KR20130060875A - 지문 인식 센서 및 지문 인식 방법 - Google Patents
지문 인식 센서 및 지문 인식 방법 Download PDFInfo
- Publication number
- KR20130060875A KR20130060875A KR1020110127167A KR20110127167A KR20130060875A KR 20130060875 A KR20130060875 A KR 20130060875A KR 1020110127167 A KR1020110127167 A KR 1020110127167A KR 20110127167 A KR20110127167 A KR 20110127167A KR 20130060875 A KR20130060875 A KR 20130060875A
- Authority
- KR
- South Korea
- Prior art keywords
- fingerprint
- detecting
- sensor
- ultrasonic signal
- area
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/117—Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1306—Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1382—Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
- G06V40/1394—Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using acquisition arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Input (AREA)
Abstract
본 발명은 지문 인식 센서 및 지문 인식 방법에 관한 것이다. 본 발명에 따르면, 2차원 평면 상에 마련되는 복수의 압전 센서, 및 상기 복수의 압전 센서 각각을 통해 방출되는 초음파 신호를 이용하여 지문을 검출하는 지문 감지부를 포함하고, 상기 지문 감지부는 상기 복수의 압전 센서 각각을 통해 방출되는 초음파 신호가 서로 중첩되는 상기 2차원 평면 상의 제1영역에서 혈류를 검출하여 상기 지문이 위조 지문인지 여부를 판단한다.
Description
본 발명은 복수의 압전 센서를 통해 방출되는 초음파 신호가 중첩되어 상대적으로 높은 강도를 갖는 영역에서, 중첩된 초음파 신호를 이용하여 접촉된 물체 내의 혈류를 검출함으로써 위조 지문을 구분할 수 있는 지문 인식 센서 및 지문 인식 방법에 관한 것이다.
지문 인식 센서는 사람의 지문을 감지하는 센서로서, 기존에 널리 적용되던 도어락 등의 장치는 물론, 최근에는 전자 기기 전원의 온/오프 또는 슬립(sleep) 모드의 해제 여부를 결정하는 데에도 널리 이용되고 있다. 특히 최근에는 일반적으로 도어락에 적용되는 지문 인식 센서와 달리 작은 부피로 구현할 수 있는 스와이프(swipe) 타입의 지문 인식 센서도 개발되어 모바일 기기에도 지문 인식 센서가 그 적용 비율을 점차 늘려가는 추세이다.
지문 인식 센서는 그 동작 원리에 따라 초음파 방식, 적외선 방식, 정전용량 방식 등으로 구분할 수 있다. 이 가운데 초음파 방식은 복수의 압전 센서에서 방출되는 일정 주파수의 초음파 신호가 지문의 골(VALLEY)과 마루(RIDGE)에서 반사되는 경우 각각의 골과 마루에서의 음향 임피던스(Acoustic Impedance)차이를 초음파 발생원인 해당 복수의 압전 센서를 이용해 측정하여 지문을 감지하는 방식으로, 특히 초음파 방식의 장점은 단순한 지문 인식의 기능을 넘어서 초음파를 펄스(pulse) 형으로 발생시켜 그 반향파에 의한 도플러 효과를 검출함으로써 손가락 내부의 혈류 흐름을 파악할 수 있는 기능을 갖고 있으므로, 이를 이용하여 위조 지문 여부까지 판단할 수 있는 장점을 갖는다.
손가락에 흐르는 대부분의 혈류가 모세혈관을 따른 혈류임을 감안할 때, 도플러 효과를 이용하여 혈류 흐름을 감지하기 위해서는 매우 높은 강도의 초음파 신호를 생성해야 한다. 이를 위해, 종래에는 초음파 신호를 생성, 방출하는 복수의 초음파 신호 생성부에 의도적으로 위상 지연을 부여하거나, 또는 빔 포밍(Beam Forming) 방식을 적용하는 것이 일반적이었다. 그러나 위상 지연 내지 빔 포밍 방식을 적용하는 경우, 회로의 복잡도가 증가함은 물론 전체적인 크기가 증가하여 가격 경쟁력이 저하되고 지문 인식 센서의 소형화가 불가능해 그 적용 분야가 제한되는 문제점이 있다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것으로, 복수의 압전 센서를 포함하는 지문 인식 센서에서, 복수의 압전 센서를 2차원 평면 상에 행렬 형태로 배치하고, 각 압전 센서에서 방출되는 초음파 신호가 중첩되는 제1영역에서 물체로부터 반사되는 초음파 신호를 이용하여 혈류를 감지한다. 따라서, 추가적인 회로 구성없이 간단한 구조로 생체 여부를 판단할 수 있는 지문 인식 센서를 구현할 수 있다.
본 발명의 제1 기술적인 측면에 따르면, 2차원 평면 상에 마련되는 복수의 압전 센서, 및 상기 복수의 압전 센서 각각을 통해 방출되는 초음파 신호를 이용하여 지문을 검출하는 지문 감지부를 포함하고, 상기 지문 감지부는 상기 복수의 압전 센서 각각을 통해 방출되는 초음파 신호가 서로 중첩되는 상기 2차원 평면 상의 제1영역에서 혈류를 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 지문 인식 센서를 제안한다.
또한, 상기 제1영역은 상기 2차원 평면의 중심점을 기준으로 소정의 면적을 갖는 영역인 지문 인식 센서를 제안한다.
또한, 상기 지문 감지부는, 상기 제1영역에서 혈류를 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 데에 실패하면, 상기 제1영역보다 큰 면적을 갖는 제2영역에서 혈류를 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 지문 인식 센서를 제안한다.
또한, 상기 지문 감지부는, 상기 복수의 압전 센서 각각에서 방출되는 초음파 신호에 의해 생성되는 음향 임피던스 차이에 기초하여 상기 지문을 검출하는 지문 인식 센서를 제안한다.
또한, 상기 지문 감지부는, 상기 지문의 골(valley)에 대응하는 제1 음향 임피던스와, 상기 지문의 마루(ridge)에 대응하는 제2 음향 임피던스의 차이에 기초하여 상기 지문을 검출하는 지문 인식 센서를 제안한다.
또한, 상기 복수의 압전 센서 사이에 마련되는 폴리머 충진재를 더 포함하는 지문 인식 센서를 제안한다.
또한, 상기 지문 감지부는, 상기 혈류에 의해 상기 초음파 신호에서 발생하는 주파수 변화를 상기 제1영역에서 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 지문 인식 센서를 제안한다.
또한, 상기 혈류의 속도에 기초하여 혈당량을 측정하는 혈당량 검출부를 더 포함하는 지문 인식 센서를 제안한다.
한편, 본 발명의 제2 기술적인 측면에 따르면, 2차원 평면에 행렬 형태로 마련되는 복수의 압전 센서를 통해서 특정 물체로 초음파 신호를 방출하는 단계, 상기 초음파 신호가 중첩되는 상기 2차원 평면의 제1영역 내에서, 상기 초음파 신호가 상기 물체에 반사되어 생성되는 반사 신호를 검출하는 단계, 상기 초음파 신호와 상기 반사 신호 사이의 주파수 차이를 이용하여 상기 물체가 생체인지 여부를 판단하는 단계를 포함하는 지문 인식 방법을 제안한다.
또한, 상기 판단 단계는, 상기 초음파 신호와 상기 반사 신호 사이에서 상기 물체 내의 혈류에 의해 생성되는 주파수 차이를 이용하여 상기 물체가 생체인지 여부를 판단하는 지문 인식 방법을 제안한다.
또한, 상기 물체가 생체인지 여부를 판단하는 데에 실패하면, 상기 제1영역보다 큰 면적을 갖는 제2영역 내에서 상기 반사 신호를 검출하는 단계를 더 포함하는 지문 인식 방법을 제안한다.
