KR20130085984A - 플라즈마 처리 장치 - Google Patents

플라즈마 처리 장치 Download PDF

Info

Publication number
KR20130085984A
KR20130085984A KR1020130005717A KR20130005717A KR20130085984A KR 20130085984 A KR20130085984 A KR 20130085984A KR 1020130005717 A KR1020130005717 A KR 1020130005717A KR 20130005717 A KR20130005717 A KR 20130005717A KR 20130085984 A KR20130085984 A KR 20130085984A
Authority
KR
South Korea
Prior art keywords
gas
gas flow
electrode
flow passage
upper electrode
Prior art date
Application number
KR1020130005717A
Other languages
English (en)
Other versions
KR101997823B1 (ko
Inventor
키요시 타나카
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20130085984A publication Critical patent/KR20130085984A/ko
Application granted granted Critical
Publication of KR101997823B1 publication Critical patent/KR101997823B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32807Construction (includes replacing parts of the apparatus)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Abstract

상부 전극과 하부 전극을 구비한 플라즈마 처리 장치에서, 상부 전극에 직류 전압을 인가할 시 방전이 발생하지 않도록 한다. 상부 전극(42)과 하부 전극 사이에 고주파 전력을 인가하여 피처리체를 플라즈마 처리하는 플라즈마 처리 장치로서, 절연 부재(60)를 개재하여 상부 전극(42)의 상방에 설치된 접지 부재(61)와, 상부 전극(42)에 직류 전압을 인가하는 직류 전원을 가지고, 상부 전극(42)의 내부에는, 당해 상부 전극(42)의 하면에 형성된 가스 공급구(53)에 연통하는 가스 확산실(54, 55)이 설치되고, 절연 부재(60)의 내부에는, 가스 확산실(54, 55)에 연통하는 가스 유통로(62)가 형성되어 있다. 가스 유통로(62)에는, 평면에서 봤을 때 당해 가스 유통로(62)의 일방의 단부로부터 타방의 단부를 볼 수 없도록, 당해 가스 유통로 내를 흐르는 가스를 적어도 수평 성분을 가지는 방향으로 흘리는 굴곡부(63)가 설치되어 있다.

