내에 회전 가능하도록 설치되는 회전 테이블의 동심원을 따른, 당해 진공 용기에 개략 단면도.
도 5는, 도 1의 성막 장치의 다른 개략 단면도.
도 6은, 도 1의 성막 장치에 설치되는 플라즈마 발생원을 도시하는 개략 단면도.
도 7a는, 도 1의 성막 장치에 설치되는 플라즈마 발생원을 나타내는 다른 개략 단면도.
도 7b는, 도 1의 성막 장치에 설치되는 플라즈마 발생원을 나타내는 개략 상면도.
도 8a는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 그래프이며, 성막 속도의 NH3 가스 유량 의존성을 나타내는 그래프.
도 8b는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 그래프이며, 막 두께 균일성의 NH3 가스 유량 의존성을 나타내는 그래프.
도 9는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 다른 그래프.
도 10은, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 다른 그래프.
도 11a 및 도 11b는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 설명하는 설명도.
도 12는, 본 발명의 실시 형태의 변형예에 의한 성막 방법의 효과를 확인하기 위해서 행한 실험의 결과를 나타내는 그래프.
도 13은, 본 발명의 실시 형태의 변형예에 의한 성막 방법의 효과를 확인하기 위해서 행한 다른 실험의 결과를 나타내는 그래프.
도 2는, 도 1의 성막 장치의 진공 용기 내의 구성을 도시하는 개략 사시도.
도 3은, 도 1의 성막 장치의 진공 용기 내의 구성을 나타내는 개략 평면도.
도 4는, 도 1의 성막 장치의 진공 용기 내에 회전 가능하도록 설치되는 회전 테이블의 동심원을 따른, 당해 진공 용기에 개략 단면도.
도 5는, 도 1의 성막 장치의 다른 개략 단면도.
도 6은, 도 1의 성막 장치에 설치되는 플라즈마 발생원을 도시하는 개략 단면도.
도 7a는, 도 1의 성막 장치에 설치되는 플라즈마 발생원을 나타내는 다른 개략 단면도.
도 7b는, 도 1의 성막 장치에 설치되는 플라즈마 발생원을 나타내는 개략 상면도.
도 8a는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 그래프이며, 성막 속도의 NH3 가스 유량 의존성을 나타내는 그래프.
도 8b는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 그래프이며, 막 두께 균일성의 NH3 가스 유량 의존성을 나타내는 그래프.
도 9는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 다른 그래프.
도 10은, 본 발명의 실시 형태에 의한 성막 방법의 효과를 조사하기 위해서 행한 실험의 실험 결과를 나타내는 다른 그래프.
도 11a 및 도 11b는, 본 발명의 실시 형태에 의한 성막 방법의 효과를 설명하는 설명도.
도 12는, 본 발명의 실시 형태의 변형예에 의한 성막 방법의 효과를 확인하기 위해서 행한 실험의 결과를 나타내는 그래프.
도 13은, 본 발명의 실시 형태의 변형예에 의한 성막 방법의 효과를 확인하기 위해서 행한 다른 실험의 결과를 나타내는 그래프.
관련 기술로서 설명한 회전 테이블식의 성막 장치에 있어서의 스루풋을 더욱 향상시키기 위해 검토를 행한 결과, 이하의 지식이 얻어졌다. 회전 테이블의 회전 속도를 더욱 빠르게 하면, 기판 표면에 흡착된 제1 반응 가스와 제2 반응 가스가 충분히 반응하기 전에, 기판 표면에 제1 반응 가스가 흡착하게 되고, 반응 부생성물이 생성된 반응물 생성물 중에 잔류하거나, 반응 생성물의 밀도가 저하되는 경우가 있어, 고품질의 박막을 얻으면서, 스루풋을 향상시키는 것이 어려워질 우려가 있다.
이로 인해, 회전 테이블에 대향하도록 플라즈마 발생원을 설치하여, 기판의 표면 위에 생성된 박막을 플라즈마 발생원에 의해 활성화된 가스에 노출시킴으로써, 박막을 개질하는 것이 시도되었다. 그 결과, 막질의 향상은 인정되지만, 성막 속도나 막 두께 분포가 악화된다는 현상이 인정되기에 이르렀다.
이하, 첨부한 도면을 참조하면서, 본 발명의 한정적이지 않은 예시된 실시 형태에 대해서 설명한다. 본 실시 형태는, 상기한 지식에 기초하여 이루어진 것으로, 막 두께 분포나 막질이 우수한 박막을, 성막 속도를 유지하면서 퇴적할 수 있는 기술이다. 첨부한 전체 도면 중, 동일 또는 대응하는 부재 또는 부품에 대해서는, 동일 또는 대응하는 참조 부호를 부여하고, 중복된 설명은 생략한다. 또한, 도면은 부재 혹은 부품간의 상대비를 나타내는 것을 목적으로 하지 않으며, 따라서 구체적인 치수는, 이하의 한정적이지 않은 실시 형태에 비추어 당업자에 의해 결정되어야 할 것이다.
도 1 내지 도 3을 참조하면, 본 발명의 실시 형태에 의한 성막 장치는, 거의 원형의 평면 형상을 갖는 편평한 진공 용기(1)와, 이 진공 용기(1) 내에 설치되고, 진공 용기(1)의 중심에 회전 중심을 갖는 회전 테이블(2)을 구비하고 있다. 진공 용기(1)는, 바닥이 있는 원통 형상을 갖는 용기 본체(12)와, 용기 본체(12)의 상면에 대하여, 예를 들어 O링 등의 시일 부재(13)(도 1)를 개재해서 기밀하게 착탈 가능하도록 배치되는 천장판(11)을 갖고 있다.
회전 테이블(2)은, 중심부에서 원통 형상의 코어부(21)에 고정되고, 이 코어부(21)는, 연직 방향으로 신장되는 회전축(22)의 상단부에 고정되어 있다. 회전축(22)은 진공 용기(1)의 바닥부(14)를 관통하여, 그의 하단부가 회전축(22)(도 1)을 연직축 주위에 회전시키는 구동부(23)에 설치되어 있다. 회전축(22) 및 구동부(23)는, 상면이 개구한 통 형상의 케이스체(20) 내에 수납되어 있다. 이 케이스체(20)는 그의 상면에 설치된 플랜지 부분이 진공 용기(1)의 바닥부(14)의 하면에 기밀하게 설치되어 있고, 케이스체(20)의 내부 분위기와 외부 분위기와의 기밀 상태가 유지되어 있다.
회전 테이블(2)의 표면부에는, 도 2 및 도 3에 도시한 바와 같이 회전 방향(주위 방향)을 따라 복수(도시한 예에서는 5장)의 기판인 반도체 웨이퍼(이하 "웨이퍼"라 함) W를 적재하기 위한 원 형상의 오목부(24)가 설치되어 있다. 또한 도 3에는 편의상 1개의 오목부(24)만으로 웨이퍼 W를 나타낸다. 이 오목부(24)는, 웨이퍼 W의 직경보다도 불과 예를 들어 4mm 큰 내경과, 웨이퍼 W의 두께에 거의 동등한 깊이를 갖고 있다. 따라서, 웨이퍼 W가 오목부(24)에 수용되면, 웨이퍼 W의 표면과 회전 테이블(2)의 표면(웨이퍼 W가 적재되지 않는 영역)이 동일한 높이가 된다. 오목부(24)의 저면에는, 웨이퍼 W의 이면을 지지해서 웨이퍼 W를 승강시키기 위한 예를 들어 3개의 승강핀이 관통하는 관통 구멍(모두 도시하지 않음)이 형성되어 있다.
도 2 및 도 3은 진공 용기(1) 내의 구조를 설명하는 도면이며, 설명의 편의상, 천장판(11)의 도시를 생략하고 있다. 도 2 및 도 3에 도시한 바와 같이, 회전 테이블(2)의 상방에는, 각각 예를 들어 석영을 포함하는 반응 가스 노즐(31), 반응 가스 노즐(32), 분리 가스 노즐(41, 42) 및 가스 도입 노즐(92)이 진공 용기(1)의 주위 방향(회전 테이블(2)의 회전 방향(도 3의 화살표 A))에 서로 간격을 두고 배치되어 있다. 도시한 예에서는, 후술하는 반송구(15)로부터 시계 방향(회전 테이블(2)의 회전 방향)으로 가스 도입 노즐(92), 분리 가스 노즐(41), 반응 가스 노즐(31), 분리 가스 노즐(42) 및 반응 가스 노즐(32)이 이 순서로 배열되어 있다. 이들의 노즐(92, 31, 32, 41, 42)은, 각 노즐(92, 31, 32, 41, 42)의 기단부인 가스 도입 포트(92a, 31a, 32a, 41a, 42a)(도 3)를 용기 본체(12)의 외주벽에 고정함으로써, 진공 용기(1)의 외주벽으로부터 진공 용기(1) 내에 도입되고, 용기 본체(12)의 반경 방향을 따라 회전 테이블(2)에 대하여 수평하게 신장하도록 설치되어 있다.
