KR20200070701A - Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same - Google Patents

Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same Download PDF

Info

Publication number
KR20200070701A
KR20200070701A KR1020180158137A KR20180158137A KR20200070701A KR 20200070701 A KR20200070701 A KR 20200070701A KR 1020180158137 A KR1020180158137 A KR 1020180158137A KR 20180158137 A KR20180158137 A KR 20180158137A KR 20200070701 A KR20200070701 A KR 20200070701A
Authority
KR
South Korea
Prior art keywords
binder
ldh
zeolite
geopolymeric
magnesium oxide
Prior art date
Application number
KR1020180158137A
Other languages
Korean (ko)
Inventor
이행기
하마드 라자 칼리드
왕젠
박솔뫼
배상진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020180158137A priority Critical patent/KR20200070701A/en
Publication of KR20200070701A publication Critical patent/KR20200070701A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a bulk-type heavy metal-adsorbing geopolymer-supported hybrid zeolite hydrotalcite (LDH) composite capable of absorbing a large amount of cations and anions, and a method for manufacturing the same by mixing industrial byproducts, such as fly ash and fine dust of slag, with an activating agent and magnesium oxide (MgO) to produce zeolite and LDH at the same time. The geopolymer-supported hybrid zeolite-LDH composite includes: a binder obtained by mixing slag with fly ash at a predetermined ratio; and magnesium oxide (MgO) powder and an alkali activating agent mixed with the binder, and is obtained by heating the mixture of the binder with magnesium oxide powder and the alkali activating agent to a predetermined temperature to carry out hydrothermal synthesis reaction, and curing the resultant product in the air or water.

Description

지오폴리머성 하이브리드 제올라이트-LDH 복합체 및 그 제조 방법{Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same}Geopolymer-supported Hybrid Zeolite-hydrotalcite (LDH) Composite And Method for Manufacturing the Same}

본 발명은 수질 및 환경 정화에 사용될 수 있는 지오폴리머성 하이브리드 제올라이트-LDH 복합체에 관한 것으로, 더욱 상세하게는 플라이애쉬와 슬래그 미분말과 같은 산업부산물에 산화마그네슘(MgO)과 알칼리 활성화제 등을 혼합하여 제올라이트와 LDH(Hydrotalcite)를 동시에 생성하여 양이온과 음이온을 대량으로 흡착할 수 있는 벌크형 중금속 흡착형의 지오폴리머성 하이브리드 제올라이트-LDH 복합체 및 그 제조 방법에 관한 것이다. The present invention relates to a geopolymeric hybrid zeolite-LDH complex that can be used for water quality and environmental purification, and more specifically, by mixing magnesium oxide (MgO) and an alkali activator in industrial by-products such as fly ash and fine slag powder. The present invention relates to a bulk-type heavy metal adsorption type geopolymeric hybrid zeolite-LDH composite capable of adsorbing a large amount of cations and anions by simultaneously generating zeolite and LDH (Hydrotalcite), and a method for manufacturing the same.

도시교통 수요의 폭발적 증가와 함께 도로 건설이 확산되면서 도시의 대기 및 하천의 수질 환경이 급격히 악화되고 있다. 21세기 건설분야의 지속적인 성장을 위해서도 주변 환경의 오염원을 능동적으로 완화하는 기능성 재료에 대한 수요가 증가하고 있다.As road construction spreads along with the explosive increase in urban traffic demand, the water environment of the city's air and rivers is rapidly deteriorating. For the continuous growth of the construction sector in the 21st century, the demand for functional materials that actively mitigate pollutants in the surrounding environment is increasing.