또한, 상기 물체의 지문을 감지하는 단계를 더 포함하는 지문 인식 방법을 제안한다.
또한, 상기 지문 감지 단계는, 상기 지문의 골(valley)에 대응하는 제1 음향 임피던스와, 상기 지문의 마루(ridge)에 대응하는 제2 음향 임피던스의 차이에 기초하여 상기 지문을 감지하는 지문 인식 방법을 제안한다.
본 발명에 따르면 2차원 평면에 행렬 구조로 배열되는 복수의 압전 센서를 통해 초음파 신호를 방출하고, 방출된 초음파 신호가 서로 다른 음향 임피던스를 갖는 물체로 진행하는 경우 생성되는 반사 신호를 검출하여 지문을 감지한다. 또한, 방출된 초음파 신호가 중첩되어 상대적으로 높은 강도를 갖는 신호가 생성되는 2차원 평면의 제1영역 내의 반사 신호를 이용하여 혈류를 검출함으로써 별도의 구성 요소 추가 없이 지문과 동시에 생체 정보를 감지할 수 있는 지문 인식 센서를 구현할 수 있다.
도 1은 본 발명의 실시예에 따른 지문 인식 센서를 나타낸 도이다.
도 2는 본 발명의 실시예에 따른 지문 인식 센서를 간단하게 나타낸 블록도이다.
도 3 내지 도 5는 본 발명의 실시예에 따른 지문 인식 센서의 동작 원리를 설명하는 데에 제공되는 도이다.
도 6은 본 발명의 실시예에 따른 지문 인식 방법을 설명하는 데에 제공되는 흐름도이다.
도 2는 본 발명의 실시예에 따른 지문 인식 센서를 간단하게 나타낸 블록도이다.
도 3 내지 도 5는 본 발명의 실시예에 따른 지문 인식 센서의 동작 원리를 설명하는 데에 제공되는 도이다.
도 6은 본 발명의 실시예에 따른 지문 인식 방법을 설명하는 데에 제공되는 흐름도이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 지문 인식 센서를 나타낸 도이다.
도 1을 참조하면, 본 실시예에 따른 지문 인식 센서(100)는, 복수의 압전 센서(110), 복수의 압전 센서(110)와 전기적으로 연결되어 지문을 감지하는 지문 감지부(120), 및 복수의 압전 센서(110) 사이에 마련되는 폴리머 충진재(130)를 포함할 수 있다. 복수의 압전 센서(110)는 폴리머 충진재(130)와 함께 2차원 평면 상에서 행렬 구조로 어레이를 이루도록 배치될 수 있다.
지문 감지부(120)는 복수의 압전 센서(110) 각각에 연결되며, 특히, 각 압전 센서(110)의 높이 방향으로 상하에 마련되는 전극과 연결된다. 압전 센서(110)는 1-3 압전 복합체(piezo composite)일 수 있으며, 높이 방향으로 길게 연장되는 기둥부(pillar)의 상, 하면에 전극을 배치함으로써 제조될 수 있다. 기둥부는 PZT, PST, Quartz, (Pb, Sm)TiO3, PMN(Pb(MgNb)O3)-PT(PbTiO3), PVDF 또는 PVDF-TrFe 중 적어도 하나의 물질을 포함할 수 있다.
지문 감지부(120)는 기둥부의 상 하면에 마련되는 전극에 초음파 대역의 공진 주파수를 갖는 전압을 인가하여 기둥부를 상하로 진동시킴으로써 초음파 신호를 생성할 수 있다. 복수의 압전 센서(110) 각각의 상, 하면은 한 변 또는 그 지름이 40 내지 50㎛인 사각형 또는 원일 수 있다.
복수의 압전 센서(110)의 사이에 마련되는 폴리머 충진재(130)는 복수의 압전 센서(110) 각각의 진동이 서로 영향을 미치지 않도록 차단할 수 있다. 기둥 형상을 갖는 복수의 압전 센서(110)를 조밀하게 배치하고 그 사이에 폴리머 충진재(130)를 형성하는 방식으로 압전 센서(110)를 포함하는 어레이 구조물이 제조된다. 따라서, 동일한 면적 내에 많은 수의 압전 센서(110)가 배치될수록 제조 공정의 난이도가 증가하여 수율 저하 등과 같은 문제가 발생할 수 있다. 그러나, 각각의 압전 센서(110)에서 생성되는 초음파 신호에 의해 지문의 골(valley)과 마루(ridge)로부터 생성된 음향 임피던스 차를 측정함으로써 지문을 정확하게 감지할 수 있으므로, 지문을 정확히 감지하기 위해서는 동일한 면적 내에 가능한 많은 수의 압전 센서(110)를 배치할 필요가 있다.
도 2는 본 발명의 실시예에 따른 지문 인식 센서를 간단하게 나타낸 블록도이다.
도 2를 참조하면, 본 실시예에 따른 지문 인식 센서(200)는 복수의 압전 센서(110)와 폴리머 충진재(130)를 포함하는 압전 센서 어레이(210), 및 지문 감지부(220)를 포함한다. 지문 감지부(220)는 신호 생성부(222), 신호 감지부(224), 연산부(226) 등을 포함할 수 있다.
압전 센서 어레이(210)는 도 1에 도시된 바와 같이 행렬 형태로 조밀하게 배치되는 복수의 압전 센서(110)와, 그 사이에 배치되어 각 압전 센서(110) 사이의 진동을 절연시키는 폴리머 충진재(130)를 포함할 수 있다. 압전 센서(110) 각각은 진동에 용이한 재료로 마련되는 기둥부(pillar)와, 기둥부의 상 하면에 전도성 물질로 마련되는 전극을 포함할 수 있다. 앞서 설명한 바와 같이, 기둥부는 PZT와 같은 재료로 마련될 수 있으며, 전극은 전도성이 우수한 금속(Cu, Ag, Ni, Mo 또는 이의 합금 등)으로 형성될 수 있다.
신호 생성부(222)는 압전 센서 어레이(210)에 포함되는 압전 센서(110)의 전극과 전기적으로 연결되고, 각 전극에 소정의 주파수를 갖는 교류 전압을 인가한다. 전극에 인가되는 교류 전압에 의해 압전 센서(110)의 기둥부가 상하로 진동하면서 소정의 공진 주파수(ex> 10MHz)를 갖는 초음파 신호가 외부로 방출된다.
압전 센서 어레이(210) 상에는 소정의 보호층이 추가로 구비될 수 있으며, 보호층의 일면에 특정 물체가 접촉될 수 있다. 보호층의 일면에 접촉되는 물체가 지문을 포함하는 사람의 손가락인 경우, 지문에 존재하는 미세한 골(valley)과 마루(ridge)에 따라 압전 센서(110)가 방출하는 초음파 신호의 반사 패턴이 다르게 결정된다.
보호층의 일면과 같은 접촉면에 어떠한 물체도 접촉되지 않은 경우를 가정하면, 접촉면과 공기(air)의 매질 차이로 인해 압전 센서(110)에서 생성되는 초음파 신호는 거의 대부분이 접촉면을 통과하지 못하고 반사되어 되돌아온다. 반면, 접촉면에 지문을 포함하는 특정 물체가 접촉된 경우에는, 지문의 마루(ridge)에 직접 맞닿은 압전 센서(110)에서 생성되는 초음파 신호의 일부가 접촉면과 지문의 계면을 통과하게 되고, 생성된 초음파 신호의 일부만이 반사되어 되돌아온다. 이와 같이 반사되어 돌아오는 초음파 신호의 세기는 각 물질의 음향 임피던스에 따라 결정될 수 있다. 결국 신호 감지부(224)는 지문의 골(valley)과 마루(ridge)에서 초음파 신호에 의해 생성되는 음향 임피던스 차이를 각 압전 센서(110)로부터 측정하여 해당 압전 센서(110)가 지문의 마루(ridge)에 맞닿은 센서인지 여부를 판단할 수 있다.