Description

플라즈마 처리 장치{PLASMA PROCESSING APPARATUS}
본 발명은, 피처리체를 플라즈마 처리하는 플라즈마 처리 장치에 관한 것이다.
플라즈마의 작용에 의해, 예를 들면 반도체 웨이퍼(이하, ‘웨이퍼’라고 함) 등의 피처리체 상에 에칭 또는 성막 등의 미세 가공을 실시하는 장치로서는, 평행 평판형(용량 결합형) 플라즈마 처리 장치, 유도 결합형 플라즈마 처리 장치, 마이크로파 플라즈마 처리 장치 등이 실용화되어 있다.
이 중 평행 평판형 플라즈마 처리 장치에서는, 대향하여 설치된 상부 전극 및 하부 전극 중 적어도 어느 일방에 고주파 전력을 인가하고, 그 전계 에너지에 의해 가스를 여기시켜 플라즈마를 생성하고, 생성된 방전 플라즈마에 의해 피처리체를 미세 가공한다. 이러한 평행 평판형 플라즈마 처리 장치는, 예를 들면 에칭 처리를 행할 경우에 주로 이용 되고 있다.
이러한 평행 평판형 플라즈마 처리 장치에서는, 상부 전극 및 하부 전극이 설치된 처리 용기 내로 처리 가스를 도입하고, 또한 적어도 일방의 전극에 고주파 전력을 인가하여 처리 가스의 플라즈마를 생성하여, 예를 들면 웨이퍼에 대한 에칭 처리가 행해진다.
그런데, 에칭 처리에 의해 에칭 홀을 형성함에 있어서, 에칭 마스크로서 포토레지스트가 이용되는데, 포토레지스트는 음으로 대전하고 있고, 에칭의 초기에는 에칭면에서 전하가 중화된 상태이다. 그런데, 에칭이 진행되어 애스펙트비가 높아지면, 에칭 홀의 바닥에 양이온이 퇴적하고, 에칭면이 양의 전하로 대전되기 때문에, 에칭에의 기여가 큰 양이온이 홀 내에서 전하의 반발에 의해 굴곡되어, 에칭 홀의 형상이 굴곡되거나 또는 휘어진다는 문제가 있었다. 또한, 양이온이 에칭 홀의 저부(底部)에 도달하기 어려워지기 때문에, 에칭 레이트가 저하된다고 하는 문제도 있었다.
이 때문에, 이러한 문제를 해소하기 위하여, 전극에의 고주파 전력의 인가를 교호로 온, 오프하여, 처리 용기 내에서의 플라즈마의 생성과 소멸을 반복하여 플라즈마 처리를 행하고, 또한 고주파 전력을 온으로 하고 있는 기간보다 고주파 전력을 오프로 하고 있는 기간에서 인가 전압이 높아지도록 상부 전극에 음의 직류 전압을 인가하는 방법이 예를 들면 특허 문헌 1에 제안되어 있다.
이러한 방법에 따르면, 고주파 전원을 오프하고 있는 기간에 음의 직류 전압을 인가함으로써, 보다 많은 2 차 전자가 생성되고 또한 크게 가속되어 에칭 홀 내에 입사된다. 이 때문에, 고주파 전원을 오프하고 있는 기간에 많은 2 차 전자 및 음이온을 콘택트 홀 내로 공급할 수 있다. 그 결과, 양의 전하로 대전하고 있던 콘택트 홀 내의 전하를 중화할 수 있으므로, 고주파 전원을 온하여 플라즈마를 생성할 시, 양이온이 에칭 홀 내에서 굴곡되지 않아, 양호한 에칭을 행할 수 있게 된다.
일본특허공개공보 2010-219491호
그런데 최근, 반도체 디바이스의 미세화가 진전되어, 고애스펙트비의 에칭 홀을 형성하는 것이 요구되고 있다. 이러한 고애스펙트비의 에칭 홀의 형성에는, 2 차 전자 및 이온을 보다 크게 가속시키기 위하여, 고주파 전원을 오프하고 있는 기간에 인가하는 음의 직류 전압의 전압을 보다 크게 할 필요가 있다.
그러나, 음의 직류 전압의 인가 전압을 크게 하면, 상부 전극 근방에서 이상 방전이 발생하고, 방전에 의해 생성된 반응 생성물이 웨이퍼 상면에 낙하하여 반도체 디바이스 제품의 수율의 저하의 원인이 된다고 하는 문제가 발생했다. 이 이상 방전에 대하여 설명한다.
도 9는, 상술한 에칭 처리를 행하는 플라즈마 처리 장치의 상부 전극 근방의 구성의 개략을 도시한 종단면도이다. 도 9에 도시한 바와 같이, 상부 전극(200)은 웨이퍼와 대향하여 설치된 전극판(201)과, 당해 전극판(201)을 지지하는 전극 지지체(202)에 의해 구성되어 있다. 전극판(201)은 예를 들면 실리콘 등의 반도체로, 전극 지지체(202)는 예를 들면 알루미늄 등의 도전체로 구성되어 있다. 전극 지지체(202)의 상방에는 원통 형상의 절연 부재(203)를 개재하여, 도전체로 형성된 접지 부재(204)가 전극 지지체(202)에 대향하여 평행하게 설치되어 있다. 전극 지지체(202)의 내부에는 전극판(201)에 형성된 가스 공급구(210)에 연통하는 가스 확산실(211)이 설치되어 있고, 이 가스 확산실(211)로는 절연 부재(203)의 내부에 형성된 가스 유통로(212)를 거쳐 처리 가스가 공급된다. 상부 전극(200)과 접지 부재(204)에는 상부 전극(200)측이 음극, 접지 부재(204)측이 양극이 되도록 직류 전원(220)이 전기적으로 접속되어 있다.
이러한 플라즈마 처리 장치에서는, 종래, 상부 전극(200)에 예를 들면 300 V 정도의 음의 직류 전압을 인가한다. 이 경우에는 문제는 발생하지는 않지만, 2 차 전자 및 이온을 보다 크게 가속시키기 위하여, 인가하는 음의 직류 전압을 예를 들면 1200 V 정도로 상승시키면, 음극인 상부 전극(200)을 구성하는 전극 지지체(202)와 양극인 접지 부재(204) 간에, 가스 유통로(212)를 개재하여 방전이 발생하는 것이 본 발명자들에 의해 확인되었다. 따라서, 종래보다 높은 직류 전압을 인가할 경우라도, 방전이 발생하지 않도록 하는 대책이 요구된다.
본 발명은 이러한 점을 감안하여 이루어진 것이며, 상부 전극과 하부 전극을 구비한 플라즈마 처리 장치에서, 상부 전극에 종래보다 높은 직류 전압을 인가할 시 방전이 발생하지 않도록 하는 것을 목적으로 하고 있다.
상기 목적을 달성하기 위하여, 본 발명은, 처리 용기 내에 설치된 상부 전극과 하부 전극 사이에 고주파 전력을 인가하여 처리 가스를 플라즈마화하고, 상기 플라즈마에 의해 피처리체를 플라즈마 처리하는 플라즈마 처리 장치로서, 절연 부재를 개재하여 상기 상부 전극의 상방에 설치된 접지 부재와, 상기 상부 전극에 음의 직류 전압을 인가하는 직류 전원을 가지고, 상기 상부 전극의 내부에는, 상부 전극의 하면에 형성된 가스 공급구에 연통하는 가스 확산실이 설치되고, 상기 절연 부재의 내부에는, 상기 가스 확산실에 연통하는 가스 유통로가 형성되고, 상기 가스 유통로에는, 평면에서 봤을 때 상기 가스 유통로의 일방의 단부로부터 타방의 단부를 볼 수 없도록, 상기 가스 유통로 내를 흐르는 가스를 적어도 수평 성분을 가지는 방향으로 흘리는 굴곡부가 설치되어 있는 것을 특징으로 하고 있다.
평행인 전극 사이에서 방전이 발생하는 전압은, 파셴의 법칙에 의해 전극 간의 거리와 전극 간의 가스 압력의 곱에 의해 정해진다. 그리고 본 발명자들은, 전극 간의 거리, 즉 가스 유통로의 길이를 크게 할 수 있으면, 방전이 발생하는 전압을 높게 하는, 즉 높은 전압을 인가해도 방전의 발생을 방지할 수 있다는 점에 착목했다. 본 발명은 이 착상에 기초하는 것이며, 본 발명에 따르면, 상부 전극과 접지 부재 사이에 개재하는 절연 부재의 내부에 형성된 가스 유통로에, 평면에서 봤을 때 상기 가스 유통로의 일방의 단부로부터 타방의 단부를 볼 수 없도록, 상기 가스 유통로 내를 흐르는 가스가 적어도 수평 성분을 가지는 방향으로 흘리는 굴곡부가 설치되어 있으므로, 종래와 같이, 상부 전극과 접지 부재 사이에 가스 유통로를 직선 형상으로 형성하는 경우보다 상기 가스 유통로의 거리를 길게 할 수 있다. 이에 의해, 방전 전압의 결정 인자인 전극 간의 거리와 전극 간의 가스 압력 중 전극 간의 거리를 실질적으로 길게 할 수 있으므로, 직류 전압의 인가에 기인하는 방전의 발생을 억제할 수 있다.
또한, 가스 유통로의 거리가 길어짐으로써, 상기 가스 유통로에서의 처리 가스의 압력 손실도 커진다. 그 결과, 전극 간의 가스 압력이 상승하므로, 이에 의해서도 직류 전압의 인가에 기인하는 방전의 발생을 억제할 수 있다.
또한 상기한 굴곡부는, 평면에서 봤을 때 가스 유통로의 일방의 단부로부터 타방의 단부를 볼 수 없도록 형성되어 있음으로써, 상기 굴곡부가 장애물로서 기능하므로, 종래와 같이 상부 전극과 접지 부재 사이에 직선적으로 방전이 발생하지 않는다. 따라서 이 점으로부터도, 직류 전압의 인가에 기인하는 방전의 발생을 억제할 수 있다.