또한, 가스 도입 노즐(92)의 상방에는, 도 3에 있어서, 파선으로 간략화해서 나타내도록 플라즈마 발생원(80)이 설치되어 있다. 플라즈마 발생원(80)에 대해서는 후술한다.
반응 가스 노즐(31)은, 도시하지 않은 배관 및 유량 조정기 등을 통하여, 제1 반응 가스로서의 Si(실리콘) 함유 가스의 공급원(도시하지 않음)에 접속되어 있다. 반응 가스 노즐(32)은, 도시하지 않은 배관 및 유량 조정기 등을 통하여, 제2 반응 가스로서의 산화 가스의 공급원(도시하지 않음)에 접속되어 있다. 분리 가스 노즐(41, 42)은 모두 도시하지 않은 배관 및 유량 조정 밸브 등을 통하여, 분리 가스로서의 질소(N2) 가스의 공급원(도시하지 않음)에 접속되어 있다.
Si 함유 가스로는, 예를 들어 유기 아미노실란 가스를 사용할 수 있고, 산화 가스로는, 예를 들어 O3(오존) 가스 혹은 O2(산소) 가스 또는 이들의 혼합 가스를 사용할 수 있다.
반응 가스 노즐(31, 32)에는, 회전 테이블(2)을 향해서 개구하는 복수의 가스 토출 구멍(33)이 반응 가스 노즐(31, 32)의 길이 방향을 따라, 예를 들어 10mm의 간격으로 배열되어 있다. 반응 가스 노즐(31)의 하방 영역은, Si 함유 가스를 웨이퍼 W에 흡착시키기 위한 제1 처리 영역 P1이 된다. 반응 가스 노즐(32)의 하방 영역은, 제1 처리 영역 P1에 있어서 웨이퍼 W에 흡착된 Si 함유 가스를 산화시키는 제2 처리 영역 P2가 된다.
도 2 및 도 3을 참조하면, 진공 용기(1) 내에는 2개의 볼록 형상부(4)가 설치되어 있다. 볼록 형상부(4)는, 분리 가스 노즐(41, 42)과 함께 분리 영역 D를 구성하기 위해서, 후술하는 바와 같이, 회전 테이블(2)을 향해서 돌출하도록 천장판(11)의 이면에 설치되어 있다. 또한, 볼록 형상부(4)는, 정상부가 원호 형상으로 절단된 부채형의 평면 형상을 가지며, 본 실시 형태에 있어서는, 내원호가 돌출부(5)(후술)에 연결되고, 외원호가 진공 용기(1)의 용기 본체(12)의 내주면을 따르도록 배치되어 있다.
도 4는, 반응 가스 노즐(31)부터 반응 가스 노즐(32)까지 회전 테이블(2)의 동심원을 따른 진공 용기(1)의 단면을 나타내고 있다. 도시하는 바와 같이, 천장판(11)의 이면에 볼록 형상부(4)가 설치되어 있기 때문에, 진공 용기(1) 내에는, 볼록 형상부(4)의 하면인 평탄한 낮은 천장면(44)(제1 천장면)과, 이 천장면(44)의 주위 방향 양측에 위치하는, 천장면(44)보다도 높은 천장면(45)(제2 천장면)이 존재한다. 천장면(44)은, 정상부가 원호 형상으로 절단된 부채형의 평면 형상을 갖고 있다. 또한, 도시하는 바와 같이, 볼록 형상부(4)에는 주위 방향 중앙에 있어서, 반경 방향으로 신장하도록 형성된 홈부(43)가 형성되고, 분리 가스 노즐(42)이 홈부(43) 내에 수용되어 있다. 다른 하나의 볼록 형상부(4)에도 마찬가지로 홈부(43)가 형성되며, 여기에 분리 가스 노즐(41)이 수용되어 있다. 또한, 높은 천장면(45)의 하방의 공간에 반응 가스 노즐(31, 32)이 각각 설치되어 있다. 이들의 반응 가스 노즐(31, 32)은, 천장면(45)으로부터 이격해서 웨이퍼 W의 근방에 설치되어 있다. 또한, 설명의 편의상, 도 4에 도시한 바와 같이, 반응 가스 노즐(31)이 설치되는, 높은 천장면(45)의 하방의 공간을 참조 부호(481)로 나타내고, 반응 가스 노즐(32)이 설치되는, 높은 천장면(45)의 하방의 공간을 참조 부호(482)로 나타낸다.
또한, 볼록 형상부(4)의 홈부(43)에 수용되는 분리 가스 노즐(41, 42)에는, 회전 테이블(2)을 향해서 개구하는 복수의 가스 토출 구멍(41h)(도 4 참조)이 분리 가스 노즐(41, 42)의 길이 방향을 따라, 예를 들어 10mm의 간격으로 배열되어 있다.
천장면(44)은, 협애한 공간인 분리 공간 H를 회전 테이블(2)에 대하여 형성하고 있다. 분리 가스 노즐(42)의 토출 구멍(42h)으로부터 N2 가스가 공급되면, 이 N2 가스는, 분리 공간 H를 통과해서 공간(481) 및 공간(482)을 향해 흐른다. 이때, 분리 공간 H의 용적은 공간(481 및 482)의 용적보다도 작기 때문에, N2 가스에 의해 분리 공간 H의 압력을 공간(481 및 482)의 압력에 비하여 높게 할 수 있다. 즉, 공간(481 및 482) 사이에 압력이 높은 분리 공간 H가 형성된다. 또한, 분리 공간 H로부터 공간(481 및 482)에 흘러나오는 N2 가스가, 제1 영역 P1로부터의 Si 함유 가스와, 제2 영역 P2로부터의 산화 가스에 대한 카운터 플로우로서 작용한다. 따라서, 제1 영역 P1로부터의 Si 함유 가스와, 제2 영역 P2로부터의 산화 가스가 분리 공간 H에 의해 분리된다. 따라서, 진공 용기(1) 내에서 Si 함유 가스와 산화 가스가 혼합하고, 반응하는 것이 억제된다.
또한, 회전 테이블(2)의 상면에 대한 천장면(44)의 높이 h1은, 성막시 진공 용기(1) 내의 압력, 회전 테이블(2)의 회전 속도, 공급하는 분리 가스(N2 가스)의 공급량 등을 고려하여, 분리 공간 H의 압력을 공간(481 및 482)의 압력에 비하여 높게 하기에 적합한 높이로 설정하는 것이 바람직하다.
한편, 천장판(11)의 하면에는, 회전 테이블(2)을 고정하는 코어부(21)의 외주를 둘러싸는 돌출부(5)(도 2 및 도 3)가 설치되어 있다. 이 돌출부(5)는, 본 실시 형태에 있어서는, 볼록 형상부(4)에 있어서의 회전 중심측의 부위와 연속되어 있고, 그의 하면이 천장면(44)과 동일한 높이로 형성되어 있다.
앞서 참조한 도 1은, 도 3의 I-I'선을 따른 단면도이며, 천장면(45)이 설치되어 있는 영역을 나타내고 있다. 한편, 도 5는, 천장면(44)이 설치되어 있는 영역을 도시하는 단면도이다. 도 5에 도시한 바와 같이, 부채형의 볼록 형상부(4)의 주연부(진공 용기(1)의 외측 테두리측의 부위)에는, 회전 테이블(2)의 외측 단부면에 대향하도록 L자형으로 굴곡된 굴곡부(46)가 형성되어 있다. 이 굴곡부(46)는, 볼록 형상부(4)와 마찬가지로 분리 영역 D의 양측으로부터 반응 가스가 침입하는 것을 억제하고, 양쪽 반응 가스의 혼합을 억제한다. 부채형의 볼록 형상부(4)는 천장판(11)에 설치되고, 천장판(11)이 용기 본체(12)로부터 박리하도록 되어 있기 때문에, 굴곡부(46)의 외주면과 용기 본체(12) 사이에는 약간 간극이 있다. 굴곡부(46)의 내주면과 회전 테이블(2)의 외측 단부면과의 간극 및 굴곡부(46)의 외주면과 용기 본체(12)와의 간극은, 예를 들어 회전 테이블(2)의 상면에 대한 천장면(44)의 높이와 마찬가지의 치수로 설정되어 있다.