연산부(226)는 신호 감지부(224)가 감지한 신호를 분석하여 지문 패턴을 연산한다. 앞서 설명한 바와 같이, 반사 신호의 강도가 낮게 생성된 압전 센서(110)는 지문의 마루(ridge)에 맞닿은 압전 센서(110)이며, 반사 신호의 강도가 높게 생성된 - 이상적으로는 출력되는 초음파 신호의 강도와 거의 동일하게 생성된 - 압전 센서(110)는 지문의 골(valley)에 대응하는 압전 센서(110)이다. 따라서, 각 압전 센서(110)에서 검출되는 음향 임피던스의 차이로부터 지문 패턴을 연산할 수 있다.
도 3 및 도 5는 본 발명의 실시예에 따른 지문 인식 센서의 동작 원리를 설명하는 데에 제공되는 도이다.
도 3를 참조하면, 지문 인식 센서(300) 위에 손가락(330) 등의 물체가 접촉된다. 지문 인식 센서(300)의 단면 일부를 확대 도시한 원을 살펴보면, 지문 인식 센서(300)는 압전 센서(310)와 폴리머 충진재(320)가 교대로 배치되며, 압전 센서(310)의 제1면을 통해 소정의 주파수를 갖는 초음파 신호가 손가락(330)으로 방출된다.
손가락(330)이 접촉되지 않은 경우를 가정하면, 초음파 신호가 방출되는 압전 센서(310)와 공기 사이의 음향 임피던스 차이로 인해, 압전 센서(310)에서 방출되는 초음파 신호의 대부분이 압전 센서(310)와 공기의 계면을 통과하지 못하고 압전 센서(310) 내부로 되돌아 온다. 반면, 손가락(330)이 접촉된 경우에는 압전 센서(310)에서 방출되는 초음파 신호의 일부가 손가락(330)의 피부와 초음파 센서(310)의 경계면을 뚫고 손가락(330) 내부로 진행하게 되며, 따라서 반사되어 돌아오는 신ㅓ묘호의 강도가 낮아져 이로부터 지문 패턴을 감지할 수 있다.
육안으로는 확인이 어려우나, 손가락(330)의 지문은 수많은 골(333)과 마루(335)가 반복되어 나타나는 패턴을 가지며, 골(333)과 마루(335)가 반복되면서 높이 차를 나타낸다. 따라서, 도 3의 확대 단면도 부분에 나타난 바와 같이, 지문의 골(333)에서는 압전 센서(310)가 피부와 직접 맞닿지 않으며, 지문의 마루(335)에서는 압전 센서(310)가 피부와 직접 맞닿게 된다.
결국 지문의 골(333)에 대응하는 압전 센서(310)에서 방출되는 초음파 신호(340)는 외부로 극히 적은 신호만이 방출되고 거의 대부분의 초음파 신호가 내부로 반사되며, 지문의 마루(335)에 대응하는 압전 센서(310)에서 방출되는 초음파 신호(345)는 상당량이 손가락(330) 경계면을 통과하고 진행하여 반사되는 초음파 신호의 강도가 상대적으로 크게 감소한다. 따라서, 각 압전 센서(410)에서 지문의 골(430)과 마루(435)에 따른 음향 임피던스 차이로부터 발생하는 초음파 신호(440, 445)가 반사되어 되돌아오는 반사 신호의 세기 또는 반사 계수를 측정함으로써 손가락(430)의 지문 패턴을 감지할 수 있다.
도 4는 초음파 신호를 이용하여 유체의 흐름을 감지하는 방법을 나타낸 도이다. 손가락(330) 지문의 마루(335)에 대응하는 압전 센서(310)에서 생성되는 초음파 신호(345)는 손가락(330)의 경계면을 뚫고 내부로 진행할 수 있으며, 따라서 손가락(330) 내의 모세 혈관 등에서 흐르는 피의 흐름(혈류)을 감지할 수 있다. 다만, 도 5a 및 도 5b에 도시한 바와 같이 도플러 효과를 이용하기 때문에, 초음파 신호가 모세 혈관에 입사하는 입사각이 90°인 경우에는 혈류의 흐름을 감지할 수가 없으며, 입사각이 90°보다 작은 경우에 도플러 효과를 이용하여 혈류를 감지할 수 있다.
다만, 지문은 손가락(330)의 거의 끝에 형성되어 있으며, 따라서 지문 인식 센서에 밀착되는 손가락(330) 내의 혈관은 모세 혈관이며, 동맥이나 정맥 같이 굵고 혈류 속도가 빠른 혈관은 없는 경우가 대부분이다. 따라서, 압전 센서(310)에서 생성, 방출되어 손가락(330) 내부로 침투하는 초음파 신호(345)의 세기가 충분하지 못 하면, 초음파 신호(345)가 모세 혈관에 도달하지 못 하거나, 또는 모세 혈관까지 도달하더라도 신호의 강도가 부족하여 모세 혈관에서 느리게 흐르는 피를 검출하지 못할 수도 있다.
따라서, 손가락(330) 내의 모세 혈관을 흐르는 피를 감지하여 접촉된 손가락(330)이 생체인지 여부를 판단하기 위해서는, 모세 혈관까지 도달할 수 있고, 모세 혈관에서 흐르는 피를 감지할 수 있을 정도로 충분한 강도를 갖는 초음파 신호를 생성해야 한다. 이를 위해, 종래에는 빔 포밍 또는 위상 지연 방식을 이용하였으나, 빔 포밍 또는 위상 지연 방식을 적용하는 경우 하드웨어의 복잡도가 증가하고, 추가로 부가되어야 하는 모듈로 인해 가격 경쟁력 등이 저하되는 문제가 있다. 특히 위상 지연 방식을 적용하는 경우, 서로 다른 위상을 갖는 신호를 각각의 압전 센서(310)에서 생성하기 위해 회로의 복잡도가 크게 증가하는 문제가 있다. 이하, 도 5를 참조하여 본 발명에서 상기와 같은 문제점을 해결하기 위해 제안하는 방식을 설명한다.
도 5는 본 발명의 실시예에 따른 지문 인식 센서의 동작 원리를 설명하는 데에 제공되는 도이다.
도 5a를 참조하면, 지문 인식 센서에 포함되는 압전 센서 어레이의 단면이 도시되어 있다. 압전 센서 어레이는 교대로 배치되는 압전 센서(510)와 폴리머 충진재(520)를 포함하며, 각각의 압전 센서(510)에서는 소정 주파수를 갖는 초음파 신호가 방출된다. 앞서 설명한 바와 같이, 지문의 골에 대응하는 압전 센서(510)에서 방출되는 초음파 신호는 압전 센서(510)와 공기의 경계면을 통과하지 못하고 거의 대부분이 반사되어 되돌아오는 반면, 지문의 마루에 대응하는 압전 센서(510)에 대응하는 압전 센서(510)에서 방출되는 초음파 신호는 압전 센서(510)와 지문의 마루 사이의 경계면을 통과하여 신체 내부로 진행할 수 있다.
압전 센서(510)가 사각 기둥 형상을 갖는 경우, 압전 센서(510)의 상, 하면은 한 변의 길이가 40 내지 50㎛인 사각형일 수 있다. 매우 좁은 단면적을 갖는 압전 센서(510)와 폴리머 충진재(520)가 교대로 배치되기 때문에, 각각의 압전 센서(510)에서 생성, 방출되는 초음파 신호는 서로 중첩된다. 특히, 압전 센서(510) 어레이의 2차원 평면의 중심 영역(540)에 가까워질수록 더욱 많은 압전 센서(510)에서 방출되는 초음파 신호가 중첩되고 높은 강도의 초음파 신호가 생성된다. 도 5a에 도시된 바와 같이, 가장자리보다 중심 영역(540)에서 많은 초음파 신호가 중첩되고, 따라서 높은 강도의 초음파 신호가 생성된다.