상기 가스 유통로의 굴곡부는, 상기 가스 유통로의 일방의 단부로부터 타방의 단부를 향해 나선 형상으로 형성되어 있어도 된다. 또한 상기 유통로의 굴곡부는, 처리 가스가 상기 가스 유통로 내를 직진하는 것을 방해하는 정류 부재를 상기 가스 유통로의 내부에 설치함으로써 형성되어 있어도 된다. 이러한 경우, 상기 가스 유통로의 내부에서 상기 정류 부재를 이동시키는 구동 기구를 가지고 있어도 된다.
상기 가스 공급구와 상기 가스 확산실 사이에는, 상기 가스 공급구와 가스 확산실 간의 관로 저항을 증가시키는 저항부가 설치되어 있어도 된다.
상기 상부 전극은, 상기 피처리체와 대향하는 전극판과, 상기 전극판의 상면에 설치된 전극 지지체에 의해 구성되고, 상기 저항부는 상기 전극 지지체에 설치되어 있어도 되고, 상기 전극판에 설치되어 있어도 된다.
본 발명에 따르면, 상부 전극과 하부 전극을 구비한 플라즈마 처리 장치에서, 상부 전극에 직류 전압을 인가할 시 방전이 발생하지 않도록 할 수 있다.
도 1은 본 발명을 실시하는 플라즈마 처리 장치의 구성의 일례를 도시한 개략 종단면도이다.
도 2는 본 실시예에 따른 상부 전극 근방의 구성의 개략을 도시한 종단면도이다.
도 3은 플라즈마 처리 시의 각 전원의 동작 상태를 나타낸 타이밍 차트이다.
도 4는 다른 실시예에 따른 상부 전극 근방의 구성의 개략을 도시한 종단면도이다.
도 5는 다른 실시예에 따른 상부 전극 근방의 구성의 개략을 도시한 종단면도이다.
도 6은 다른 실시예에 따른 상부 전극 근방의 구성의 개략을 도시한 종단면도이다.
도 7은 상부 전극에 저항부를 설치한 상태를 도시한 설명도이다.
도 8은 상부 전극에 저항부를 설치한 상태를 도시한 설명도이다.
도 9는 종래의 상부 전극 근방의 구성의 개략을 도시한 종단면도이다.
이하에, 본 발명의 실시예의 일례에 대하여, 도면을 참조하여 설명한다. 도 1은, 본 발명의 실시예에 따른 플라즈마 처리 장치(1)의 개략의 구성을 도시한 종단면도이다. 본 실시예에 따른 플라즈마 처리 장치(1)는, 예를 들면 평행 평판형의 플라즈마 에칭 처리 장치이다.
플라즈마 처리 장치(1)는 실리콘 기판인 웨이퍼(W)를 보지(保持)하는 웨이퍼 척(10)이 설치된 대략 원통 형상의 처리 용기(11)를 가지고 있다. 처리 용기(11)는 접지선(12)에 전기적으로 접속되어 접지되어 있다. 웨이퍼 척(10)의 내부에는 전극(도시하지 않음)이 설치되어 있고, 당해 전극에 직류 전압을 인가함으로써 발생하는 정전기력으로 웨이퍼(W)를 흡착 보지할 수 있도록 구성되어 있다.
웨이퍼 척(10)의 하면은 하부 전극으로서의 서셉터(13)상에 지지되어 있다. 서셉터(13)는, 예를 들면 알루미늄 등의 금속에 의해 대략 원반 형상으로 형성되어 있다. 처리 용기(11)의 저부에는 절연판(14)을 개재하여 지지대(15)가 설치되고, 서셉터(13)는 이 지지대(15)의 상면에 지지되어 있다.
서셉터(13)의 상면으로서 웨이퍼 척(10)의 외주부에는, 플라즈마 처리의 균일성을 향상시키기 위한, 예를 들면 실리콘으로 이루어지는 도전성의 보정 링(20)이 설치되어 있다. 서셉터(13), 지지대(15) 및 보정 링(20)은, 예를 들면 석영으로 이루어지는 원통 부재(21)에 의해 그 외측면이 덮여 있다.
지지대(15)의 내부에는, 냉매가 흐르는 냉매로(15a)가 예를 들면 원환(圓環) 형상으로 형성되어 있고, 당해 냉매로(15a)로 공급되는 냉매의 온도를 제어함으로써, 웨이퍼 척(10)으로 보지되는 웨이퍼(W)의 온도를 제어할 수 있다. 또한, 웨이퍼 척(10)과 당해 웨이퍼 척(10)으로 보지된 웨이퍼(W)의 사이로, 전열 가스로서 예를 들면 헬륨 가스를 공급하는 전열 가스관(22)이, 예를 들면 서셉터(13), 지지대(15) 및 절연판(14)을 관통하여 형성되어 있다.
서셉터(13)에는, 당해 서셉터(13)로 고주파 전력을 공급하여 플라즈마를 생성하기 위한 제 1 고주파 전원(30)이, 제 1 정합기(31)를 개재하여 전기적으로 접속되어 있다. 제 1 고주파 전원(30)은 예를 들면 27 ~ 100 MHz의 주파수, 본 실시예에서는 예를 들면 40 MHz의 고주파 전력을 출력하도록 구성되어 있다. 제 1 정합기(31)는, 제 1 고주파 전원(30)의 내부 임피던스와 부하 임피던스를 매칭시키는 것이며, 처리 용기(11) 내에 플라즈마가 생성되어 있을 때, 제 1 고주파 전원(30)의 내부 임피던스와 부하 임피던스가 외관상 일치하도록 작용한다.
또한 서셉터(13)에는, 당해 서셉터(13)로 고주파 전력을 공급하여 웨이퍼(W)에 바이어스를 인가함으로써 웨이퍼(W)에 이온을 인입하기 위한 제 2 고주파 전원(40)이, 제 2 정합기(41)를 개재하여 전기적으로 접속되어 있다. 제 2 고주파 전원(40)은 예를 들면 400 kHz ~ 13.56 MHz의 주파수, 본 실시예에서는 예를 들면 3.2 MHz의 고주파 전력을 출력하도록 구성되어 있다. 제 2 정합기(41)는, 제 1 정합기(31)와 마찬가지로 제 2 고주파 전원(40)의 내부 임피던스와 부하 임피던스를 매칭시키는 것이다.
하부 전극인 서셉터(13)의 상방에는, 상부 전극(42)이 서셉터(13)에 대향하여 평행하게 설치되어 있다. 상부 전극(42)은, 절연성의 차폐 부재(50)를 개재하여 처리 용기(11)의 상부에 지지되어 있다. 이 상부 전극(42)은, 웨이퍼 척(10)에 보지된 웨이퍼(W)와 대향면을 형성하는 전극판(51)과, 당해 전극판(51)을 상방으로부터 지지하는 전극 지지체(52)에 의해 구성되어 있다. 전극판(51)에는, 처리 용기(11)의 내부로 처리 가스를 공급하는 복수의 가스 공급구(53)가 당해 전극판(51)을 관통하여 형성되어 있다. 전극판(51)에는, 예를 들면 줄 열이 적은 저저항의 도전체 또는 반도체에 의해 구성되고, 본 실시예에서는 예를 들면 실리콘이 이용된다. 또한, 전극 지지체(52)는 도전체에 의해 구성되고, 본 실시예에서는 예를 들면 알루미늄이 이용된다.
또한 상부 전극(42)에는, 제 1 고주파 전원(30) 및 제 2 고주파 전원(40)으로부터의 고주파를 트랩하는 로우 패스 필터(80)를 개재하여, 직류 전원(81)이 전기적으로 접속되어 있다. 이 직류 전원(81)은 상부 전극(42)측이 음극, 접지 부재(61)측이 양극이 되도록 접속되어 있다. 이에 의해, 상부 전극(42)에 음의 직류 전압을 인가할 수 있다. 본 실시예에서는, 음의 직류 전압의 전압은 1200 V이다.
제 1 고주파 전원(30), 제 1 정합기(31), 제 2 고주파 전원(40), 제 2 정합기(41), 직류 전원(81)은 후술하는 제어부(100)에 접속되어 있고, 이들의 동작은 제어부(100)에 의해 제어된다.
전극 지지체(52) 내부의 중앙부에는, 대략 원반 형상으로 형성된 가스 확산실(54)이 설치되어 있다. 가스 확산실(54)의 외방에는, 원환 형상으로 형성된 가스 확산실(55)이 더 설치되어 있다. 또한 전극 지지체(52)의 하부에는, 가스 확산실(54, 55)로부터 하방으로 연장되는 가스홀(56)이 복수 형성되고, 가스 공급구(53)는 당해 가스홀(56)을 개재하여 가스 확산실(54, 55)에 접속되어 있다. 또한, 가스 확산실(54)과 가스 확산실(55)을 별개로 설치하는 것은, 가스 확산실(54)과 가스 확산실(55)의 내부의 압력을 각각 조정하고, 전극 지지체(52) 중앙 부근의 가스홀(56)과 외주부 근방의 가스홀(56)로부터 흐르는 처리 가스의 유량을 독립적으로 조정하기 위함이며, 가스 확산실(54, 55)의 배치 및 형상은 본 실시예에 한정되지 않는다.
전극 지지체(52)의 상방에는, 대략 원통 형상의 절연 부재(60)를 개재하여, 대략 원반 형상의 접지 부재(61)가 전극 지지체(52)에 대향하여 평행하게 설치되어 있다. 접지 부재(61)는 도전체에 의해 구성되고, 본 실시예에서는 예를 들면 알루미늄이 이용된다.