용기 본체(12)의 내주벽은, 분리 영역 D에 있어서는 도 4에 도시한 바와 같이 굴곡부(46)의 외주면과 접근해서 수직면에 형성되어 있지만, 분리 영역 D 이외의 부위에 있어서는, 도 1에 도시한 바와 같이 예를 들어 회전 테이블(2)의 외측 단부면과 대향하는 부위로부터 바닥부(14)에 걸쳐서 외측으로 오목해져 있다. 이하, 설명의 편의상, 대개 직사각형의 단면 형상을 갖는 오목해진 부분을 배기 영역이라 기재한다. 구체적으로는, 제1 처리 영역 P1에 연통하는 배기 영역을 제1 배기 영역 E1이라 기재하고, 제2 처리 영역 P2에 연통하는 영역을 제2 배기 영역 E2라 기재한다. 이들의 제1 배기 영역 E1 및 제2 배기 영역 E2의 바닥부에는, 도 1 내지 도 3에 도시한 바와 같이, 각각 제1 배기구(610) 및 제2 배기구(620)가 형성되어 있다. 제1 배기구(610) 및 제2 배기구(620)는, 도 1에 도시한 바와 같이 각각 배기관(630)을 개재해서 진공 배기 수단인 예를 들어 진공 펌프(640)에 접속되어 있다. 또한 도 1 중, 참조 부호 650은 압력 조정기이다.
회전 테이블(2)과 진공 용기(1)의 바닥부(14) 사이의 공간에는, 도 1 및 도 4에 도시한 바와 같이 가열 수단인 히터 유닛(7)이 설치되고, 회전 테이블(2)을 개재해서 회전 테이블(2) 위의 웨이퍼 W가, 프로세스 레시피로 결정된 온도(예를 들어 450℃)로 가열된다. 회전 테이블(2)의 주연 부근의 하방측에는, 회전 테이블(2)의 상방 공간으로부터 배기 영역 E1, E2에 이르기까지의 분위기와 히터 유닛(7)이 놓여 있는 분위기를 구획해서 회전 테이블(2)의 하방 영역에의 가스의 침입을 억제하기 위해, 링 형상의 커버 부재(71)가 설치되어 있다(도 5). 이 커버 부재(71)는, 회전 테이블(2)의 외측 테두리부 및 외측 테두리부보다도 외주측을 하방측으로부터 면하도록 설치된 내측 부재(71a)와, 이 내측 부재(71a)와 진공 용기(1)의 내벽면 사이에 설치된 외측 부재(7lb)를 구비하고 있다. 외측 부재(7lb)는, 분리 영역 D에 있어서 볼록 형상부(4)의 외측 테두리부에 형성된 굴곡부(46)의 하방에서 굴곡부(46)와 근접해서 설치되고, 내측 부재(71a)는, 회전 테이블(2)의 외측 테두리부 하방(및 외측 테두리부보다도 약간 외측 부분의 하방)에 있어서, 히터 유닛(7)을 전체 둘레에 걸쳐서 둘러싸고 있다.
히터 유닛(7)이 배치되어 있는 공간보다도 회전 중심에 가까운 부위에 있어서의 바닥부(14)는, 회전 테이블(2)의 하면의 중심부 부근에 있어서의 코어부(21)에 접근하도록 상방측에 돌출되어 돌출부(12a)를 이루고 있다. 이 돌출부(12a)와 코어부(21) 사이는 좁은 공간이 되어 있고, 또한 바닥부(14)를 관통하는 회전축(22)의 관통 구멍의 내주면과 회전축(22)과의 간극이 좁아져 있어, 이들 좁은 공간은 케이스체(20)에 연통하고 있다. 그리고 케이스체(20)에는 퍼지 가스인 N2 가스를 좁은 공간 내에 공급해서 퍼지하기 위한 퍼지 가스 공급관(72)이 설치되어 있다. 또한 진공 용기(1)의 바닥부(14)에는, 히터 유닛(7)의 하방에 있어서 주위 방향으로 소정의 각도 간격으로, 히터 유닛(7)의 배치 공간을 퍼지하기 위한 복수의 퍼지 가스 공급관(73)이 설치되어 있다(도 5에는 하나의 퍼지 가스 공급관(73)을 나타냄). 또한, 히터 유닛(7)과 회전 테이블(2) 사이에는, 히터 유닛(7)이 설치된 영역에 대한 가스의 침입을 억제하기 위해, 외측 부재(7lb)의 내주벽(내측 부재(71a)의 상면)으로부터 돌출부(12a)의 상단부와의 사이를 주위 방향에 걸쳐서 덮는 덮개 부재(7a)가 설치되어 있다. 덮개 부재(7a)는 예를 들어 석영으로 제작할 수 있다.
또한, 진공 용기(1)의 천장판(11)의 중심부에는 분리 가스 공급관(51)이 접속되어 있어, 천장판(11)과 코어부(21) 사이의 공간(52)에 분리 가스인 N2 가스를 공급하도록 구성되어 있다. 이 공간(52)에 공급된 분리 가스는, 돌출부(5)와 회전 테이블(2)과의 좁은 간극(50)을 개재해서 회전 테이블(2)의 웨이퍼 적재 영역측의 표면을 따라 주연을 향해서 토출된다. 공간(50)은 분리 가스에 의해 공간(481) 및 공간(482)보다도 높은 압력으로 유지될 수 있다. 따라서, 공간(50)에 의해, 제1 처리 영역 P1에 공급되는 Si 함유 가스와 제2 처리 영역 P2에 공급되는 산화 가스가, 중심 영역 C를 통해서 혼합하는 것이 억제된다. 즉, 공간(50)(또는 중심 영역 C)은 분리 공간 H(또는 분리 영역 D)와 마찬가지로 기능할 수 있다.
또한, 진공 용기(1)의 측벽에는, 도 2, 도 3에 도시한 바와 같이, 외부의 반송 아암(10)과 회전 테이블(2) 사이에서 기판인 웨이퍼 W의 주고 받기를 행하기 위한 반송구(15)가 형성되어 있다. 이 반송구(15)는 도시하지 않은 게이트 밸브에 의해 개폐된다. 또한 회전 테이블(2)에 있어서의 웨이퍼 적재 영역인 오목부(24)는 이 반송구(15)에 면하는 위치에서 반송 아암(10) 사이에서 웨이퍼 W의 주고 받기가 행해지기 때문에, 회전 테이블(2)의 하방측에 있어서 주고 받기 위치에 대응하는 부위에, 오목부(24)를 관통해서 웨이퍼 W를 이면으로부터 들어 올리기 위한 주고 받기용 승강핀 및 그의 승강 기구(모두 도시하지 않음)가 설치되어 있다.
이어서, 도 6 내지 도 7b를 참조하면서, 플라즈마 발생원(80)에 대해서 설명한다. 도 6은, 회전 테이블(2)의 반경 방향을 따른 플라즈마 발생원(80)의 개략 단면도이며, 도 7a는 회전 테이블(2)의 반경 방향과 직교하는 방향을 따른 플라즈마 발생원(80)의 개략 단면도이며, 도 7b는 플라즈마 발생원(80)의 개략을 도시하는 상면도이다. 도시의 편의상, 이들의 도면에서 일부의 부재를 간략화하고 있다.
도 6을 참조하면, 플라즈마 발생원(80)은, 고주파 투과성의 재료로 제작되고, 상면으로부터 오목해진 오목부를 가지며, 천장판(11)에 형성된 개구부(11a)에 끼워 넣어지는 프레임 부재(81)와, 프레임 부재(81)의 오목부 내에 수용되고, 상부가 개구한 대략 상자 형상의 형상을 갖는 패러데이 차폐판(82)과, 패러데이 차폐판(82)의 저면 위에 배치되는 절연판(83)과, 절연판(83)의 상방에 지지되고, 대략 팔각형의 상면 형상을 갖는 코일 형상의 안테나(85)를 구비한다.
천장판(11)의 개구부(11a)는 복수의 단차부를 갖고 있으며, 그 중 하나의 단차부에는 전체 둘레에 걸쳐서 홈부가 형성되며, 이 홈부에 예를 들어 O-링 등의 시일 부재(81a)가 끼워 넣어져 있다. 한편, 프레임 부재(81)는, 개구부(11a)의 단차부에 대응하는 복수의 단차부를 갖고 있으며, 프레임 부재(81)를 개구부(11a)에 끼워 넣으면, 복수의 단차부 중 1개의 단차부의 이면이, 개구부(11a)의 홈부에 끼워 넣어진 시일 부재(81a)와 접하고, 이에 따라 천장판(11)과 프레임 부재(81) 사이의 기밀성이 유지된다. 또한, 도 6에 도시한 바와 같이, 천장판(11)의 개구부(11a)에 끼워 넣어지는 프레임 부재(81)의 외주를 따른 가압 부재(81c)가 설치되고, 이에 따라 프레임 부재(81)가 천장판(11)에 대하여 하방으로 가압된다. 이로 인해, 천장판(11)과 프레임 부재(81) 사이의 기밀성이 보다 확실하게 유지된다.
