KR20130048948A - Bi-facial solar cell and method for fabricating the same - Google Patents

Bi-facial solar cell and method for fabricating the same Download PDF

Info

Publication number
KR20130048948A
KR20130048948A KR1020110113889A KR20110113889A KR20130048948A KR 20130048948 A KR20130048948 A KR 20130048948A KR 1020110113889 A KR1020110113889 A KR 1020110113889A KR 20110113889 A KR20110113889 A KR 20110113889A KR 20130048948 A KR20130048948 A KR 20130048948A
Authority
KR
South Korea
Prior art keywords
emitter
substrate
type
high concentration
solar cell
Prior art date
Application number
KR1020110113889A
Other languages
Korean (ko)
Other versions
KR101651302B1 (en
Inventor
안수범
서준모
송석현
양수미
강진모
주상민
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020110113889A priority Critical patent/KR101651302B1/en
Publication of KR20130048948A publication Critical patent/KR20130048948A/en
Application granted granted Critical
Publication of KR101651302B1 publication Critical patent/KR101651302B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A bi-facial solar cell and a method for fabricating the same are provided to easily form a selective emitter by using a doping profile in a diffusion process. CONSTITUTION: A p-type emitter(203) includes a high concentration emitter(203a) and a low concentration emitter(203b). The low concentration emitter is formed on the upper surface of the substrate(201). The high concentration emitter is locally formed on the low concentration emitter. A back field layer(n+) is formed in the lower part of the substrate. A front electrode(212) is connected to the high concentration emitter of the p-type emitter. A back electrode(213) is connected to the back field layer(n+).

Description

양면수광형 태양전지 및 그 제조방법{Bi-facial solar cell and method for fabricating the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-sided light receiving solar cell,

본 발명은 양면수광형 태양전지 및 그 제조방법에 관한 것으로서, 보다 상세하게는 확산공정시 형성되는 도핑 프로파일을 이용하여 선택적 에미터를 용이하게 형성함과 함께 소수캐리어의 재결합률을 저하시켜 태양전지의 광전변환효율을 향상시킬 수 있는 양면수광형 태양전지 및 그 제조방법에 관한 것이다.
The present invention relates to a double-sided light-receiving solar cell and a method for manufacturing the same, and more particularly, to easily form a selective emitter using a doping profile formed during the diffusion process, while reducing the recombination rate of minority carriers solar cell It relates to a double-sided light-receiving solar cell and a method for manufacturing the same that can improve the photoelectric conversion efficiency of the.

태양전지는 태양광을 수광하여 광전변환시키는 소자이다. 일반적인 태양전지는 전면과 후면에 각각 전면전극과 후면전극이 구비되는 구조를 갖는다. 그러나, 수광면인 전면에 전면전극이 구비됨에 따라, 전면전극의 면적만큼 수광면적이 줄어들게 된다. A solar cell is a device that receives sunlight and performs photoelectric conversion. A typical solar cell has a front electrode and a rear electrode on the front and rear surfaces, respectively. However, since the front electrode is provided on the front surface of the light receiving surface, the light receiving area is reduced by the area of the front electrode.

수광면적이 축소되는 문제를 해결하기 위해 후면전극형 태양전지가 제안되었다. 후면전극형 태양전지는 태양전지의 후면 상에 (+)전극과 (-)전극을 구비시켜 태양전지 전면의 수광면적을 극대화할 수 있다. In order to solve the problem that the light receiving area is reduced, a back electrode solar cell has been proposed. The back electrode solar cell can maximize the light receiving area of the front surface of the solar cell by providing a (+) electrode and a (-) electrode on the back of the solar cell.

그러나, 후면전극형 태양전지를 포함한 종래의 태양전지는 전면과 후면 중 어느 한 면으로만 태양광이 수광됨에 따라, 태양광 수광에 있어 근본적인 한계가 있다. 이에, 최근에는 전면과 후면의 양면으로 수광이 가능한 양면수광형 태양전지에 대한 연구가 진행되고 있으며, 한국공개특허공보 제1998-20311호에 양면수광형 태양전지의 일 예가 개시되어 있다. However, the conventional solar cell including the back-electrode solar cell has a fundamental limitation in the solar light reception, as the sunlight is received only on either side of the front and rear. Therefore, recently, studies on double-sided light-receiving solar cells capable of receiving light on both sides of the front and rear surfaces thereof are being conducted. An example of a double-sided light-receiving solar cell is disclosed in Korean Patent Publication No. 1998-20311.