최근 들어 도시 하천이나 호수의 수질정화의 목적으로 천연 또는 합성 제올라이트를 콘크리트에 혼입하여 제조한 하천블록이 수질정화용으로 사용되고 있다. 예를 들어 등록특허 제10-0961564호에는 결합재로 고로슬래그시멘트, 플라이애시시멘트 및 보통포틀랜드시멘트 등을 사용하고, 환경오염 및 수질정화를 극대화하기 위하여 천연 제올라이트, 합성 제올라이트, Ca형 인공 제올라이트 및 활성탄소를 결합재 100중량부에 대하여 소정의 비율로 혼합하며, 혼화제로서 유동화제와 고성능AE감수제와, 콘크리트의 구조성능 및 내구성 향상을 위하여 길이가 3∼30mm인 친수성 폴리아미드(Polyamide) 섬유, 폴리비닐알콜(Polyvinyl Alcohol) 섬유, 이형 강섬유 및 방청매쉬를 보강재로서 혼입하여 제조함으로써, 수질정화 및 환경정화 성능이 우수하고 물리역학적 기능이 탁월한 수질 및 환경정화와 토질안정화 기능을 갖는 고기능 친환경 콘크리트의 제조방법이 개시되어 있다. Recently, river blocks produced by mixing natural or synthetic zeolites into concrete for the purpose of water purification in urban rivers or lakes have been used for water purification. For example, in Patent No. 10-0961564, blast furnace slag cement, fly ash cement, and ordinary Portland cement are used as a binder, and natural zeolite, synthetic zeolite, Ca-type artificial zeolite and active agent are used to maximize environmental pollution and water purification. Carbon is mixed at a predetermined ratio with respect to 100 parts by weight of the binder, and as a admixture, a fluidizing agent and a high-performance AE water reducing agent, and hydrophilic polyamide fibers and polyvinyl vinyl having a length of 3 to 30 mm for improving structural performance and durability of concrete. Manufacturing method of high-performance eco-friendly concrete with excellent water quality and environmental purification performance, excellent physical and mechanical properties, and environmental and soil stabilization by mixing polyvinyl alcohol fiber, release steel fiber, and rustproof mesh as reinforcing materials. This is disclosed.

그러나, 이러한 종래의 수질 및 환경 정화용 콘크리트 또는 복합체는 합성 또는 천연 제올라이트 분말을 일정량 시멘트 또는 산업부산물에 혼합함으로써 제올라이트에 의한 중금속 흡착 성능을 갖게 하는 방법으로서, 중금속 흡착 효율과 흡착 용량이 작을 뿐만 아니라 제올라이트는 양이온은 흡착이 가능하지만 음이온은 흡착이 되지 않아 중금속 제거 능력에 한계가 있다. However, such a conventional water or environmental purification concrete or composite is a method to have a heavy metal adsorption performance by zeolite by mixing synthetic or natural zeolite powder with a certain amount of cement or industrial by-products. Although silver cations can be adsorbed, anions are not adsorbed, which limits the ability to remove heavy metals.

대한민국 등록특허 제10-0961564호(2010.05.27. 등록)Republic of Korea Registered Patent No. 10-0961564 (registered on May 27, 2010) 대한민국 공개특허 제10-2016-0125188호(2016.10.31. 공개)Republic of Korea Patent Publication No. 10-2016-0125188 (2016.10.31. public) 대한민국 등록특허 제10-1273444호(2013.06.04. 등록)Republic of Korea Registered Patent No. 10-1273444 (2013.06.04. registered)

본 발명은 상기한 문제를 해결하기 위한 것으로, 본 발명의 목적은 제올라이트를 첨가하는 방식이 아니라, 플라이애쉬와 슬래그 미분말과 같은 산업부산물에 알칼리 활성화제와 산화마그네슘(MgO) 등을 혼합하여 제올라이트와 LDH(Hydrotalcite)를 동시에 생성하여 양이온과 음이온을 대량으로 흡착할 수 있는 벌크형 중금속 흡착형의 지오폴리머성 하이브리드 제올라이트-LDH 복합체 및 그 제조 방법을 제공하는 것이다. The present invention is to solve the above problems, the purpose of the present invention is not a method of adding zeolite, zeolite and a mixture of alkali activator and magnesium oxide (MgO) in industrial by-products such as fly ash and slag fine powder and It is to provide a bulk type heavy metal adsorption type geopolymeric hybrid zeolite-LDH composite capable of adsorbing a large amount of cations and anions by simultaneously generating LDH (Hydrotalcite) and a method for manufacturing the same.