프레임 부재(81)의 하면은, 진공 용기(1) 내의 회전 테이블(2)에 대향하고 있고, 그의 하면의 외주에는 전체 둘레에 걸쳐서 하방으로(회전 테이블(2)을 향해) 돌기하는 돌기부(81b)가 설치되어 있다. 돌기부(81b)의 하면은 회전 테이블(2)의 표면에 근접하고 있고, 돌기부(81b)와, 회전 테이블(2)의 표면과, 프레임 부재(81)의 하면에 의해 회전 테이블(2)의 상방에 공간(이하, 내부 공간 S)이 구성되어 있다. 또한, 돌기부(81b)의 하면과 회전 테이블(2)의 표면과의 간격은, 분리 공간 H(도 4)에 있어서의 천장면(11)의 회전 테이블(2)의 상면에 대한 높이 h1과 거의 동일해도 된다.
또한, 이 내부 공간 S에는, 돌기부(81b)를 관통한 가스 도입 노즐(92)이 연장되어 있다. 가스 도입 노즐(92)에는, 본 실시 형태에 있어서는, 도 6에 도시한 바와 같이, 아르곤(Ar) 가스가 충전되는 아르곤 가스 공급원(93a)과, 산소(O2) 가스가 충전되는 산소 가스 공급원(93b)과, 암모니아(NH3) 가스가 충전되는 암모니아 가스 공급원(93c)이 접속되어 있다. 아르곤 가스 공급원(93a), 산소 가스 공급원(93b) 및 암모니아 가스 공급원(93c)으로부터, 대응하는 유량 제어기(94a, 94b, 94c)에 의해 유량 제어된 Ar 가스, O2 가스 및 NH3 가스가 소정의 유량비(혼합비)로 내부 공간 S에 공급된다.
또한, 가스 도입 노즐(92)에는, 그의 길이 방향을 따라 소정의 간격(예를 들어 10mm)으로 복수의 토출 구멍(92h)이 형성되어 있고, 토출 구멍(92)으로부터 상술한 Ar 가스 등이 토출된다. 토출 구멍(92h)은, 도 7a에 도시한 바와 같이, 회전 테이블(2)에 대하여 수직인 방향으로부터 회전 테이블(2)의 회전 방향의 상류측을 향해서 기울어 있다. 이로 인해, 가스 도입 노즐(92)로부터 공급되는 가스는, 회전 테이블(2)의 회전 방향과 반대 방향으로, 구체적으로는 돌기부(81b)의 하면과 회전 테이블(2)의 표면 사이의 간극을 향해서 토출된다. 이에 따라, 회전 테이블(2)의 회전 방향을 따라 플라즈마 발생원(80)보다도 상류측에 위치하는 천장면(45)의 하방의 공간으로부터 반응 가스나 분리 가스가, 내부 공간 S 내에 유입되는 것이 억제된다. 또한, 상술한 바와 같이, 프레임 부재(81)의 하면의 외주를 따라서 형성되는 돌기부(81b)가 회전 테이블(2)의 표면에 근접하고 있기 때문에, 가스 도입 노즐(92)로부터의 가스에 의해 내부 공간 S 내의 압력을 용이하게 높게 유지할 수 있다. 이에 따라서도, 반응 가스나 분리 가스가 내부 공간 S 내에 유입되는 것이 억제된다.
패러데이 차폐판(82)은, 금속 등의 도전성 재료로 제작되며, 도시는 생략하지만 접지되어 있다. 도 7b에 명확하게 나타낸 바와 같이, 패러데이 차폐판(82)의 바닥부에는, 복수의 슬릿(82s)이 형성되어 있다. 각 슬릿(82s)은, 대략 팔각형의 평면 형상을 갖는 안테나(85)의 대응하는 변과 거의 직교하도록 연장되어 있다.
또한, 패러데이 차폐판(82)은, 도 7a 및 도 7b에 도시한 바와 같이, 상단부의 2군데에서 외측으로 절곡되는 지지부(82a)를 갖고 있다. 지지부(82a)가 프레임 부재(81)의 상면에 지지됨으로써, 프레임 부재(81) 내의 소정의 위치에 패러데이 차폐판(82)이 지지된다.
절연판(83)은, 예를 들어 석영 유리에 의해 제작되고, 패러데이 차폐판(82)의 저면보다도 약간 작은 크기를 가지며, 패러데이 차폐판(82)의 저면에 적재된다. 절연판(83)은 패러데이 차폐판(82)과 안테나(85)를 절연하는 반면, 안테나(85)로부터 방사되는 고주파를 아랫쪽으로 투과시킨다.
안테나(85)는, 평면 형상이 대략 팔각형이 되도록 구리제의 중공관(파이프)을 예를 들어 3겹으로 권취함으로써 형성된다. 파이프 내에 냉각수를 순환시킬 수 있고, 이에 따라 안테나(85)에 공급되는 고주파에 의해 안테나(85)가 고온으로 가열되는 것이 방지된다. 또한, 안테나(83)의 양단부에는 수직 설치부(85a)가 설치되어 있고, 수직 설치부(85a)에 지지부(85b)가 설치되어 있다. 지지부(85b)에 의해, 안테나(85)가 패러데이 차폐판(82) 내의 소정의 위치에 유지된다. 또한, 지지부(85b)에는, 매칭 박스(86)를 개재해서 고주파 전원(87)이 접속되어 있다. 고주파 전원(87)은, 예를 들어 13.56MHz의 주파수를 갖는 고주파를 발생할 수 있다.
이와 같은 구성을 갖는 플라즈마 발생원(80)에 의하면, 매칭 박스(86)를 개재해서 고주파 전원(87)으로부터 안테나(85)에 고주파 전력을 공급하면, 안테나(85)에 의해 전자 기계가 발생한다. 이 전자계 중 전계 성분은, 패러데이 차폐판(82)에 의해 차폐되기 때문에, 아랫쪽으로 전파할 수는 없다. 한편, 자계 성분은 패러데이 차폐판(82)의 복수의 슬릿(82s)을 통해서 내부 공간 S 내에 전파한다. 이 자계 성분에 의해, 가스 도입 노즐(92)로부터 소정의 유량비(혼합비)로 내부 공간 S에 공급되는 Ar 가스, O2 가스 및 NH3 가스 등의 가스로부터 플라즈마가 발생한다. 이와 같이 하여 발생하는 플라즈마에 의하면, 웨이퍼 W 위에 퇴적되는 박막에의 조사 손상이나, 진공 용기(1) 내의 각 부재의 손상 등을 저감시킬 수 있다.
또한, 본 실시 형태에 의한 성막 장치에는, 도 1에 도시한 바와 같이, 장치 전체의 동작의 컨트롤을 행하기 위한 컴퓨터로 이루어지는 제어부(100)가 설치되어 있고, 이 제어부(100)의 메모리 내에는, 제어부(100)의 제어하에 후술하는 성막 방법을 성막 장치에 실시시키는 프로그램이 저장되어 있다. 이 프로그램은 후술하는 성막 방법을 실행하도록 스텝 군이 짜여져 있고, 하드 디스크, 콤팩트 디스크, 광자기 디스크, 메모리 카드, 플렉시블 디스크 등의 매체(102)에 기억되어 있으며, 소정의 판독 장치에 의해 기억부(101)에 판독되고, 제어부(100) 내에 인스톨된다.
이어서, 본 발명의 실시 형태에 의한 성막 방법에 대해서, 상술한 성막 장치(1)를 사용해서 실시될 경우를 예로 들어 설명한다. 이로 인해, 지금까지 참조한 도면을 적절히 참조한다.
우선, 도시하지 않은 게이트 밸브를 개방하고, 외부로부터 반송 아암(10)에 의해 반송구(15)(도 3)를 개재해서 웨이퍼 W를 회전 테이블(2)의 오목부(24) 내에 주고 받는다. 이 주고 받기는, 오목부(24)가 반송구(15)에 면하는 위치에 정지했을 때에 오목부(24)의 저면의 관통 구멍을 개재해서 진공 용기(1)의 바닥부측으로부터 도시하지 않은 승강핀이 승강함으로써 행해진다. 이러한 웨이퍼 W의 주고 받기를 회전 테이블(2)을 간헐적으로 회전시켜서 행하고, 회전 테이블(2)의 5개의 오목부(24) 내에 각각 웨이퍼 W를 적재한다.
계속해서 게이트 밸브를 폐쇄하고, 진공 펌프(640)에 의해 진공 용기(1)를 최저 도달 진공도까지 배기한 후, 분리 가스 노즐(41, 42)로부터 분리 가스인 N2 가스를 소정의 유량으로 토출하고, 분리 가스 공급관(51) 및 퍼지 가스 공급관(72, 72)로부터도 N2 가스를 소정의 유량으로 토출한다. 이에 따라, 압력 조정기(650)에 의해 진공 용기(1) 내를 미리 설정한 처리 압력으로 조정한다. 계속해서, 회전 테이블(2)을 시계 방향으로 예를 들어 최대 240rpm의 회전 속도로 회전시키면서 히터 유닛(7)에 의해 웨이퍼 W를 예를 들어 450℃로 가열한다.