한편, 태양전지는 일반적으로 p형 기판의 상부에 n형 반도체층이 구비되며, n형 반도체층 상에는 전면전극이 구비되는 구조를 갖는다. 전면전극은 통상, 금속 페이스트를 스크린 인쇄하여 형성하는데, 이와 같은 방식으로 형성된 전면전극은 n형 반도체층과의 접촉 저항이 높은 문제점이 있다. 이를 해소하기 위해, 전면전극이 형성되는 부위에 국부적으로 고농도의 불순물 영역을 형성하는 이른바, 선택적 에미터 형성방법이 제시되고 있다.
On the other hand, a solar cell generally has an n-type semiconductor layer is provided on the p-type substrate, the front electrode is provided on the n-type semiconductor layer. The front electrode is usually formed by screen printing a metal paste, but the front electrode formed in this manner has a high contact resistance with the n-type semiconductor layer. In order to solve this problem, a so-called selective emitter formation method has been proposed in which a high concentration of impurity regions are locally formed at a portion where a front electrode is formed.

한국공개특허공보 제1998-20311호Korean Laid-Open Patent Publication No. 1998-20311

본 발명은 확산공정시 형성되는 도핑 프로파일을 이용하여 선택적 에미터를 용이하게 형성함과 함께 소수캐리어의 재결합률을 저하시켜 태양전지의 광전변환효율을 향상시킬 수 있는 양면수광형 태양전지 및 그 제조방법을 제공하는데 그 목적이 있다.
The present invention is a double-sided light receiving type solar cell and its manufacture that can easily improve the photoelectric conversion efficiency of the solar cell by reducing the recombination rate of the minority carriers while easily forming a selective emitter using a doping profile formed during the diffusion process The purpose is to provide a method.

상기의 목적을 달성하기 위한 본 발명에 따른 양면수광형 태양전지는 n형 실리콘 기판과, 상기 기판 상부에 구비되며, 고농도 에미터와 저농도 에미터로 구성된 p형 에미터와, 상기 기판 하부에 구비된 후면전계층(n+)과, 상기 p형 에미터의 고농도 에미터와 연결되는 전면전극 및 상기 후면전계층(n+)과 연결되는 후면전극을 포함하여 이루어지며, 상기 저농도 에미터는 상기 기판 상부의 전면 상에 구비되고, 상기 고농도 에미터는 상기 저농도 에미터 상에 국부적으로 구비되는 것을 특징으로 한다. A double-sided light receiving solar cell according to the present invention for achieving the above object is an n-type silicon substrate, a p-type emitter is provided on the substrate, and composed of a high concentration emitter and a low concentration emitter, the lower substrate And a back electrode connected to the high concentration emitter of the p-type emitter and a back electrode connected to the back field layer (n +), wherein the low concentration emitter is formed on the upper portion of the substrate. It is provided on the front surface, the high concentration emitter is characterized in that it is provided locally on the low concentration emitter.

상기 고농도 에미터는 상기 저농도 에미터 상에 돌출된 형태로 구비되며, 상기 p형 에미터와 후면전계층(n+) 상에 각각 패시베이션층, 반사방지막이 순차적으로 적층된다. The high concentration emitter is provided to protrude on the low concentration emitter, and a passivation layer and an antireflection film are sequentially stacked on the p-type emitter and the backside field layer (n +), respectively.

본 발명에 따른 양면수광형 태양전지의 제조방법은 n형 실리콘 기판을 준비하는 단계와, 확산공정을 실시하여, 상기 기판 표면으로부터 내부로 갈수록 p형 불순물 이온의 농도가 작아지는 p형 에미터를 형성하며, 상기 p형 에미터는 고농도 에미터와 저농도 에미터로 구분되는 단계와, 식각 마스크를 이용하여 고농도 에미터의 일부 영역을 노출시키고, 노출된 고농도 에미터를 식각, 제거하여 잔존하는 고농도 에미터와 저농도 에미터로 구성되는 선택적 에미터를 형성하는 단계와, 기판 전면 상에 확산방지막을 적층하는 단계 및 확산공정을 통해 기판 하부에 후면전계층(n+)을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다. In the method of manufacturing a double-sided light-receiving solar cell according to the present invention, a p-type emitter in which a concentration of p-type impurity ions decreases from the surface of the substrate toward the inside by preparing an n-type silicon substrate and performing a diffusion process is performed. The p-type emitter is classified into a high concentration emitter and a low concentration emitter, and a portion of the high concentration emitter is exposed using an etching mask, and the high concentration emitter remaining by etching and removing the exposed high concentration emitter. Forming a selective emitter consisting of a light emitter and a low concentration emitter, laminating a diffusion barrier on the front surface of the substrate, and forming a rear field layer (n +) under the substrate through a diffusion process. It features.