절연 부재(60)의 내부에는, 도 2에 도시한 바와 같이 가스 확산실(54, 55)에 연통하는 가스 유통로(62)가 형성되어 있다. 이 가스 유통로(62)에는, 평면에서 봤을 때 예를 들면 접지 부재(61)측의 단부로부터 가스 유통로(62)를 통하여 전극 지지체(52)측의 단부를 볼 수 없도록, 당해 가스 유통로(62) 내를 흐르는 가스를 적어도 수평 성분을 가지는 방향으로 흘리는 굴곡부(63)가 설치되어 있다. 본 실시예에서의 굴곡부(63)는, 예를 들면 도 2에 도시한 바와 같이 접지 부재(61)측의 단부로부터 전극 지지체(52)측의 단부를 향해 나선 형상으로 가스가 흐르도록 형성되어 있다. 또한 수평 성분을 가지는 방향이란, 수평 방향 외에, 예를 들면 기울기 상방 또는 기울기 하방과 같은, 수직 방향 이외의 모든 방향을 포함하고 있는 것을 의미하고 있다.
가스 유통로(62)에 굴곡부(63)를 설치함으로써, 도 9에 도시된 종래의 절연 부재(203)와 같이 직선 형상으로 가스 유통로(212)를 형성할 경우보다, 가스 유통로(62)의 거리를 길게 할 수 있다. 본 실시예에서의 굴곡부(63)는, 가스 유통로(62)의 거리가 종래의 절연 부재(203)의 가스 유통로(212)의 약 3 배가 되도록 구성되어 있다. 이 굴곡부(63)에 의해, 방전 전압의 결정 인자인 전극 간의 거리와 전극 간의 가스 압력 중 전극 간의 거리, 즉 접지 부재(61)와 상부 전극(42) 사이의 가스 유통로(62)를 길게 할 수 있으므로, 직류 전압의 인가에 기인하는 방전의 발생을 억제하도록 작용한다. 또한, 가스 유통로(62)의 길이를 어느 정도로 할지는 가스 확산실(54, 55) 내의 압력과 인가하는 직류 전압의 관계에 기초하여, 방전이 발생하지 않는 범위에서 임의로 설정하는 것이며, 본 실시예에 한정되지 않는다.
또한 굴곡부(63)를 설치함으로써, 평면에서 봤을 때 가스 유통로(62)의 일방의 단부로부터 타방의 단부를 볼 수 없게 되므로, 당해 굴곡부(63)가, 상부 전극(42)과 접지 부재(61) 사이에 직선적으로 방전이 발생하는 것을 방지하는 장애물로서 기능한다. 따라서, 직류 전압의 인가에 기인하는 방전의 발생 억제를 더 확실히 행할 수 있다.
접지 부재(61)에는 가스 유통로(62)에 대응하는 위치에, 당해 접지 부재(61)를 관통하여 가스 도입구(70)가 형성되어 있다. 가스 도입구(70)에는 가스 공급관(71)이 접속되어 있다. 가스 공급관(71)에는, 도 1에 도시한 바와 같이 처리 가스 공급원(72)이 접속되어 있고, 처리 가스 공급원(72)으로부터 공급된 처리 가스는, 가스 공급관(71) 및 가스 유통로(62)를 거쳐 가스 확산실(54, 55)로 공급된다. 그리고, 가스 확산실(54, 55)로 공급된 처리 가스는, 가스홀(56)과 가스 공급구(53)를 통하여 처리 용기(11) 내로 도입된다. 즉, 상부 전극(42)은 처리 용기(11) 내로 처리 가스를 공급하는 샤워 헤드로서 기능한다. 또한 처리 가스로서는, 종래의 플라즈마 에칭에 이용되고 있는 다양한 것을 채용할 수 있고, 예를 들면 C4F8와 같은 플루오르 카본 가스를 이용해도 되고, 또한 Ar 또는 O2와 같은 다른 가스가 포함되어 있어도 된다.
가스 공급관(71)에는 유량 조정 기구(73)가 설치되어 있고, 처리 가스 공급원(72)으로부터 가스 확산실(54, 55)로 공급하는 가스의 양을 제어할 수 있다. 유량 조정 기구(73)는 예를 들면 매스 플로우 컨트롤러와 밸브에 의해 구성되어 있다.
처리 용기(11)의 저면에는 배기구(90)가 형성되어 있다. 배기구(90)에는 배기관(91)을 개재하여 배기 장치(92)가 접속되어 있고, 당해 배기 장치(92)를 구동함으로써 처리 용기(11) 내의 분위기를 소정의 진공도까지 감압할 수 있다. 또한, 처리 용기(11)의 내벽은 표면에 내플라즈마성의 재료로 이루어지는 용사 피막이 형성된 라이너(93)에 의해 덮여 있다.
이상의 플라즈마 처리 장치(1)에는, 기술한 바와 같이 제어부(100)가 설치되어 있다. 제어부(100)는 예를 들면 컴퓨터이며, 프로그램 저장부(도시하지 않음)를 가지고 있다. 프로그램 저장부에는 각 전원(30, 40, 81) 또는 각 정합기(31, 41) 및 유량 조정 기구(73) 등을 제어하여, 플라즈마 처리 장치(1)를 동작시키기 위한 프로그램도 저장되어 있다.
이 프로그램은, 예를 들면 제 1 고주파 전원(30)의 온, 오프 및 출력의 제어가 가능하게 되어 있다. 따라서, 예를 들면 제 1 고주파 전원(30)을 연속적으로 온으로 하여 플라즈마를 연속적으로 생성하거나, 교호로 온, 오프하여 고주파 전력을 펄스 형상으로 인가하여 플라즈마가 존재하고 있는 상태와 플라즈마가 소멸한 상태를 교호로 형성할 수 있다. 또한, 바이어스용의 제 2 고주파 전원(40)에 대해서도 제 1 고주파 전원(30)과 마찬가지로 온, 오프 및 출력의 제어가 가능하며, 플라즈마 처리 중에 연속적으로 바이어스를 인가하거나 제 1 고주파 전원(30)의 온, 오프에 동기하여 펄스 형상으로 바이어스를 인가하는 것이 가능하다. 또한, 직류 전원(81)의 온, 오프 및 전압과 전류의 제어를 행할 수도 있다.
또한 본 실시예에서는, 예를 들면 도 3에 나타낸 바와 같이, 제 1 고주파 전원(30)을 교호로 온, 오프시키고, 이에 동기하여 제 2 고주파 전원(40)을 교호로 온, 오프시킴으로써, 플라즈마가 생성된 상태와 플라즈마가 소실된 상태를 교호로 반복한다. 이와 함께, 제 1 고주파 전원(30)의 온, 오프에 동기하여, 직류 전원(81)으로부터 상부 전극(42)에 음의 직류 전압을 인가한다. 이 때, 인가되는 음의 직류 전압의 절대값이 플라즈마가 생성되고 있는 기간보다 플라즈마가 소실되고 있는 기간이 커지도록 직류 전원(81)이 제어된다.
이와 같이 각 전원(30, 40, 81)을 제어함으로써, 전원(30, 40) 온의 기간에서 제 1 고주파 전원(30)에 의해 생성되는 플라즈마의 플라즈마 시스와, 제 2 고주파 전원(40)에 의해 생성되는 플라즈마 시스가 중첩되어, 두꺼운 플라즈마 시스가 형성된다. 그 결과, 전원(30, 40) 온의 기간에는 전자가 플라즈마 시스에서 반사되지만, 전원(30, 40) 오프의 기간에는 플라즈마 시스가 소멸되어, 2 차 전자는 용이하게 웨이퍼(W)에 도달한다.
그리고 이 동안, 직류 전원(81)에 의해 인가하는 음의 직류 전압의 절대값이, 플라즈마가 생성되고 있는 기간보다 플라즈마가 소실되고 있는 기간이 커지도록 인가함으로써, 전원(30, 40) 오프의 기간에 다량의 전자를 웨이퍼(W)의 표면으로 공급할 수 있다. 이 때문에, 양의 전하로 대전하고 있던 콘택트 홀 내의 전하를 중화 할 수 있으므로, 고주파 전원을 온하여 플라즈마를 생성할 시, 양이온이 에칭 홀 내에서 굴곡하지 않아, 양호한 에칭을 행할 수 있게 된다.
또한 상기한 프로그램은, 예를 들면 컴퓨터 판독 가능한 하드 디스크(HD), 플렉서블 디스크(FD), 콤팩트 디스크(CD), 마그넷 옵티컬 디스크(MO), 메모리 카드 등의 컴퓨터에 판독 가능한 기억 매체(H)에 기록되고 있던 것으로서, 그 기억 매체(H)로부터 제어부(100)에 인스톨된 것이어도 된다.
본 실시예에 따른 플라즈마 처리 장치(1)는 이상과 같이 구성되어 있고, 이어서 본 실시예에 따른 플라즈마 처리 장치(1)에서의 플라즈마 에칭 처리에 대하여 설명한다.
플라즈마 에칭 처리에 있어서는, 우선 처리 용기(11) 내로 웨이퍼(W)가 반입되고, 웨이퍼 척(10) 상에 재치되어 보지된다. 이어서, 배기 장치(92)에 의해 처리 용기(11) 내를 배기하고, 이와 함께 처리 가스 공급원(72)으로부터 처리 가스를 소정의 유량으로 처리 용기(11) 내로 공급한다. 이 때, 처리 가스의 유량은, 처리 용기(11) 내의 압력이 예를 들면 10 ~ 150 Pa의 범위 내가 되도록 유량 조정 기구(73)에 의해 조정된다.
이 후, 제 1 고주파 전원(30)과 제 2 고주파 전원(40)에 의해, 하부 전극인 서셉터(13)에 고주파 전력을 연속적으로 인가하고, 이와 함께 직류 전원(81)에 의해 상부 전극(42)에 직류 전압을 연속적으로 인가한다. 이에 의해, 처리 용기(11) 내로 공급된 처리 가스는, 상부 전극(42)과 서셉터(13) 사이에서 플라즈마화된다.