도 5b는 압전 센서 어레이의 2차원 평면에서 나타나는 초음파 신호의 세기 분포를 도시한 도이다. 2차원 평면 상에 복수의 압전 센서(510)가 배치되고, 압전 센서(510) 사이에는 폴리머 충진재(520)가 마련된다. 도 5a에서 설명한 바와 같이 압전 센서 어레이의 2차원 평면의 중심 영역(540)에서 가장 많은 초음파 신호가 중첩되므로, 가장 강한 초음파 신호가 나타나고, 가장 자리로 갈수록 낮은 강도의 초음파 신호가 검출된다. 이하, 설명의 편의를 위해 2차원 평면의 중심부터 순서대로 제1~5영역(540~580)을 정의한다.
지문 감지부는 복수의 압전 센서(510) 각각을 통해 초음파 신호를 방출하고, 지문의 골과 마루에 따라 각 압전 센서(510)에서 검출되는 반사 신호를 이용하여 지문 패턴을 감지한다. 이와 동시에, 지문 감지부는 제1영역(540)에 포함되는 압전 센서(510)에서 검출되는 반사 신호의 주파수를, 압전 센서(510)를 통해 방출되는 초음파 신호의 주파수와 비교하여 접촉된 물체 내에 혈류가 존재하는지 여부를 판단할 수 있다.
다만, 모세혈관은 그 굵기가 수~수십 마이크로미터에 불과하며, 따라서 손가락 내의 모세혈관이 반드시 제1영역(540) 내에 위치하지 않을 수 있다. 따라서, 지문 감지부는 제1영역(540)에 포함된 압전 센서(510)로부터 혈류가 검출되지 않은 경우, 접촉된 물체가 생체가 아닌 것으로 바로 판단하지 않고, 제2영역(550), 제3영역(560), 제4영역(570), 제5영역(580) 순서로 혈류를 검출하는 범위를 확대시킬 수 있다. 제5영역(580)에서도 혈류가 검출되지 않으면, 지문 감지부는 현재 접촉된 물체가 생체가 아닌 것으로 판단할 수 있다.
한편, 본 실시예에 따른 지문 인식 센서는, 혈류의 속도에 기초하여 혈당량을 검출하는 혈당량 검출부(미도시)를 더 포함할 수 있다. 혈당량은 피 속에 포함된 당분의 양에 따라 결정되며, 혈당량을 검출함으로써 해당 지문을 접촉시킨 사람의 건강 상태, 특히 당뇨병에 걸렸는지 여부 등을 체크할 수 있다. 피 속에 당분이 많이 포함될수록, 즉 혈당량이 높을수록 피의 점도가 증가하여 혈류의 속도는 대체적으로 감소하는 경향을 나타낸다. 따라서, 혈류의 속도와 혈당량의 관계를 데이터 테이블 등의 형태로 소정의 메모리에 저장하고, 측정된 혈류의 속도를 해당 데이터 테이블에서 찾아 혈당량을 검출할 수 있으며, 이 결과를 사용자에게 영상, 음성 등으로 통지하여 사용자의 건강 상태를 알려줄 수 있다.
도 6은 본 발명의 실시예에 따른 지문 인식 방법을 설명하는 데에 제공되는 흐름도이다.
도 6을 참조하면, 본 실시예에 따른 지문 인식 방법은 복수의 압전 센서(510)를 통해 초음파 신호를 방출하는 것으로 시작된다(S600). 지문 감지부는 기둥 형상을 갖는 압전 센서(510)의 상, 하면에 배치되는 전극에 소정의 주파수를 갖는 전압을 인가하여 진동 특성을 갖는 기둥부를 상하로 진동시킴으로써 소정 주파수를 갖는 초음파 신호를 방출시킬 수 있다.
지문 감지부는 S600 단계에서 방출된 초음파 신호가 지문으로부터 반사되어 되돌아오는 반사 신호를 검출한다(S610). 앞서 설명한 바와 같이, 지문의 골에 대응하는 압전 센서(510)에서 방출되는 초음파 신호는, 압전 센서(510)와 공기의 경계면을 통과하지 못하고 대부분 반사되어 되돌아오며, 지문의 마루에 대응하는 압전 센서(510)에서 방출되는 초음파 신호는 압전 센서(510)와 손가락 피부 사이의 경계면을 통과하여 손가락 내부로 진행한다. 따라서, 검출된 반사 신호의 강도가 높으면 지문의 골에 해당하고, 강도가 낮으면 지문의 마루에 해당하는 것으로 판단할 수 있다. 지문 감지부는 검출한 반사 신호를 이용하여 지문 패턴을 감지한다(S620).
지문 패턴이 감지되면, 지문 감지부는 검출된 지문이 진정한 생체 지문인지를 판단하기 위해, 제1영역(540)에서 혈류를 검출한다(S630). 지문 감지부는 도플러 효과를 이용하여 혈류를 검출할 수 있으며, 각 압전 센서(510)에서 방출된 초음파 신호가 가장 많이 중첩되어 가장 높은 강도의 초음파 신호가 생성되는 압전 센서 어레이의 중심에 대응하는 제1영역(540)에서 혈류를 검출할 수 있다. 제1영역에서 혈류가 검출되면, 지문 감지부는 생체 정보를 생성하고(S640), 접촉된 지문이 미리 등록된 사용자들의 지문에 일치하는지를 판단하여 지문을 인증한다(S650).
반면, S630 단계의 판단 결과, 제1영역(540) 내에서 혈류가 검출되지 않으면, 지문 감지부는 제1영역(540)보다 큰 면적을 갖는 제2영역(550)에서 혈류가 검출되는지 여부를 판단한다(S660). 제2영역(550) 내에서 혈류가 검출되면, 생체 정보를 생성하고(S640), 지문을 인증한다(S650). 반면, 제2영역(550) 내에서도 혈류가 검출되지 않으면, 현재 접촉된 지문이 생체 지문이 아닌 것으로 판단하여 인증 절차를 종료시키고 보안 모드로 동작할 수 있다(S670). 다만, 생체 지문인지 여부를 정확히 판단하기 위해서는 제2영역(550) 내에서 혈류가 검출되지 않은 경우, 순차적으로 제3, 제4, 제5 영역(560, 570, 580) 내에서 혈류가 검출되는지를 판단할 수 있다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
100, 200, 300 : 지문 인식 센서
110, 310 : 압전 센서
120, 220 : 지문 감지부
130, 320 : 폴리머 충진재
333 : 지문의 골(VALLEY)
335 : 지문의 마루(RIDGE)
110, 310 : 압전 센서
120, 220 : 지문 감지부
130, 320 : 폴리머 충진재
333 : 지문의 골(VALLEY)
335 : 지문의 마루(RIDGE)
Claims (13)
- 2차원 평면 상에 마련되는 복수의 압전 센서; 및
상기 복수의 압전 센서 각각을 통해 방출되는 초음파 신호를 이용하여 지문을 검출하는 지문 감지부; 를 포함하고,
상기 지문 감지부는 상기 복수의 압전 센서 각각을 통해 방출되는 초음파 신호가 서로 중첩되는 상기 2차원 평면 상의 제1영역에서 혈류를 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 지문 인식 센서.
- 제1항에 있어서,
상기 제1영역은 상기 2차원 평면의 중심점을 기준으로 소정의 면적을 갖는 영역인 지문 인식 센서.
- 제1항에 있어서, 상기 지문 감지부는,
상기 제1영역에서 혈류를 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 데에 실패하면, 상기 제1영역보다 큰 면적을 갖는 제2영역에서 혈류를 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 지문 인식 센서.