상기 p형 에미터를 형성하는 단계는, 상기 기판 전면 상에 p형 도핑소스를 도포하는 과정과, 상기 기판을 열처리하여 상기 p형 도핑소스가 기판 내부로 확산되도록 하여 p형 에미터를 형성하는 과정을 포함하여 구성될 수 있다. The forming of the p-type emitter may include applying a p-type doping source on the entire surface of the substrate and heat treating the substrate to diffuse the p-type doping source into the substrate to form a p-type emitter. It can be configured to include the process.

상기 후면전계층(n+)의 형성 후, 상기 기판 전면과 후면에 각각 패시베이션층을 형성하는 단계와, 상기 패시베이션층 상에 반사방지막을 형성하는 단계 및 상기 기판 전면 상에 p형 에미터의 고농도 에미터와 연결되는 전면전극을 형성함과 함께 상기 기판 후면 상에 후면전계층(n+)과 연결되는 후면전극을 형성하는 단계를 더 포함하여 이루어질 수 있다.
Forming the passivation layer on the front and rear surfaces of the substrate, forming an anti-reflection film on the passivation layer, and forming a high concentration of p-type emitter on the front surface of the substrate. The method may further include forming a front electrode connected to the substrate and forming a back electrode connected to the rear field layer n + on the rear surface of the substrate.

본 발명에 따른 양면수광형 태양전지 및 그 제조방법은 다음과 같은 효과가 있다. Double-sided light receiving solar cell according to the present invention and its manufacturing method has the following effects.

확산공정시 기판 깊이에 따라 불순물 이온의 농도를 제어하여 고농도 에미터층 및 저농도 에미터를 동시에 형성하고, 고농도 에미터를 선택적으로 제거함으로써 용이하게 선택적 에미터를 구현할 수 있다. By controlling the concentration of impurity ions in accordance with the substrate depth during the diffusion process, a high emitter layer and a low emitter can be simultaneously formed, and a selective emitter can be easily implemented by selectively removing the high emitter.

또한, 기판 하부에 후면전계층(n+)이 구비됨으로 인해 고저접합을 이루게 되어 소수캐리어가 기판 표면 및 측면의 결함으로 이동되어 재결합되는 것을 억제할 수 있다.
In addition, since the back surface field layer (n +) is provided under the substrate, high and low junctions are formed, and thus the minority carriers can be prevented from being recombined by defects on the surface and sides of the substrate.

도 1은 본 발명의 일 실시예에 따른 양면수광형 태양전지의 단면도.
도 2a 내지 도 2h는 본 발명의 일 실시예에 따른 양면수광형 태양전지의 제조방법을 설명하기 위한 공정 단면도.
1 is a cross-sectional view of a double-sided light receiving solar cell according to an embodiment of the present invention.
2A to 2H are cross-sectional views illustrating a method of manufacturing a double-sided light receiving solar cell according to an embodiment of the present invention.

이하, 도면을 참조하여 본 발명의 일 실시예에 따른 양면수광형 태양전지 및 그 제조방법을 상세히 설명하기로 한다. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a double-side light-receiving solar cell and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the drawings.

도 1을 참조하면, 본 발명의 일 실시예에 따른 양면수광형 태양전지는 제 1 도전형의 실리콘 기판(201)을 구비한다. 상기 제 1 도전형은 제 2 도전형의 반대 도전형이며, 이하에서는 제 1 도전형이 n형, 제 2 도전형이 n형인 것을 기준으로 설명하기로 한다. Referring to FIG. 1, a double-sided light receiving solar cell according to an embodiment of the present invention includes a first conductive silicon substrate 201. The first conductivity type is the opposite conductivity type from the second conductivity type, and the following description will be based on the fact that the first conductivity type is n type and the second conductivity type is n type.

상기 기판(201) 상부에는 p형 에미터(203)가 구비되고, 기판(201) 하부에는 후면전계층(n+)(208)이 구비된다. 상기 p형 에미터(203)는 고농도 에미터(203a)와 저농도 에미터(203b)로 구분되며, 상기 저농도 에미터(203b)는 상기 기판(201) 전면에 걸쳐 구비되며, 상기 고농도 에미터(203a)는 상기 저농도 에미터(203b) 상에 국부적으로 구비된다. 또한, 상기 고농도 에미터(203a)는 기판(201) 상에서 돌출된 형태로 구비된다. The p-type emitter 203 is provided on the substrate 201, and the backside field layer (n +) 208 is provided on the substrate 201. The p-type emitter 203 is divided into a high concentration emitter 203a and a low concentration emitter 203b, and the low concentration emitter 203b is provided over the entire surface of the substrate 201, and the high concentration emitter ( 203a is provided locally on the low concentration emitter 203b. In addition, the high concentration emitter 203a is provided to protrude on the substrate 201.