또한 본 발명의 다른 목적은 수질 또는 공기 정화용 콘크리트 블록이나 일반 프리캐스트 제품으로 활용이 가능하도록 높은 압축강도를 가지며, 대량의 양이온 및 음이온 흡착 성능을 갖는 지오폴리머성 하이브리드 제올라이트-LDH 복합체 및 그 제조 방법을 제공하는 것이다. In addition, another object of the present invention is a geopolymeric hybrid zeolite-LDH composite having a high compressive strength and a large amount of cation and anion adsorption performance to be used as a concrete block for water quality or air purification or a general precast product, and a method for manufacturing the same Is to provide

상기한 목적을 달성하기 위한 본 발명에 따른 지오폴리머성 하이브리드 제올라이트-LDH 복합체는, 슬래그와 플라이애쉬를 일정 비율로 혼합하여 만들어진 바인더; 및 상기 바인더에 혼합되는 산화마그네슘(MgO) 분말과 알칼리 활성화제;를 포함하고, 상기 바인더와 산화마그네슘 분말과 알칼리 활성화제의 혼합물을 일정 온도 범위로 가열하여 수열합성반응을 시행한 후, 수중 또는 공기 중에서 양생하여 만들어진다. The geopolymeric hybrid zeolite-LDH composite according to the present invention for achieving the above object is a binder made by mixing slag and fly ash in a certain ratio; And a magnesium oxide (MgO) powder mixed with the binder and an alkali activator; and a mixture of the binder and the magnesium oxide powder and an alkali activator is heated to a certain temperature range to perform a hydrothermal synthesis reaction, and then in water or It is made by curing in air.

상기 알칼리 활성화제는 50 ~ 60 중량부로 혼입될 수 있다. The alkali activator may be incorporated in 50 to 60 parts by weight.

또한 상기 바인더 전체 중량에 대한 슬래그의 중량비(slag/binder)는 0.2 내지 0.6인 것이 바람직하다. In addition, the weight ratio of the slag to the total weight of the binder (slag/binder) is preferably 0.2 to 0.6.

상기 산화마그네슘은 마그네슘(Mg)/(알루미늄(Al)+규소(Si)의 몰비가 0.1~1.0 범위인 것이 바람직하다. The magnesium oxide preferably has a molar ratio of magnesium (Mg)/(aluminum (Al)+silicon (Si)) in the range of 0.1 to 1.0.

상기 알칼리 활성화제는 물유리(waterglass)/수산화나트륨(NaOH)의 중량비가 0.4 ~0.6 이고, 수산화나트륨(NaOH) 수용액은 몰농도가 5~12M의 범위일 수 있다. The alkali activator has a weight ratio of waterglass/sodium hydroxide (NaOH) of 0.4 to 0.6, and an aqueous sodium hydroxide (NaOH) solution may have a molar concentration of 5 to 12M.

본 발명에 따른 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법은 다음과 같은 단계들을 포함한다. The method for preparing the geopolymeric hybrid zeolite-LDH composite according to the present invention includes the following steps.

(S1) 슬래그와 플라이애쉬를 일정 비율로 혼합하여 바인더를 만드는 단계(S1) Step to make a binder by mixing slag and fly ash in a certain ratio

(S2) 상기 바인더에 산화마그네슘(MgO) 분말을 첨가하고 건비빔하여 혼합하는 단계(S2) adding magnesium oxide (MgO) powder to the binder and mixing it by dry boiling

(S3) 상기 바인더와 산화마그네슘(MgO) 분말의 혼합물에 알칼리 활성화제를 첨가하여 혼합하는 단계(S3) adding and mixing an alkali activator to the mixture of the binder and magnesium oxide (MgO) powder

(S4) 상기 바인더와 산화마그네슘(MgO) 분말과 알칼리 활성화제의 혼합물을 일정 온도 범위에서 수열합성반응시키는 단계(S4) a step of hydrothermal synthesis of the mixture of the binder, magnesium oxide (MgO) powder and an alkali activator within a certain temperature range

(S5) 상기 양생된 바인더와 산화마그네슘(MgO) 분말과 알칼리 활성화제의 혼합물을 수중 또는 공기 중에서 양생하는 단계. (S5) curing the mixture of the cured binder, magnesium oxide (MgO) powder, and an alkali activator in water or in air.

상기 (S2) 단계에서 혼합되는 산화마그네슘은 마그네슘(Mg)/(알루미늄(Al)+규소(Si)의 몰비가 0.1~1.0 범위인 것이 바람직하다. The magnesium oxide mixed in the step (S2) is preferably a molar ratio of magnesium (Mg) / (aluminum (Al) + silicon (Si) is in the range of 0.1 ~ 1.0.

