KR20130026769A - Cement brick for purifying water using microorganism and zeolite, and method for preparing the same - Google Patents
Cement brick for purifying water using microorganism and zeolite, and method for preparing the same Download PDFInfo
- Publication number
- KR20130026769A KR20130026769A KR1020110090139A KR20110090139A KR20130026769A KR 20130026769 A KR20130026769 A KR 20130026769A KR 1020110090139 A KR1020110090139 A KR 1020110090139A KR 20110090139 A KR20110090139 A KR 20110090139A KR 20130026769 A KR20130026769 A KR 20130026769A
- Authority
- KR
- South Korea
- Prior art keywords
- cement
- microorganisms
- zeolite
- water
- brick
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/047—Zeolites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F2003/001—Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0068—Ingredients with a function or property not provided for elsewhere in C04B2103/00
- C04B2103/0097—Anion- and far-infrared-emitting materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Biological Treatment Of Waste Water (AREA)
- Water Treatment By Sorption (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
본 발명은 미생물과 제올라이트를 이용한 수질 정화용 시멘트 벽돌 및 이의 제조방법에 관한 것이다.The present invention relates to a cement brick for water purification using microorganisms and zeolites and a method of manufacturing the same.
최근 국토 환경의 주요 요소인 하천 환경은 급속히 악화되었고, 그에 따른 사회적 문제는 산림, 임야, 농경지 등 다른 국토 요소의 환경 문제보다 더 심각하게 대두되었다. 특히, 1970년대 이후 우리나라는 급격한 산업화와 도시화의 진전에 따라 물의 사용량이 지속적으로 증가하였고, 생활 오수의 발생량 증가는 주변 수계로의 영양염류의 유입을 증가시켜 부영양화를 초래하였으며, 수생 생태계의 자연정화 능력을 초과함으로써 생물의 다양성이 상실되는 원인이 되었다. 또한, 하수도 정비와 고차 폐수 처리에 막대한 비용과 시간이 소요되며, 우리나라의 호수 및 하천은 오염물질에 쉽게 노출되어 있어 부영양화가 쉽게 발생할 수 있는 특징을 지니고 있다고 알려져 있다.Recently, the river environment, which is a major element of the national environment, has deteriorated rapidly, and the resulting social problems are more serious than the environmental problems of other national elements such as forests, forests, and agricultural land. In particular, since the 1970s, Korea has continued to increase the amount of water consumed by rapid industrialization and urbanization, and the increase in the amount of domestic sewage has increased the inflow of nutrients into the surrounding water system, resulting in eutrophication and natural purification of the aquatic ecosystem. Exceeding the capacity caused the loss of biodiversity. In addition, it takes a huge cost and time for sewage maintenance and high-level wastewater treatment, and lakes and rivers in Korea are easily exposed to pollutants, so it is known that eutrophication can occur easily.
따라서, 심각해지는 수질오염을 해결하고자 친환경적이면서 경제적인 수질 개선 대책으로 미생물 또는 생물의 다양한 기능을 이용한 생물학적 정화 (bioremediation)가 주목받고 있다.Therefore, bioremediation using various functions of microorganisms or organisms has been attracting attention as an environmentally friendly and economical water quality improvement measure to solve the serious water pollution.
미생물은 중간 독성 물질의 발생 없이 많은 환경오염 물질을 분해하는 능력이 있어, 이를 활용하여 연속 공극이 형성된 다공성 콘크리트에 적용시킴으로써 흡착 생물량을 증가시켜, 흡착 생물에 의해 오염물질을 흡착하여 미생물 자체의 자정 능력을 촉진 및 증대시킬 수 있다고 보고되어 있다. 또한, 유기물 분해가 탁월하고 환경에 적응성이 뛰어난 것으로 알려진 미생물 등을 활용하여 수중이나 수변에 설치되는 콘크리트 블록 및 구조물에 흡착하여 생물막(biofilm)을 형성함으로써 콘크리트 블록 등에 고정화된 유용 미생물에 의해 오염원인 다량의 유기물질을 신속하고 지속적으로 분해하고, 질소와 인을 흡수하여 제거하는 등 유용 미생물을 활용한 친환경 콘크리트 연구가 꾸준히 진행되고 있다.Microorganisms have the ability to decompose many environmental pollutants without the generation of intermediate toxic substances, and by applying them to porous concrete with continuous voids, the adsorption biomass is increased, so that the microorganisms themselves can be adsorbed by adsorbing pollutants by adsorption organisms. It is reported that the ability can be promoted and increased. In addition, by using microorganisms known to be excellent in organic decomposition and excellent in adaptability to the environment, they are adsorbed to concrete blocks and structures installed in water or watersides to form biofilms. Research on eco-friendly concrete using useful microorganisms such as rapidly and continuously decomposing large quantities of organic materials, absorbing and removing nitrogen and phosphorus, is continuously conducted.
그러나, 종래의 미생물을 이용한 수질정화용 콘크리트 또는 시멘트 벽돌은 미생물 자체를 콘크리트 또는 시멘트 벽돌에 첨가하여 생성함으로써 콘크리트의 독성에 의한 미생물의 생존율이 저하되는 현상이 발생되고 있어, 콘크리트 구조물 설치시 미생물에 의한 수질정화 효과를 크게 기대할 수 없었다.However, the water purification of concrete or cement brick using conventional microorganisms is generated by adding the microorganisms to the concrete or cement bricks, thereby reducing the survival rate of the microorganisms due to the toxicity of concrete. The water purification effect could not be greatly expected.
이러한 문제점을 극복하기 위해, 많은 연구자들은 콘크리트 구조물의 형성시 미생물을 담지하여 콘크리트 구조물을 형성함으로써 미생물에 의한 수질정화 효과를 극대화시키고자 하는 연구를 진행하여 왔다. 이의 일 예로, 대한민국 등록특허공보 제 10-948556호에는 알칼리 및 열에 대한 내성이 우수한 미생물을 골재에 담지 및 휴면포자시켜 콘크리트 구조물의 형성시, 미생물의 생존율을 증대시킬 수 있는 미생물을 이용한 수질정화용 콘트리트 블록 제조방법과 이에 의해 제조된 콘크리트 블록에 관하여 기재되어 있다.In order to overcome this problem, many researchers have been trying to maximize the water purification effect by the microorganisms by forming the concrete structure to support the microorganisms when forming the concrete structure. For example, Korean Patent Publication No. 10-948556 discloses water quality purification concrete using microorganisms that can increase the survival rate of microorganisms when concrete structures are formed by supporting and dormant spores with microorganisms excellent in alkali and heat resistance. A block manufacturing method and a concrete block produced thereby are described.