상기 p형 에미터(203)와 후면전계층(n+)(208) 상에는 각각 패시베이션층(210), 반사방지막(211)이 순차적으로 적층, 구비된다. 상기 기판(201) 전면 상에는 상기 p형 에미터(203)의 고농도 에미터(203a)와 전기적으로 연결되는 전면전극(212)이 구비되며, 상기 기판(201) 후면 상에는 상기 후면전계층(n+)(208)과 연결되는 후면전극(213)이 구비된다. The passivation layer 210 and the anti-reflection film 211 are sequentially stacked and provided on the p-type emitter 203 and the backside field layer (n +) 208, respectively. The front electrode 212 is provided on the front surface of the substrate 201 and electrically connected to the high concentration emitter 203a of the p-type emitter 203. A rear electrode 213 connected to the 208 is provided.

한편, 상기 후면전계층(n+)(208)은 n형 기판(201)과 고저접합(high-low junction)을 이루어, n형 기판(201) 내부에서 생성된 소수캐리어 즉, 정공이 기판(201) 표면 또는 측면의 결함으로 이동되는 것을 억제한다.
Meanwhile, the backside field layer (n +) 208 forms a high-low junction with the n-type substrate 201, so that a small number of carriers generated inside the n-type substrate 201, that is, the holes 201 are formed. ) To prevent movement to defects on the surface or sides.

다음으로, 본 발명의 일 실시예에 따른 양면수광형 태양전지의 제조방법을 설명하기로 한다. Next, a method of manufacturing a double-side light receiving type solar cell according to an embodiment of the present invention will be described.

먼저, 도 2a에 도시한 바와 같이 n형 실리콘 기판(201)을 준비한다. 그런 다음, 텍스쳐링 공정을 통해 기판(201) 표면을 요철(202) 형상으로 가공하여 빛 반사를 최소화시킨다. 이어, 상기 기판(201) 전면 상에 p형 불순물(예를 들어, 붕소(B))을 포함하는 도핑소스 즉, p형 도핑소스를 도포한다. 상기 p형 도핑소스는 페이스트(paste) 또는 스프레이 형태로 도포할 수 있다. First, as shown in FIG. 2A, an n-type silicon substrate 201 is prepared. Then, the surface of the substrate 201 is processed into a concave-convex 202 shape through a texturing process to minimize light reflection. Subsequently, a doping source containing a p-type impurity (for example, boron (B)), that is, a p-type doping source is coated on the entire surface of the substrate 201. The p-type doping source may be applied in the form of a paste or spray.

상기 p형 도핑소스가 도포된 상태에서, 열처리를 진행하면 도 2b에 도시한 바와 같이 상기 p형 도핑소스 내의 p형 불순물 이온이 기판(201) 내부로 확산되어 p형 에미터(203)가 형성된다. 또한, 상기 p형 에미터(203) 상에는 확산부산물인 BSG(boro-silicate glass)막이 형성된다. 상기 BSG막(204)은 p형 도핑소스 내의 p형 불순물(B)이 기판(201)의 실리콘(Si)과 반응하여 형성된 것이다.In the state where the p-type doping source is applied, when the heat treatment is performed, p-type impurity ions in the p-type doping source are diffused into the substrate 201 to form the p-type emitter 203. do. In addition, a BSG (boro-silicate glass) film is formed on the p-type emitter 203. The BSG film 204 is formed by reacting p-type impurities (B) in a p-type doping source with silicon (Si) in the substrate 201.

한편, p형 불순물 이온이 확산되어 p형 에미터(203)가 형성됨에 있어서, 기판(201)의 깊이에 따라 p형 불순물 이온의 농도가 작아지는 경향을 갖는다. 이는 p형 불순물 이온 확산시 기판(201) 자체의 물리적 저항에 의해 기판(201)의 깊이가 깊어질수록 p형 불순물 이온이 확산될 확률이 적어지기 때문이다. 이에 따라, 기판(201) 표면 근처에는 상대적으로 고농도 에미터(203a)(p+)가 형성되고 기판(201) 내부에는 저농도 에미터(203b)(p)가 형성되는 도핑 프로파일(doping profile)을 갖게 된다. On the other hand, when the p-type impurity ions are diffused to form the p-type emitter 203, the concentration of the p-type impurity ions tends to decrease with the depth of the substrate 201. This is because, as the depth of the substrate 201 increases due to the physical resistance of the substrate 201 itself during the diffusion of the p-type impurity ions, the probability of diffusion of the p-type impurity ions decreases. As a result, a relatively high concentration emitter 203a (p +) is formed near the surface of the substrate 201 and a doping profile is formed within the substrate 201 where a low concentration emitter 203b (p) is formed. do.