이 후, 각 전원(30, 40, 81)을 도 3에 나타낸 패턴으로 제어하고, 처리 용기(11) 내의 플라즈마에 의해 생성되는 이온 또는 라디컬에 의해 웨이퍼(W)의 에칭 처리가 행해진다.
이 때, 가스 유통로(62)에는 굴곡부(63)가 설치되어 있으므로, 접지 부재(61)와 상부 전극(42) 사이에, 직류 전압의 인가에 기인하는 방전이 발생하지 않고, 방전에 의해 생성한 반응 생성물의 웨이퍼 상으로의 낙하에 따른 반도체 디바이스 제품의 수율의 저하를 회피할 수 있다. 이에 의해 높은 음의 직류 전압의 인가가 가능해지기 때문에, 종래에 비해 고애스펙트비의 에칭 홀을 형성할 수 있다.
이상의 실시예에 따르면, 상부 전극(42)과 접지 부재(61) 사이에 개재하는 절연 부재(60)의 내부에 형성된 가스 유통로(62)에, 당해 가스 유통로(62)를 흐르는 가스가 적어도 수평 성분을 가지는 방향으로 흘리는 굴곡부(63)가 설치되고, 이에 의해 평면에서 봤을 때 당해 가스 유통로(62)의 단부로부터 타방의 단부를 볼 수 없도록 구성되어 있으므로, 종래와 같이, 상부 전극과 접지 부재 사이에 가스 유통로를 직선 형상으로 형성하는 경우보다 당해 가스 유통로의 거리를 길게 할 수 있다. 이에 의해, 방전 전압의 결정 인자인 전극 간의 거리와 전극 간의 가스 압력 중 전극 간의 거리, 즉 상부 전극(42)과 접지 부재(61) 간의 전기적인 거리를, 당해 상부 전극(42)과 접지 부재(61)의 물리적인 이동을 수반하지 않고, 실질적으로 길게 할 수 있다. 따라서, 직류 전원(81)에 의해 종래보다 높은 전압으로 직류 전압을 인가할 경우라도, 당해 직류 전압의 인가에 기인하는 방전의 발생을 억제할 수 있다.
또한, 가스 유통로(62)의 거리가 길어짐으로써, 결과적으로 당해 가스 유통로(62)에서의 처리 가스의 압력 손실도 커진다. 따라서, 가스 유통로(62)의 양 단부에서의 압력차가 커진다, 즉, 처리 가스 공급원(72)으로부터 처리 가스가 공급될 시, 접지 부재(61)측에서의 처리 가스의 압력이 상승한다. 따라서, 이에 의해서도 직류 전압의 인가에 기인하는 방전의 발생을 억제할 수 있다.
또한, 굴곡부(63)는 평면에서 봤을 때 가스 유통로(62)의 단부로부터 타방의 단부를 볼 수 없도록 형성되어 있음으로써, 당해 굴곡부(63)가, 상부 전극(42)과 접지 부재(61) 사이에 직선적으로 방전이 발생하는 것을 방지하는 장애물로서 기능한다. 따라서 이상의 실시예에 따르면, 직류 전압의 인가에 기인하는 방전의 발생 억제를 더 확실히 행할 수 있다.
이상의 실시예에서는, 가스 유통로(62)의 굴곡부(63)는 나선 형성으로 형성되어 있었지만, 가스 유통로(62)의 형상은 본 실시예에 한정되지 않고, 굴곡부(63)에 의해, 평면에서 봤을 때 가스 유통로(62)의 일방의 단부로부터 타방의 단부를 볼 수 없게 되도록 형성되어 있으면, 다양한 형상으로 할 수 있다. 구체적으로, 예를 들면 도 4에 도시한 바와 같이 굴곡부(63)의 종단면 형상을 대략 U 자 형상으로 하거나, 도 5에 도시한 바와 같이 대략 V 자 형상으로 해도 된다.
또한 도 6에 도시한 바와 같이, 예를 들면 접지 부재(61)측의 단부로부터 가스 유통로(62)를 통하여 전극 지지체(52)측의 단부를 볼 수 없게 되도록, 즉 처리 가스가 가스 유통로(62) 내를 직진하는 것을 방해하도록, 당해 가스 유통로(62) 내부에 정류 부재(110)를 설치하고, 또한 정류 부재(110)의 외형 형상에 대응하여 이 굴곡부(63)를 형성해도 된다. 또한, 정류 부재(110)를 예를 들면 도시하지 않은 구동 기구에 접속하여 이동 가능하게 하고, 가스 유통로(62)의 내부에서의 정류 부재(110)의 상하 방향의 위치 또는 좌우 방향의 위치를 변화시킴으로써, 가스 유통로(62)의 압력 손실을 상황에 따라 조정하도록 해도 된다. 이러한 경우, 정류 부재(110)를 예를 들면 니들 밸브의 밸브체와 같은, 압력 조정에 의해 바람직한 형상으로 형성해도 된다. 모든 경우에서, 당업자라면 특허 청구의 범위에 기재된 기술적 사상의 범주 내에서, 각종의 변경예 또는 수정예에 상도할 수 있는 것은 명백하며, 그들에 대해서도 당연히 본 발명의 기술적 범위에 속하는 것으로 이해된다.
또한 이상의 실시예에서는, 가스 유통로(62)에 굴곡부(63)를 설치함으로써 상부 전극(42)과 접지 부재(61) 간의 전기적인 거리를 길게 하도록 하고, 그 결과 방전 전압의 타방의 결정 인자인 전극 간의 가스 압력도 커졌지만, 전극 간의 가스 압력을 적극적으로 크게 하기 위하여, 예를 들면 가스 확산실(54, 55)측에 처리 가스의 압력 손실을 증가시키는 저항부(120)를 설치해도 된다.
구체적으로, 예를 들면 도 7에 도시한 바와 같이, 전극 지지체(52)의 가스홀(56)의 일부를 오리피스 형상으로 하는, 즉, 당해 가스홀(56)의 중심부를 향해 돌출되는 원환 형상의 돌출부를 설치함으로써 저항부(120)를 형성해도 된다. 또한 예를 들면 도 8에 도시한 바와 같이, 전극판(51)의 가스 공급구(53)의 일부를 오리피스 형상으로 하여, 저항부(120)를 형성해도 된다. 또한, 가스홀(56)과 가스 공급구(53)의 양방에 저항부(120)를 설치해도 되고, 가스 확산실(54, 55)과 가스 공급구(53) 간의 관로 저항을 증가시킬 수 있으면, 저항부(120)의 형상 및 배치는 임의로 설정할 수 있다. 따라서, 예를 들면 가스홀(56)의 일부에 돌출부를 설치하지 않고, 가스홀(56) 전체에 걸쳐 당해 가스홀(56)의 직경 그 자체를 작게 할 경우에도, 저항부(120)를 형성하고 있다고 할 수 있다. 모든 경우에서, 저항부(120)의 전후에서의 차압이 상승하고, 이에 의해 처리 용기(11) 내의 압력에 대한 가스 확산실(54, 55)의 압력이 높아진다. 그 결과로서, 가스 확산실(54, 55)의 상류측인 가스 유통로(62)에서의 처리 가스의 압력도 높아지고, 이에 의해 직류 전압의 인가에 기인하는 방전의 발생을 억제할 수 있다.
특히, 전극판(51)의 가스 공급구(53)는 처리 용기(11) 내의 플라즈마에 노출되어 침식됨으로써 서서히 그 직경이 확대되기 때문에, 시간 경과에 따라 가스 공급구(53) 그 자체의 관로 저항이 저하된다. 이 경우, 가스 확산실(54, 55) 내의 처리 가스의 압력이 저하되고, 그 결과 가스 유통로(62)에서의 압력도 저하되어 방전이 발생하기 쉬워진다. 이 때문에, 종래에는, 정기적으로 전극판(51)을 교환할 필요가 있었지만, 본 실시예와 같이 저항부(120)를 설치하여 압력 손실을 증가시켜, 가스 확산실(54, 55)의 압력을 유지함으로써, 시간 경과에 따른 가스 압력의 저하를 억제할 수 있다. 이에 의해, 전극판(51)의 교환 빈도도 낮게 억제할 수 있다. 또한 상술한 바와 같이, 전극판(51)의 가스 공급구(53)는 처리 용기(11) 내의 플라즈마에 노출되어 침식되기 때문에, 저항부(120)는 전극판(51)의 하단면으로부터 소정의 거리 이상 떨어진 위치에 설치하는 것이 바람직하다.
이상, 본 발명의 적합한 실시예에 대하여 설명했지만, 본 발명은 이러한 예에 한정되지 않는다. 당업자라면, 특허 청구의 범위에 기재된 기술적 사상의 범주 내에서, 각종의 변경예 또는 수정예에 상도할 수 있는 것은 명백하며, 그들에 대해서도 당연히 본 발명의 기술적 범위에 속하는 것으로 이해된다.
1 : 플라즈마 처리 장치
10 : 웨이퍼 척
11 : 처리 용기
12 : 접지선
13 : 서셉터
14 : 절연판
15 : 지지대
20 : 보정 링
21 : 원통 부재
22 : 전열 가스관
30 : 제 1 고주파 전원
31 : 제 1 정합기
40 : 제 2 고주파 전원
41 : 제 2 정합기
42 : 상부 전극
50 : 차폐 부재
51 : 전극판
52 : 전극 지지체
53 : 가스 공급구
54, 55 : 가스 확산실
56 : 가스홀
60 : 절연 부재
61 : 접지 부재
62 : 가스 유통로
70 : 가스 도입구
71 : 가스 공급관
72 : 처리 가스 공급원
73 : 유량 조정 기구
80 : 로우 패스 필터
81 : 직류 전원
90 : 배기구
91 : 배기관
92 : 배기 장치
93 : 라이너
100 : 제어부
110 : 정류 부재
120 : 저항부
W : 웨이퍼