- 제1항에 있어서, 상기 지문 감지부는,
상기 복수의 압전 센서 각각에서 방출되는 초음파 신호에 의해 생성되는 음향 임피던스 차이에 기초하여 상기 지문을 검출하는 지문 인식 센서.
- 제4항에 있어서, 상기 지문 감지부는,
상기 지문의 골(valley)에 대응하는 제1 음향 임피던스와, 상기 지문의 마루(ridge)에 대응하는 제2 음향 임피던스의 차이에 기초하여 상기 지문을 검출하는 지문 인식 센서.
- 제1항에 있어서,
상기 복수의 압전 센서 사이에 마련되는 폴리머 충진재; 를 더 포함하는 지문 인식 센서.
- 제1항에 있어서, 상기 지문 감지부는,
상기 혈류에 의해 상기 초음파 신호에서 발생하는 주파수 변화를 상기 제1영역에서 검출하여 상기 지문이 위조 지문인지 여부를 판단하는 지문 인식 센서.
- 제1항에 있어서,
상기 혈류의 속도에 기초하여 혈당량을 측정하는 혈당량 검출부; 를 더 포함하는 지문 인식 센서.
- 2차원 평면에 행렬 형태로 마련되는 복수의 압전 센서를 통해서 특정 물체로 초음파 신호를 방출하는 단계;
상기 초음파 신호가 중첩되는 상기 2차원 평면의 제1영역 내에서, 상기 초음파 신호가 상기 물체에 반사되어 생성되는 반사 신호를 검출하는 단계;
상기 초음파 신호와 상기 반사 신호 사이의 주파수 차이를 이용하여 상기 물체가 생체인지 여부를 판단하는 단계; 를 포함하는 지문 인식 방법.
- 제9항에 있어서, 상기 판단 단계는,
상기 초음파 신호와 상기 반사 신호 사이에서 상기 물체 내의 혈류에 의해 생성되는 주파수 차이를 이용하여 상기 물체가 생체인지 여부를 판단하는 지문 인식 방법.
- 제10항에 있어서,
상기 물체가 생체인지 여부를 판단하는 데에 실패하면, 상기 제1영역보다 큰 면적을 갖는 제2영역 내에서 상기 반사 신호를 검출하는 단계; 를 더 포함하는 지문 인식 방법.
- 제9항에 있어서,
상기 물체의 지문을 감지하는 단계; 를 더 포함하는 지문 인식 방법.
- 제12항에 있어서, 상기 지문 감지 단계는,
상기 지문의 골(valley)에 대응하는 제1 음향 임피던스와, 상기 지문의 마루(ridge)에 대응하는 제2 음향 임피던스의 차이에 기초하여 상기 지문을 감지하는 지문 인식 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110127167A KR101288178B1 (ko) | 2011-11-30 | 2011-11-30 | 지문 인식 센서 및 지문 인식 방법 |
US13/440,205 US8666126B2 (en) | 2011-11-30 | 2012-04-05 | Fingerprint detection sensor and method of detecting fingerprint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110127167A KR101288178B1 (ko) | 2011-11-30 | 2011-11-30 | 지문 인식 센서 및 지문 인식 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130060875A true KR20130060875A (ko) | 2013-06-10 |
KR101288178B1 KR101288178B1 (ko) | 2013-07-19 |
Family
ID=48466909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110127167A KR101288178B1 (ko) | 2011-11-30 | 2011-11-30 | 지문 인식 센서 및 지문 인식 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8666126B2 (ko) |
KR (1) | KR101288178B1 (ko) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150080812A (ko) * | 2014-01-02 | 2015-07-10 | 삼성전기주식회사 | 지문 감지 센서 및 이를 포함하는 전자 기기 |
KR101678012B1 (ko) * | 2016-02-05 | 2016-11-21 | 주식회사 베프스 | 생체정보 인식장치 및 상기 생체정보 인식장치의 스캐닝 방법 |
KR101696448B1 (ko) * | 2016-03-10 | 2017-01-16 | 주식회사 베프스 | 지문 중심점을 기준으로 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
KR101696445B1 (ko) * | 2016-03-10 | 2017-01-16 | 주식회사 베프스 | 기판 상 압점을 기준으로 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
KR101696444B1 (ko) * | 2016-03-10 | 2017-01-16 | 주식회사 베프스 | 복수의 손가락에 대하여 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식 키보드 |
WO2017135691A1 (ko) * | 2016-02-05 | 2017-08-10 | 주식회사 베프스 | 복수의 압전 소자를 선택적으로 활성화 시키는 방법 및 이를 위한 생체정보인식장치 |
WO2017155209A1 (ko) * | 2016-03-10 | 2017-09-14 | 주식회사 베프스 | 복수의 손가락에 대하여 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
KR20170133446A (ko) * | 2015-03-30 | 2017-12-05 | 마우이 이미징, 인코포레이티드 | 오브젝트 모션을 검출하기 위한 초음파 이미징 시스템들 및 방법들 |
KR20180054846A (ko) * | 2015-09-26 | 2018-05-24 | 퀄컴 인코포레이티드 | 초음파 이미징 디바이스들 및 방법들 |
KR101865371B1 (ko) * | 2016-12-30 | 2018-06-07 | 주식회사 베프스 | 초음파를 이용한 이중 인증 장치 및 방법 |
KR20180078709A (ko) * | 2016-12-30 | 2018-07-10 | 주식회사 베프스 | 3차원 지정맥 패턴을 이용한 생체 인증 장치 및 이를 이용한 생체 인증 방법 |
WO2018101635A3 (ko) * | 2016-12-02 | 2018-07-19 | 한국기계연구원 | 손가락 생체정보 인식모듈과, 이것이 적용된 전자기기, 그리고 손가락 생체정보 인식모듈의 제조방법과 트랜스듀서의 제조방법 |
WO2018151547A1 (ko) * | 2017-02-16 | 2018-08-23 | 주식회사 베프스 | 생체정보 인식 장치 및 이를 이용한 생체정보 인식 방법 |
WO2018169298A1 (ko) * | 2017-03-16 | 2018-09-20 | 주식회사 베프스 | 초음파 지문 센서 및 그 제조 방법 |
US10185868B2 (en) | 2015-01-28 | 2019-01-22 | Samsung Electronics Co., Ltd. | Fingerprint authentication system and method of authentication using the same |
WO2019017621A1 (ko) * | 2017-07-20 | 2019-01-24 | 이승진 | 임피던스를 이용한 페이크 지문 판별장치 및 방법 |
KR20190044329A (ko) * | 2017-10-20 | 2019-04-30 | 엘지디스플레이 주식회사 | 압전 패널 스피커 및 이를 포함하는 전자 기기 |
KR20200057464A (ko) | 2018-11-16 | 2020-05-26 | (주)포인트엔지니어링 | 도파관 어레이 및 이를 포함하는 초음파 센서 |
US10691918B2 (en) | 2015-06-30 | 2020-06-23 | Samsung Electronics Co., Ltd. | Method and apparatus for detecting fake fingerprint, and method and apparatus for recognizing fingerprint |
WO2021100912A1 (ko) * | 2019-11-21 | 2021-05-27 | 엘지전자 주식회사 | 사용자 인증과 관련된 정보를 제공하는 이동 단말기 및 그 제어 방법 |
KR20230009182A (ko) * | 2021-07-08 | 2023-01-17 | 강남대학교 산학협력단 | 비침습식 혈당 측정기 및 그의 혈당 측정 방법 |
US11944500B2 (en) | 2012-02-21 | 2024-04-02 | Maui Imaging, Inc. | Determining material stiffness using multiple aperture ultrasound |
US12048587B2 (en) | 2016-01-27 | 2024-07-30 | Maui Imaging, Inc. | Ultrasound imaging with sparse array probes |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101320138B1 (ko) * | 2011-11-30 | 2013-10-23 | 삼성전기주식회사 | 지문 인식 센서 및 그 제조 방법 |
US9396382B2 (en) * | 2012-08-17 | 2016-07-19 | Flashscan3D, Llc | System and method for a biometric image sensor with spoofing detection |
US10497747B2 (en) | 2012-11-28 | 2019-12-03 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
US9511994B2 (en) | 2012-11-28 | 2016-12-06 | Invensense, Inc. | Aluminum nitride (AlN) devices with infrared absorption structural layer |
US9618405B2 (en) | 2014-08-06 | 2017-04-11 | Invensense, Inc. | Piezoelectric acoustic resonator based sensor |
US10726231B2 (en) | 2012-11-28 | 2020-07-28 | Invensense, Inc. | Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing |
US9114977B2 (en) | 2012-11-28 | 2015-08-25 | Invensense, Inc. | MEMS device and process for RF and low resistance applications |