이와 같은 상태에서, 도 2c에 도시한 바와 같이 상기 기판(201) 전면의 BSG막(204) 상에 식각 마스크(205)를 형성한다. 상기 식각 마스크(205)는 상기 고농도 에미터(203a)층을 선택적으로 식각하여 선택적 에미터를 구현하기 위한 것으로서, 상기 식각 마스크(205)가 구비되는 영역은 후술하는 전면전극(212)이 구비되는 부위에 상응한다. 상기 식각 마스크(205)는 포토리소그래피 공정을 통해 형성할 수 있다. In this state, as shown in FIG. 2C, an etching mask 205 is formed on the BSG film 204 on the entire surface of the substrate 201. The etch mask 205 is to implement a selective emitter by selectively etching the high concentration emitter 203a layer, the region in which the etch mask 205 is provided is provided with a front electrode 212 to be described later Corresponds to the site. The etching mask 205 may be formed through a photolithography process.

상기 식각 마스크(205)가 구비된 상태에서, 에치백(etch-back) 공정을 통해 상기 식각 마스크(205)에 의해 노출된 BSG막(204) 및 상기 고농도 에미터(203a)를 식각, 제거한다(도 2d 참조). 이에 따라, 저농도 에미터(203b)가 노출됨과 함께 상기 식각 마스크(205)가 구비된 부위에만 고농도 에미터(203a)층이 잔존하게 되며, 고농도 에미터(203a)층과 저농도 에미터(203b)층으로 구성되는 선택적 에미터 구조가 완성된다. In the state where the etching mask 205 is provided, the BSG film 204 and the high concentration emitter 203a exposed by the etching mask 205 are etched and removed through an etch-back process. (See FIG. 2D). Accordingly, while the low concentration emitter 203b is exposed, the high concentration emitter 203a layer remains only at the portion where the etching mask 205 is provided, and the high concentration emitter 203a layer and the low concentration emitter 203b. A selective emitter structure consisting of layers is completed.

이어, 잔존하는 식각 마스크(205) 및 PSG막(209)을 제거하고, 기판(201) 전면 상에 확산방지막(206)을 적층한다(도 2e 참조). 상기 확산방지막(206)은 후술하는 후면전계층(n+)(208) 형성시 n형 불순물 이온이 기판(201) 상부의 p형 에미터(203)로 확산되는 것을 방지하는 역할을 한다. Subsequently, the remaining etching mask 205 and the PSG film 209 are removed, and the diffusion barrier film 206 is laminated on the entire surface of the substrate 201 (see FIG. 2E). The diffusion barrier 206 serves to prevent the n-type impurity ions from diffusing into the p-type emitter 203 on the substrate 201 when forming the backside field layer (n +) 208 which will be described later.

이와 같은 상태에서, 확산공정을 실시하여 기판(201) 측부와 하부에 각각 측면전계층(n+)(207)과 후면전계층(n+)(208)을 형성한다(도 2f 참조). 이 때, 기판(201) 전면 상에는 확산방지막(206)이 구비됨에 따라, 기판(201) 상부의 p형 에미터(203)에는 n형 불순물 이온이 확산되지 않으며, 기판(201) 측부 및 하부의 p형 에미터(203)에는 n형 불순물이 확산되어 p형 에미터(203)가 측면전계층(n+)(207)과 후면전계층(n+)(208)으로 전환된다. In this state, the diffusion process is performed to form the side field layers (n +) 207 and the back field layers (n +) 208 on the side and bottom of the substrate 201 (see FIG. 2F). At this time, as the diffusion barrier 206 is provided on the entire surface of the substrate 201, the n-type impurity ions do not diffuse into the p-type emitter 203 on the substrate 201, and the side and bottom portions of the substrate 201 The n-type impurities are diffused into the p-type emitter 203 so that the p-type emitter 203 is converted into the side field layers (n +) 207 and the back field layers (n +) 208.