이 후, 반응 가스 노즐(31, 32)로부터 각각 Si 함유 가스 및 O3 가스를 토출한다. 또한, 가스 도입 노즐(92)로부터, 소정의 유량비로 혼합된 Ar 가스, O2 가스 및 NH3 가스의 혼합 가스를 내부 공간 S에 공급하고, 고주파 전원(87)으로부터 플라즈마 발생원(80)의 안테나(85)에 고주파를 예를 들어 700W의 전력으로 공급한다. 이에 의해, 내부 공간 S에 플라즈마가 생성된다. 이 플라즈마 중에는, 산소 이온, 산소 라디칼 등의 활성 산소종뿐만 아니라, 플라즈마에 의해 NH3이 분해됨으로써 생성되는 수소 이온이나 수소 라디칼 등의 활성 수소종 또한 존재하고 있다.
여기서, 회전 테이블(2)이 1회전하는 사이에, 이하와 같이 해서 웨이퍼 W에 산화실리콘이 형성된다. 즉, 웨이퍼 W가, 우선 반응 가스 노즐(31)의 하방의 제1 처리 영역 P1을 통과할 때, 웨이퍼 W의 표면에는 Si 함유 가스가 흡착된다. 이어서, 웨이퍼 W가, 반응 가스 노즐(32)의 하방의 제2 처리 영역 P2를 통과할 때, 반응 가스 노즐(32)로부터의 O3 가스에 의해 웨이퍼 W 위의 Si 함유 가스가 산화되고, 산화실리콘의 1 분자층(또는 수분자층)이 형성된다. 계속해서, 웨이퍼 W가 플라즈마 발생원(80)의 하방을 통과할 때, 웨이퍼 W 위의 산화실리콘층은 활성 산소종 및 활성 수소종에 노출된다. 산소 라디칼 등의 활성 산소종은, 예를 들어 Si 함유 가스에 포함되어 산화실리콘층 중에 잔류한 유기물을 산화함으로써 산화실리콘층으로부터 이탈시키도록 작용한다. 이에 따라 산화실리콘층을 고순도화할 수 있다. 또한, 산소 라디칼 등의 활성 산소종이 갖는 높은 에너지가 산화실리콘층 중 Si 원자나 산소 원자에 전해지면, Si 원자 및 산소 원자가 산화실리콘층 중에서 진동하고, 이들이 재배열될 수 있다. 이러한 고순도화 및 재배열 등을 통해서 산화실리콘층이 개질되어, 고품위화의 산화실리콘층이 얻어진다. 또한, 활성 수소종에 의해 발휘된다고 생각되는 효과에 대해서는, 실험 결과와 함께 후술한다.
이하, 원하는 막 두께를 갖는 산화실리콘막이 형성되는 횟수만큼 회전 테이블(2)을 회전한 후, Si 함유 가스와, O3 가스와, Ar 가스, O2 가스 및 NH3 가스의 혼합 가스와의 공급을 정지함으로써 성막 방법을 종료한다. 계속해서, 분리 가스 노즐(41, 42), 분리 가스 공급관(51) 및 퍼지 가스 공급관(72, 72)으로부터의 N2 가스의 공급도 정지하고, 회전 테이블(2)의 회전을 정지한다. 이 후, 진공 용기(1) 내에 웨이퍼 W를 반입했을 때의 수순과 반대 수순에 의해, 진공 용기(1) 내로부터 웨이퍼 W가 반출된다.
이어서, 본 실시 형태에 의한 성막 방법의 효과를 확인하기 위해서 행한 실험의 실험 결과에 대해서 설명한다. 실험은 300mm 직경의 웨이퍼 W를 사용하고, 이하의 조건으로 상술한 성막 방법의 수순에 따라 행하였다.
·회전 테이블(2)의 회전 속도: 20rpm
·진공 용기(1) 내의 압력: 133Pa(1Torr)
·반응 가스 노즐(31)로부터의 Si 함유 가스의 유량: 100sccm
·반응 가스 노즐(32)로부터의 O3 가스의 유량: 10000sccm
·가스 도입 노즐(92)에 공급되는 Ar 가스의 유량: 10000sccm
·가스 도입 노즐(92)에 공급되는 O2 가스의 유량: 50sccm
·가스 도입 노즐(92)에 공급되는 NH3 가스의 유량: 0 내지 150sccm
·플라즈마 발생원(80)에 공급되는 고주파 전력: 1400W(주파수 13.56MHz)
실험에서는, NH3 가스의 유량을 변경하여 수회의 성막 난을 행하고, 웨이퍼 W 위에 퇴적된 산화실리콘막의 다양한 특성이 NH3 가스의 유량에 의해 어떻게 변화하는지를 조사했다.
도 8a는, 성막 속도의 NH3 가스 유량 의존성을 나타내는 그래프이다. 성막 속도는, 각 웨이퍼 W의 면내의 49점에서 측정된 산화실리콘막의 막 두께에 관한 평균 막 두께를 구하고, 평균 막 두께를 성막 시간으로 나눔으로써 구했다. 도시하는 바와 같이, 성막 속도는 NH3 가스 유량의 증가와 함께 증대되며, NH3 가스 유량이 15sccm 이상, 보다 바람직하게는 30sccm 이상에서 거의 일정해지는 것을 알 수 있다. NH3 가스의 공급에 의해 성막 속도가 증대된 이유는, 이하의 실험 결과에 맞춰 후술한다.
도 8b는, 막 두께 균일성의 NH3 가스 유량 의존성을 나타내는 그래프이다. 막 두께 균일성은, 각 웨이퍼 W의 면내의 49점에서 측정된 산화실리콘막의 막 두께에 대해서, (최대 막 두께-최소 막 두께)/(평균 막 두께)에 의해 구했다. 도시하는 바와 같이, 막 두께 균일성은 NH3 가스 유량의 증가에 수반해서 개선되고, NH3 가스 유량을 더욱 증가시키면 악화된 경향이 보인다. NH3 가스 유량이 15sccm부터 75sccm까지의 범위에서는, 막 두께 균일성은 1.67%부터 2.88%까지의 범위에 포함되어, 충분한 균일성이 얻어지고 있다고 할 수 있다. 또한, NH3 가스 유량이 25sccm부터 50sccm까지의 범위에서는, 막 두께 균일성은 1.67%부터 1.82%까지 포함되어, 균일성이 우수한 산화실리콘막이 얻어졌다고 할 수 있다. 또한, NH3 가스와 함께 가스 도입 노즐(92)에 공급되는 Ar 가스의 유량이 10000sccm이며, 이 유량에 대한 NH3 가스 유량이 0.15%부터 0.75%까지의 범위일 때 바람직하고, 0.3%부터 0.5%까지의 범위일 때 더욱 바람직하다.
도 9는, NH3 가스 유량을 30sccm 공급해서 성막한 산화실리콘막의 내압 시험의 결과를 나타내는 그래프이다. 측정은, 웨이퍼 W의 면내의 9점(도 9의 그래프내의 삽입 도면을 참조)으로 행했다. 전류 밀도-전계 곡선은 9점의 측정 개소에 있어서 거의 중첩되어 있고, 이 결과로부터 산화실리콘막의 내압 특성이 웨이퍼 W 면내에서 거의 균일해져 있다고 할 수 있다.
도 10은, NH3 가스를 공급하지 않고 성막한 산화실리콘막 및 NH3 가스를 30sccm 공급해서 성막한 산화실리콘막에 포함되는 Si-OH 결합 및 OH기의 밀도를 푸리에 변환 적외 분광(FTIR)으로 측정한 결과를 나타낸다. 도시하는 바와 같이, NH3 가스를 공급하지 않는 경우에 비하여 NH3 가스를 공급한 경우에는, OH기에 비하여 Si-OH 결합이 상대적으로 증가되어 있는 것을 알 수 있다. 이 결과로부터, 플라즈마 발생원(80)에 의해 내부 공간 S에 생성된 플라즈마에 의해, NH3 가스가 분해되어 H 라디칼 등의 활성 수소종이 생성되고, 웨이퍼 W 표면의 산소 원자와 결합하는 것이 시사된다. 이와 같이 하여 생성된 Si-OH 결합의 OH기는, Si 함유 가스에 대한 흡착 사이트로서 작용한다고 생각할 수 있다. 도 11a에 도시한 바와 같이, 성막 중 산화실리콘막의 최표면에 산소 원자면이 나타나 있는 경우, Si 함유 가스는, 그의 최표면에 흡착하기 어렵거나 또는 흡착해도 O3 가스에 의해 산화되기 전에 이탈해버린다. 그러나, 도 11b에 도시한 바와 같이, NH3 가스에서 유래하는 활성 수소종에 의해 산소 원자가 수소 원자로 종단되는 경우, Si 함유 가스는, 예를 들어 그의 OH기 사이에 작용하는 분자간력 등에 의해 용이하게 흡착될 것으로 생각된다. 따라서, Si 함유 가스의 흡착이 촉진되고, 그 결과 NH3 가스를 공급하지 않는 경우에 비해, 산화실리콘막의 성막 속도가 증대될 것으로 생각된다.