US9262003B2 (en) * | 2013-11-04 | 2016-02-16 | Qualcomm Incorporated | Piezoelectric force sensing array |
US9323393B2 (en) | 2013-06-03 | 2016-04-26 | Qualcomm Incorporated | Display with peripherally configured ultrasonic biometric sensor |
JP2017514108A (ja) * | 2014-03-06 | 2017-06-01 | クアルコム,インコーポレイテッド | マルチスペクトル超音波撮像 |
US10503948B2 (en) | 2014-03-06 | 2019-12-10 | Qualcomm Incorporated | Multi-spectral ultrasonic imaging |
US9582705B2 (en) | 2014-08-31 | 2017-02-28 | Qualcomm Incorporated | Layered filtering for biometric sensors |
US9665763B2 (en) * | 2014-08-31 | 2017-05-30 | Qualcomm Incorporated | Finger/non-finger determination for biometric sensors |
US9195879B1 (en) | 2014-08-31 | 2015-11-24 | Qualcomm Incorporated | Air/object determination for biometric sensors |
US9613246B1 (en) | 2014-09-16 | 2017-04-04 | Apple Inc. | Multiple scan element array ultrasonic biometric scanner |
US9952095B1 (en) | 2014-09-29 | 2018-04-24 | Apple Inc. | Methods and systems for modulation and demodulation of optical signals |
US9984271B1 (en) | 2014-09-30 | 2018-05-29 | Apple Inc. | Ultrasonic fingerprint sensor in display bezel |
US9979955B1 (en) | 2014-09-30 | 2018-05-22 | Apple Inc. | Calibration methods for near-field acoustic imaging systems |
US9824254B1 (en) | 2014-09-30 | 2017-11-21 | Apple Inc. | Biometric sensing device with discrete ultrasonic transducers |
US9607203B1 (en) | 2014-09-30 | 2017-03-28 | Apple Inc. | Biometric sensing device with discrete ultrasonic transducers |
US10133904B2 (en) | 2014-09-30 | 2018-11-20 | Apple Inc. | Fully-addressable sensor array for acoustic imaging systems |
US9904836B2 (en) | 2014-09-30 | 2018-02-27 | Apple Inc. | Reducing edge effects within segmented acoustic imaging systems |
US9747488B2 (en) | 2014-09-30 | 2017-08-29 | Apple Inc. | Active sensing element for acoustic imaging systems |
CN104680125B (zh) * | 2014-11-24 | 2018-02-23 | 麦克思智慧资本股份有限公司 | 指纹识别元件及指纹识别装置 |
CN104616001B (zh) * | 2015-03-04 | 2018-04-03 | 上海箩箕技术有限公司 | 指纹识别系统以及指纹识别方法 |
US9928398B2 (en) | 2015-08-17 | 2018-03-27 | Invensense, Inc. | Always-on sensor device for human touch |
US11048902B2 (en) | 2015-08-20 | 2021-06-29 | Appple Inc. | Acoustic imaging system architecture |
KR20170025083A (ko) * | 2015-08-27 | 2017-03-08 | 삼성전기주식회사 | 지문 감지 장치 및 이를 포함하는 전자 장치 |
US9726755B2 (en) | 2015-09-23 | 2017-08-08 | Qualcomm Incorporated | Spoof detection by ultrasonic subdermal probe |
US10067229B2 (en) | 2015-09-24 | 2018-09-04 | Qualcomm Incorporated | Receive-side beam forming for an ultrasonic image sensor |
US10275633B1 (en) | 2015-09-29 | 2019-04-30 | Apple Inc. | Acoustic imaging system for spatial demodulation of acoustic waves |
KR102023429B1 (ko) * | 2016-04-06 | 2019-09-24 | 한국기계연구원 | 지문인식모듈과, 이것이 적용된 전자기기, 그리고 이를 위한 음파제어부재의 제조방법 |
US10670716B2 (en) | 2016-05-04 | 2020-06-02 | Invensense, Inc. | Operating a two-dimensional array of ultrasonic transducers |
US10325915B2 (en) | 2016-05-04 | 2019-06-18 | Invensense, Inc. | Two-dimensional array of CMOS control elements |
US10656255B2 (en) | 2016-05-04 | 2020-05-19 | Invensense, Inc. | Piezoelectric micromachined ultrasonic transducer (PMUT) |
US10315222B2 (en) | 2016-05-04 | 2019-06-11 | Invensense, Inc. | Two-dimensional array of CMOS control elements |
US10445547B2 (en) | 2016-05-04 | 2019-10-15 | Invensense, Inc. | Device mountable packaging of ultrasonic transducers |
US10452887B2 (en) | 2016-05-10 | 2019-10-22 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers |
US10562070B2 (en) | 2016-05-10 | 2020-02-18 | Invensense, Inc. | Receive operation of an ultrasonic sensor |
US10600403B2 (en) | 2016-05-10 | 2020-03-24 | Invensense, Inc. | Transmit operation of an ultrasonic sensor |
US10706835B2 (en) | 2016-05-10 | 2020-07-07 | Invensense, Inc. | Transmit beamforming of a two-dimensional array of ultrasonic transducers |
US10539539B2 (en) | 2016-05-10 | 2020-01-21 | Invensense, Inc. | Operation of an ultrasonic sensor |
US11673165B2 (en) | 2016-05-10 | 2023-06-13 | Invensense, Inc. | Ultrasonic transducer operable in a surface acoustic wave (SAW) mode |
US10408797B2 (en) | 2016-05-10 | 2019-09-10 | Invensense, Inc. | Sensing device with a temperature sensor |
US10441975B2 (en) | 2016-05-10 | 2019-10-15 | Invensense, Inc. | Supplemental sensor modes and systems for ultrasonic transducers |
US10632500B2 (en) | 2016-05-10 | 2020-04-28 | Invensense, Inc. | Ultrasonic transducer with a non-uniform membrane |
KR20180001358A (ko) | 2016-06-27 | 2018-01-04 | 엘지전자 주식회사 | 이동 단말기 |
CN106203295B (zh) * | 2016-06-30 | 2020-02-21 | 联想(北京)有限公司 | 一种指纹检测方法以及电子设备 |
US10891461B2 (en) | 2017-05-22 | 2021-01-12 | Invensense, Inc. | Live fingerprint detection utilizing an integrated ultrasound and infrared sensor |
US11144158B2 (en) | 2017-05-24 | 2021-10-12 | Apple Inc. | Differential acoustic touch and force sensing |
US10474862B2 (en) | 2017-06-01 | 2019-11-12 | Invensense, Inc. | Image generation in an electronic device using ultrasonic transducers |
US10643052B2 (en) | 2017-06-28 | 2020-05-05 | Invensense, Inc. | Image generation in an electronic device using ultrasonic transducers |
CN107657210A (zh) * | 2017-08-07 | 2018-02-02 | 吴露 | 复合式指纹识别方法、复合式指纹识别模组及电子设备 |
CN107609484B (zh) * | 2017-08-15 | 2020-09-08 | 成都大超科技有限公司 | 带位置侦测的指纹识别模组及电子设备 |
US20200279089A1 (en) * | 2017-09-22 | 2020-09-03 | Fingerprint Cards Ab | Ultrasonic transducer device, acoustic biometric imaging system and manufacturing method |