상기 확산공정은 챔버 내에 상기 n형 실리콘 기판(201)을 구비시키고 상기 챔버 내에 n형 불순물 이온을 포함하는 가스(예를 들어, POCl3)를 공급하여 인(P) 이온이 기판(201) 내부로 확산(diffusion)되도록 실시할 수 있으며, 상기 확산공정으로 인해 기판(201) 표면에는 또 다른 확산부산물인 PSG(phosphor-silicate glass)막이 형성된다. The diffusion process includes the n-type silicon substrate 201 in a chamber and supplies a gas (for example, POCl 3 ) containing n-type impurity ions into the chamber so that phosphorus (P) ions enter the substrate 201. The diffusion process may be performed, and another diffusion byproduct PSG (phosphor-silicate glass) film is formed on the surface of the substrate 201 due to the diffusion process.

이어, 상기 확산방지막(206), PSG막(209) 및 측면전계층(n+)(207)을 식각, 제거한다(도 2g 참조). 그런 다음, 상기 기판(201)의 전면 및 후면에 각각 패시베이션층(210)(passivation layer)을 형성하고, 상기 패시베이션층(210) 상에는 반사방지막(211)을 형성한다(도 2h 참조). 상기 반사방지막(211)은 실리콘 질화막을 이용하여 형성할 수 있다. 최종적으로, 상기 기판(201) 전면 및 후면의 반사방지막(211) 상에 전면전극(212)과 후면전극(213)을 형성하면 본 발명의 일 실시예에 따른 양면수광형 태양전지의 제조방법은 완료된다. 이 때, 측면전계층(n+)(207)이 제거된 상태임에 따라, 별도의 레이저 아이솔레이션 공정은 요구되지 않는다.
Subsequently, the diffusion barrier layer 206, the PSG layer 209, and the side field layer (n +) 207 are etched and removed (see FIG. 2G). Then, a passivation layer 210 is formed on the front and rear surfaces of the substrate 201, and an anti-reflection film 211 is formed on the passivation layer 210 (see FIG. 2H). The anti-reflection film 211 may be formed using a silicon nitride film. Finally, when the front electrode 212 and the rear electrode 213 is formed on the anti-reflection film 211 on the front and rear of the substrate 201 manufacturing method of the double-sided light receiving solar cell according to an embodiment of the present invention Is done. At this time, since the side field layer (n +) 207 is removed, a separate laser isolation process is not required.

201 : n형 실리콘 기판 202 : 요철
203 : p형 에미터 203a : 고농도 에미터
203b : 저농도 에미터 204 : BSG막
205 : 식각마스크 206 : 확산방지막
207 : 측면전계층(n+) 208 : 후면전계층(n+)
209 : PSG막 210 : 패시베이션층
211 : 반사방지막 212 : 전면전극
213 : 후면전극
201: n-type silicon substrate 202: unevenness
203: p-type emitter 203a: high concentration emitter
203b: low concentration emitter 204: BSG film
205: etching mask 206: diffusion barrier
207: side field layer (n +) 208: rear field layer (n +)
209: PSG film 210: passivation layer
211: antireflection film 212: front electrode
213: rear electrode

Claims (6)