또한, NH3 가스가 분해해서 발생된 활성 수소종에 의해 형성되는 Si-OH 결합은, 산화실리콘막의 최표면 위에 균일하게 분포되고, 거기에 Si 함유 가스가 흡착되기 때문에, 오존 가스의 산화를 통해서 형성되는 산화실리콘막의 막 두께 균일성도 더욱 개선될 것으로 생각된다. 도 8b에 도시된 바와 같이 막 두께 균일성이 개선된 것은, 이러한 이유에 의한 것이라고 생각할 수 있다.
또한, 본 발명의 발명자들이 행한 에칭 속도의 측정 결과에서는, NH3 가스를 공급한 경우에도 에칭 속도의 현저한 증가가 인정되지 않았다. 이로 인해, Si-OH 결합에 있어서의 OH기의 수소 원자는 Si 함유 가스의 산화시에 반응 생성물과 함께 이탈하고, 에칭 특성에 영향을 미칠 정도로는 잔류하지 않을 것으로 생각된다. 또한, 2차 이온 질량 분석계(SIMS)를 사용한 측정의 결과, 내부 공간 S에 NH3 가스를 공급한 경우에도, 얻어진 산화실리콘막 중 질소가 증가하는 경우는 거의 없었다. 즉, NH3 가스의 공급에 따른 악영향은 거의 없다고 할 수 있다.
이어서, 상술한 실시 형태의 변형예에 대해서 설명한다. 이 변형예에서는, 회전 테이블(2)을 회전하면서, 반응 가스 노즐(31)로부터의 Si 함유 가스의 공급에 의해 웨이퍼 W의 표면에 Si 함유 가스를 흡착시키고(이하, 간단히 흡착이라 함), 반응 가스 노즐(32)로부터의 오존 가스의 공급에 의해, 흡착된 Si 함유 가스를 산화해서 산화실리콘을 생성하고(이하, 간단히 산화라 함), 플라즈마 발생원(80)에 의해, 수소 함유 가스를 포함하는 플라즈마 생성 가스(Ar, O2 및 NH3의 혼합 가스)에 의한 플라즈마를 산화실리콘에 조사(이하, 간단히 플라즈마 조사라 함)한다는 사이클에 앞서, 흡착과 산화에 의한 산화실리콘막의 성막이 행해진다. 이 성막이 행해지는 이유는 이하와 같다.
산화실리콘막을 성막하는 초기의 단계에 있어서는, 플라즈마가 산화실리콘막을 투과해서 하지(下地)의 실리콘층(또는 웨이퍼)에 도달하는 경우가 있다. 이 경우, 플라즈마가 도달한 부분에서는 실리콘층이 산화되어서 산화실리콘층(플라즈마 산화실리콘층)이 되기 때문에, 실리콘층의 두께가 얇아진다. 예를 들어, 산화실리콘막이 성막되는 하지로서 도전성의 폴리실리콘 배선층이 있으면, 폴리실리콘 배선층의 두께가 얇아지고, 그의 전기 저항이 원하는 값보다도 작아진다는 사태가 될 수도 있다.
또한, 실리콘층의 산화는 플라즈마 강도에 크게 영향을 받기 때문에, 플라즈마 강도의 면내 분포에 편차가 있으면, 플라즈마 산화실리콘층의 막 두께에도 편차가 발생한다. 흡착, 산화 및 플라즈마 조사에 의한 산화실리콘막(ALD 산화실리콘막)의 막 두께 분포는, 상술한 바와 같이 활성 수소종에 의해 Si-OH 결합이 균일하게 형성되기 때문에, 플라즈마 강도의 면내 분포에는 거의 영향받지 않고 거의 균일해진다. 그러나, ALD 산화실리콘막이 얇은 경우에는, ALD 산화실리콘막의 막 두께가 균일하더라도, 플라즈마 강도 분포에 기초하는 플라즈마 산화실리콘층의 막 두께의 편차가 지배적이 되어, ALD 산화실리콘막의 외관 상의 막 두께의 균일성이 악화되어 버린다(ALD 산화실리콘막과 플라즈마 산화실리콘층과의 합계 막 두께에는 비교적 큰 편차가 발생할 수 있음).
이상의 사정으로부터, 하지의 실리콘층(또는 웨이퍼)의 산화를 억제할 필요가 있다는 것을 알 수 있다. 따라서, 본 변형예에서는, 흡착과 산화에 의해 산화실리콘막을 성막한 후에, 흡착, 산화 및 플라즈마 조사라는 사이클에 의해(ALD) 산화실리콘막을 웨이퍼 W 위에 성막한다. 이에 따르면, 흡착과 산화에 의해 성막한 산화실리콘막에 의해 플라즈마가 하지의 실리콘에 도달하는 것을 억제할 수 있고, 플라즈마에 의해 플라즈마 산화실리콘층이 생성되는 것이 억제될 수 있다.
흡착과 산화에 의한 성막에 의해 얻어지는 산화실리콘막의 바람직한 막 두께에 대해서 검토하기 위해, 이하의 실험을 행했으므로, 여기서 그의 실험 및 실험 결과에 대해서 설명한다.
(실험 1)
이 실험에서는, 우선 실리콘의 복수의 베어 웨이퍼(Bare wafer)를 준비했다. 이들의 베어 웨이퍼에 대하여는, 불산계 에천트(etchant)에 의한 자연 산화막의 제거와, 과산화수소수(H2O2aq.)에 의한 처리가 미리 행해지고 있고, 이 결과, 그의 표면에는 약 1nm의 산화실리콘층이 형성되어 있다. 이 베어 웨이퍼에 대하여, 흡착과 산화에 의한 산화실리콘막을 성막하고, 계속해서 흡착, 산화 및 플라즈마 조사라는 사이클에 의해 산화실리콘막을 성막했다. 여기서 흡착, 산화 및 플라즈마 조사라는 사이클에 의한 산화실리콘막은 100nm로 일정하게 하고, 흡착과 산화에 의한 산화실리콘막의 막 두께(성막시 사이)를 변경함으로써, 5개의 시료를 제작하고, 산화실리콘막의 합계 막 두께를 측정했다. 또한, 플라즈마 조사시에 안테나(85)(도 6 등)에 공급한 고주파 전력은 3300W로 했다. 또한, 가스 도입 노즐(92)(도 7 등)에 공급하는 Ar 가스의 유량은 15000sccm로 하고, O2 가스의 유량은 75sccm로 하고, NH3 가스의 유량은 45sccm로 했다.
도 12는, 흡착과 산화에 의한 산화실리콘막의 막 두께에 대한, 합계 막 두께의 측정값과 예정값과의 차(증분ΔT)를 나타내는 그래프이다. 예를 들어, 흡착과 산화에 의한 산화실리콘의 막 두께가 제로인 경우(흡착과 산화에 의한 산화실리콘을 성막하지 않는 경우), 합계 막 두께의 예정값은 101nm(과산화수소 처리에 의한 산화실리콘막의 막 두께(1nm를 포함함)가 될 것인 바, 도 12의 그래프에 도시한 바와 같이, 합계 막 두께의 측정값은 예정값보다도 약 1.45nm 두껍게 되어 있다. 이 증분ΔT는, 흡착, 산화 및 플라즈마 조사에 의해 산화실리콘막을 성막할 때에, 플라즈마에 의해 베어 웨이퍼가 산화되고, 플라즈마 산화실리콘층이 생성된 결과에 의한 것이라 생각된다. 흡착과 산화에 의한 산화실리콘막의 막 두께를 두껍게 하면, 증분ΔT가 작아져 간다. 구체적으로는, 흡착과 산화에 의한 산화실리콘막의 막 두께가 1.2nm에 있어서 증분ΔT는 최소가 되고, 1.2nm 초과 1.45nm가 되면 약간 증가하기는 하나, 1.45nm를 초과하면 증분ΔT는 거의 일정해진다. 흡착과 산화에 의한 산화실리콘막의 막 두께가 1.2nm를 초과했을 때에 증분ΔT가 증가하는 이유로는, 흡착과 산화에 의해 산화실리콘막을 성막할 때에 베어 웨이퍼에 확산되는 오존의 양이 증가되는 것이 생각된다. 그러나, 흡착과 산화에 의한 산화실리콘막의 막 두께를 증가시켜도 증분ΔT가 일정해지기 때문에, 오존의 베어 웨이퍼에의 확산량은 포화되어 있다고 생각되며, 게다가 플라즈마 조사에 의한 베어 웨이퍼의 산화도 또한 억제되고 있다고 생각된다.