최근에는 친환경 재료에 대한 관심이 점점 급증하여 재료의 구조적 기능성 및 투수성을 동시에 갖는 다공성 콘크리트의 활용이 증가되고 있다.Recently, the interest in environmentally friendly materials has been increasing rapidly, and the utilization of porous concrete having both structural functional and permeability of materials is increasing.
따라서, 미생물의 중간 독성 물질의 발생 없이 많은 환경오염 물질을 분해하는 능력을 활용하여 미생물을 연속 공극이 형성된 다공성 콘크리트에 흡착하여 흡착 미생물을 증가시키고, 흡착 미생물에 의해 오염물질을 흡착하여 미생물 자체의 자정 능력을 촉진 및 증대시켜 수질정화 효과를 극대화시킬 수 있는 시멘트 블록에 대한 개발의 필요성이 절실히 요구되고 있다.Therefore, by utilizing the ability to decompose many environmental pollutants without generating intermediate toxic substances of microorganisms, the microorganisms are adsorbed to porous concrete with continuous voids to increase the adsorption microorganisms, and by adsorbing contaminants by the adsorption microorganisms, There is an urgent need for the development of cement blocks that can maximize water purification effects by promoting and increasing self-cleaning capacity.
본 발명자들은 수질정화 효과를 극대화시킬 수 있는 시멘트 블록에 대해 연구하던 중, 제올라이트를 포함하는 시멘트 벽돌을 미생물이 분산된 물에 담그고 양생하여 제올라이트에 미생물을 흡착시킴으로써, 미생물을 흡착하지 않은 시멘트 벽돌에 비해 오염수에서 오염물질의 제거 효율이 우수함을 확인하고, 본 발명을 완성하였다.The inventors of the present invention, while studying a cement block that can maximize the water purification effect, by dipping and curing the cement brick containing zeolite in the water in which microorganisms are dispersed, by adsorbing the microorganism to the zeolite, to the cement brick that does not adsorb microorganisms It was confirmed that the removal efficiency of contaminants in the contaminated water is excellent, and completed the present invention.
따라서, 본 발명은 미생물과 제올라이트를 이용한 수질 정화용 시멘트 벽돌 및 이의 제조방법을 제공하고자 한다.Accordingly, the present invention is to provide a cement brick for water purification using microorganisms and zeolites and a method of manufacturing the same.
본 발명은The present invention
1) 시멘트 1 중량부; 및 입도가 1㎜ 이하의 석분 75~85 중량%, 입도가 1~2㎜의 쇄석 1~10 중량%, 입도가 1~3㎜의 제올라이트 10~20 중량%로 이루어진 잔골재 2~5 중량부를 혼합하고, 여기에 물을 가하여 혼합하는 단계,1) 1 part by weight of cement; And 2 to 5 parts by weight of fine aggregate composed of 75 to 85% by weight of stone powder having a particle size of 1 mm or less, 1 to 10% by weight of crushed stone having a particle size of 1 to 2 mm, and 10 to 20% by weight of zeolite having a particle size of 1 to 3 mm. And mixing with water,
2) 상기 1)단계에서 제조한 혼합물을 가압 성형하여 시멘트 벽돌을 제조하는 단계, 및2) preparing cement brick by press molding the mixture prepared in step 1);
3) 상기 2)단계에서 제조한 시멘트 벽돌을 미생물이 분산된 물에 담그고 양생하여 시멘트 벽돌의 제올라이트 내에 미생물을 흡착하는 단계를 포함하는, 미생물과 제올라이트를 이용한 수질 정화용 시멘트 벽돌의 제조방법을 제공한다.3) provides a method for producing a cement brick for water purification using microorganisms and zeolites, comprising the step of immersing and curing the cement bricks prepared in step 2) in water in which microorganisms are dispersed and adsorbing microorganisms in zeolites of cement bricks. .
또한, 본 발명은 상기 방법에 의해 제조된 미생물과 제올라이트를 이용한 수질 정화용 시멘트 벽돌을 제공한다.In addition, the present invention provides a cement brick for water purification using the microorganism and zeolite produced by the above method.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 수질 정화용 시멘트 벽돌은, 시멘트 및 입도가 1㎜ 이하의 석분, 입도가 1~2㎜의 쇄석, 입도가 1~3㎜의 제올라이트로 이루어진 잔골재를 혼합하고, 여기에 물을 가하여 혼합한 다음 이를 가압 성형하여 시멘트 벽돌을 제조한 후, 이를 미생물이 분산된 물에 담그고 양생하여 제올라이트에 미생물을 흡착시켜 제조된 것을 특징으로 한다.The cement brick for water purification according to the present invention is mixed with a cement and a fine aggregate having a particle size of 1 mm or less, a crushed stone having a particle size of 1 to 2 mm, and a zeolite having a particle size of 1 to 3 mm. Then, after the pressure molding it to produce a cement brick, it is characterized in that it is produced by adsorbing the microorganisms in zeolite by dipping and curing it in water dispersed microorganisms.
본 발명에 따른 수질 정화용 시멘트 벽돌의 제조방법에 대해 단계별로 상세히 설명하면 다음과 같다.When explaining in detail step by step for the manufacturing method of the water purification cement brick according to the present invention.
상기 1)단계는 시멘트, 잔골재 및 물을 혼합하는 단계로, 시멘트 1 중량부; 및 입도가 1㎜ 이하의 석분 75~85 중량%, 입도가 1~2㎜의 쇄석 1~10 중량%, 입도가 1~3㎜의 제올라이트 10~20 중량%로 이루어진 잔골재 2~5 중량부를 혼합하고, 여기에 물을 가하여 혼합한다. 이때, 물의 함량은 시멘트 총 중량에 대해 20~30 중량%인 것이 바람직하다. Step 1) is a step of mixing cement, fine aggregate and water, 1 part by weight of cement; And 2 to 5 parts by weight of fine aggregate composed of 75 to 85% by weight of stone powder having a particle size of 1 mm or less, 1 to 10% by weight of crushed stone having a particle size of 1 to 2 mm, and 10 to 20% by weight of zeolite having a particle size of 1 to 3 mm. Then, water is added and mixed thereto. At this time, the water content is preferably 20 to 30% by weight based on the total weight of the cement.