Claims (7)

  1. 처리 용기 내에 설치된 상부 전극과 하부 전극 사이에 고주파 전력을 인가하여 처리 가스를 플라즈마화하고, 상기 플라즈마에 의해 피처리체를 플라즈마 처리하는 플라즈마 처리 장치로서,
    절연 부재를 개재하여 상기 상부 전극의 상방에 설치된 접지 부재와,
    상기 상부 전극에 음의 직류 전압을 인가하는 직류 전원을 가지고,
    상기 상부 전극의 내부에는, 상부 전극의 하면에 형성된 가스 공급구에 연통하는 가스 확산실이 설치되고,
    상기 절연 부재의 내부에는, 상기 가스 확산실에 연통하는 가스 유통로가 형성되고,
    상기 가스 유통로에는, 평면에서 봤을 때 상기 가스 유통로의 일방의 단부로부터 타방의 단부를 볼 수 없도록, 상기 가스 유통로 내를 흐르는 가스를 적어도 수평 성분을 가지는 방향으로 흘리는 굴곡부가 형성되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  2. 제 1 항에 있어서,
    상기 가스 유통로의 굴곡부는, 상기 가스 유통로의 일방의 단부로부터 타방의 단부를 향해 나선 형상으로 형성되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  3. 제 1 항에 있어서,
    상기 가스 유통로의 굴곡부는, 처리 가스가 상기 가스 유통로 내를 직진하는 것을 방해하는 정류 부재를 상기 가스 유통로의 내부에 설치함으로써 형성되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  4. 제 3 항에 있어서,
    상기 가스 유통로의 내부에서 상기 정류 부재를 이동시키는 구동 기구를 가지는 것을 특징으로 하는 플라즈마 처리 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 가스 공급구와 상기 가스 확산실 사이에는, 상기 가스 공급구와 가스 확산실 간의 관로 저항을 증가시키는 저항부가 설치되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  6. 제 5 항에 있어서,
    상기 상부 전극은, 상기 피처리체와 대향하는 전극판과, 상기 전극판의 상면에 설치된 전극 지지체에 의해 구성되고, 상기 저항부는 상기 전극 지지체에 설치되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  7. 제 5 항에 있어서,
    상기 상부 전극은, 상기 피처리체와 대향하는 전극판과, 상기 전극판의 상면에 설치된 전극 지지체에 의해 구성되고, 상기 저항부는 상기 전극판에 설치되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
KR1020130005717A 2012-01-20 2013-01-18 플라즈마 처리 장치 KR101997823B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012010445A JP5848140B2 (ja) 2012-01-20 2012-01-20 プラズマ処理装置
JPJP-P-2012-010445 2012-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190079482A Division KR102098698B1 (ko) 2012-01-20 2019-07-02 플라즈마 처리 장치