(실험 2)
실험 2에 있어서는, 흡착과 산화에 의한 산화실리콘막의 막 두께를 일정(실험 1에 있어서 증분ΔT가 최소가 된 1.2nm)하게 하고, 흡착, 산화 및 플라즈마 조사에 의한 산화실리콘막의 성막 시간을 변경하여 복수의 시료를 제작했다. 또한, 플라즈마 조사시의 고주파 전력은 3300W로 했다. 또한, 가스 도입 노즐(92)(도 7 등)에 공급하는 Ar 가스의 유량은 15000sccm로 하고, O2 가스의 유량은 75sccm로 하고, NH3 가스의 유량은 45sccm로 했다.
도 13은 흡착, 산화 및 플라즈마 조사에 의한 산화실리콘막의 성막 시간에 대한, 그의 막 두께의 변화를 나타내는 그래프이다. 도시하는 바와 같이, 성막 시간의 증가와 함께 당해 산화실리콘막의 막 두께는 직선적으로 증가해 가는 것을 알 수 있다. 여기서, 성막 시간을 x라 하고, 막 두께를 y라 하면, 도 13 그래프의 결과로부터 최소 제곱법에 기초하여,
<수학식 1>
y=1.80x+2.57
<수학식 2>
R2=1
이라는 결과가 얻어졌다. 수학식 1의 y절편의 2.57(nm)이라는 값은, 흡착, 산화 및 플라즈마 조사에 의해 산화실리콘막을 성막하지 않고, 흡착과 산화에 의한 산화실리콘막에 플라즈마를 조사한 경우에, 베어 웨이퍼 위에 생성된 산화실리콘막의 막 두께에 상당한다. 상술한 바와 같이, 과산화수소수를 사용한 전처리에 의해 베어 웨이퍼의 표면에 생성된 산화실리콘막의 막 두께가 1nm이며, 흡착과 산화에 의해 성막한 산화실리콘막의 막 두께가 1.2nm이기 때문에, 실험 2에 있어서의 증분ΔT는 약 0.4nm{=2.57-(1+1.2)}가 되는 것을 알 수 있다. 즉, 흡착과 산화에 의한 산화실리콘막과, 과산화수소수에 의한 산화실리콘막을 투과해서 플라즈마가 베어 웨이퍼에 이르고, 베어 웨이퍼가 산화되어 약 0.4nm의 막 두께를 갖는 플라즈마 산화실리콘층이 생성되었다고 생각된다.
또한, 수학식 2에 나타낸 바와 같이 상관 계수 R의 제곱이 1이기 때문에, 성막 시간에 의해 막 두께를 고정밀도로 제어 가능하다는 것을 알 수 있다.
(실험 3)
이어서, 산화실리콘막의 합계 막 두께(측정값)에 대한, 당해 합계 막 두께의 웨이퍼 면내 균일성에 대해서 조사한 결과에 대해서 설명한다. 과산화수소수 처리한 베어 웨이퍼 위에 막 두께 1.2nm를 갖는 흡착과 산화에 의한 산화실리콘막을 성막하고, 그 위에 합계 막 두께가 각각 3nm, 6nm 및 9nm가 되도록 흡착, 산화 및 플라즈마 조사라는 사이클에 의한 산화실리콘막을 성막함으로써, 3개의 시료를 제작했다. 시료의 각각에 대해서, 웨이퍼 면내의 49점에서 합계 막 두께를 측정하고, 그의 평균 막 두께와 편차를 구했다. 그 결과를 하기 표 1에 나타내었다.
표 1에 나타낸 바와 같이, 합계 막 두께가 3nm부터 9nm까지 증가하면, 웨이퍼 면내의 막 두께 균일성이 현저히 개선되는 것을 알 수 있다. 이 결과는, 베어 웨이퍼의 최표면의 산화실리콘막의 막 두께 균일성이 흡착, 산화 및 플라즈마 조사라는 사이클에 의해 성막되는 산화실리콘막이 두꺼워짐에 따라 현저히 개선되는 것을 의미하고 있다. 따라서, 흡착, 산화 및 플라즈마 조사라는 사이클에 의한 산화실리콘막의 웨이퍼 면내의 막 두께 균일성은 특히 우수하다고 생각된다.
또한, 합계 막 두께가 3nm인 경우, 베어 웨이퍼의 산화에 의한 플라즈마 산화실리콘층의 막 두께가 0.4nm이고, 과산화수소수 처리에 의한 산화실리콘막의 막 두께가 1nm이고, 흡착과 산화에 의한 산화실리콘막의 막 두께가 1.2nm이기 때문에, 흡착, 산화 및 플라즈마 조사라는 사이클에 의한 산화실리콘막의 막 두께가 0.4nm가 된다. 이 경우, 막 두께 1.6nm를 갖는 흡착과 산화에 의한 산화실리콘막을 퇴적하고, 그의 산화실리콘막에 대하여 플라즈마 조사를 행한다는 것은 실질적으로 동등하다. 실험 3의 합계 막 두께 3nm의 경우에는, 막 두께 1.6nm를 갖는 흡착과 산화에 의한 산화실리콘막을 퇴적하고, 실험 2와 마찬가지의 조건으로 플라즈마 조사를 행했다.
이상, 몇가지 실시 형태 및 실시예를 참조하면서 본 발명을 설명했지만, 본 발명이 상술한 실시 형태 및 실시예로 한정되지 않고, 첨부한 특허 청구 범위에 비추어 다양한 변형 또는 변경이 가능하다.
예를 들어, 상술한 실시 형태에 있어서, 플라즈마 발생원(80)은, 안테나(85)를 갖는 소위 유도 결합 플라즈마(ICP)원으로서 구성되었지만, 용량성 결합 플라즈마(CCP)원으로서 구성되어도 좋다. 이 경우에도, 플라즈마에 의해 NH3 가스로부터 활성된 수소가 생성되고, 웨이퍼 W의 표면 위에 OH기가 형성될 수 있기 때문에, 상술한 효과가 발휘된다.
또한, 성막 중 산화실리콘막의 최표면에 OH기가 생성됨으로써, Si 함유 가스의 흡착이 촉진될 수 있기 때문에, NH3 가스 대신에 H2 가스를 사용해도 좋다. 또한, NH3 가스와 H2 가스를 둘 다 사용해도 좋다. 또한, OH기를 형성할 수 있는 가스인 한, NH3 가스나 H2 가스로 한정되지 않고, 예를 들어 H2O(물), H2N-NH2(히드라진), H2O2(과산화수소) 등을 사용해도 좋다.
또한, 상술한 실시 형태에 있어서는, Si 함유 가스의 웨이퍼 W 위에의 흡착(이하, 간단히 흡착), 웨이퍼 W 위에 흡착한 Si 함유 가스의 O3 가스에 의한 산화(이하, 간단히 산화) 및 플라즈마 발생원(80)에 의해 활성화된, Ar 가스, O2 가스 및 NH3 가스의 혼합 가스에 의한 개질이 회전 테이블(2)의 1회전마다 행해졌지만, 이것으로 한정되는 것은 아니다. 예를 들어, 활성화된 Ar 가스 및 O2 가스의 혼합 가스에 의한 산화실리콘막의 개질(이하, 간단히 개질)과, 활성화된 Ar 가스 및 NH3 가스의 혼합 가스에 의한 산화실리콘막의 최표면에서의 OH기의 형성(이하, 표면 개질)을 개별적으로 행해도 좋다. 즉, 회전 테이블(2)을 복수회 회전하는 기간에 있어서는, 회전 테이블(2)의 1회전마다 흡착, 산화 및 표면 개질을 행하고, 다음의 몇회전의 기간에 있어서는, 회전 테이블(2)의 1회전마다 개질만을 행해도 좋다. 이와 같이 하여도, 활성화된 Ar 가스 및 NH3 가스의 혼합 가스에 의해 웨이퍼 W의 최표면 위에 OH기가 생성될 수 있기 때문에, Si 함유 가스의 흡착이 촉진되고, 성막 속도의 저하를 피하는 것이 가능해진다. 게다가, 활성화된 Ar 가스 및 O2 가스의 혼합 가스에 의한 개질에 의해, 즉 활성 산소종에 의한 고순도화 및 재배열 등을 통해서, 퇴적된 산화실리콘막이 고품질화될 수 있다.
또한, 상술한 실시 형태에 있어서는, Ar 가스, O2 가스 및 NH3 가스의 혼합 가스를 가스 도입 노즐(92)로부터 내부 공간 S에 공급했지만, Ar 가스, O2 가스 및 NH3 가스 각각에 대하여 가스 도입 노즐을 설치해도 좋다.