상기 시멘트는 포틀랜드 시멘트, 혼합 시멘트, 특수 시멘트 등을 포함하며, 상기 포틀랜드 시멘트로는 1종 보통 포틀랜드 시멘트, 2종 중용열 포틀랜드 시멘트, 3종 조강 포틀랜드 시멘트, 4종 저열 포틀랜드 시멘트, 5종 내황산염 포틀랜드 시멘트 등을 포함하며, 상기 혼합 시멘트는 고로 슬래그 시멘트(portland blast-furnace slag cement), 포틀랜드 포졸란 시멘트(portland pozzolan cement), 플라이애시 시멘트(portland fly-ash cement), 착색 시멘트(color cement) 등을 포함하고, 상기 특수 시멘트는 알루미나 시멘트, 백색 포틀랜드 시멘트, 초속경 시멘트, 팽창질석을 사용한 단열 시멘트(KS L 5216), 팽창성 수경시멘트(KS L 5217), 메이슨리 시멘트(KS L 5219), 초조강 시멘트 등을 포함할 수 있으나, 이에 한정되지 않는다.The cement includes portland cement, mixed cement, special cement, etc. The portland cement includes one type of ordinary portland cement, two types of medium heat portland cement, three types of crude steel portland cement, four types of low heat portland cement, and five types of sulfate resistant Portland cement, and the like, wherein the mixed cement includes blast-furnace slag cement, portland pozzolan cement, flyland ash cement, color cement, and the like. Including, the special cement is alumina cement, white portland cement, cemented carbide, thermal insulation cement using expanded vermiculite (KS L 5216), expandable hydraulic cement (KS L 5217), Masonry cement (KS L 5219), Steel cement, etc., but is not limited thereto.
상기 2)단계는 시멘트 벽돌을 제조하는 단계로, 상기 1)단계의 혼합물을 가압 성형하여 시멘트 벽돌을 제조한다. Step 2) is to prepare a cement brick, by pressing the mixture of step 1) to produce a cement brick.
상기 3)단계는 시멘트 벽돌 내에 포함된 제올라이트에 미생물을 흡착하는 단계로, 가압 성형 24시간 후 미생물이 다량 분산되어 있는 물에 상기 2)단계에서 가압 성형한 시멘트 벽돌을 담그고 일주일 동안 양생하여 제올라이트에 미생물을 흡착시킨다. Step 3) is a step of adsorbing the microorganisms in the zeolite contained in the cement brick, soaking the cement brick pressed in step 2) in water containing a large amount of microorganisms after 24 hours of pressure molding and curing for one week to the zeolite Adsorb microorganisms.
상기 미생물은 된장, 낫토, 및 대구 S 환경사업소의 시료로부터 분리 및 동정한 미생물로, 된장으로부터 분리 및 동정한 미생물은 Bacillus atrophaeus, Bacillus amyloliquefaciens, Bacillus cereus, Lysinibacillus fusiformis, Pseudochrobactrum saccharolyticum를 포함하며, 대구 S 환경사업소의 시료로부터 분리 및 동정한 미생물은 Lysinibacillus sphaericus, Lysinibacillus fusiformis, Aeromonas encheleia, Bacillus amyloliquefaciens, Klebsiella pneumoniae, Aeromonas media, Raoultella ornithinolytica, Pseudochrobactrum saccharolyticum, Comamonas thiooxidans를 포함하고, 낫토로부터 분리 및 동정한 미생물은 Bacillus subtilis, Bacillus tequilensis를 포함한다.The microorganisms are microorganisms isolated and identified from the samples of Doenjang, Natto, and Daegu S Environmental Office, and microorganisms isolated and identified from Doenjang include Bacillus atrophaeus, Bacillus amyloliquefaciens, Bacillus cereus, Lysinibacillus fusiformis, Pseudochrobactrum saccharolyticum, and Cod S. The microorganisms isolated and identified from the samples of environmental establishments include Lysinibacillus sphaericus, Lysinibacillus fusiformis, Aeromonas encheleia, Bacillus amyloliquefaciens, Klebsiella pneumoniae, Aeromonas media, Raoultella ornithinolytica, Pseudochrobactrum saccharolyticum, Comamonas cyclus, and Bacillus thious. subtilis, Bacillus tequilensis.
상기 방법으로 제조된 미생물과 제올라이트를 이용한 시멘트 벽돌은 미생물을 흡착하지 않은 시멘트 벽돌에 비해 pH가 증가하고, 부유물질(SS), 화학적 산소 요구량(COD), 생물학적 산소 요구량(BOD), 총 질소(T-N) 및 총 인(T-P)의 제거 효율이 우수하게 나타난다.The cement brick using the microorganism and zeolite prepared by the above method has a higher pH than the cement brick without adsorption of microorganisms, and includes suspended solids (SS), chemical oxygen demand (COD), biological oxygen demand (BOD), and total nitrogen ( TN) and total phosphorus (TP) removal efficiency is excellent.
상기한 바와 같이, 본 발명에 따른 미생물과 제올라이트를 이용한 수질 정화용 시멘트 벽돌은 제올라이트를 포함하는 시멘트 벽돌을 미생물이 분산된 물에 담그고 양생하여 제올라이트에 미생물을 흡착시킴으로써, 미생물을 흡착하지 않은 시멘트 벽돌에 비해 하천, 호수, 늪, 수로, 연못, 정화조 등의 오염수에서 오염물질의 제거 효율이 우수하다. 따라서, 본 발명에 따른 시멘트 벽돌은 수질 정화용 건축 소재로 유용하게 사용될 수 있다.As described above, the cement brick for water purification using the microorganism and the zeolite according to the present invention is by dipping and curing the cement brick containing the zeolite in the water in which the microorganisms are dispersed and adsorbing the microorganism to the zeolite, thereby preventing the microorganism from being adsorbed on the cement brick. Compared to the contaminated water of rivers, lakes, swamps, waterways, ponds and septic tanks, the removal efficiency of pollutants is excellent. Therefore, the cement brick according to the present invention can be usefully used as a building material for water purification.
본 발명에 따른 미생물과 제올라이트를 이용한 수질 정화용 시멘트 벽돌은, 미생물을 흡착하지 않은 시멘트 벽돌에 비해 pH가 증가하고, 부유물질(SS), 화학적 산소 요구량(COD), 생물학적 산소 요구량(BOD), 총 질소(T-N) 및 총 인(T-P)의 제거 효율이 우수하게 나타난다.The cement brick for water purification using microorganisms and zeolites according to the present invention has an increased pH compared to cement bricks which do not adsorb microorganisms, and includes suspended solids (SS), chemical oxygen demand (COD), biological oxygen demand (BOD), and total The removal efficiency of nitrogen (TN) and total phosphorus (TP) is excellent.
도 1은 본 발명의 시멘트 벽돌의 제올라이트 내에 미생물의 흡착 여부를 주사전자현미경(SEM)으로 관찰한 도이다[A: 미생물을 흡착하지 않은 제올라이트, B: 된장 박테리아가 흡착된 제올라이트, C: 나토 박테리아가 흡착된 제올라이트, D: 대구 S 환경사업소 박테리아가 흡착된 제올라이트].
도 2는 본 발명의 미생물을 시멘트 벽돌에 흡착시키는 과정을 나타낸 도이다.
도 3은 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 회분식 반응조(completely mixed batch reactor, CMB)에 적용하여 원수(raw water)의 수질정화과정을 나타낸 도이다.
도 4는 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 용존 산소(DO)의 농도 변화를 나타낸 도이다.
도 5는 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 pH의 농도 변화를 나타낸 도이다.
도 6은 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 부유물질(SS)의 제거 효율을 나타낸 도이다.
도 7은 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 화학적 산소 요구량(COD)의 제거 효율을 나타낸 도이다.
도 8은 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 생물학적 산소 요구량(BOD)의 제거 효율을 나타낸 도이다.
도 9는 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 총 질소(T-N)의 제거 효율을 나타낸 도이다.
도 10은 본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 총 인(T-P)의 제거 효율을 나타낸 도이다.1 is a diagram illustrating the adsorption of microorganisms in the zeolite of the cement brick of the present invention by scanning electron microscopy (SEM) [A: zeolite without adsorption of microorganisms, B: zeolite adsorbed with miso bacteria, C: natto bacteria Adsorbed zeolite, D: zeolite adsorbed by Daegu S Environmental Office.
2 is a view showing a process of adsorbing microorganisms of the present invention on a cement brick.
Figure 3 is a view showing the water purification process of the raw water (raw water) by applying a cement brick prepared using the microorganism and zeolite of the present invention in a batch mixed batch reactor (CMB).
4 is a view showing a change in the concentration of dissolved oxygen (DO) of raw water to which the cement brick prepared using the microorganism and zeolite of the present invention.
5 is a view showing a change in the pH of the raw water to which the cement brick prepared by using the microorganism and zeolite of the present invention.
Figure 6 is a view showing the removal efficiency of the suspended solids (SS) of the raw water to which the cement brick prepared using the microorganism and zeolite of the present invention.
7 is a view showing the removal efficiency of the chemical oxygen demand (COD) of the raw water to which the cement brick prepared by using the microorganism and zeolite of the present invention.
8 is a view showing the removal efficiency of the biological oxygen demand (BOD) of the raw water to which the cement brick prepared by using the microorganism and zeolite of the present invention.
9 is a view showing the removal efficiency of the total nitrogen (TN) of the raw water to which the cement brick prepared using the microorganism and zeolite of the present invention.
10 is a view showing the removal efficiency of the total phosphorus (TP) of the raw water to which the cement brick prepared by using the microorganism and zeolite of the present invention.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.
실시예Example 1 One : 미생물과 제올라이트를 이용한 시멘트 벽돌의 제조 : Manufacturing Cement Bricks Using Microorganisms and Zeolites
1. 실험 재료1. Experimental material
본 실시예에서 사용한 시멘트는 보통 포틀랜드 시멘트(1909057)를 사용하였으며, 이의 물리적 성질은 하기 표 1에 나타내었다. 잔골재로는 입도가 1㎜ 이하의 석분, 입도가 1~2㎜의 쇄석, 입도가 1~3㎜의 제올라이트를 사용하였으며, 이들의 물리적 성질은 표 2에 나타내었고, 제올라이트의 화학적 성분은 표 3에 나타내었다.The cement used in this example was usually Portland cement (1909057), its physical properties are shown in Table 1 below. As fine aggregates, stone powder having a particle size of 1 mm or less, crushed stone having a particle size of 1 to 2 mm, and zeolites having a particle size of 1 to 3 mm were used, and their physical properties are shown in Table 2, and the chemical composition of the zeolite is shown in Table 3 Shown in
본 실시예에서 사용한 배지는 TSA(trypic soy agar)를 사용하였으며, TSA 배지는 트립톤 15g, soytone 5g, 염화나트륨 5g, 아가 15g을 증류수 1ℓ에 녹여 pH 7.3±0.2로 조정한 후 121℃(15 pound/in2, 1.05㎏/㎠)에서 15분간 오토클레이브 멸균 처리하고 60℃ 정도로 냉각한 후 멸균된 배양 접시(petri-dish)에 약 15㎖씩 분주하여 사용하였다.The medium used in this example was TSA (trypic soy agar), TSA medium was 15g tryptone, 5g soytone, 5g sodium chloride, 15g dissolved in 1L of distilled water and adjusted to pH 7.3 ± 0.2 and then 121 ℃ (15 pounds) / in 2 , 1.05kg / ㎠) autoclave sterilization for 15 minutes, cooled to about 60 ℃ and then used by dispensing about 15ml in a sterile petri dish (petri-dish).
본 실시예에서 사용된 미생물은 된장, 낫토(시중에 유통되고 있는 일본산 낫토), 및 대구 S 환경사업소에서 시료를 채취하여 시료 30g을 멸균 증류수 270㎖에 넣어서 교반한 후, 살균한 팁을 끼운 마이크로피펫으로 10㎖ 취하여 TSA 배지에 가하고, 여기에 살균한 콘라지봉(bend glass)을 이용한 도말법으로 접종하였다. 접종한 미생물을 16S rDNA 염기서열 분석법으로 분리하고 동정하였으며, 동정된 미생물들은 표 4에 나타내었다.The microorganisms used in this example were taken from doenjang, natto (commercially available Japanese natto), and Daegu S Environment Office, and 30 g of the sample was added to 270 ml of sterile distilled water and stirred. 10 ml of the micropipette was taken, added to TSA medium, and inoculated by smearing using sterilized bend glass. Inoculated microorganisms were isolated and identified by 16S rDNA sequencing, and the identified microorganisms are shown in Table 4.
(min)Setting time
(min)
(MPa)Compressive strength
(MPa)
(㎠/g)Blaine
(
(g/㎥)density
(g / ㎥)
(g/㎥)density
(g / ㎥)
(%)Water absorption
(%)
(t/㎥)Unit volume weight
(t / ㎥)
(%)Absolute volume ratio
(%)
2. 시멘트 벽돌의 제조2. Manufacture of cement brick
보통 포틀랜드 시멘트(1909057) 2.5㎏, 입도가 1㎜ 이하의 석분 0.315㎏, 입도가 1~2㎜의 쇄석 5.05㎏, 입도가 1~3㎜의 제올라이트 0.945㎏를 혼합하고, 여기에 물 0.575㎏(시멘트에 대해 23%)을 가하여 혼합하였다. 그 다음, 상기 혼합물을 벽돌 제작 틀에 가득 채우고 윗 뚜껑을 덮은 후, 뚜껑 위에 유압램 (10ton/10㎜)을 설치하고 유압램 쟈키를 연결하여 압력을 가하면서 가압 성형하여 시멘트 벽돌을 제조하였다. 가압 성형 24시간 후, 물에 상기 표 4에 기재된 미생물들을 다량 분산시키고 가압 성형한 시멘트 벽돌을 담근 다음 일주일 동안 양생하여 시멘트 벽돌에 미생물을 흡착시켰다. 이렇게 제조된 시멘트 벽돌의 제올라이트 내에 미생물 흡착 여부를 주사전자현미경(SEM)으로 관찰하였으며, 결과는 도 1에 나타내었다[A: 미생물을 흡착하지 않은 제올라이트, B: 된장 박테리아가 흡착된 제올라이트, C: 나토 박테리아가 흡착된 제올라이트, D: 대구 S 환경사업소 박테리아가 흡착된 제올라이트]. 동정된 미생물을 시멘트 벽돌에 흡착시키는 과정은 도 2에 나타내었다.Usually, 2.5 kg of Portland cement (1909057), 0.315 kg of stone powder having a particle size of 1 mm or less, 5.05 kg of crushed stone having a particle size of 1 to 2 mm, and 0.945 kg of zeolite having a particle size of 1 to 3 mm are mixed, and 0.575 kg of water ( 23% for cement) was added and mixed. Then, the mixture was filled with the brick making frame and the upper lid was covered, and a hydraulic ram (10ton / 10 mm) was installed on the lid, and a hydraulic ram jockey was connected and press-molded while applying pressure to manufacture cement brick. After 24 hours of pressure molding, the microorganisms of Table 4 were dispersed in water, and the cement bricks were press-molded and then cured for one week to adsorb the microorganisms to the cement bricks. The microbial adsorption in the zeolite of the cement brick thus prepared was observed by scanning electron microscopy (SEM), and the results are shown in FIG. 1 [A: zeolite without adsorption of microorganisms, B: zeolite adsorbed with miso bacteria, C: Zeolite adsorbed by NATO bacteria, D: zeolite adsorbed by Daegu S Environmental Office Bacteria]. The process of adsorbing the identified microorganisms on the cement brick is shown in FIG. 2.
도 1에 나타난 바와 같이, 미생물을 흡착하지 않은 제올라이트(A)는 내부 구조가 미세 다공질로 이루어져 있어 우수한 흡착 기능을 가질 수 있다는 것을 확인할 수 있었으며, 미생물을 흡착시킨 제올라이트(B,C,D)는 미세 다공질의 구조에 미생물이 흡착되어 있는 것을 확인할 수 있었다.
As shown in FIG. 1, the zeolite (A) that did not adsorb microorganisms was confirmed to have excellent adsorption function because the internal structure is made of microporous, and the zeolites (B, C, D) adsorbing microorganisms are It was confirmed that the microorganisms were adsorbed to the microporous structure.
비교예Comparative example 1 One : 제올라이트를 사용하고 미생물을 흡착시키지 않은 시멘트 벽돌의 제조 : Manufacture of cement brick using zeolite and not adsorbing microorganism
보통 포틀랜드 시멘트(1909057) 2.5㎏, 입도가 1㎜ 이하의 석분 0.315㎏, 입도가 1~2㎜의 쇄석 5.05㎏, 입도가 1~3㎜의 제올라이트 0.945㎏를 혼합하고, 여기에 물 0.575㎏(시멘트에 대해 23%)을 가하여 혼합하였다. 그 다음, 상기 혼합물을 벽돌 제작 틀에 가득 채우고 윗 뚜껑을 덮은 후, 뚜껑 위에 유압램 (10ton/10㎜)을 설치하고 유압램 쟈키를 연결하여 압력을 가하면서 가압 성형하여 시멘트 벽돌을 제조하였다.
Usually, 2.5 kg of Portland cement (1909057), 0.315 kg of stone powder having a particle size of 1 mm or less, 5.05 kg of crushed stone having a particle size of 1 to 2 mm, and 0.945 kg of zeolite having a particle size of 1 to 3 mm are mixed, and 0.575 kg of water ( 23%) was added to the cement and mixed. Then, the mixture was filled with the brick making frame and the upper lid was covered, and a hydraulic ram (10ton / 10 mm) was installed on the lid, and a hydraulic ram jockey was connected and press-molded while applying pressure to manufacture cement brick.
실험예Experimental Example 1 One : 미생물과 제올라이트를 이용한 시멘트 벽돌의 수질 정화 능력 측정 : Measurement of Water Purification Ability of Cement Bricks Using Microorganisms and Zeolites
본 발명의 미생물과 제올라이트를 이용한 시멘트 벽돌의 수질 정화 능력을 확인하기 위하여, 하기와 같은 실험을 수행하였다.In order to confirm the water purification ability of the cement brick using the microorganism and zeolite of the present invention, the following experiment was performed.
본 실험에 사용된 원수(raw water)는 대구 S 환경사업소에서 얻은 폐수 중 사석 및 협잡물을 제거한 것을 사용하였다.Raw water used in this experiment was used to remove sandstones and contaminants from the wastewater obtained from Daegu S Environmental Office.
본 실험의 폐수 처리에서 이용되는 반응조의 형태는 유량이 없고 반응조 내의 액체를 완전혼합하는 방식인 회분식 반응조(completely mixed batch reactor, CMB)를 사용하였다. 수질 정화 실험용 수조는 25ℓ 용량의 아크릴 수조를 사용하였으며, 반응조의 수량은 20ℓ로 조절하고 펌프를 사용하여 물을 순환시켰다. 3개의 반응조를 준비하고, 각각의 반응조에 원수, 미생물을 흡착시키지 않은 시멘트 벽돌 (비교예 1, WB[원수 + 시멘트 벽돌]), 상기 실시예 1에서 제조한 미생물을 흡착시킨 시멘트 벽돌(DB[원수 + 시멘트 벽돌 + 미생물(D101, D102, D103, D104, D105)], SB[원수 + 시멘트 벽돌 + 미생물(S101, S102, S103, S104, S105, S106, S107, S108, S109)], NB[원수 + 시멘트 벽돌 + 미생물(N101, N102)])을 수조 속에 넣고 수질정화 능력을 측정하였다(도 3 참조). 수질정화 실험은 2주일 동안 4회 실시하였으며, 용액의 용존 산소(DO)는 DO 미터(DO-30N), pH는 pH 미터(P15), 부유물질 (SS)은 SS 미터(AL250), 화학적 산소 요구량(COD)은 reactor digestion(HS-2300Plus), 생물학적 산소 요구량(BOD)은 BOD 센서 시스템, 총 질소(T-N)는 크로모트로핀산(chromotropic acid)(HS-2300Plus), 총 인(T-P)은 몰리브도 바나데이트 (molybdo vanadate)(HS-2300Plus)를 이용하여 측정하였다. 각 항목별로 수질 측정 키트 3개로 3번을 측정하여 평균값을 나타내었다. CODMn과 T-N, T-P는 수질 분석기의 신뢰도를 평가하기 위하여 CODMn(70㎎/ℓ), T-N(100㎎/ℓ), T-P(5㎎/ℓ)의 표준액으로 이 실험 방법과 동일하게 3번씩 측정하였으며, 그 결과 CODMn는 평균 69.3㎎/ℓ, T-N은 99.8㎎/ℓ, T-P는 5.2㎎/ℓ를 나타내었다.The type of reactor used in the wastewater treatment of this experiment was a completely mixed batch reactor (CMB), in which there was no flow rate and a method of completely mixing the liquid in the reactor. The water purification experiment tank used a 25 L acrylic bath, and the quantity of the reaction tank was adjusted to 20 L and the water was circulated using a pump. Three reaction tanks were prepared, and cement bricks (Comparative Example 1, WB [raw water + cement brick]) in which raw water and microorganisms were not adsorbed to each reaction tank, and cement bricks in which the microorganisms prepared in Example 1 were adsorbed (DB [ Raw water + cement brick + microorganisms (D101, D102, D103, D104, D105)], SB [raw water + cement brick + microorganisms (S101, S102, S103, S104, S105, S106, S107, S108, S109)], NB [ Raw water + cement brick + microorganisms (N101, N102)]) was placed in a water tank and water purification capacity was measured (see FIG. 3). The water purification experiment was conducted four times for two weeks. The dissolved oxygen (DO) of the solution was DO meter (DO-30N), pH was pH meter (P15), suspended solids (SS) was SS meter (AL250), chemical oxygen The requirements (COD) are reactor digestion (HS-2300Plus), biological oxygen demand (BOD) is BOD sensor system, total nitrogen (TN) is chromotropic acid (HS-2300Plus) and total phosphorus (TP) is Molybdo was also measured using molybdo vanadate (HS-2300Plus). Each item was measured three times with three water quality measurement kits to represent an average value. COD Mn , TN and TP are standard solutions of COD Mn (70mg / l), TN (100mg / l) and TP (5mg / l) to evaluate the reliability of water analyzer. As a result, the average COD Mn was 69.3 mg / l, the TN was 99.8 mg / l, and the TP was 5.2 mg / l.
본 발명의 미생물과 제올라이트를 이용하여 제조한 시멘트 벽돌을 적용한 원수의 용존 산소(DO), pH, 부유물질(SS), 화학적 산소 요구량(COD), 생물학적 산소 요구량(BOD), 총 질소(T-N), 총 인(T-P)의 측정 결과는 각각 표 5~11 및 도 4~10에 나타내었다.Dissolved oxygen (DO), pH, suspended solids (SS), chemical oxygen demand (COD), biological oxygen demand (BOD), total nitrogen (TN) of raw water using cement brick prepared using microorganism and zeolite of the present invention , The results of the measurement of total phosphorus (TP) are shown in Tables 5 to 11 and FIGS. 4 to 10, respectively.
표 5 및 도 4에 나타난 바와 같이, 원수, WB, DB, NB, SB 모두 2일째까지 증가하다가 다시 감소하는 경향으로 큰 변화를 나타내지 않았다. 따라서, 미생물들이 DO에 영향을 미치지 못하는 것으로 확인하였다.As shown in Table 5 and Figure 4, raw water, WB, DB, NB, SB all did not show a big change in the tendency to increase until the second day and then decrease again. Therefore, it was confirmed that the microorganisms do not affect the DO.
또한 표 6 및 도 5에 나타난 바와 같이, 원수의 pH는 2주 동안 큰 변화를 나타내지 않았으며, WB, DB, NB, SB의 경우 pH가 6일째까지 증가하다가 다시 감소하는 경향을 나타내었지만 큰 변화는 없었다. 하지만, DB, NB, SB의 pH는 WB에 비해 상승하였으므로, 미생물들이 pH의 상승 요인으로 작용하였다고 판단하였다.In addition, as shown in Table 6 and Figure 5, the pH of the raw water did not show a large change for two weeks, in the case of WB, DB, NB, SB showed a tendency to increase again until the 6th day but then decreased again Was not. However, since the pH of DB, NB, SB was increased compared to WB, it was determined that the microorganisms acted as an increase factor of the pH.
또한 표 7 및 도 6에 나타난 바와 같이, 원수의 부유물질(SS)의 농도는 큰 변화를 나타내지 않았지만 초기 농도보다 4.1% 증가하였으며, 미생물을 흡착하지 않은 WB의 경우 원수에 비해 평균 45.46%의 부유물질의 제거 효율을 나타내었다. 이는 다공질의 제올라이트 및 다공성 시멘트 벽돌을 사용함으로써 비표면적이 크고, 내부에 공극을 가지고 있어 외부뿐만 아니라 내부에서도 부유물질의 제거 효율을 보일 수 있기 때문으로 사료된다. 또한, NB, SB의 경우 WB 보다 부유물질의 제거 효율이 평균 69.2%로 나타났고, SB의 경우 평균 77.8%로 나타남을 확인하였다.In addition, as shown in Table 7 and Figure 6, the concentration of suspended solids (SS) in the raw water did not show a significant change, but increased 4.1% from the initial concentration, 45.46% of the average suspended solids compared to raw water for WB not adsorbed microorganisms The removal efficiency of the material is shown. This is because the use of porous zeolites and porous cement bricks has a large specific surface area and voids in the interior, which may be effective in removing suspended solids from outside as well as inside. In addition, in the case of NB and SB, the removal efficiency of suspended solids was 69.2% on average than that of WB, and 77.8% on SB.
또한 표 8 및 도 7에 나타난 바와 같이, 미생물을 흡착하지 않은 WB의 화학적 산소 요구량(COD)의 제거 효율은 원수에 비해 평균 13.4% 우수하게 나타났으며, 이는 제올라이트 및 다공질의 시멘트 벽돌의 영향으로 효과가 나타난 것으로 생각된다. DB의 경우 WB와 거의 유사하게 나타났고, NB, SB의 경우 WB에 비해 각각 평균 13.01% 및 21.46%로 우수하게 나타났다. 이는 다공질의 제올라이트 및 다공성 시멘트 벽돌의 외부 및 내부에 서식하는 미생물들의 분해력에 의한 것으로 생각된다.In addition, as shown in Table 8 and Figure 7, the removal efficiency of chemical oxygen demand (COD) of WB without the adsorption of microorganisms was 13.4% better than that of raw water, which is due to the influence of zeolite and porous cement bricks. It seems to have worked. DB was almost similar to WB, and NB and SB were 13.01% and 21.46% higher than WB, respectively. This is thought to be due to the degradability of microorganisms that live on the outside and inside of porous zeolites and porous cement bricks.
또한 표 9 및 도 8에 나타난 바와 같이, WB, DB, NB, SB의 생물학적 산소 요구량(BOD)은 원수에 비해 각각 평균 8.66%, 10.07%, 14.49%, 15.46%를 나타내었다.In addition, as shown in Table 9 and Figure 8, the biological oxygen demand (BOD) of WB, DB, NB, SB was 8.66%, 10.07%, 14.49%, 15.46% on average compared to the raw water, respectively.
또한 표 10 및 도 9에 나타난 바와 같이, WB의 총 질소(T-N)의 제거 효율은 평균 29.26%이고, DB의 경우 WB와 유사하게 나타났으며, NB, SB의 경우 각각 평균 50.19%와 51.20%를 나타내었다. 이는 제올라이트 및 시멘트 벽돌의 외부 또는 내부에서 생물막이 잘 생성되어 생체 전환율이 높은 질산화 미생물에 의해 질소가 제거되는 것으로 판단된다.In addition, as shown in Table 10 and FIG. 9, the total removal efficiency of total nitrogen (TN) of WB was 29.26% on average, similar to that of WB for DB, and 50.19% and 51.20% for NB and SB, respectively. Indicated. It is determined that the biofilm is well formed inside or outside of the zeolite and cement brick, so that nitrogen is removed by the nitrifying microorganism having a high bioconversion rate.
또한 표 11 및 도 10에 나타난 바와 같이, WB의 총 인(T-P)의 제거 효율은 평균 37.5%이고, DB, NB, SB의 경우 각각 평균 48.1%, 62.85%, 64.85%를 나타내었다.In addition, as shown in Table 11 and Figure 10, the removal efficiency of the total phosphorus (T-P) of the WB was 37.5% on average, the average was 48.1%, 62.85%, 64.85% for DB, NB, SB, respectively.
상기한 바와 같이, 미생물을 흡착한 시멘트 벽돌(DB, NB, SB)이 미생물을 흡착하지 않은 시멘트 벽돌(WB)에 비해 pH가 증가하고, 부유물질(SS), 화학적 산소 요구량(COD), 생물학적 산소 요구량(BOD), 총 질소(T-N) 및 총 인(T-P)의 제거 효율이 우수하게 나타남을 확인하였다.As described above, the cement bricks (DB, NB, SB) that adsorbed the microorganisms have a higher pH than the cement bricks (WB) that do not adsorb the microorganisms, and include suspended solids (SS), chemical oxygen demand (COD), and biological activity. It was confirmed that the removal efficiency of oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) is excellent.
Claims (5)
2) 상기 1)단계에서 제조한 혼합물을 가압 성형하여 시멘트 벽돌을 제조하는 단계, 및
3) 상기 2)단계에서 제조한 시멘트 벽돌을 미생물이 분산된 물에 담그고 양생하여 시멘트 벽돌의 제올라이트 내에 미생물을 흡착하는 단계를 포함하는, 미생물과 제올라이트를 이용한 수질 정화용 시멘트 벽돌의 제조방법.1) 1 part by weight of cement; And 2 to 5 parts by weight of fine aggregate composed of 75 to 85% by weight of stone powder having a particle size of 1 mm or less, 1 to 10% by weight of crushed stone having a particle size of 1 to 2 mm, and 10 to 20% by weight of zeolite having a particle size of 1 to 3 mm. And mixing with water,
2) preparing cement brick by press molding the mixture prepared in step 1);
3) a method of manufacturing a cement brick for water purification using microorganisms and zeolites, comprising the step of immersing and curing the cement bricks prepared in step 2) in water in which microorganisms are dispersed and adsorbing microorganisms in zeolites of cement bricks.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110090139A KR101273444B1 (en) | 2011-09-06 | 2011-09-06 | Cement brick for purifying water using microorganism and zeolite, and method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110090139A KR101273444B1 (en) | 2011-09-06 | 2011-09-06 | Cement brick for purifying water using microorganism and zeolite, and method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130026769A true KR20130026769A (en) | 2013-03-14 |
KR101273444B1 KR101273444B1 (en) | 2013-06-11 |
Family
ID=48177932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110090139A KR101273444B1 (en) | 2011-09-06 | 2011-09-06 | Cement brick for purifying water using microorganism and zeolite, and method for preparing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101273444B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101386599B1 (en) * | 2014-01-07 | 2014-04-17 | 경희대학교 산학협력단 | Water treatment agent, manufacturing method thereof, and water treatment system and in-situ treatment system for underground water using that |
CN104341136A (en) * | 2014-10-16 | 2015-02-11 | 内江市恒世达建材有限公司 | Concrete pavior brick facing material with water permeability |
KR101668067B1 (en) * | 2016-05-10 | 2016-10-24 | 주식회사 그랜드 코단 | Manufacturing method of self cleaning and self growth lawn block based on microbes adsorption |
CZ307082B6 (en) * | 2016-08-08 | 2018-01-03 | Mikrobiologický ústav AV ČR, v.v.i. | Strain of the microorganism Raoultella sp. KDF8 CCM 8678 degrading active pharmaceutical ingredients from the following group: diclofenac, codeine, ibuprofen and ketoprofen |
KR20180072192A (en) * | 2016-12-21 | 2018-06-29 | 농업회사법인 주식회사 엘바이오텍 | Composition for biofloc water purification using fish farm comprising effective microorganisms as effective component and uses thereof |
CN108290789A (en) * | 2016-01-07 | 2018-07-17 | 安兹耶因大学 | The composition and its manufacturing method based on cement with the improved rheological equationm of state |
CN115141770A (en) * | 2022-06-27 | 2022-10-04 | 安阳工学院 | Bacillus tequilensis H1 capable of degrading COD in livestock wastewater and application thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5874123B2 (en) * | 2013-11-08 | 2016-03-02 | 株式会社大阪生物環境科学研究所 | Polluted water treatment method |
CN104017757B (en) * | 2014-06-03 | 2016-05-18 | 江南大学 | The one plant height effect end, changed bacillus and the composite base made changes microbial inoculum and application |
CN108947380B (en) * | 2017-05-18 | 2021-02-12 | 京畿大学校产学协力团 | Method for producing bacterial-mucus-based coating material using porous-material immobilized bacteria agent and near-neutral binder |
KR20200070701A (en) | 2018-12-10 | 2020-06-18 | 한국과학기술원 | Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same |
KR20200071177A (en) | 2018-12-10 | 2020-06-19 | 한국과학기술원 | Porous Water Purification Structure And Method for Manufacturing the Same |
KR102247705B1 (en) | 2019-08-13 | 2021-05-03 | 한국과학기술원 | Porous Zeolites Composition And Method for Manufacturing the Same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005144371A (en) * | 2003-11-17 | 2005-06-09 | Sumitomo Osaka Cement Co Ltd | Bottom deposit modifying material |
JP2006281146A (en) * | 2005-04-04 | 2006-10-19 | Maeda Corp | Water purification body |
JP2007327282A (en) * | 2006-06-08 | 2007-12-20 | Token Housing:Kk | Water-permeating paving material |
KR101045329B1 (en) * | 2010-08-04 | 2011-06-30 | 석성기업주식회사 | Ecological block cultivating microorganisms and its manufacturing method thereof |
-
2011
- 2011-09-06 KR KR1020110090139A patent/KR101273444B1/en active IP Right Grant
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101386599B1 (en) * | 2014-01-07 | 2014-04-17 | 경희대학교 산학협력단 | Water treatment agent, manufacturing method thereof, and water treatment system and in-situ treatment system for underground water using that |
CN104341136A (en) * | 2014-10-16 | 2015-02-11 | 内江市恒世达建材有限公司 | Concrete pavior brick facing material with water permeability |
CN108290789A (en) * | 2016-01-07 | 2018-07-17 | 安兹耶因大学 | The composition and its manufacturing method based on cement with the improved rheological equationm of state |
KR101668067B1 (en) * | 2016-05-10 | 2016-10-24 | 주식회사 그랜드 코단 | Manufacturing method of self cleaning and self growth lawn block based on microbes adsorption |
CZ307082B6 (en) * | 2016-08-08 | 2018-01-03 | Mikrobiologický ústav AV ČR, v.v.i. | Strain of the microorganism Raoultella sp. KDF8 CCM 8678 degrading active pharmaceutical ingredients from the following group: diclofenac, codeine, ibuprofen and ketoprofen |
KR20180072192A (en) * | 2016-12-21 | 2018-06-29 | 농업회사법인 주식회사 엘바이오텍 | Composition for biofloc water purification using fish farm comprising effective microorganisms as effective component and uses thereof |
CN115141770A (en) * | 2022-06-27 | 2022-10-04 | 安阳工学院 | Bacillus tequilensis H1 capable of degrading COD in livestock wastewater and application thereof |
CN115141770B (en) * | 2022-06-27 | 2023-08-29 | 安阳工学院 | Bacillus tequilensis H1 capable of degrading COD in livestock wastewater and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101273444B1 (en) | 2013-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101273444B1 (en) | Cement brick for purifying water using microorganism and zeolite, and method for preparing the same | |
KR101344922B1 (en) | Moss brick for purifying water and method for preparing the same | |
Choudhary et al. | Constructed wetlands: an approach for wastewater treatment | |
CN103387371B (en) | Composite curing agent for city sludge solidification/stabilization and application thereof | |
KR102020730B1 (en) | A water-based natural purification type ecological block using kaolin and high effective media encapsulating complex useful microorganisms for purification, restoration and maintenance of water according to a nonpoint pollution source | |
KR101418710B1 (en) | Alcaligenes faecalis EBN-NS13 (KCTC 12471BP) having excellent ability of nitrification and denitrification | |
CN112321255A (en) | Pervious concrete with biological water purification function and preparation method thereof | |
Feng et al. | The application of aged refuse in nitrification biofilter: Process performance and characterization | |
KR101484478B1 (en) | A functional carrier and the manufacturing method for water treatment system | |
KR100840602B1 (en) | Manufacturing method of concrete for purifying water | |
KR100434679B1 (en) | Porous ceramic media for wastewater treatment using wastes and manufacturing process of the same | |
CN114394800A (en) | Method for resource utilization of sludge biochar | |
KR100994335B1 (en) | Manufacturing methods of water purification concrete using micro-organisms and solution | |
CN111253121A (en) | Baking-free bioactive filler with ammonia removal and denitrification functions and preparation method thereof | |
Abou-Elela et al. | Utilization of autoclaved aerated concrete solid waste as a bio-carrier in immobilized bioreactor for municipal wastewater treatment | |
CN110078222B (en) | Preparation and use method of bacterial vector | |
KR101429463B1 (en) | Composition for Concrete Block | |
Bao et al. | Production of zeolite composite filters using waste paper pulp as slow release carbon source and performance investigation in a biological aerated filter | |
KR101553044B1 (en) | Water Purification Bio Concrete using Hidrophilic Fiber and Industrial By-Products and Manufacturing Methods of it | |
KR101157447B1 (en) | Water purification block having effective microorganisms and manufacturing method thereof | |
KR101156746B1 (en) | Porosity concrete composite using composition beneficial microorganisms and functional media and porosity concrete block for restoring river ecology manufactured by this | |
KR101892113B1 (en) | Manufacturing method of porous concrete with water purification bacteria | |
JP2009189914A (en) | Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it | |
CN112441805B (en) | Method for preparing enhanced phosphorus removal and COD filter material by using ferrate | |
Bao et al. | Performance and characterization of a non-sintered zeolite porous filter for the simultaneous removal of nitrogen and phosphorus in a biological aerated filter (BAF) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160526 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180529 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190529 Year of fee payment: 7 |