Publications (2)

Publication Number Publication Date
KR20130085984A true KR20130085984A (ko) 2013-07-30
KR101997823B1 KR101997823B1 (ko) 2019-07-08

Family

ID=48816903

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130005717A KR101997823B1 (ko) 2012-01-20 2013-01-18 플라즈마 처리 장치
KR1020190079482A KR102098698B1 (ko) 2012-01-20 2019-07-02 플라즈마 처리 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020190079482A KR102098698B1 (ko) 2012-01-20 2019-07-02 플라즈마 처리 장치

Country Status (5)

Country Link
US (1) US9055661B2 (ko)
JP (1) JP5848140B2 (ko)
KR (2) KR101997823B1 (ko)
CN (2) CN103219216B (ko)
TW (1) TWI576911B (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574268B1 (en) 2011-10-28 2017-02-21 Asm America, Inc. Pulsed valve manifold for atomic layer deposition
JP6034655B2 (ja) * 2012-10-25 2016-11-30 東京エレクトロン株式会社 プラズマ処理装置
US9275869B2 (en) * 2013-08-02 2016-03-01 Lam Research Corporation Fast-gas switching for etching
KR101560623B1 (ko) * 2014-01-03 2015-10-15 주식회사 유진테크 기판처리장치 및 기판처리방법
KR20160022458A (ko) 2014-08-19 2016-03-02 삼성전자주식회사 플라즈마 장비 및 이의 동작 방법
JP6584786B2 (ja) * 2015-02-13 2019-10-02 株式会社日立ハイテクノロジーズ プラズマイオン源および荷電粒子ビーム装置
JP6573252B2 (ja) * 2015-05-26 2019-09-11 サムコ株式会社 プラズマ処理装置用基板温度調整機構
US10233543B2 (en) 2015-10-09 2019-03-19 Applied Materials, Inc. Showerhead assembly with multiple fluid delivery zones
WO2017119074A1 (ja) * 2016-01-06 2017-07-13 東芝三菱電機産業システム株式会社 ガス供給装置
WO2017149738A1 (ja) * 2016-03-03 2017-09-08 コアテクノロジー株式会社 プラズマ処理装置及びプラズマ処理用反応容器の構造
CN107305830B (zh) * 2016-04-20 2020-02-11 中微半导体设备(上海)股份有限公司 电容耦合等离子体处理装置与等离子体处理方法
US10662527B2 (en) * 2016-06-01 2020-05-26 Asm Ip Holding B.V. Manifolds for uniform vapor deposition
CN108573891B (zh) * 2017-03-07 2022-01-11 北京北方华创微电子装备有限公司 等离子体加工设备
KR102096700B1 (ko) * 2017-03-29 2020-04-02 도쿄엘렉트론가부시키가이샤 기판 처리 장치 및 기판 처리 방법
JP7002268B2 (ja) * 2017-09-28 2022-01-20 東京エレクトロン株式会社 プラズマ処理装置
US20240079213A9 (en) * 2017-11-17 2024-03-07 Advanced Energy Industries, Inc. Synchronization of plasma processing components
KR102515110B1 (ko) * 2018-01-29 2023-03-28 주성엔지니어링(주) 기판처리장치
CN108807127B (zh) * 2018-06-01 2020-03-31 北京北方华创微电子装备有限公司 上电极组件、反应腔室以及原子层沉积设备
JP6833784B2 (ja) * 2018-09-28 2021-02-24 芝浦メカトロニクス株式会社 プラズマ処理装置
CN111383892B (zh) * 2018-12-29 2023-03-07 中微半导体设备(上海)股份有限公司 等离子体处理装置中气体喷淋头的接地连接结构
US11492701B2 (en) 2019-03-19 2022-11-08 Asm Ip Holding B.V. Reactor manifolds
US11881384B2 (en) * 2019-09-27 2024-01-23 Applied Materials, Inc. Monolithic modular microwave source with integrated process gas distribution
KR20210048408A (ko) 2019-10-22 2021-05-03 에이에스엠 아이피 홀딩 비.브이. 반도체 증착 반응기 매니폴드
KR102524433B1 (ko) * 2019-11-27 2023-04-24 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 활성 가스 생성 장치
CN111321463B (zh) * 2020-03-06 2021-10-15 北京北方华创微电子装备有限公司 反应腔室
JP2022130067A (ja) 2021-02-25 2022-09-06 東京エレクトロン株式会社 プラズマ処理装置及び基板支持部