본 발명의 실시 형태에 따르면, 막 두께 분포나 막질이 우수한 박막을, 성막 속도를 유지하면서 퇴적할 수 있는 성막 방법 및 성막 장치가 제공된다.
Claims (14)
- 진공 용기 내에 기판을 반입하고, 상기 진공 용기 내에 회전 가능하도록 설치된 회전 테이블에 상기 기판을 적재하는 스텝과,
상기 회전 테이블을 회전하는 스텝과,
제1 반응 가스 공급부로부터 상기 기판에 대하여 Si 함유 가스를 공급하고, 상기 Si 함유 가스를 상기 기판에 흡착시키고,
제2 반응 가스 공급부로부터 상기 기판에 대하여, 상기 Si 함유 가스와 반응하는 산화 가스를 공급하고, 상기 기판에 흡착되는 상기 Si 함유 가스와 상기 산화 가스를 반응시켜서 상기 기판 상에 반응 생성물을 형성하고,
상기 제1 및 상기 제2 반응 가스 공급부로부터 상기 회전 테이블의 원주 방향으로 이격해서 설치되는 플라즈마 발생부에 대하여 수소 함유 가스를 공급해서 상기 회전 테이블의 상방에 플라즈마를 생성하고, 상기 반응 생성물에 플라즈마를 조사하는, 흡착-형성-조사 스텝을 포함하고,
상기 흡착-형성-조사 스텝에서, 상기 플라즈마 발생부에 대하여 아르곤 가스가 공급되고,
상기 수소 함유 가스가 암모니아 가스를 포함하고,
상기 아르곤 가스의 공급량에 대한 상기 암모니아 가스의 공급량의 비가, 0.15%부터 0.75%까지의 범위에 있는, 성막 방법. - 삭제
- 삭제
- 삭제
- 제1항에 있어서, 상기 흡착-형성-조사 스텝에서, 상기 플라즈마 발생부에 대하여 아르곤 가스가 공급되고,
상기 수소 함유 가스가 암모니아 가스이며,
상기 아르곤 가스의 공급량에 대한 상기 암모니아 가스의 공급량의 비가, 0.3%부터 0.5%까지의 범위에 있는, 성막 방법. - 제1항에 있어서, 상기 흡착-형성-조사 스텝에 앞서,
상기 제1 반응 가스 공급부로부터 상기 기판에 대하여 상기 Si 함유 가스를 공급하고, 상기 Si 함유 가스를 상기 기판에 흡착시키고,
상기 제2 반응 가스 공급부로부터 상기 기판에 대하여, 상기 Si 함유 가스와 반응하는 상기 산화 가스를 공급하고, 상기 기판에 흡착되는 상기 Si 함유 가스와 상기 산화 가스를 반응시켜서, 상기 기판 상에 반응 생성물을 형성하는, 형성 스텝을 더 포함하는, 성막 방법. - 제6항에 있어서, 상기 형성 스텝에서 상기 기판 상에 형성되는 상기 반응 생성물의 두께가, 상기 흡착-형성-조사 스텝에서 상기 플라즈마가 상기 기판에 도달하지 않도록 결정되는, 성막 방법.
- 기판이 적재되는 기판 적재부를 포함하고, 진공 용기 내에 회전 가능하도록 설치되는 회전 테이블과,
상기 기판 적재부에 적재되는 상기 기판에 대하여 Si 함유 가스를 공급하고, 상기 Si 함유 가스를 상기 기판에 흡착시키는 제1 반응 가스 공급부와,
상기 제1 반응 가스 공급부로부터 상기 회전 테이블의 원주 방향으로 이격해서 설치되고, 상기 기판에 대하여 산화 가스를 공급하고, 상기 기판에 흡착하는 상기 Si 함유 가스와 상기 산화 가스를 반응시켜서 반응 생성물을 상기 기판에 형성하는 제2 반응 가스 공급부와,
상기 제1 및 상기 제2 반응 가스 공급부로부터 상기 회전 테이블의 원주 방향으로 이격해서 설치되고, 상기 회전 테이블의 상방에 플라즈마를 생성하는 플라즈마 생성부와,
상기 플라즈마 생성부에 대하여 수소 함유 가스를 공급하는 가스 공급관과,
상기 플라즈마 생성부에 아르곤 가스를 공급하는 아르곤 가스 공급원을 구비하고,
상기 수소 함유 가스가 암모니아 가스를 포함하고,
상기 아르곤 가스의 공급량에 대한 상기 암모니아 가스의 공급량의 비가, 0.15%부터 0.75%까지의 범위에 있는, 성막 장치. - 제8항에 있어서, 상기 플라즈마 생성부가 상기 회전 테이블의 표면을 향해서 개구하고, 당해 표면과의 사이에 플라즈마가 생성되는 공간을 구성하는 부재를 갖고,
상기 가스 공급관이 상기 공간에 상기 수소 함유 가스를 공급하는, 성막 장치. - 제8항에 있어서, 상기 플라즈마 생성부가, 고주파 전력이 공급되는 코일을 갖는 유도 결합 플라즈마원을 포함하는, 성막 장치.
- 삭제
- 삭제
- 삭제
- 제8항에 있어서, 상기 아르곤 가스의 공급량에 대한 상기 암모니아 가스의 공급량의 비가, 0.3%부터 0.5%까지의 범위에 있는, 성막 장치.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011111627 | 2011-05-18 | ||
JPJP-P-2011-111627 | 2011-05-18 | ||
JP2011252832A JP5602711B2 (ja) | 2011-05-18 | 2011-11-18 | 成膜方法及び成膜装置 |
JPJP-P-2011-252832 | 2011-11-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120129798A KR20120129798A (ko) | 2012-11-28 |
KR101512880B1 true KR101512880B1 (ko) | 2015-04-16 |
Family
ID=47152886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120052468A KR101512880B1 (ko) | 2011-05-18 | 2012-05-17 | 성막 방법 및 성막 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101512880B1 (ko) |
CN (1) | CN102787304B (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6321200B2 (ja) * | 2014-10-29 | 2018-05-09 | 東芝三菱電機産業システム株式会社 | ガス噴射装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008010546A1 (fr) * | 2006-07-20 | 2008-01-24 | Hitachi Kokusai Electric Inc. | Procédé de fabrication de dispositif semiconducteur et appareil de traitement de substrat |
JP2009152640A (ja) | 2005-02-17 | 2009-07-09 | Hitachi Kokusai Electric Inc | 基板処理装置 |
US20110039026A1 (en) | 2009-08-11 | 2011-02-17 | Tokyo Electron Limited | Film deposition apparatus, film deposition method, and computer readable storage medium |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5444961B2 (ja) * | 2009-09-01 | 2014-03-19 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
-
2012
- 2012-05-17 KR KR1020120052468A patent/KR101512880B1/ko active IP Right Grant
- 2012-05-17 CN CN201210155103.6A patent/CN102787304B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009152640A (ja) | 2005-02-17 | 2009-07-09 | Hitachi Kokusai Electric Inc | 基板処理装置 |
WO2008010546A1 (fr) * | 2006-07-20 | 2008-01-24 | Hitachi Kokusai Electric Inc. | Procédé de fabrication de dispositif semiconducteur et appareil de traitement de substrat |
US20110039026A1 (en) | 2009-08-11 | 2011-02-17 | Tokyo Electron Limited | Film deposition apparatus, film deposition method, and computer readable storage medium |
JP2011040574A (ja) * | 2009-08-11 | 2011-02-24 | Tokyo Electron Ltd | 成膜装置、成膜方法及び記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
CN102787304B (zh) | 2015-07-29 |
CN102787304A (zh) | 2012-11-21 |
KR20120129798A (ko) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602711B2 (ja) | 成膜方法及び成膜装置 | |
KR101595148B1 (ko) | 성막 방법 | |
US20140011372A1 (en) | Film deposition method | |
JP6968011B2 (ja) | 成膜方法及び成膜装置 | |
KR101991550B1 (ko) | 실리콘 함유막의 성막 방법 | |
TWI725304B (zh) | 成膜方法 | |
JP7175209B2 (ja) | 成膜方法 | |
TW201804511A (zh) | 成膜裝置 | |
JP2020123673A (ja) | 成膜方法 | |
US10796902B2 (en) | Film deposition method | |
US20090124087A1 (en) | Vertical plasma processing apparatus and method for using same | |
JP2020191340A (ja) | 成膜方法 | |
US20220223408A1 (en) | Method for depositing film and film deposition system | |
KR101512880B1 (ko) | 성막 방법 및 성막 장치 | |
KR102454904B1 (ko) | 성막 방법 | |
US20240170281A1 (en) | Deposition method and deposition apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
FPAY | Annual fee payment |
Payment date: 20180329 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190328 Year of fee payment: 5 |