n형 실리콘 기판;
상기 기판 상부에 구비되며, 고농도 에미터와 저농도 에미터로 구성된 p형 에미터;
상기 기판 하부에 구비된 후면전계층(n+);
상기 p형 에미터의 고농도 에미터와 연결되는 전면전극; 및
상기 후면전계층(n+)과 연결되는 후면전극을 포함하여 이루어지며,
상기 저농도 에미터는 상기 기판 상부의 전면 상에 구비되고, 상기 고농도 에미터는 상기 저농도 에미터 상에 국부적으로 구비되는 것을 특징으로 하는 양면수광형 태양전지.
n-type silicon substrate;
A p-type emitter provided on the substrate and composed of a high concentration emitter and a low concentration emitter;
A backside field layer (n +) provided below the substrate;
A front electrode connected to the high concentration emitter of the p-type emitter; And
It comprises a back electrode connected to the back field layer (n +),
The low concentration emitter is provided on the front surface of the upper substrate, the high concentration emitter is a double-sided light receiving solar cell, characterized in that provided locally on the low concentration emitter.
제 1 항에 있어서, 상기 고농도 에미터는 상기 저농도 에미터 상에 돌출된 형태로 구비되는 것을 특징으로 하는 양면수광형 태양전지.
The double-sided light receiving solar cell of claim 1, wherein the high concentration emitter is provided in a form protruding on the low concentration emitter.
제 1 항에 있어서, 상기 p형 에미터와 후면전계층(n+) 상에 각각 패시베이션층, 반사방지막이 순차적으로 적층된 것을 특징으로 하는 양면수광형 태양전지.
The double-sided light receiving solar cell of claim 1, wherein a passivation layer and an antireflection film are sequentially stacked on the p-type emitter and the backside field layer (n +), respectively.
n형 실리콘 기판을 준비하는 단계;
확산공정을 실시하여, 상기 기판 표면으로부터 내부로 갈수록 p형 불순물 이온의 농도가 작아지는 p형 에미터를 형성하며, 상기 p형 에미터는 고농도 에미터와 저농도 에미터로 구분되는 단계;
식각 마스크를 이용하여 고농도 에미터의 일부 영역을 노출시키고, 노출된 고농도 에미터를 식각, 제거하여 잔존하는 고농도 에미터와 저농도 에미터로 구성되는 선택적 에미터를 형성하는 단계;
기판 전면 상에 확산방지막을 적층하는 단계; 및
확산공정을 통해 기판 하부에 후면전계층(n+)을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 양면수광형 태양전지의 제조방법.
preparing an n-type silicon substrate;
Performing a diffusion process to form a p-type emitter in which the concentration of p-type impurity ions decreases from the surface of the substrate toward the inside, wherein the p-type emitter is divided into a high concentration emitter and a low concentration emitter;
Exposing a portion of the high concentration emitter using an etch mask and etching and removing the exposed high concentration emitter to form a selective emitter consisting of the remaining high concentration emitter and the low concentration emitter;
Stacking a diffusion barrier on the entire surface of the substrate; And
A method of manufacturing a double-sided light-receiving solar cell, comprising the step of forming a backside field layer (n +) under the substrate through a diffusion process.
제 4 항에 있어서, 상기 p형 에미터를 형성하는 단계는,
상기 기판 전면 상에 p형 도핑소스를 도포하는 과정과,
상기 기판을 열처리하여 상기 p형 도핑소스가 기판 내부로 확산되도록 하여 p형 에미터를 형성하는 과정을 포함하여 구성되는 것을 특징으로 하는 양면수광형 태양전지의 제조방법.
The method of claim 4, wherein the forming of the p-type emitter,
Applying a p-type doping source on the front surface of the substrate,
And forming a p-type emitter by diffusing the p-type doping source into the substrate by heat-treating the substrate.
제 4 항에 있어서, 상기 후면전계층(n+)의 형성 후,
상기 기판 전면과 후면에 각각 패시베이션층을 형성하는 단계와,
상기 패시베이션층 상에 반사방지막을 형성하는 단계 및
상기 기판 전면 상에 p형 에미터의 고농도 에미터와 연결되는 전면전극을 형성함과 함께 상기 기판 후면 상에 후면전계층(n+)과 연결되는 후면전극을 형성하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 양면수광형 태양전지의 제조방법.
The method of claim 4, wherein after forming the backside field layer n +,
Forming a passivation layer on each of the front and rear surfaces of the substrate;
Forming an anti-reflection film on the passivation layer; and
And forming a front electrode connected to a high concentration emitter of a p-type emitter on the front surface of the substrate and a rear electrode connected to a rear electric field layer (n +) on the rear surface of the substrate. Method for manufacturing a double-sided light receiving solar cell.
KR1020110113889A 2011-11-03 2011-11-03 Bi-facial solar cell and method for fabricating the same KR101651302B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110113889A KR101651302B1 (en) 2011-11-03 2011-11-03 Bi-facial solar cell and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110113889A KR101651302B1 (en) 2011-11-03 2011-11-03 Bi-facial solar cell and method for fabricating the same

Publications (2)

Publication Number Publication Date
KR20130048948A true KR20130048948A (en) 2013-05-13
KR101651302B1 KR101651302B1 (en) 2016-08-26