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040098551A (ko) * 2003-05-13 2004-11-20 동경 엘렉트론 주식회사 상부 전극 및 플라즈마 처리 장치
JP2008177428A (ja) * 2007-01-19 2008-07-31 Tokyo Electron Ltd プラズマ処理装置
KR20080114612A (ko) * 2007-06-27 2008-12-31 도쿄엘렉트론가부시키가이샤 기판 처리 장치 및 샤워 헤드
JP2010219491A (ja) 2009-02-20 2010-09-30 Tokyo Electron Ltd プラズマエッチング方法、プラズマエッチング装置および記憶媒体
JP2011097063A (ja) * 2004-06-21 2011-05-12 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法、ならびにコンピュータ読み取り可能な記憶媒体
KR20110101348A (ko) * 2010-03-08 2011-09-16 주성엔지니어링(주) 가스분배수단 및 이를 포함한 기판처리장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US6048435A (en) * 1996-07-03 2000-04-11 Tegal Corporation Plasma etch reactor and method for emerging films
KR100469047B1 (ko) * 1997-04-11 2005-01-31 동경 엘렉트론 주식회사 처리장치, 상부전극유니트와 그 사용방법 및 전극유니트와 그 제조방법
WO2004010454A2 (de) * 2002-07-23 2004-01-29 Iplas Gmbh Plasmareaktor zur durchführung von gasreaktionen und verfahren zur plasmagestützten umsetzung von gasen
US7988816B2 (en) * 2004-06-21 2011-08-02 Tokyo Electron Limited Plasma processing apparatus and method
JP4572100B2 (ja) * 2004-09-28 2010-10-27 日本エー・エス・エム株式会社 プラズマ処理装置
EP1975986A4 (en) * 2006-01-20 2013-09-11 Tokyo Electron Ltd PLASMA PROCESSING UNIT
US8216433B2 (en) * 2006-03-07 2012-07-10 University Of The Ryukyus Plasma generator and method of generating plasma using the same
US20070281106A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US8069817B2 (en) * 2007-03-30 2011-12-06 Lam Research Corporation Showerhead electrodes and showerhead electrode assemblies having low-particle performance for semiconductor material processing apparatuses
US8778079B2 (en) * 2007-10-11 2014-07-15 Valence Process Equipment, Inc. Chemical vapor deposition reactor
US20110272099A1 (en) * 2008-05-02 2011-11-10 Oerlikon Trading Ag, Truebbach Plasma processing apparatus and method for the plasma processing of substrates
US8383001B2 (en) * 2009-02-20 2013-02-26 Tokyo Electron Limited Plasma etching method, plasma etching apparatus and storage medium
US9082593B2 (en) * 2011-03-31 2015-07-14 Tokyo Electron Limited Electrode having gas discharge function and plasma processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040098551A (ko) * 2003-05-13 2004-11-20 동경 엘렉트론 주식회사 상부 전극 및 플라즈마 처리 장치
JP2011097063A (ja) * 2004-06-21 2011-05-12 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法、ならびにコンピュータ読み取り可能な記憶媒体
JP2008177428A (ja) * 2007-01-19 2008-07-31 Tokyo Electron Ltd プラズマ処理装置
KR20080114612A (ko) * 2007-06-27 2008-12-31 도쿄엘렉트론가부시키가이샤 기판 처리 장치 및 샤워 헤드
JP2010219491A (ja) 2009-02-20 2010-09-30 Tokyo Electron Ltd プラズマエッチング方法、プラズマエッチング装置および記憶媒体
KR20110101348A (ko) * 2010-03-08 2011-09-16 주성엔지니어링(주) 가스분배수단 및 이를 포함한 기판처리장치

Also Published As

Publication number Publication date
CN107833819A (zh) 2018-03-23
KR101997823B1 (ko) 2019-07-08
TW201349337A (zh) 2013-12-01
JP2013149865A (ja) 2013-08-01
US9055661B2 (en) 2015-06-09
CN107833819B (zh) 2020-05-08
CN103219216B (zh) 2017-11-28
KR20190082721A (ko) 2019-07-10
KR102098698B1 (ko) 2020-04-08
CN103219216A (zh) 2013-07-24
US20130206338A1 (en) 2013-08-15
TWI576911B (zh) 2017-04-01
JP5848140B2 (ja) 2016-01-27

Similar Documents

Publication Publication Date Title
KR102098698B1 (ko) 플라즈마 처리 장치
US11842885B2 (en) Plasma processing apparatus and plasma processing method
US10685862B2 (en) Controlling the RF amplitude of an edge ring of a capacitively coupled plasma process device
US9508530B2 (en) Plasma processing chamber with flexible symmetric RF return strap
US8641916B2 (en) Plasma etching apparatus, plasma etching method and storage medium
US8222157B2 (en) Hybrid RF capacitively and inductively coupled plasma source using multifrequency RF powers and methods of use thereof
TWI505354B (zh) Dry etching apparatus and dry etching method
TWI428061B (zh) 場加強感應耦合電漿(fe-icp)反應器
US20150262794A1 (en) Plasma processing method
US20220238313A1 (en) Apparatus for plasma processing and method of etching
KR20090118978A (ko) 개선된 도즈 제어를 구비하는 다단계 플라즈마 도핑
US20160372306A1 (en) Method for Controlling Plasma Uniformity in Plasma Processing Systems
US20210313151A1 (en) Plasma processing apparatus
KR102053792B1 (ko) 플라즈마 처리 장치
KR102256216B1 (ko) 플라즈마 처리 장치 및 플라즈마 제어 방법
JP2020004780A (ja) プラズマ処理装置およびプラズマ処理方法
US20220399184A1 (en) Plasma uniformity control in pulsed dc plasma chamber
KR20200067104A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP2016096342A (ja) プラズマ処理装置
US20190096636A1 (en) Plasma processing apparatus, plasma processing method and method of manufacturing semiconductor device using the same
KR101754563B1 (ko) 이온 빔 생성 장치, 그를 이용한 기판 처리 장치, 및 이온 빔 제어 방법
US20220399185A1 (en) Plasma chamber and chamber component cleaning methods
CN215008137U (zh) 一种等离子体处理装置
KR102197611B1 (ko) 기판 처리 시스템
KR20220014384A (ko) 기판 처리 장치 및 기판 처리 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant