JP2009189914A - Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it - Google Patents

Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it Download PDF

Info

Publication number
JP2009189914A
JP2009189914A JP2008031222A JP2008031222A JP2009189914A JP 2009189914 A JP2009189914 A JP 2009189914A JP 2008031222 A JP2008031222 A JP 2008031222A JP 2008031222 A JP2008031222 A JP 2008031222A JP 2009189914 A JP2009189914 A JP 2009189914A
Authority
JP
Japan
Prior art keywords
water
sintered body
water purification
microorganism
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008031222A
Other languages
Japanese (ja)
Inventor
Satoshi Kaneko
聡 金子
Hideyuki Katsumata
英之 勝又
Katsuyuki Nakahama
克幸 中浜
Kiyohisa Ota
清久 太田
Toru Suzuki
透 鈴木
Hamood Ahmed Dabwan Ahmed
ハムウッド アハメド ダブワン アハメド
Miyo Nakano
みよ 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008031222A priority Critical patent/JP2009189914A/en
Publication of JP2009189914A publication Critical patent/JP2009189914A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microorganism-carrying photocatalyst-containing sintered body for water purification which is free from a concern about influence on the environment, and has an excellent microorganism-fixing property. <P>SOLUTION: A sintered body having a porous structure, obtained by burning a composition prepared by mixing dredged bottom mud obtained from the bottom of a water system, titanium oxide, and sodium silicate at a solid content weight ratio of 43-81%, 6-17%, and 13-46% respectively is made to carry microorganisms for water purification, decomposing water contaminants, and collected from a target water area to be purified, thereby obtaining the target microorganism-carrying photocatalyst-containing sintered body for water purification. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、環境への影響が懸念されることのない微生物担持光触媒含有水質浄化用焼結体とそれを製造する方法、更にはそのような微生物担持光触媒含有水質浄化用焼結体を用いた、水域、特に海域に有利な水質浄化方法に関するものである。     The present invention uses a microorganism-supported photocatalyst-containing water purification sinter for which there is no concern about the influence on the environment, a method for producing the same, and further uses such a microorganism-supported photocatalyst-containing water purification sinter. The present invention relates to a water purification method that is advantageous for water areas, particularly sea areas.

従来から、河川、池、沼、海洋等の水域における、汚染された水質の改善乃至は浄化のために、水質汚染物質を分解する微生物の利用が考えられて来ており、また、そのような微生物による水質浄化作用を長時間に亘って維持すべく、かかる微生物を適当な多孔質の担体に担持せしめて、水質浄化の目的とされた水中に投与することが、考えられている。   Conventionally, in order to improve or purify polluted water quality in water areas such as rivers, ponds, swamps, and oceans, the use of microorganisms that decompose water pollutants has been considered. In order to maintain the action of water purification by microorganisms for a long time, it is considered that such microorganisms are supported on an appropriate porous carrier and administered into water intended for water purification.

また、上記水域における、有機物質にて汚染された水質の改善乃至は浄化のために、そのような有機物質を酸化チタンの光触媒酸化分解機能等を利用して、分解する手法が考えられて来ており、またそれによる水質浄化作用を有効に発揮させるべく、酸化チタンを適当な担体に保持せしめて、水質浄化の目的とされた水中に投与せしめるようになっている。     In addition, in order to improve or purify water quality contaminated with organic substances in the above water area, a method for decomposing such organic substances using the photocatalytic oxidative decomposition function of titanium oxide has been considered. In addition, in order to effectively exhibit the water purification action, titanium oxide is held on a suitable carrier and administered into water intended for water purification.

さらに、光触媒と微生物の分解作用を併用して、汚泥の分解、水質の浄化の促進効果を高めるために、それら微生物や酸化チタンを適当な多孔質の担体に担持乃至は保持せしめて、水質浄化の目的とされた水中に投与せしめ、水質浄化作用を有効に発揮させることが、考えられている。   Furthermore, in order to enhance the effect of promoting the degradation of sludge and purification of water by using the photocatalyst and the decomposition action of microorganisms together, these microorganisms and titanium oxide are supported on or held on an appropriate porous carrier to purify water. It is considered that the substance is administered in water, which is the purpose of the above, to effectively exert a water purification effect.

例えば、特許第3852844号公報(特許文献1)においては、微生物及び光触媒の作用により汚泥の分解及び水質の浄化を行うために用いる汚泥分解・水質浄化剤として、少なくとも酸化チタン、ジルコニア、ゼオライト、酸化第2鉄、酸化マンガンを混合し焼結してなる多孔質のセラミック粒体に好塩菌や、好熱菌、好酸性菌、NTAP−1を含浸させて、汚泥分解・水質浄化剤を構成し、これを、汚泥の堆積した港湾、湖沼に散布して、その光触媒と微生物の分解作用を併用して、汚泥の分解、水質の浄化の促進効果を高めるようにした手法が、明らかにされている。     For example, in Japanese Patent No. 3852844 (Patent Document 1), at least titanium oxide, zirconia, zeolite, oxidation are used as sludge decomposition / water purification agents used to decompose sludge and purify water by the action of microorganisms and photocatalysts. Porous ceramic particles made by mixing and sintering ferric oxide and manganese oxide are impregnated with halophilic bacteria, thermophilic bacteria, acidophilic bacteria, and NTAP-1 to form a sludge decomposition / water purification agent However, a method has been clarified that can be applied to harbors and lakes where sludge is accumulated and the photocatalyst and microbial decomposition action are used together to enhance the effect of promoting sludge decomposition and water purification. ing.

また、特許第2613179号公報(特許文献2)においては、安山岩質、石英安山岩質、流紋岩質、頁岩質、砂岩質、レキ岩質などの材質の多孔質の岩石、軽石凝灰岩、泥岩、砂利、砂、シルト、粘土や火山灰、多孔質岩石などを含有する物質、スコリア、スコリア凝灰岩、スコリアを含有する物質、焼成パーライト、焼成黒曜石、焼成軽石、バーミュキュライト、ゼオライト、雲母、サンゴ砂、シーシェル、麦飯石、人工軽石、人工砂利、人工砂、メサライト、クリスバールなどの人工骨材、多孔質ガラス、中空ガラス、多孔質ブロック、陶磁器、合成ゼオライト、発泡性シリカなどのセラミックス、活性炭、木炭、炭、コークス、フライアッシュ、高炉スラッグ、発砲コンクリート(ALC)、軽量コンクリート等などの無機多孔質粒子の表面及び該無機多孔質粒子が有する空孔壁に光半導体粒子と水質浄化機能を有する微生物とを付着して成る光触媒体を構成し、光触媒体を被処理水と接触しうる箇所に配置し、次いで、該光触媒体に紫外線を含有した光を照射して、該光触媒体の光触媒機能によって該被処理水を浄化し、しかも、紫外線を含有した光の照射を受けない同じ反応系内の箇所では、光触媒体に付着した水質浄化機能を有する微生物によって該被処理水を浄化することを特徴とする水の浄化方法が、明らかにされている。     In addition, in Japanese Patent No. 2613179 (Patent Document 2), porous rocks such as andesite, quartz andesite, rhyolite, shale, sandstone, lequilite, pumice tuff, mudstone, Materials containing gravel, sand, silt, clay and volcanic ash, porous rocks, scoria, scoria tuff, scoria containing materials, calcined perlite, calcined obsidian, calcined pumice, vermiculite, zeolite, mica, coral sand , Artificial shells such as sea shell, barley stone, artificial pumice, artificial gravel, artificial sand, mesalite, crisvar, porous glass, hollow glass, porous block, ceramics such as ceramics, synthetic zeolite, expandable silica, activated carbon, Inorganic porous particles such as charcoal, charcoal, coke, fly ash, blast furnace slug, foamed concrete (ALC), lightweight concrete, etc. The photocatalyst is formed by adhering the photo-semiconductor particles and microorganisms having a water purification function to the surface of the surface and the pore walls of the inorganic porous particles, and the photocatalyst is disposed at a location where the photocatalyst can come into contact with the water to be treated. Then, the photocatalyst body is irradiated with light containing ultraviolet light to purify the water to be treated by the photocatalytic function of the photocatalyst body, and is not irradiated with light containing ultraviolet light. Then, the water purification method characterized by purifying the said to-be-processed water with the microorganisms which have the water quality purification function adhering to the photocatalyst body is clarified.

しかしながら、ジルコニア、ゼオライト、酸化第2鉄、酸化マンガン等を焼成して得られるセラミック成形物、並びに安山岩質、石英安山岩質、流紋岩質、頁岩質、砂岩質、レキ岩質などの材質の多孔質の岩石、軽石凝灰岩、泥岩、砂利、砂、シルト、粘土や火山灰、多孔質岩石などを含有する物質、スコリア、スコリア凝灰岩、スコリアを含有する物質、焼成パーライト、焼成黒曜石、焼成軽石、バーミュキュライト、ゼオライト、雲母、サンゴ砂、シーシェル、麦飯石、人工軽石、人工砂利、人工砂、メサライト、クリスバールなどの人工骨材、多孔質ガラス、中空ガラス、多孔質ブロック、陶磁器、合成ゼオライト、発泡性シリカなどのセラミックス、活性炭、木炭、炭、コークス、フライアッシュ、高炉スラッグ、発砲コンクリート(ALC)、軽量コンクリート等などの無機多孔質粒子等の担体物質は、無機鉱物とはいえ、それ自体、現場の生態系にとって人工物質乃至は異物質となるものであるところから、水質浄化剤として用いられて、微生物と光触媒による機能が低下した場合においては、それらのセラミックス形成物や無機多孔質粒子の如き固形物を回収する必要があり、またそうしなければ、担体物質自体の材質の環境への影響等も、懸念する必要があるのもであった。     However, ceramic molded products obtained by firing zirconia, zeolite, ferric oxide, manganese oxide, etc., as well as materials such as andesite, quartz andesite, rhyolite, shale, sandstone, lechite, etc. Porous rocks, pumice tuff, mudstone, gravel, sand, silt, materials containing clay and volcanic ash, porous rocks, scoria, scoria tuff, scoria containing materials, calcined perlite, calcined obsidian, calcined pumice, bar Artificial aggregates such as mucrite, zeolite, mica, coral sand, sea shell, barley stone, artificial pumice, artificial gravel, artificial sand, mesalite, crisvar, porous glass, hollow glass, porous block, ceramics, synthetic zeolite , Ceramics such as expandable silica, activated carbon, charcoal, charcoal, coke, fly ash, blast furnace slug, foamed concrete ALC), carrier materials such as inorganic porous particles such as lightweight concrete, although they are inorganic minerals, they are artificial substances or foreign substances for the local ecosystem. When the function of microorganisms and photocatalysts is reduced, it is necessary to recover solid materials such as ceramics formations and inorganic porous particles. Otherwise, the environment of the material of the carrier material itself is required. It was also necessary to worry about the impact on the environment.

さらに、無機多孔質粒子の粒度によっては、微生物と光触媒を担持させて水中に投与する際に、水域の水の流れによって移動し、一定の場所に滞在することが困難なものであったり、水域の濁度を増加させる等の問題を惹起する危険性を懸念する必要があるものであった。     Furthermore, depending on the particle size of the inorganic porous particles, when the microorganisms and the photocatalyst are supported and administered in water, it is difficult to move by the water flow in the water area and stay in a certain place, It was necessary to be concerned about the danger of causing problems such as increasing the turbidity of the water.

特許第3852844号公報Japanese Patent No. 3852844 特許第2613179号公報Japanese Patent No. 2613179

ここにおいて、本発明は、かかる事情を背景に為されたものであって、その解決課題とするところは、環境への影響が懸念されることのない、また微生物の定着性が良好で、酸化チタンを含有している微生物担持光触媒含有水質浄化用焼結体と、それを有利に製造する方法を提供することにあり、またそのような微生物担持光触媒含有水質浄化用焼結体を用いて、目的とする水域の水質浄化を有効に行い得る方法を提供することにある。     Here, the present invention has been made in the background of such circumstances, and the problem to be solved is that there is no concern about the influence on the environment, the microorganisms have good fixability, and the oxidation. It is to provide a microorganism-supported photocatalyst-containing water purification sinter that contains titanium, and a method for producing the same advantageously, and using such a microorganism-supported photocatalyst-containing water purification sinter, An object of the present invention is to provide a method capable of effectively purifying water in a target water area.

そして、本発明にあっては、かくの如き課題を解決するために、水系の底部から得られる浚渫底泥と有機物質の光分解作用を有する酸化チタン粉末と珪酸ナトリウムとを、固形分重量比にて、それぞれ、43〜81%と6〜17%と13〜46%の割合で配合してなる組成物を焼成して得られた多孔質構造の焼結体に、水質浄化の目的とされた水域から採取された、水質汚染物質を分解する水質浄化用微生物を担持せしめてなることを特徴とする微生物担持光触媒含有水質浄化用焼結体を、その要旨とするものである。     And in the present invention, in order to solve such problems, dredged bottom mud obtained from the bottom of the aqueous system, titanium oxide powder having a photolytic action of organic substances and sodium silicate, solid content weight ratio In a porous structure sintered body obtained by firing a composition comprising 43 to 81%, 6 to 17%, and 13 to 46%, respectively, it is intended for water purification. The gist of the present invention is a microorganism-supported photocatalyst-containing water-purifying sintered body, which is characterized in that it carries a water-purifying microorganism that is collected from a water area and decomposes water-polluting substances.

なお、かかる本発明に従う微生物担持光触媒含有水質浄化用焼結体の望ましい態様によれば、前記酸化チタンとしてアナターゼ型の酸化チタンを含有したものが、用いられることとなる。     In addition, according to the desirable aspect of the microorganism-supported photocatalyst-containing water purification sinter according to the present invention, an anatase-type titanium oxide containing titanium oxide is used.

また、本発明に従う微生物担持光触媒含有水質浄化用焼結体の他の望ましい態様によれば、前記水質浄化用微生物が、硝化細菌及びに脱窒細菌が複数から成る細菌群集であり、水質汚染物質の硝化反応と脱窒反応処理を同時に並行して行え得るものである。     Further, according to another desirable aspect of the microorganism-supported photocatalyst-containing water purification sintered body according to the present invention, the water purification microorganism is a bacterial community composed of a plurality of nitrifying bacteria and denitrifying bacteria, and a water pollutant Nitrification reaction and denitrification reaction treatment can be performed simultaneously in parallel.

そして、本発明にあっては、上述の如き微生物担持光触媒含有水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、該焼結体を与える前記底泥が当該水域の底部の浚渫底泥であり、且つ前記水質浄化用微生物が当該水域から採取された微生物であることを特徴とする水域の水質浄化方法をも、その要旨としている。     And in this invention, when purifying the water quality of the target water area using the above-mentioned microorganism-supported photocatalyst-containing water quality purification sintered body, the bottom mud that gives the sintered body is in the water area. The gist of the water quality purification method of the water area is characterized in that it is dredged mud at the bottom and the microorganism for water quality purification is a microorganism collected from the water area.

なお、本発明に従う微生物担持光触媒含有水質浄化用焼結体の、更に異なる望ましい態様によれば、前記水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、微生物の活性化物質又は栄養物質として炭素含有有機性物質を供給し、効果的に水域の水質浄化を行うこととなる。     In addition, according to a further different desirable aspect of the microorganism-supported photocatalyst-containing water purification sinter according to the present invention, the activity of microorganisms when purifying the water quality of the target water area using the water purification sinter. A carbon-containing organic substance is supplied as a chemical substance or a nutrient substance, and the water quality of the water area is effectively purified.

このように、本発明に従う微生物担持光触媒含有水質浄化用焼結体にあっては、その水質浄化用微生物を担持せしめるキャリヤとしての焼結体は、充分な強度を有し、目的とする水域において散布されても、崩壊することなく底部に止まり、長期に亘って有効な浄化作用を発揮し得ると共に、その多孔性や材料特性によって微生物の定着性に優れたものとなっているところから、焼結体表面において微生物が長期的に繁殖し、その効果が有利に持続させられ得ることとなるのである。しかも前記水質浄化用焼結体にあっては、有機物質の光触媒分解作用を有する酸化チタン粉末が、水系の底部から得られる浚渫底泥を主体とする多孔質構造の焼結体にて保持させるものであるところから、その適応現場に近い物質系を構成することとなり、さらにそのような焼結体を構成する珪酸ナトリウムや酸化チタンにあっても、自然に豊富に存在する元素から構成されるものであるところから、微生物担持光触媒含有水質浄化用焼結体の用いられる現場において、二次汚染の可能性は殆ど無く、それ故、使用後に光触媒や微生物による浄化活性の無くなった焼結体(キャリヤ)を回収する必要性もないのである。   Thus, in the microorganism-supported photocatalyst-containing water purification sintered body according to the present invention, the sintered body as a carrier for supporting the water purification microorganism has sufficient strength and is suitable for the target water area. Even if sprayed, it stays at the bottom without collapsing, can exhibit an effective purification action for a long time, and has excellent microbial fixability due to its porosity and material properties. Microorganisms propagate on the surface of the ligation for a long time, and the effect can be advantageously maintained. Moreover, in the water purification sintered body, the titanium oxide powder having the photocatalytic decomposition action of the organic substance is held in the porous structure sintered body mainly composed of dredged bottom mud obtained from the bottom of the aqueous system. Therefore, it will constitute a material system close to the application site, and even in sodium silicate and titanium oxide constituting such a sintered body, it will be composed of naturally abundant elements. Therefore, there is almost no possibility of secondary contamination at the site where the microorganism-supported photocatalyst-containing water purification sintered body is used. Therefore, the sintered body that has lost its purification activity by the photocatalyst and microorganisms after use ( There is no need to recover the carrier.

しかも、本発明に従う微生物担持光触媒含有水質浄化用焼結体は、珪酸ナトリウムがバインダとして作用することにより、充分な強度を有し、目的とする水域において散布されても、崩壊することなく底部に留まり、長期に亘って有効な浄化作用を発揮し得ると共に、その多孔性によって、微生物や酸化チタンによる水質浄化作用を、効果的に発揮せしめ得ることとなるのである。   Moreover, the microorganism-supported photocatalyst-containing water purification sintered body according to the present invention has sufficient strength because sodium silicate acts as a binder, and even when sprayed in a target water area, it does not collapse at the bottom. In addition to being able to exert an effective purifying action over a long period of time, the porous structure can effectively exert the water purifying action by microorganisms and titanium oxide.

さらに、かくの如き本発明に従う微生物担持光触媒含有水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、そのキャリヤである焼結体を与える、水系の底部から取り出された底泥として、当該水域で得られる原料、即ち当該水域の底部の浚渫底泥を用いると共に、水質浄化微生物としても、当該水域から採取された微生物を用いるようにすることにより、現場水域における二次汚染の可能性を皆無となし得ると共に、微生物の定着性をも、より一層高め得ることとなり、以て、水質浄化作用をより一層有利に発揮せしめ得るのである。   Furthermore, when the water quality purification sintered body containing the microorganism-supported photocatalyst according to the present invention as described above is used to purify the water quality of the target water area, it is taken out from the bottom of the aqueous system that gives the sintered body as the carrier. As the bottom mud, the raw material obtained in the water area, that is, the dredged bottom mud at the bottom of the water area, and the microorganisms collected from the water area are used as water purification microorganisms. The possibility of contamination can be completely eliminated, and the fixability of microorganisms can be further enhanced, so that the water purification effect can be exerted more advantageously.

ところで、かかる本発明に従う微生物担持光触媒含有水質浄化用焼結体において、それを与える多孔質構造の焼結体の主たる構成成分たる、水系の底部から得られる浚渫底泥は、河川、湖沼、河口域、閉鎖性の海域等の水系の底部から、浚渫作業等によって、従来と同様に取り出される、有機質の豊富なものであって、そのような水系の底部から取り出された底泥は、通常、乾燥等の操作によって、ある程度の脱水が施されて、含水率が20%〜30%程度のものとして、用いられることとなる。特に、この水系の底部から得られる浚渫底泥としては、それによって形成される微生物担持光触媒含有水質浄化用焼結体が用いられる水系の底部から得られる浚渫底泥であることが望ましく、これによって、現場水域に、より適合した微生物担持光触媒含有水質浄化用焼結体を得ることが可能となる。     By the way, in the sintered body for purification of water containing a microorganism-supported photocatalyst according to the present invention, the dredged mud obtained from the bottom of the water system, which is the main constituent component of the sintered body having a porous structure to give it, From the bottom of water systems such as water areas and closed sea areas, which are abundant in organic matter extracted by dredging work, etc., and the bottom mud extracted from the bottom of such water systems is usually A certain amount of dehydration is performed by an operation such as drying, and the water content is about 20% to 30%. In particular, the dredged mud obtained from the bottom of the aqueous system is preferably dredged mud obtained from the bottom of the aqueous system in which the microorganism-supported photocatalyst-containing water purification sintered body formed thereby is used. In addition, it is possible to obtain a microorganism-supported photocatalyst-containing water purification sintered body that is more suitable for the on-site water area.

また、そのような水系の底部から得られる浚渫底泥に配合されて、本発明に従う水質浄化剤に光触媒分解浄化機能を付与する成分は、有機物質の光触媒分解作用を有する酸化チタン粉末であって、そのような酸化チタン粉末の存在下に光照射が行われると、光触媒分解能力が効果的に高められ得て、フミン物質等の有機物質が効果的に分解、除去せしめられることとなるのである。なお、この有機物質の光触媒分解作用を有する酸化チタン粉末としては、アナターゼ型とルチル型が知られているが、アナターゼ型のものの方が光触媒活性が高いところから、本発明においては、アナターゼ型の酸化チタン粉末が有利に用いられることとなる。また、この酸化チタン粉末は、粒子径が小さく、比表面積が大きいほど活性が高いところから、一般に、1〜100nm程度の微細粉末状のものが、好適に用いられるのである。そして、そのような酸化チタン粉末は、各種の市販品の中から適宜に選択されることとなる。     Further, the component that is blended in dredged mud obtained from the bottom of such an aqueous system and imparts a photocatalytic decomposition purification function to the water purification agent according to the present invention is a titanium oxide powder having a photocatalytic decomposition action of an organic substance. When light irradiation is performed in the presence of such a titanium oxide powder, the photocatalytic decomposition ability can be effectively enhanced, and organic substances such as humic substances can be effectively decomposed and removed. . In addition, since the anatase type and the rutile type are known as the titanium oxide powder having the photocatalytic decomposition action of the organic substance, since the anatase type has higher photocatalytic activity, the anatase type is used in the present invention. Titanium oxide powder will be used advantageously. In addition, since the titanium oxide powder has a higher activity as the particle size is smaller and the specific surface area is larger, generally a fine powder of about 1 to 100 nm is preferably used. And such a titanium oxide powder will be suitably selected from various commercial items.

さらに、それら浚渫底泥や酸化チタン粉末に配合される珪酸ナトリウムは、バインダとして機能するものであって、その配合によって、焼成して得られる多孔性の焼結体に、充分な強度を付与し、以て浄化対象とされた水系(河川、湖沼、河口域、海域等)に散布されたとき、水質浄化剤が崩壊することなく、水系の底部に留まり、有効な水質浄化作用を発揮せしめ得るものである。     Furthermore, sodium silicate blended with these dredged bottom mud and titanium oxide powder functions as a binder, and the blending imparts sufficient strength to the porous sintered body obtained by firing. Therefore, when sprayed on water systems (rivers, lakes, estuaries, sea areas, etc.) that are targeted for purification, the water purification agent does not collapse and stays at the bottom of the water system, and can exert an effective water purification effect. Is.

そして、それら浚渫底泥と酸化チタンと珪酸ナトリウムとは、目的とする多孔質構造の焼結体からなる水質浄化剤を得る上において、固形分重量比にて、43〜81%と6〜17%と13〜46%の割合で配合せしめられる必要がある。かかる配合割合において、酸化チタン粉末の配合量が6%よりも少ないと、光分解効率が極端に低下するようになる一方、その配合量が17%よりも多くなり過ぎると、得られる焼結体が脆くなって、実用に供し得なくなる。また、バインダとしての珪酸ナトリウムの配合量が13%よりも少なくなっても、充分な強度を有する焼結体を得ることが困難となるのであり、そのために、実用に供し難くなる一方、その配合量が46%よりも多くなると、焼結体の強度は高められ得るものの、焼結体の表面に存在する酸化チタンが、珪酸ナトリウムにて覆われるように なって、体の表面特性が悪化し、その比表面積が低下するようになるところから、
微生物の定着に悪影響をもたらす恐れを惹起することとなる、又は酸化チタンの有効な光触媒分解能力を発揮させ難くなるのである。特に、その中でも、本発明にあっては、固形分重量比にて、酸化チタン粉末:10〜12%、珪酸ナトリウム:30〜40%、浚渫底泥:残部なる配合組成が、有利に採用されることとなる。
And these dredged bottom mud, titanium oxide, and sodium silicate are 43 to 81% and 6 to 17 in terms of solid content weight ratio in obtaining a water purification agent comprising a sintered body having a target porous structure. % And 13 to 46% in proportion. In such a blending ratio, if the blending amount of the titanium oxide powder is less than 6%, the photolysis efficiency is extremely lowered. On the other hand, if the blending amount is more than 17%, the obtained sintered body is obtained. Becomes brittle and cannot be put to practical use. Moreover, even if the blending amount of sodium silicate as a binder is less than 13%, it becomes difficult to obtain a sintered body having sufficient strength, which makes it difficult to put it into practical use. If the amount exceeds 46%, the strength of the sintered body can be increased, but the titanium oxide present on the surface of the sintered body is covered with sodium silicate, which deteriorates the surface characteristics of the body. From where the specific surface area decreases,
This may cause the possibility of adversely affecting the colonization of microorganisms, or makes it difficult to exhibit the effective photocatalytic degradation ability of titanium oxide. In particular, in the present invention, in the present invention, the composition of titanium oxide powder: 10 to 12%, sodium silicate: 30 to 40%, dredged bottom mud: the balance is advantageously employed in the solid content weight ratio. The Rukoto.

このように、本発明にあっては、浚渫底泥を主成分としつつ、それに所定量の酸化チタン粉末と珪酸ナトリウムを配合して、目的とする多孔質構造の焼結体を与える組成物が調製されることとなるのであるが、そのような組成物には、それら三成分の他にも、本発明の目的を阻害しない限りにおいて、必要に応じて、各種の配合剤、例えば水系の底部から取り出された底泥の凝集や脱水のための薬剤や固化剤、結合助剤、多孔化補助剤等を適宜に配合せしめることが可能である。     Thus, in the present invention, there is provided a composition that comprises a dredged bottom mud as a main component and a predetermined amount of titanium oxide powder and sodium silicate blended therein to give a sintered body having a desired porous structure. In addition to these three components, such a composition may be prepared by adding various kinds of compounding agents, for example, the bottom of an aqueous system, as long as the purpose of the present invention is not impaired. It is possible to appropriately mix chemicals for agglomeration and dehydration of the bottom mud taken out from the solid, a solidifying agent, a binding aid, a pore forming aid, and the like.

そして、本発明にあっては、目的とする水質浄化剤を与える多孔質構造の焼結体を得るべく、上述の如くして得られる組成物を用い、先ず、それを、通常の造粒手法に従って適宜の大きさに造粒して、所定大きさの造粒物が、形成されることとなる。次いで、この得られた造粒物を、空気中において焼成することにより、目的とする焼結体が製造されるのである。なお、このような組成物の焼成に際して、その焼成温度としては、一般に、400〜700℃の範囲内の温度において、適宜に選定されることとなるが、特に有利には、600〜700℃の範囲内の焼成温度が採用されることとなる。この焼成温度が低くなり過ぎると、充分な焼成を行うことが出来ず、そのために、焼結体の強度を充分に高めることが困難となるからであり、また焼成温度が高くなり過ぎると、得られる焼結体表面の緻密化が進行し、その表面特性が悪化して、微生物の定着に有効な多孔質構造を得ることが困難となるからである、又は酸化チタンの光触媒分解作用が低下したり、焼結体に有効な多孔質構造を形成することが困難となる、等の問題を惹起するからである。     And in this invention, in order to obtain the sintered body of the porous structure which gives the target water purification | cleaning agent, the composition obtained as mentioned above is used, and it is first made into the usual granulation method. Accordingly, a granulated product having a predetermined size is formed. Next, the obtained granulated product is fired in the air to produce a desired sintered body. In the firing of such a composition, the firing temperature is generally appropriately selected at a temperature within the range of 400 to 700 ° C., and particularly preferably 600 to 700 ° C. A firing temperature within the range will be employed. If the firing temperature is too low, sufficient firing cannot be performed, which makes it difficult to sufficiently increase the strength of the sintered body, and if the firing temperature is too high, This is because the densification of the surface of the sintered body progresses and the surface properties deteriorate, making it difficult to obtain a porous structure effective for microbial fixation, or the photocatalytic decomposition action of titanium oxide is reduced. This is because it causes a problem that it is difficult to form an effective porous structure in the sintered body.

また、かくして得られた焼結体には、その表面の有効な多孔構造をより有利に実現するべく、必要に応じて、硝酸、塩酸、硫酸、リン酸、過塩素酸等の無機酸やシュウ酸、酢酸、ギ酸等の有機酸を用いた酸水溶液処理が施される。なお、この酸水溶液処理は、一般に3時間以上の時間において実施され、その上限としては24時間程度とされることとなる。処理時間が24時間を越えても、その処理効果に大きな変化を期待することが困難であるからである。     In addition, the sintered body thus obtained has an inorganic porous material such as nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid or An acid aqueous solution treatment using an organic acid such as acid, acetic acid and formic acid is performed. In addition, this acid aqueous solution process is generally implemented in the time for 3 hours or more, and the upper limit will be set to about 24 hours. This is because it is difficult to expect a large change in the processing effect even if the processing time exceeds 24 hours.

また、このような焼成操作によって、焼結体は、多孔質構造において充分な強度を有するものとして、形成されることとなるが、一般に、そのような焼結体は、0.1〜10m/g程度の比表面積を有していることが望ましい。けだし、かかる焼結体の比表面積が小さくなり過ぎると、焼結体の緻密度が上昇して、微生物の定着を有効に行い難くなる恐れがあるからであり、また比表面積が大きくなり過ぎると、多孔質構造が強調されて、焼結体が脆くなり、強度が低下する恐れがあるからである。また、そのような焼結体の大きさとしては、その取扱い性等を考慮して、一般に0.5mm〜10cm程度の粒径のものとして、好ましくは0.5cm〜5cm程度の粒径のものとして、形成されることとなる。 In addition, by such a firing operation, the sintered body is formed as having a sufficient strength in the porous structure. Generally, such a sintered body has a thickness of 0.1 to 10 m 2. It is desirable to have a specific surface area of about / g. However, if the specific surface area of such a sintered body becomes too small, the density of the sintered body increases, and there is a possibility that it becomes difficult to effectively fix microorganisms, and when the specific surface area becomes too large. This is because the porous structure is emphasized, the sintered body becomes brittle, and the strength may decrease. In addition, the size of such a sintered body is generally about 0.5 mm to 10 cm, preferably about 0.5 cm to 5 cm, in consideration of its handleability and the like. Will be formed.

さらに、このような焼成操作・必要な処理によって得られた焼結体は、多孔質構造において充分な強度を有するものとして、有利には一軸圧縮強度(JIS R 5210 セメントの物理試験方法に準拠)が4.0N/mm2以上であるものとして、形成されることとなる。 Further, the sintered body obtained by such firing operation / required treatment is preferably uniaxial compressive strength (based on JIS R 5210 cement physical test method) as having sufficient strength in the porous structure. As a result, it is assumed that the thickness is 4.0 N / mm 2 or more.

次いで、かくの如くして得られた焼結体をキャリヤとして用いて、これに所定の水質浄化用微生物が担持せしめられるのであるが、その担持方法としては、一般に、水質浄化用微生物の存在する液中に、焼結体を浸漬することにより、かかる焼結体の多孔質構造内に微生物を入り込ませて、担持させる方法が、採用されることとなるが、勿論、これに限定されることなく、公知の各種の担持方法が、適宜に採用され得るものである。     Next, the sintered body obtained as described above is used as a carrier, and a predetermined water purification microorganism is supported on the carrier. Generally, there is a water purification microorganism as a loading method. A method of allowing microorganisms to enter and carry in the porous structure of the sintered body by immersing the sintered body in the liquid is, of course, limited to this. In addition, various known loading methods can be appropriately employed.

中でも、本発明にあっては、水質浄化用微生物を培養して得られる培養液を濃縮して、かかる微生物の濃度を高めた濃縮物を用い、これと共に、前述の如くして得られた焼結体を、そのような微生物のための培地に投入乃至は添加して、更に培養を行うことにより、そのような水質浄化用微生物を焼結体表面に担持させるようにする手法が、有利に採用されることとなる。こうすることにより、微生物を、焼結体の多孔構造内に有利に侵入せしめ得て、その効果的な定着を図ることが出来るのである。   In particular, according to the present invention, the culture solution obtained by culturing the water purification microorganism is concentrated, and the concentrate obtained by increasing the concentration of the microorganism is used together with the baking obtained as described above. It is advantageous to add a ligature to a medium for such microorganisms and further culture, so that the microorganisms for water purification are supported on the surface of the sintered body. Will be adopted. By doing so, microorganisms can be advantageously invaded into the porous structure of the sintered body, and effective fixing thereof can be achieved.

ここで、かかる焼結体に担持せしめられる微生物としては、公知の各種の水質浄化用微生物が適宜に選定されて用いられることとなるが、その中でも、特に、各種のアンモニア酸化細菌、亜硝酸酸化細菌等の硝化細菌や各種の脱窒細菌の複数の細菌群集が用いられて、目的とする水域の水質浄化が図られることとなる。また、その中でも、水質浄化の目的とされた水域から採取された水質汚染物質を分解する微生物が有利に用いられることとなるのである。   Here, as the microorganisms supported on the sintered body, known various water purification microorganisms are appropriately selected and used, and among them, various ammonia oxidizing bacteria, nitrite oxidation, among others. A plurality of bacterial communities of nitrifying bacteria such as bacteria and various denitrifying bacteria are used to purify the water quality of the target water area. Among them, microorganisms that decompose water pollutants collected from water areas intended for water purification are advantageously used.

そして、かくの如くして得られた微生物担持光触媒含有水質浄化用焼結体は、水質浄化剤として、目的とする当該水域(海域等)に投入乃至は散布されて、その底部において、担持された微生物により、水質汚染物質が効果的に分解されて、水質の浄化が図られることとなるが、その際、焼結体は充分な強度を有しているところから、その形状が崩れることなく、水域に有効に存在せしめられ得ることとなるのである。さらに、担持された酸化チタンの、水中に透過する光によって高められる光触媒分解作用にて、そのような水域に存在する有機汚染物質を効果的に、微生物による分解と平行して若しくは同時に、分解除去せしめ得るのである。このように、かかる酸化チタン含有(担持)焼成体は、所定の水系の、光が届く程度の比較的浅瀬に適用されれば、有効な水質浄化作用を発揮し得るものであって、これにより、そのような水系における環境改善や環境保全に効果的に寄与し得ることとなったのである。なお、そのような比較的浅瀬の水域への適用のみならず、比較的深い水域の底部における環境改善も、光ファイバー等の採光システムと組み合わせ、それによって導かれた光を、本発明に従う酸化チタン含有焼結体からなる水質浄化剤に照射せしめることによって、可能となる。     Then, the microorganism-supported photocatalyst-containing water purification sintered body obtained as described above is charged or dispersed as a water purification agent in the target water area (sea area, etc.) and supported at the bottom. The water pollutants are effectively decomposed by the microorganisms and the water quality is purified. At that time, the sintered body has sufficient strength, so that its shape is not destroyed. Therefore, it can be effectively present in the water area. Furthermore, the photocatalytic decomposition action of the supported titanium oxide is enhanced by the light transmitted through the water, effectively decomposing and removing organic pollutants present in such water areas in parallel with or simultaneously with the decomposition by microorganisms. It can be damned. In this way, such a titanium oxide-containing (supported) fired body can exhibit an effective water purification action when applied to a predetermined water system and relatively shallow where light can reach. Thus, it was possible to effectively contribute to environmental improvement and environmental conservation in such water systems. In addition to the application to such relatively shallow water areas, the environment improvement at the bottom of relatively deep water areas is also combined with a daylighting system such as an optical fiber, and the light guided thereby contains titanium oxide according to the present invention. This can be achieved by irradiating a water purification agent comprising a sintered body.

また、かくの如き本発明に従う水質浄化剤を与える微生物担持光触媒含有水質浄化用焼結体は、充分な強度を有しているところから、上述の如き水域への適用に際して、その形状が崩れることなく、適用水域において有効に存在せしめられ得ることとなる。そして、それによって、微生物による水質浄化作用、並びに酸化チタンの光分解作用(光触媒分解能)に基づくところの水質浄化作用が、長期間に亘って、有利に発揮せしめられ得るのである。     In addition, since the microorganism-supported photocatalyst-containing water purification sintered body that provides the water purification agent according to the present invention has sufficient strength, the shape of the sintered body collapses when applied to the water area as described above. Therefore, it can be effectively present in the applied water area. As a result, the water purification action by the microorganisms and the water purification action based on the photodecomposition action (photocatalytic resolution) of titanium oxide can be advantageously exerted over a long period of time.

しかも、そのような微生物担持光触媒含有水質浄化用焼結体において、その焼結体を与える、水系、特に有利には海域の底部から取り出された底泥、水質浄化用微生物として当該水域(海域)から採取された微生物が用いられるようにすることによって、 かかる微生物の定着性がより一層高められ得ると共に、当該水域(海域)における水質浄化作用も、より一層有利に発揮され得ることとなる。しかも、そのような微生物担持光触媒含有水質浄化用焼結体からなる水質浄化剤にあっては、その焼結体の主たる構成成分たる浚渫底泥が、水系の底部から取り出されたものであって、そのような水質浄化剤の用いられる水系の底部と同様な環境のものであり、加えて、酸化チタンや珪酸ナトリウムにあっても、自然界に比較的に豊富に存在する元素からなるものであるところから、自然に近い組成から構成される水質浄化用焼結体となり、また微生物は用いられる水域(海域)に存在するものであるところから、それが適用される水域における環境汚染の懸念は、殆ど無いのであり、それ故に、使用後において、本発明に係る水質浄化剤を回収する必要も全く無いのである。     Moreover, in such a microorganism-supported photocatalyst-containing water purification sinter, the water system, particularly preferably the bottom mud taken out from the bottom of the sea area, and the water area (sea area) as a microbe for water purification is provided. By using the microorganisms collected from the water, the fixability of the microorganisms can be further enhanced, and the water purification effect in the water area (sea area) can be further advantageously exhibited. Moreover, in the water purification agent comprising the microorganism-supported photocatalyst-containing water purification sinter, the dredged bottom mud, which is the main component of the sinter, is extracted from the bottom of the aqueous system. In addition, it is of the same environment as the bottom of the water system in which such a water purification agent is used, and in addition, even in titanium oxide and sodium silicate, it consists of elements that are relatively abundant in nature. From this point, it becomes a sintered body for water purification composed of a composition close to nature, and since microorganisms are present in the water area (sea area) used, there are concerns about environmental pollution in the water area where it is applied. Therefore, there is no need to recover the water purifier according to the present invention after use.

以下に、本発明の代表的な実施例を示し、本発明を、更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。   In the following, typical examples of the present invention will be shown, and the present invention will be clarified more specifically. However, the present invention is subject to any restrictions by the description of such examples. It goes without saying that it is not. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements can be made.

まず、微生物のキャリヤとしての焼結体を、以下のようにして製造した。即ち、浚渫底泥として、三重県の英虞湾の海底から浚渫により得られた、有機物を豊富に含む海洋底泥を用い、それを自然乾燥させて、含水率(ウェットベース)が約25%の底泥を準備した。そして、この含水率の調整された海洋底泥と、市販のアナターゼ型酸化チタン微粉末(粒径:約30nm)と、珪酸ナトリウムとを、下記表1に示される各種割合において配合し、更に適宜水を加えて、造粒に適した均一な組成物とした。その後、この組成物を常法に従って造粒し、更にその得られた造粒物を、4℃/分の昇温速度で、下記表1の目的温度まで加熱すると共に、その温度下において、2時間固化焼成して、直径が約1cmの大きさの酸化チタン含有焼結体(ほぼ球状粒体)を得た。   First, a sintered body as a microorganism carrier was produced as follows. That is, as the dredged mud, the marine mud containing abundant organic matter obtained from dredged water from Ago Bay in Mie Prefecture is dried naturally, and the moisture content (wet base) is about 25%. Prepared the bottom mud. Then, this marine bottom mud with adjusted moisture content, commercially available anatase-type titanium oxide fine powder (particle size: about 30 nm), and sodium silicate are blended in various proportions shown in Table 1 below, and further appropriately Water was added to obtain a uniform composition suitable for granulation. Thereafter, the composition was granulated according to a conventional method, and the obtained granulated product was further heated at a rate of temperature increase of 4 ° C./min to the target temperature shown in Table 1 below. Solidified and fired for a period of time to obtain a titanium oxide-containing sintered body (substantially spherical particles) having a diameter of about 1 cm.

Figure 2009189914
Figure 2009189914

次いで、このようにして得られた酸化チタン含有焼結体粒状物を、1Mの硝酸水溶液に24時間浸漬することにより、かかる焼結体の表面を処理して、多孔性を高め、微生物による水質浄化能力、並びに酸化チタンの光分解作用(光触媒分解能)に基づくところの水質浄化能力が向上せしめられた焼結体とした。     Subsequently, the titanium oxide-containing sintered granular material thus obtained is immersed in a 1M nitric acid aqueous solution for 24 hours to treat the surface of the sintered body, thereby increasing the porosity and water quality by microorganisms. The sintered body was improved in purification ability and water purification ability based on the photodecomposition action (photocatalytic resolution) of titanium oxide.

英虞湾底泥サンプルは、2003年6月、英虞湾立神の水深約10mの有機物が豊富に含まれる内湾底泥より採取された。同流域は長年真珠養殖が行われてきた流域である。2001年に調査された底泥の分析結果では、化学的酸素要求量(COD)55.8 mgO2/g・乾燥底泥、酸揮発性硫黄(AVS)1.57 mg/ g・乾燥底泥、全窒素(T−N)3.77 mg/ g・乾燥底泥、全有機炭素(TOC)21.77 mg/ g・乾燥底泥、水分含量72.4%、酸化還元電位(ORP)-109.3mVであった。水質浄化用微生物として用いられたアンモニア酸化・脱窒細菌群集の分離は、1)硝化細菌の獲得と強化、2)脱窒細菌の活性化、3)従属栄養細菌の枯渇化と硝化細菌の回復の3つのステップから構成された。
1)硝化細菌の獲得と強化 底泥サンプルを400 mLの培地を入れた500 mL容メジウム瓶に接種し(3% wt/vol)、シリコ栓を用いて、20℃、暗条件にて振とう培養(95 rpm)を行った。アンモニア態窒素、亜硝酸態窒素、硝酸態窒素濃度を約2週間に1度チェックを行い、亜硝酸態窒素濃度が40-80 mg/L以上、アンモニア態窒素の減少、硝酸態窒素の生成、pHの降下が認められたサンプルについて、新しい培地に5%(vol/vol)接種し、同様に濃度を確認し、培養を7〜8回繰り返し行う。
2)脱窒細菌の活性 1)で得られたサンプル1〜5%(vol/vol)を培地に接種し、暗条件、室温にて静置培養を行った。このステップでは、脱窒を活性化するために、炭素源として99.5%のエタノールをpH 指示薬と共に添加している。pH指示薬(フェノールレッド溶液)は、25 mgのフェノールレッドを10 mLのエタノール及び50 mLの蒸留水に溶解させて調製する。培養開始後、脱窒活性が活発になり、バブルの発生、培養液の色の変化(ピンクからイエロー)が認められたら、約2週間を目安に培養を1回行う。
3)従属栄養細菌の枯渇化と硝化細菌の回復 2)で得られた培養液10%(vol/vol)を培地に接種し、2)と同様に暗条件、室温にて静置培養を行った。このステップでは、再び無機塩からなる培地による培養を行うことで、2)の段階で活性化してきた従属栄養細菌の枯渇化と硝化細菌の回復を目的とした。培養は、約2週間を目安に亜硝酸の生成、アンモニア態窒素の減少とpHの降下が認められるまで行った。このステップは、1〜2回繰り返し行われ、得られた培養液は、定法に基づいて−80℃にて保存した。
微生物群集構造解析(PCR−DGGE)の結果、アンモニア酸化細菌については、Nitrosomonas sp.Nm148及びNitrosomonas sp.Nm107と高い相同性を示し、系統解析の結果から、Nitrosomonas europaea-Nitrosococcus mobilisに近い株であろうということが示唆された。Nitrosomonas sppは、水圏環境において優占種であることが知られており、また、排水処理プラントにおいても、特に高いアンモニア濃度が検出される排水において見つかっている。Nitrosomonas spp.及びN.communisのクラスターは基質濃度の高い環境下において頻繁に検出されている。
また、脱窒細菌を含む細菌群集は、大きく分けて3つのグループ(γ-proteobacteria、Actinobacteria、Flavobacteria)に分類された。うち約半数は、γ-proteobacteriaに属し、残りはActinobacteriaとFlavobacteriaに属していた。半数を占めるγ-proteobacteriaに属するクローンは、Alcanivoraxspp.に近縁種と認められ、培養のいずれのステージでも存在していた。優占クローンとして同定されたAlcanivorax sp.は、硝酸還元を行うことが知られており、これらの細菌は、硝酸還元反応に関係していることが示唆された。更に最近海洋におけるhydrocaubonoclastic bacteriumであるAlcanivorax borkumensisSK2株のゲノムシーケンスの結果が報告されており、それによると、同株は、(1) n-alkane分解、界面活性剤産生、バイオフィルム産生、(2)貧栄養の海洋環境における栄養塩のスカベンジャー、(3)生息環境におけるストレス因子への適応などの点における能力を有すると報告されている。更に、同株はnirKおよびnorを含むnnrS遺伝子を発現しており、これらの菌種は、更に脱窒を行うことが示唆される。これらに近縁のクローンが優占的に存在していたことからも、これらの株が硝酸還元とさらに脱窒に関与していることが示唆された。また、クローンの中にはγ‐proteobacteriaに属し脱窒細菌としてよく知られているPseudomonas stutzeriと96%の相同性を示したものも認められた。これらについては、脱窒活性に関与する遺伝子nirSによる解析結果から、Pseudomonas属に属する細菌が脱窒活性に関与している可能性が示されており、Pseudomonas属の細菌が脱窒活性に関与していることを裏付けるものである。2つ目の優占クローンから高い相同性が認められたDietzia marisは、元々Rhodococcusの一部としてグループ付けされていたが、後に生化学的データを基に再編成された。Rhodococcussp.は、脱窒細菌としてよく知られているが、ここで認められたクローンが脱窒活性を有するかどうかは不明である。3つ目のFlavobacteriumのグループの中からは、Vitellibacter vladivostokensisと100%の相同性があることがわかった。Vitellibacter vladivostokensisは、2003年に海洋環境から発見されたFlavobacteriaceaeに属する新しい種である。全体的に多くのクローンは、比較的最近になって分離されている菌種との高い相同性が認めらた。また、脱窒活性遺伝子による解析の結果、クローンの多くはデータベースに登録のない新しい株由来やuncultured bacteriumに近縁のものであった。
The Ago Bay bottom mud sample was collected in June 2003 from the inner bay bottom mud of Ago Bay Tategami, which is rich in organic matter at a depth of about 10 m. This basin has been used for pearl culture for many years. The analysis results of bottom mud investigated in 2001 showed that chemical oxygen demand (COD) 55.8 mgO 2 / g · dry bottom mud, acid volatile sulfur (AVS) 1.57 mg / g · dry bottom mud, total nitrogen ( (TN) 3.77 mg / g · dry bottom mud, total organic carbon (TOC) 21.77 mg / g · dry bottom mud, water content 72.4%, redox potential (ORP) −109.3 mV. Separation of ammonia-oxidizing and denitrifying bacterial communities used as water purification microorganisms: 1) acquisition and strengthening of nitrifying bacteria, 2) activation of denitrifying bacteria, 3) depletion of heterotrophic bacteria and recovery of nitrifying bacteria It consisted of three steps.
1) Acquisition and strengthening of nitrifying bacteria Inoculate the bottom mud sample into a 500 mL medium bottle containing 400 mL of medium (3% wt / vol) and shake with a silico stopper at 20 ° C in the dark. Culture (95 rpm) was performed. Ammonia nitrogen, nitrite nitrogen, nitrate nitrogen concentration is checked once every two weeks, nitrite nitrogen concentration is 40-80 mg / L or more, ammonia nitrogen decrease, nitrate nitrogen production, About the sample by which the fall of pH was recognized, a new culture medium is inoculated 5% (vol / vol), a density | concentration is confirmed similarly, and culture | cultivation is repeated 7 to 8 times.
2) Activity of denitrifying bacteria 1-5% (vol / vol) of the sample obtained in 1) was inoculated on the medium, and static culture was performed at room temperature in the dark. In this step, 99.5% ethanol as a carbon source is added with a pH indicator to activate denitrification. The pH indicator (phenol red solution) is prepared by dissolving 25 mg of phenol red in 10 mL of ethanol and 50 mL of distilled water. After the start of culture, if denitrification activity becomes active and bubble formation and change in the color of the culture solution (from pink to yellow) are observed, culture once for about 2 weeks.
3) Depletion of heterotrophic bacteria and recovery of nitrifying bacteria Inoculate the medium with 10% (vol / vol) of the culture solution obtained in 2), and perform static culture at room temperature in the dark under the same conditions as 2) It was. The purpose of this step was to deplete the heterotrophic bacteria that had been activated in step 2) and to recover the nitrifying bacteria by culturing again with a medium composed of an inorganic salt. Cultivation was carried out for about 2 weeks until formation of nitrous acid, a decrease in ammonia nitrogen, and a decrease in pH were observed. This step was repeated once or twice, and the obtained culture broth was stored at −80 ° C. based on a conventional method.
As a result of microbial community structure analysis (PCR-DGGE), ammonia-oxidizing bacteria showed high homology with Nitrosomonas sp. Nm148 and Nitrosomonas sp. Nm107. It was suggested that it would be. Nitrosomonas spp is known to be the dominant species in the aquatic environment, and is also found in wastewater treatment plants, particularly in wastewater where high ammonia concentrations are detected. Nitrosomonas spp. And N. communis clusters are frequently detected in environments with high substrate concentrations.
In addition, bacterial communities including denitrifying bacteria were roughly classified into three groups (γ-proteobacteria, Actinobacteria, Flavobacteria). About half of them belonged to γ-proteobacteria, and the rest belonged to Actinobacteria and Flavobacteria. Half of the clones belonging to γ-proteobacteria were recognized as related species in Alcanivorax spp. And existed at any stage of the culture. Alcanivorax sp., Identified as the dominant clone, is known to undergo nitrate reduction, suggesting that these bacteria are involved in the nitrate reduction reaction. More recently, the results of genome sequencing of Alcanivorax borkumensis SK2 strain, a hydrocaubonoclastic bacterium in the ocean, have been reported. According to the results, (1) n-alkane degradation, surfactant production, biofilm production, (2) Nutrient scavengers in the oligotrophic marine environment and (3) ability to adapt to stress factors in the habitat are reported. Furthermore, this strain expresses the nnrS gene containing nirK and nor, suggesting that these bacterial species further denitrify. These closely related clones also existed, suggesting that these strains are involved in nitrate reduction and further denitrification. Some clones showed 96% homology with Pseudomonas stutzeri, which belongs to γ-proteobacteria and is well known as a denitrifying bacterium. For these, the results of analysis by the gene nirS involved in denitrification activity indicate that bacteria belonging to the genus Pseudomonas may be involved in the denitrification activity, and bacteria belonging to the genus Pseudomonas are involved in the denitrification activity. It is to support that. Dietzia maris, which showed high homology from the second dominant clone, was originally grouped as part of Rhodococcus, but was later reorganized based on biochemical data. Rhodococcus sp. Is well known as a denitrifying bacterium, but it is unclear whether the clones observed here have denitrifying activity. A third Flavobacterium group was found to have 100% homology with Vitellibacter vladivostokensis. Vitellibacter vladivostokensis is a new species belonging to Flavobacteriaceae, discovered in 2003 from the marine environment. Overall, many clones were found to have a high degree of homology with relatively recently isolated strains. In addition, as a result of analysis using a denitrification activity gene, most of the clones were derived from new strains not registered in the database or closely related to uncultured bacteria.

この選択されたアンモニア酸化・脱窒細菌群集を用い、まず、その前培養を行い、細菌群集の生存・増殖を確認した。具体的には、滅菌海水1L中に硫酸アンモニウム 5mmol、硝酸ナトリウム 2.5mmol、リン酸緩衝溶液(0.5 mM) 0.5mL、炭酸緩衝溶液(2.5 mM)3.5mL、95%エタノール0.4mL、少量の無機成分を溶解し、数滴のフェノールレッド指示薬を添加して、培地(pH7.5〜8.0)を調製した。この培地中でアンモニア酸化・脱窒細菌群集の25℃で前培養を2週間行った。細菌群集が増加すると、バブルの発生や、ピンク色から黄色への色の変化が起こる。得られる生菌数は、アンモニア酸化細菌106 cell/mL、脱窒細菌108 cell/mL以上であった。 Using this selected ammonia-oxidizing / denitrifying bacterial community, pre-culture was first performed to confirm the survival and proliferation of the bacterial community. Specifically, 5 mL of ammonium sulfate, 2.5 mmol of sodium nitrate, 0.5 mL of phosphate buffer solution (0.5 mM), 3.5 mL of carbonate buffer solution (2.5 mM), 0.4 mL of 95% ethanol, and a small amount of inorganic components in 1 L of sterile seawater A medium (pH 7.5-8.0) was prepared by dissolving and adding a few drops of phenol red indicator. In this medium, ammonia-oxidizing / denitrifying bacterial communities were precultured at 25 ° C. for 2 weeks. As the bacterial community increases, bubbles appear and the color changes from pink to yellow. The number of viable bacteria obtained was 10 6 cells / mL of ammonia oxidizing bacteria and 10 8 cells / mL of denitrifying bacteria.

そして、この得られたアンモニア酸化・脱窒細菌群集濃縮溶液を同じ組成の培地で10倍に希釈する。この細菌懸濁溶液100mLに、先に製造された焼結体の10gを添加して、25℃の温度で2週間さらに培養を行うことにより、かかる焼結体の表面に、アンモニア酸化・脱窒細菌群集を担持せしめた。     The obtained ammonia oxidizing / denitrifying bacterial community concentrated solution is diluted 10 times with a medium having the same composition. By adding 10 g of the previously produced sintered body to 100 mL of this bacterial suspension solution and further culturing at a temperature of 25 ° C. for 2 weeks, the surface of the sintered body is subjected to ammonia oxidation / denitrification. Bacterial communities were supported.

試料(No.6)に係る水質浄化用焼結体の外観図を図1に示す。その水質浄化用焼結体の表面を示す走査型電子顕微鏡写真を図2に示す。その焼結体の表面に、アンモニア酸化・脱窒細菌群集を担持せしめた後の走査型電子顕微鏡写真を図3に示す。     The external view of the sintered body for water quality purification which concerns on a sample (No. 6) is shown in FIG. A scanning electron micrograph showing the surface of the water purification sintered body is shown in FIG. FIG. 3 shows a scanning electron micrograph after the surface of the sintered body is loaded with ammonia oxidizing / denitrifying bacterial communities.

かくして得られた微生物担持光触媒含有水質浄化用焼結体(試料No.6)を用い、その10gを、0.5 mMの濃度のアンモニア性窒素と0.5 mMの濃度の硝酸性窒素と10 mMのエタノールが存在するように調製された滅菌海水試料に添加して、そのような焼結体に担持されたアンモニア酸化・脱窒細菌群集の窒素除去の効果を暗条件下(光を遮断した条件下)において検討し、その結果を図4に示す。そして、図に示されるように、時間の経過と共に、アンモニウムイオンと硝酸イオンが還元され、濃度が減少した。それに伴い亜硝酸イオンが生成し、更に時間の経過とともに亜硝酸イオン濃度も低下することが、確認された。これらの経過の中で、窒素ガスと思われる気泡の発生が確認された。   Using the thus obtained microorganism-supported photocatalyst-containing sintered body for water purification (sample No. 6), 10 g of it was mixed with 0.5 mM ammonia nitrogen, 0.5 mM nitrate nitrogen and 10 mM ethanol. Add to a sterilized seawater sample prepared to exist, the effect of nitrogen removal of ammonia-oxidizing / denitrifying bacterial communities supported on such sintered bodies under dark conditions (light-blocked conditions) The results are shown in FIG. As shown in the figure, with the passage of time, ammonium ions and nitrate ions were reduced and the concentration decreased. Along with this, nitrite ions were generated, and it was confirmed that the nitrite ion concentration also decreased with the passage of time. During these processes, the generation of bubbles thought to be nitrogen gas was confirmed.

また、上記行われた試験例と同じ条件で、焼結体に担持されたアンモニア酸化・脱窒細菌群集の窒素除去の効果を光照射下(ブラックライト照射下)において検討し、その結果を図5に示す。そして、図に示されるように、時間の経過と共に、アンモニウムイオンと硝酸イオンが還元され、濃度が減少した。それに伴い亜硝酸イオンが生成し、更に時間の経過とともに亜硝酸イオン濃度も低下することが、確認された。しかしながら、硝酸イオン濃度は低濃度レベルまで減少したが、アンモニウムイオンの約20%が除去されずに残存する結果となった。この傾向から、光照射の影響及び光触媒作用の影響が多少見受けられる結果となったが、焼結体に担持されたアンモニア酸化・脱窒細菌群集の窒素除去は、光照射下でもほぼ進行することが分かった。     In addition, under the same conditions as in the above test example, the nitrogen removal effect of the ammonia-oxidizing / denitrifying bacterial community supported on the sintered body was examined under light irradiation (under black light irradiation), and the results are shown in the figure. As shown in FIG. As shown in the figure, with the passage of time, ammonium ions and nitrate ions were reduced and the concentration decreased. Along with this, nitrite ions were generated, and it was confirmed that the nitrite ion concentration also decreased with the passage of time. However, although the nitrate ion concentration decreased to a low concentration level, about 20% of the ammonium ions remained without being removed. This tendency resulted in some effects of light irradiation and photocatalysis, but nitrogen removal of ammonia-oxidizing / denitrifying bacterial communities carried on the sintered body almost progressed even under light irradiation. I understood.

また、上記行われた試験例における、微生物担持光触媒含有水質浄化用焼結体の有機物質光触媒分解の効果を、暗条件下と光照射下(ブラックライト照射下)において検討し、その結果を図6に示す。上記行われた試験例と同じ条件で、10 mg/Lのフミン酸を添加し、アンモニア酸化・脱窒細菌群集の窒素除去と並行して、経過時間に伴うフミン酸水溶液中の濃度変化を調べた。縦軸(C/C)は、(経過時間後のフミン酸濃度)/(フミン酸の初濃度)であり、フミン酸の濃度は吸光光度分析法(波長400nm)により測定した。暗条件下より光照射下(ブラックライト照射下)の方が、フミン酸の濃度の減少が著しいため、光照射下においてフミン酸が分解されて浄化されていることが、認められるのである。 In addition, the organic substance photocatalytic decomposition effect of the microorganism-supported photocatalyst-containing water purification sintered body in the test example conducted above was examined under dark conditions and under light irradiation (under black light irradiation), and the results are shown in FIG. It is shown in FIG. Under the same conditions as in the test example above, 10 mg / L humic acid was added, and in parallel with the removal of nitrogen from the ammonia-oxidizing / denitrifying bacterial community, the change in concentration in the aqueous humic acid solution over time was investigated. It was. The vertical axis (C / C 0 ) is (humic acid concentration after elapsed time) / (initial concentration of humic acid), and the concentration of humic acid was measured by absorptiometry (wavelength 400 nm). It is recognized that humic acid is decomposed and purified under light irradiation because the concentration of humic acid is significantly decreased under light irradiation (under black light irradiation) than under dark conditions.

一方、上記行われた試験例における、焼結体に担持されたアンモニア酸化・脱窒細菌群集の活性化手法を検討するために、微生物の活性化物質又は栄養物質として炭素含有有機性物質を添加し、アンモニア酸化・脱窒細菌群集の活性化具合を調べた。具体的には、上記行われた試験例では最初から10 mMのエタノールを添加していたが、最初からエタノール添加するのではなく、窒素除去を開始してから200時間後に10 mMのエタノールを添加して、アンモニア酸化・脱窒細菌群集の活性具合を評価した。暗条件下(光を遮断した条件下)において検討した結果を図7に示す。そして、図に示されるように、10 mMのエタノールを添加した200時間後において、硝酸イオン濃度及びアンモニウムイオン濃度とも、急激に濃度低下が確認された。この結果から、微生物担持光触媒含有水質浄化用焼結体を用いて水質を浄化する際に、微生物の活性化物質又は栄養物質として炭素含有有機性物質を供給することが非常に有効であることが明らかとなった。     On the other hand, in order to examine the activation method of the ammonia oxidizing / denitrifying bacterial community supported on the sintered body in the test example conducted above, a carbon-containing organic substance was added as a microorganism activating substance or nutrient. Then, the activation of the ammonia oxidizing / denitrifying bacterial community was investigated. Specifically, in the test example performed above, 10 mM ethanol was added from the beginning, but ethanol was not added from the beginning, but 10 mM ethanol was added 200 hours after the start of nitrogen removal. Then, the activity of ammonia oxidizing / denitrifying bacterial communities was evaluated. FIG. 7 shows the results of investigation under dark conditions (under light-shielded conditions). Then, as shown in the figure, after 200 hours of addition of 10 mM ethanol, the nitrate ion concentration and the ammonium ion concentration were confirmed to decrease rapidly. From this result, it is very effective to supply a carbon-containing organic substance as a microorganism activation substance or nutrient when purifying water using a microorganism-supported photocatalyst-containing water purification sinter. It became clear.

以上の実験結果に示されるように、本発明に従う微生物担持光触媒含有水質浄化用焼結体においては、アンモニア酸化・脱窒細菌群集が焼結体上で有効に作用し、窒素除去反応が効果的に進行していることが認められ、また酸化チタンの光分解作用(光触媒分解能)に基づくところのフミン酸濃度低下作用も認められ、従って、本発明に従う微生物担持光触媒含有水質浄化用焼結体は、河川、沼、池、海洋等の水環境の浄化に有利に応用することができることが明らかとなった。
As shown in the above experimental results, in the sintered body for water purification containing a microorganism-supported photocatalyst according to the present invention, ammonia oxidizing / denitrifying bacterial communities act effectively on the sintered body, and the nitrogen removal reaction is effective. The humic acid concentration lowering action based on the photodecomposition action (photocatalytic resolution) of titanium oxide was also observed. Therefore, the microorganism-supported photocatalyst-containing sintered body for water purification according to the present invention is It has become clear that it can be advantageously applied to the purification of water environments such as rivers, swamps, ponds, and oceans.

本発明により製造された水質浄化用焼結体(試料No.6)の外観図である。It is an external view of the sintered body for water purification (sample No. 6) manufactured by the present invention. 製造された試料No.6に係る焼結体の表面を示す走査型電子顕微鏡写真である。Sample No. manufactured 6 is a scanning electron micrograph showing the surface of a sintered body according to 6; 製造された試料No.6に係る焼結体の表面に、アンモニア酸化・脱窒細菌群集を担持せしめた後の走査型電子顕微鏡写真である。Sample No. manufactured 6 is a scanning electron micrograph after the ammonia oxidizing / denitrifying bacterial community is supported on the surface of the sintered body according to 6; 実施例において得られた、0.5 mMの濃度のアンモニア性窒素と0.5 mMの濃度の硝酸性窒素と10 mMのエタノールが存在する滅菌海水試料を用いた場合における、本発明に従う微生物担持光触媒含有水質浄化用焼結体の窒素除去作用の結果を示すグラフである。暗条件下において実施。Purification of water containing microorganism-supported photocatalyst according to the present invention when using a sterilized seawater sample containing ammonia nitrogen at a concentration of 0.5 mM, nitrate nitrogen at a concentration of 0.5 mM and ethanol at 10 mM obtained in the examples It is a graph which shows the result of the nitrogen removal effect | action of the sintered compact for use. Conducted under dark conditions. 実施例において得られた、0.5 mMの濃度のアンモニア性窒素と0.5 mMの濃度の硝酸性窒素と10 mMのエタノールが存在する滅菌海水試料を用いた場合における、本発明に従う微生物担持光触媒含有水質浄化用焼結体の窒素除去作用の結果を示すグラフである。光照射下(ブラックライト照射下)において実施。Purification of water containing microorganism-supported photocatalyst according to the present invention when using a sterilized seawater sample containing ammonia nitrogen at a concentration of 0.5 mM, nitrate nitrogen at a concentration of 0.5 mM and ethanol at 10 mM obtained in the examples It is a graph which shows the result of the nitrogen removal effect | action of the sintered compact for use. Conducted under light irradiation (under black light irradiation). 実施例において得られた、0.5 mMの濃度のアンモニア性窒素と0.5 mMの濃度の硝酸性窒素と10 mMのエタノールが存在する滅菌海水試料を用いた場合において、10 mg/Lのフミン酸を添加し、本発明に従う微生物担持光触媒含有水質浄化用焼結体の有機物質分解作用(フミン物質分解作用)の結果を示すグラフである。In the case of using a sterilized seawater sample containing ammonia nitrogen at a concentration of 0.5 mM, nitrate nitrogen at a concentration of 0.5 mM, and 10 mM ethanol obtained in the example, 10 mg / L humic acid was added. FIG. 6 is a graph showing the results of the organic substance decomposition action (humic substance decomposition action) of the microorganism-supported photocatalyst-containing water purification sintered body according to the present invention. 実施例において得られた、0.5 mMの濃度のアンモニア性窒素と0.5 mMの濃度の硝酸性窒素が存在する滅菌海水試料を用いた場合における、本発明に従う微生物担持光触媒含有水質浄化用焼結体の窒素除去作用への、活性化物質・栄養物質(炭素含有有機性物質)添加効果の結果を示すグラフである。200時間後に10 mMのエタノールを添加。暗条件下において実施。When the sterilized seawater sample containing ammonia nitrogen at a concentration of 0.5 mM and nitrate nitrogen at a concentration of 0.5 mM was used in the examples, the microorganism-supported photocatalyst-containing sintered body for water purification according to the present invention was used. It is a graph which shows the result of the activation substance and the nutrient substance (carbon containing organic substance) addition effect with respect to nitrogen removal action. After 200 hours, 10 mM ethanol was added. Conducted under dark conditions.

Claims (5)

水系の底部から得られる浚渫底泥と酸化チタンと珪酸ナトリウムとを、固形分重量比にて、それぞれ、43〜81%と6〜17%と13〜46%の割合で配合してなる組成物を焼成して得られた多孔質構造の焼結体に、水質浄化の目的とされた水域から採取された、水質汚染物質を分解する水質浄化用微生物を担持せしめてなることを特徴とする微生物担持光触媒含有水質浄化用焼結体。 Composition obtained by blending dredged bottom mud, titanium oxide, and sodium silicate obtained from the bottom of an aqueous system at a ratio of solid content of 43 to 81%, 6 to 17%, and 13 to 46%, respectively. Microorganisms characterized in that a porous structure sintered body obtained by firing slag is loaded with microorganisms for water purification, which are collected from water areas intended for water purification, and decompose water contaminants. A sintered body for water purification containing a supported photocatalyst. 前記酸化チタンが、アナターゼ型の酸化チタンを含有することを特徴とする請求項1に記載の微生物担持光触媒含有水質浄化用焼結体。 The sintered body for water purification according to claim 1, wherein the titanium oxide contains anatase type titanium oxide. 前記水質浄化用微生物が、硝化細菌及びに脱窒細菌が複数から成る細菌群集であり、水質汚染物質の硝化反応と脱窒反応処理を同時に並行して行え得ることを特徴とする請求項1又は請求項2に記載の微生物担持光触媒含有水質浄化用焼結体。 The microbial for water purification is a bacterial community composed of a plurality of nitrifying bacteria and denitrifying bacteria, and nitrification reaction and denitrification reaction treatment of water pollutants can be performed simultaneously in parallel. The microorganism-supported photocatalyst-containing water purification sintered body according to claim 2. 請求項1乃至請求項3の何れか1項に記載の微生物担持光触媒含有水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、該焼結体を与える前記底泥が当該水域の底部の浚渫底泥であり、且つ前記水質浄化用微生物が当該水域から採取された微生物であることを特徴とする水域の水質浄化方法。 When the water quality purification sintered body containing a microorganism-supported photocatalyst according to any one of claims 1 to 3 is used to purify the water quality of a target water area, the bottom mud that gives the sintered body is A water purification method for a water area, characterized in that it is dredged mud at the bottom of the water area, and the water purification microorganism is a microorganism collected from the water area. 請求項1乃至請求項4の何れか1項に記載の微生物担持光触媒含有水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、微生物の活性化物質又は栄養物質として炭素含有有機性物質を供給することを特徴とする水域の水質浄化方法。
When purifying the water quality of a target water area using the microorganism-supported photocatalyst-containing water purification sintered body according to any one of claims 1 to 4, carbon is used as a microorganism activator or nutrient. A method for purifying water in a water area, comprising supplying an organic substance.
JP2008031222A 2008-02-13 2008-02-13 Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it Pending JP2009189914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031222A JP2009189914A (en) 2008-02-13 2008-02-13 Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031222A JP2009189914A (en) 2008-02-13 2008-02-13 Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it

Publications (1)

Publication Number Publication Date
JP2009189914A true JP2009189914A (en) 2009-08-27

Family

ID=41072430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031222A Pending JP2009189914A (en) 2008-02-13 2008-02-13 Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it

Country Status (1)

Country Link
JP (1) JP2009189914A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880194A (en) * 2014-03-20 2014-06-25 广西大学 Microorganism water purification agent and preparation method thereof
CN106007308A (en) * 2016-06-30 2016-10-12 山东胜伟园林科技有限公司 Short-cut nitrifying bacteria pseudomonas containing desilting agent and application thereof in salt eliminating underground pipe
CN106007280A (en) * 2016-07-04 2016-10-12 中国科学院南京地理与湖泊研究所 Ecological rehabilitation method for treating river-channel black and odorous bottom-mud sulfur pollution
CN115594330A (en) * 2022-09-16 2023-01-13 同济大学(Cn) Direct-discharge type sewage treatment system for enhancing treatment efficiency of domestic sewage with low carbon-nitrogen ratio

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880194A (en) * 2014-03-20 2014-06-25 广西大学 Microorganism water purification agent and preparation method thereof
CN106007308A (en) * 2016-06-30 2016-10-12 山东胜伟园林科技有限公司 Short-cut nitrifying bacteria pseudomonas containing desilting agent and application thereof in salt eliminating underground pipe
CN106007280A (en) * 2016-07-04 2016-10-12 中国科学院南京地理与湖泊研究所 Ecological rehabilitation method for treating river-channel black and odorous bottom-mud sulfur pollution
CN106007280B (en) * 2016-07-04 2019-06-07 中国科学院南京地理与湖泊研究所 A kind of ecological restoring method for administering the black smelly bed mud sulphur pollution in river
CN115594330A (en) * 2022-09-16 2023-01-13 同济大学(Cn) Direct-discharge type sewage treatment system for enhancing treatment efficiency of domestic sewage with low carbon-nitrogen ratio
CN115594330B (en) * 2022-09-16 2023-05-30 同济大学 Directly-discharging sewage treatment system for strengthening low carbon nitrogen ratio domestic sewage treatment efficiency

Similar Documents

Publication Publication Date Title
KR101273444B1 (en) Cement brick for purifying water using microorganism and zeolite, and method for preparing the same
Qin et al. Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin
KR101041607B1 (en) Bio restorating agent for purificating polluted ground and water deposit
Zou et al. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation
TW200927677A (en) Treatment of wastewater
JP2009189914A (en) Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it
Zhuang et al. Advanced treatment of biologically pretreated coal gasification wastewater using a novel expansive flow biological intermittent aerated filter process with a ceramic filler from reused coal fly ash
Abou-Elela et al. Utilization of autoclaved aerated concrete solid waste as a bio-carrier in immobilized bioreactor for municipal wastewater treatment
US20230050281A1 (en) Method for treating waters, sediments and/or sludges
JP3852844B2 (en) Sludge decomposition / water purification agent and purification method
JP2005144295A (en) Method for cleaning contaminated soil and contaminated groundwater
Biswas et al. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand‐Chemically Carbonized Rubber Wood Sawdust Column
Buhari et al. Future and challenges of co-biofilm treatment on ammonia and Bisphenol A removal from wastewater
Wang et al. Review on the Fate and Mechanism of Nitrogen Pollutant Removal from Wastewater Using a Biological Filter.
JP2008049265A (en) Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact
Xu et al. Attapulgite suspension filter material for biological aerated filter to remove CODMn and ammonia nitrogen in micropolluted drinking water source
Hou et al. Cultivating river sediments into efficient denitrifying sludge for treating municipal wastewater
JP2008055372A (en) Water cleaning agent and its manufacturing method
Lan et al. Notice of Retraction: Comparing the Purification Effects of Sewage Water Treated by Different Kinds of Porous Eco-Concrete
Wang et al. Denitrification performance and kinetics of an attapulgite lightweight ceramsite biofilter
JP5244321B2 (en) Permeability purification wall and purification method of contaminated groundwater
KR20200068814A (en) Porous sulfur media for removing nitrogen
KR20050024481A (en) Depurator prepared using natural mineral powder containing germanium and method for preparing the same by preparing natural mineral powder, preparing quicklime, mixing natural mineral powder and quicklime and aging mixture
JP2007106808A (en) Conditioner for submerged soils and method for conditioning submerged soils
Zhang et al. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review