Family

ID=48659835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110113889A KR101651302B1 (en) 2011-11-03 2011-11-03 Bi-facial solar cell and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR101651302B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157740A (en) * 2014-09-03 2014-11-19 苏州阿特斯阳光电力科技有限公司 N-type two-side solar cell manufacturing method
KR20150029201A (en) * 2013-09-09 2015-03-18 엘지전자 주식회사 Solar cell
KR20150029203A (en) * 2013-09-09 2015-03-18 엘지전자 주식회사 Solar cell
KR20160052267A (en) * 2014-11-04 2016-05-12 엘지전자 주식회사 Solar cell and the manufacturing mathod thereof
CN108666393A (en) * 2018-07-16 2018-10-16 英利能源(中国)有限公司 The preparation method and solar cell of solar cell
CN110137305A (en) * 2019-05-06 2019-08-16 上海神舟新能源发展有限公司 A kind of preparation method of p-type polysilicon selective emitter double-side cell
WO2019216570A1 (en) * 2018-05-09 2019-11-14 엘지전자 주식회사 Solar cell
US11309441B2 (en) 2013-04-03 2022-04-19 Lg Electronics Inc. Solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000616A (en) 1998-06-02 2000-01-15 구자홍 Disk drive device
KR20100049724A (en) * 2008-11-04 2010-05-13 엘지전자 주식회사 Silicon solar cell using screen printing and manufacturing method of thereof
US20110177652A1 (en) * 2010-01-20 2011-07-21 Varian Semiconductor Equipment Associates, Inc. Bifacial solar cell using ion implantation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000616A (en) 1998-06-02 2000-01-15 구자홍 Disk drive device
KR20100049724A (en) * 2008-11-04 2010-05-13 엘지전자 주식회사 Silicon solar cell using screen printing and manufacturing method of thereof
US20110177652A1 (en) * 2010-01-20 2011-07-21 Varian Semiconductor Equipment Associates, Inc. Bifacial solar cell using ion implantation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309441B2 (en) 2013-04-03 2022-04-19 Lg Electronics Inc. Solar cell
US11482629B2 (en) 2013-04-03 2022-10-25 Lg Electronics Inc. Solar cell
US11456391B2 (en) 2013-04-03 2022-09-27 Lg Electronics Inc. Solar cell
US11329172B2 (en) 2013-04-03 2022-05-10 Lg Electronics Inc. Solar cell
KR20150029201A (en) * 2013-09-09 2015-03-18 엘지전자 주식회사 Solar cell
KR20150029203A (en) * 2013-09-09 2015-03-18 엘지전자 주식회사 Solar cell
CN104157740A (en) * 2014-09-03 2014-11-19 苏州阿特斯阳光电力科技有限公司 N-type two-side solar cell manufacturing method
CN104157740B (en) * 2014-09-03 2017-02-08 苏州阿特斯阳光电力科技有限公司 N-type two-side solar cell manufacturing method
KR20160052267A (en) * 2014-11-04 2016-05-12 엘지전자 주식회사 Solar cell and the manufacturing mathod thereof
WO2019216570A1 (en) * 2018-05-09 2019-11-14 엘지전자 주식회사 Solar cell
CN108666393A (en) * 2018-07-16 2018-10-16 英利能源(中国)有限公司 The preparation method and solar cell of solar cell
CN108666393B (en) * 2018-07-16 2024-02-09 英利能源(中国)有限公司 Solar cell and preparation method thereof
CN110137305A (en) * 2019-05-06 2019-08-16 上海神舟新能源发展有限公司 A kind of preparation method of p-type polysilicon selective emitter double-side cell

Also Published As

Publication number Publication date
KR101651302B1 (en) 2016-08-26

Similar Documents

Publication Publication Date Title
US9054237B2 (en) Interdigitated back contact silicon solar cells fabrication using diffusion barriers
KR101651302B1 (en) Bi-facial solar cell and method for fabricating the same
JP2016006907A (en) Solar cell and manufacturing method of solar cell
JP2013516081A (en) Manufacturing method of back electrode type solar cell
US20140130854A1 (en) Photoelectric device and the manufacturing method thereof
KR101160116B1 (en) Method of manufacturing Back junction solar cell
JP4325912B2 (en) Solar cell element and manufacturing method thereof
KR101238988B1 (en) Back contact solar cell and method for fabricating the same
KR20100089473A (en) High efficiency back contact solar cell and method for manufacturing the same
KR101383426B1 (en) Method for fabricating bi-facial solar cell
JP2013197538A (en) Method for manufacturing photoelectric conversion element
KR101348848B1 (en) Method for fabricating back contact solar cell
KR101125450B1 (en) Method for fabricating back contact solar cell
KR101198430B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR100995654B1 (en) Solar cell and method for manufacturing the same
KR20150007396A (en) Method for fabricating bi-facial solar cell
KR101732742B1 (en) Bi-facial solar cell and method for fabricating the same
JP2013513965A (en) Back surface field type heterojunction solar cell and manufacturing method thereof
KR20190041989A (en) Solar cell manufacturing method and solar cell
KR101382047B1 (en) Method for fabricating selective emitter structure of solar cell
TWI481060B (en) Method for manufacturing solar cell
KR101391073B1 (en) Bi-facial solar cell and method for fabricating the same
KR101172614B1 (en) Back contact solar cell and method thereof
KR20120077707A (en) Localized emitter solar cell and method for manufacturing thereof
KR20120041340A (en) Method for manufacturing solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 5