CN111108504A (zh) * | 2017-09-22 | 2020-05-05 | 指纹卡有限公司 | 超声换能器装置、声学生物识别成像系统及制造方法 |
CN109600488A (zh) * | 2017-09-30 | 2019-04-09 | 南昌欧菲生物识别技术有限公司 | 壳体组件及电子装置 |
US10997388B2 (en) | 2017-12-01 | 2021-05-04 | Invensense, Inc. | Darkfield contamination detection |
US10936841B2 (en) | 2017-12-01 | 2021-03-02 | Invensense, Inc. | Darkfield tracking |
US10984209B2 (en) | 2017-12-01 | 2021-04-20 | Invensense, Inc. | Darkfield modeling |
US11151355B2 (en) | 2018-01-24 | 2021-10-19 | Invensense, Inc. | Generation of an estimated fingerprint |
US10802651B2 (en) | 2018-01-30 | 2020-10-13 | Apple Inc. | Ultrasonic touch detection through display |
US10932062B2 (en) * | 2018-02-17 | 2021-02-23 | Apple Inc. | Ultrasonic proximity sensors, and related systems and methods |
US10755067B2 (en) | 2018-03-22 | 2020-08-25 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers |
KR102366002B1 (ko) | 2018-05-23 | 2022-02-22 | (주)포인트엔지니어링 | 압전물질을 이용한 전자 장치 및 그 제조 방법 |
KR101962575B1 (ko) * | 2018-07-03 | 2019-07-17 | 이승진 | 위조 지문 판별장치 및 그 구동방법 |
CN109241891A (zh) * | 2018-08-27 | 2019-01-18 | 惠州Tcl移动通信有限公司 | 一种屏下指纹解锁装置、解锁方法及移动终端 |
KR102668223B1 (ko) | 2018-09-04 | 2024-05-23 | 삼성전자주식회사 | 초음파 방식 인 디스플레이 지문 센서를 포함하는 전자 장치 및 그의 동작 방법 |
KR20200045150A (ko) | 2018-10-22 | 2020-05-04 | (주)포인트엔지니어링 | 압전체, 압전체의 제조방법 및 압전체를 이용한 전자장치 |
US10936843B2 (en) | 2018-12-28 | 2021-03-02 | Invensense, Inc. | Segmented image acquisition |
WO2020263875A1 (en) | 2019-06-24 | 2020-12-30 | Invensense, Inc. | Fake finger detection using ridge features |
FR3097668B1 (fr) * | 2019-06-24 | 2021-07-02 | Commissariat Energie Atomique | Dispositif a surface tactile |
US11216681B2 (en) | 2019-06-25 | 2022-01-04 | Invensense, Inc. | Fake finger detection based on transient features |
US11176345B2 (en) | 2019-07-17 | 2021-11-16 | Invensense, Inc. | Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness |
US11216632B2 (en) | 2019-07-17 | 2022-01-04 | Invensense, Inc. | Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness |
US11232549B2 (en) | 2019-08-23 | 2022-01-25 | Invensense, Inc. | Adapting a quality threshold for a fingerprint image |
US11392789B2 (en) | 2019-10-21 | 2022-07-19 | Invensense, Inc. | Fingerprint authentication using a synthetic enrollment image |
CN115551650A (zh) | 2020-03-09 | 2022-12-30 | 应美盛公司 | 具有非均匀厚度的接触层的超声指纹传感器 |
US11243300B2 (en) | 2020-03-10 | 2022-02-08 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers and a presence sensor |
US11950512B2 (en) | 2020-03-23 | 2024-04-02 | Apple Inc. | Thin-film acoustic imaging system for imaging through an exterior surface of an electronic device housing |
US11328165B2 (en) | 2020-04-24 | 2022-05-10 | Invensense, Inc. | Pressure-based activation of fingerprint spoof detection |
US11995909B2 (en) | 2020-07-17 | 2024-05-28 | Tdk Corporation | Multipath reflection correction |
KR20220012707A (ko) | 2020-07-23 | 2022-02-04 | (주)포인트엔지니어링 | 초음파 센서의 제조 방법 |
US12039800B2 (en) | 2021-03-31 | 2024-07-16 | Apple Inc. | Signal processing for segmented thin-film acoustic imaging systems for portable electronic devices |
US12000967B2 (en) | 2021-03-31 | 2024-06-04 | Apple Inc. | Regional gain control for segmented thin-film acoustic imaging systems |
WO2023050291A1 (zh) * | 2021-09-30 | 2023-04-06 | 深圳市汇顶科技股份有限公司 | 超声波图像传感器及相关电子装置 |
KR102685738B1 (ko) | 2024-03-12 | 2024-07-19 | 이솔정보통신 주식회사 | 인터랙티브 화이트보드 및 전자 교탁을 위한 스마트 펜 시스템 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE444709T1 (de) * | 1999-08-09 | 2009-10-15 | Sonavation Inc | Piezoelektrischer dünnschichtfingerabdruckabtaster |
US6720712B2 (en) | 2000-03-23 | 2004-04-13 | Cross Match Technologies, Inc. | Piezoelectric identification device and applications thereof |
JP3770241B2 (ja) * | 2003-03-04 | 2006-04-26 | 株式会社日立製作所 | 個人認証装置及び個人認証方法 |
KR100561851B1 (ko) | 2003-11-18 | 2006-03-16 | 삼성전자주식회사 | 지문 인식 센서 및 그 제조 방법 |
EP1744669B1 (en) | 2004-04-29 | 2019-03-27 | Koninklijke Philips N.V. | Apparatus and method for detecting blood flow |
JP4567479B2 (ja) * | 2005-02-04 | 2010-10-20 | セイコーインスツル株式会社 | 生体情報測定装置および生体情報測定方法 |
JP4662543B2 (ja) | 2005-02-09 | 2011-03-30 | セイコーインスツル株式会社 | 血液レオロジー測定装置、及び血液レオロジー計測方法 |
JP2008102780A (ja) * | 2006-10-19 | 2008-05-01 | Sony Corp | パターン識別方法、登録装置、照合装置及びプログラム |
US8508103B2 (en) * | 2009-03-23 | 2013-08-13 | Sonavation, Inc. | Piezoelectric identification device and applications thereof |
WO2010128500A2 (en) * | 2009-05-04 | 2010-11-11 | Wellsense Technologies | System and method for monitoring blood glucose levels non-invasively |
JP5056798B2 (ja) * | 2009-06-08 | 2012-10-24 | 日本電気株式会社 | 判定装置、指紋入力装置、判定方法および判定プログラム |
-
2011
- 2011-11-30 KR KR1020110127167A patent/KR101288178B1/ko active IP Right Grant
-
2012
- 2012-04-05 US US13/440,205 patent/US8666126B2/en active Active
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11944500B2 (en) | 2012-02-21 | 2024-04-02 | Maui Imaging, Inc. | Determining material stiffness using multiple aperture ultrasound |
US9465972B2 (en) | 2014-01-02 | 2016-10-11 | Samsung Electro-Mechanics Co., Ltd. | Fingerprint sensor and electronic device including the same |
KR20150080812A (ko) * | 2014-01-02 | 2015-07-10 | 삼성전기주식회사 | 지문 감지 센서 및 이를 포함하는 전자 기기 |
US10185868B2 (en) | 2015-01-28 | 2019-01-22 | Samsung Electronics Co., Ltd. | Fingerprint authentication system and method of authentication using the same |
KR20170133446A (ko) * | 2015-03-30 | 2017-12-05 | 마우이 이미징, 인코포레이티드 | 오브젝트 모션을 검출하기 위한 초음파 이미징 시스템들 및 방법들 |
US10691918B2 (en) | 2015-06-30 | 2020-06-23 | Samsung Electronics Co., Ltd. | Method and apparatus for detecting fake fingerprint, and method and apparatus for recognizing fingerprint |
US11295111B2 (en) | 2015-06-30 | 2022-04-05 | Samsung Electronics Co., Ltd. | Method and apparatus for detecting fake fingerprint, and method and apparatus for recognizing fingerprint |
KR20180054846A (ko) * | 2015-09-26 | 2018-05-24 | 퀄컴 인코포레이티드 | 초음파 이미징 디바이스들 및 방법들 |
US12048587B2 (en) | 2016-01-27 | 2024-07-30 | Maui Imaging, Inc. | Ultrasound imaging with sparse array probes |
KR101678012B1 (ko) * | 2016-02-05 | 2016-11-21 | 주식회사 베프스 | 생체정보 인식장치 및 상기 생체정보 인식장치의 스캐닝 방법 |
WO2017135691A1 (ko) * | 2016-02-05 | 2017-08-10 | 주식회사 베프스 | 복수의 압전 소자를 선택적으로 활성화 시키는 방법 및 이를 위한 생체정보인식장치 |
KR101696445B1 (ko) * | 2016-03-10 | 2017-01-16 | 주식회사 베프스 | 기판 상 압점을 기준으로 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
WO2017155206A1 (ko) * | 2016-03-10 | 2017-09-14 | 주식회사 베프스 | 복수의 손가락에 대하여 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식 키보드 |
WO2017155205A1 (ko) * | 2016-03-10 | 2017-09-14 | 주식회사 베프스 | 기판 상 압점을 기준으로 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
WO2017155204A1 (ko) * | 2016-03-10 | 2017-09-14 | 주식회사 베프스 | 지문 중심점을 기준으로 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
WO2017155209A1 (ko) * | 2016-03-10 | 2017-09-14 | 주식회사 베프스 | 복수의 손가락에 대하여 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
KR101696444B1 (ko) * | 2016-03-10 | 2017-01-16 | 주식회사 베프스 | 복수의 손가락에 대하여 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식 키보드 |
KR101696448B1 (ko) * | 2016-03-10 | 2017-01-16 | 주식회사 베프스 | 지문 중심점을 기준으로 사용자 생체정보를 스캐닝 하는 방법 및 이를 위한 생체정보 인식장치 |
WO2018101635A3 (ko) * | 2016-12-02 | 2018-07-19 | 한국기계연구원 | 손가락 생체정보 인식모듈과, 이것이 적용된 전자기기, 그리고 손가락 생체정보 인식모듈의 제조방법과 트랜스듀서의 제조방법 |
KR20180078709A (ko) * | 2016-12-30 | 2018-07-10 | 주식회사 베프스 | 3차원 지정맥 패턴을 이용한 생체 인증 장치 및 이를 이용한 생체 인증 방법 |
KR101865371B1 (ko) * | 2016-12-30 | 2018-06-07 | 주식회사 베프스 | 초음파를 이용한 이중 인증 장치 및 방법 |
WO2018151547A1 (ko) * | 2017-02-16 | 2018-08-23 | 주식회사 베프스 | 생체정보 인식 장치 및 이를 이용한 생체정보 인식 방법 |
WO2018169298A1 (ko) * | 2017-03-16 | 2018-09-20 | 주식회사 베프스 | 초음파 지문 센서 및 그 제조 방법 |
WO2019017621A1 (ko) * | 2017-07-20 | 2019-01-24 | 이승진 | 임피던스를 이용한 페이크 지문 판별장치 및 방법 |
US11335116B2 (en) | 2017-07-20 | 2022-05-17 | Seung Jin Lee | Apparatus and method for identifying fake fingerprint by using impedance |
KR20190044329A (ko) * | 2017-10-20 | 2019-04-30 | 엘지디스플레이 주식회사 | 압전 패널 스피커 및 이를 포함하는 전자 기기 |
US11275921B2 (en) | 2017-10-20 | 2022-03-15 | Lg Display Co., Ltd. | Piezoelectric panel speaker and electronic apparatus including the same |
KR20200057464A (ko) | 2018-11-16 | 2020-05-26 | (주)포인트엔지니어링 | 도파관 어레이 및 이를 포함하는 초음파 센서 |
WO2021100912A1 (ko) * | 2019-11-21 | 2021-05-27 | 엘지전자 주식회사 | 사용자 인증과 관련된 정보를 제공하는 이동 단말기 및 그 제어 방법 |
KR20230009182A (ko) * | 2021-07-08 | 2023-01-17 | 강남대학교 산학협력단 | 비침습식 혈당 측정기 및 그의 혈당 측정 방법 |
Also Published As
Publication number | Publication date |
---|---|
US8666126B2 (en) | 2014-03-04 |
US20130136321A1 (en) | 2013-05-30 |
KR101288178B1 (ko) | 2013-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101288178B1 (ko) | 지문 인식 센서 및 지문 인식 방법 | |
KR101320138B1 (ko) | 지문 인식 센서 및 그 제조 방법 | |
US10621404B2 (en) | Biometric sensing device for three dimensional imaging of subcutaneous structures embedded within finger tissue | |
US12002282B2 (en) | Operating a fingerprint sensor comprised of ultrasonic transducers | |
JP7073323B2 (ja) | 超音波皮下プローブによるスプーフ検出 | |
US11301552B2 (en) | Medical device with integrated ultrasonic authentication | |
US10410034B2 (en) | Ultrasonic biometric system with harmonic detection | |
US20190018123A1 (en) | Defective ultrasonic transducer detection in an ultrasonic sensor | |
KR101865371B1 (ko) | 초음파를 이용한 이중 인증 장치 및 방법 | |
WO2017196682A1 (en) | A sensing device with a temperature sensor | |
US20170262692A1 (en) | Capacitive fingerprint sensing device and method for capturing a fingerprint using the sensing device | |
KR101899493B1 (ko) | 3차원 지정맥 패턴을 이용한 생체 인증 장치 및 이를 이용한 생체 인증 방법 | |
KR20180061826A (ko) | 생체정보 인식 장치, 시스템 및 방법 | |
US11243300B2 (en) | Operating a fingerprint sensor comprised of ultrasonic transducers and a presence sensor | |
WO2018151547A1 (ko) | 생체정보 인식 장치 및 이를 이용한 생체정보 인식 방법 | |
KR102376692B1 (ko) | 압전 초음파 변환 장치, 이 장치를 포함하는 생체 정보 측정 장치 및 이 장치를 포함하는 디스플레이 장치 | |
CN118020094A (zh) | 由指纹传感器触发的紧急或秘密响应 | |
KR20190081398A (ko) | 생체 정보 측정 장치 및 이 장치를 포함하는 디스플레이 장치 | |
EP3704629A1 (en) | Controllable ultrasonic fingerprint sensing system and method for controlling the system | |
US20240346120A1 (en) | System with ultrasound sensor | |
KR102138358B1 (ko) | 초음파 기반의 생체정보 인식장치 및 지정맥 데이터 구축 방법 | |
Gao et al. | Ultrathin multilayer P (VDF-TrFE) film-based piezoelectric resonator for high-quality under-display fingerprint recognition | |
KR20230135126A (ko) | 초음파 센서를 구비한 시스템 | |
CN117940972A (zh) | 具有力或压力反馈的指纹传感器 | |
KR20190069140A (ko) | 압전 센서 및 압전 센서의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160701 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170703 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180702 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190701 Year of fee payment: 7 |