그리고 상기 (S3)에서 혼합되는 알칼리 활성화제는 물유리(waterglass)/수산화나트륨(NaOH)의 중량비가 0.4 ~ 0.6이고, 수산화나트륨(NaOH) 수용액은 몰농도가 5~12M의 범위인 것이 바람직하다. In addition, the alkali activator mixed in (S3) has a weight ratio of waterglass/sodium hydroxide (NaOH) of 0.4 to 0.6, and an aqueous sodium hydroxide (NaOH) solution preferably has a molar concentration in the range of 5 to 12M.

상기 (S4) 단계에서는 챔버 내에서 일정 시간 동안 100 ~ 130℃의 온도 범위에서 수열합성반응을 진행하는 것이 바람직하다. In the step (S4), it is preferable to perform a hydrothermal synthesis reaction in a temperature range of 100 to 130°C for a predetermined time in the chamber.

상기 (S4) 단계에서는 챔버에서 챔버 전체의 용량 대비 물의 양을 0.2로 유지하여 챔버 내의 내부 증기압을 0.15MPa 로 유지하면서 수열합성반응을 진행하는 것이 바람직하다. In the step (S4), it is preferable to proceed with the hydrothermal synthesis reaction while maintaining the internal vapor pressure in the chamber at 0.15 MPa by maintaining the amount of water relative to the entire capacity of the chamber in the chamber at 0.25 MPa.

상기 알칼리 활성화제는 50 ~ 60 중량부로 혼입된 것이 바람직하다. The alkali activator is preferably incorporated in 50 to 60 parts by weight.

본 발명에 따르면, 기존의 제올라이트를 첨가하는 방식이 아닌 제올라이트 결정상의 형성과 비정질 지오폴리머 겔의 결정질 제올라이트로의 전환이 동시에 진행되는 One-step 제올라이트 합성법을 사용하여 다량의 나노공극을 형성함과 더불어 산화마그네슘(MgO) 분말을 혼입함으로써 복합체 내에서 LDH 결정층을 형성할 수 있다. 따라서 대량의 양이온과 함께 음이온을 흡착할 수 있으므로 대량의 중금속 및 오염물질을 흡착하여 제거할 수 있다. According to the present invention, a large amount of nanopores are formed using a one-step zeolite synthesis method in which the formation of a zeolite crystal phase and the conversion of an amorphous geopolymer gel to a crystalline zeolite are simultaneously performed, rather than a conventional method of adding zeolite, The LDH crystal layer can be formed in the composite by incorporating magnesium oxide (MgO) powder. Therefore, since anions can be adsorbed together with a large amount of cations, a large amount of heavy metals and contaminants can be adsorbed and removed.

이러한 본 발명의 제올라이트-LDH 복합체는 수중 또는 대기의 유해 이온을 제거하는 벌크형의 수질 및 환경 정화용 블록 또는 프리캐스트 제품으로 이용될 수 있다. The zeolite-LDH composite of the present invention can be used as a block or precast product for bulk water quality and environmental purification to remove harmful ions from water or air.

또한 본 발명의 제올라이트-LDH 복합체는 대량의 중금속 이온을 흡착할 수 있을 뿐만 아니라, 매우 우수한 역학적 강도와 내구성을 갖는다. In addition, the zeolite-LDH composite of the present invention can not only adsorb a large amount of heavy metal ions, but also has excellent mechanical strength and durability.

도 1은 본 발명에 따른 제올라이트-LDH 복합체의 실시예 1와 비교예 1 및 2를 비교하여 나타낸 XRD 그래프이다.
도 2는 본 발명에 따른 제올라이트-LDH 복합체의 실시예 1,2,3에 대한 XRD 그래프이다.
1 is a XRD graph showing the comparison of Example 1 and Comparative Examples 1 and 2 of the zeolite-LDH composite according to the present invention.
2 is an XRD graph for Examples 1,2,3 of the zeolite-LDH complex according to the present invention.

이하 본 발명에 따른 지오폴리머성 하이브리드 제올라이트-LDH 복합체 및 그 제조 방법의 실시예를 상세히 설명한다.Hereinafter, examples of the geopolymeric hybrid zeolite-LDH composite according to the present invention and a method of manufacturing the same will be described in detail.

본 발명에 따른 지오폴리머성 하이브리드 제올라이트-LDH 복합체는, 슬래그와 플라이애쉬를 일정 비율로 혼합하여 만들어진 바인더와, 상기 바인더에 혼합되는 산화마그네슘(MgO) 분말과 알칼리 활성화제를 포함하고, 상기 바인더와 산화마그네슘 분말과 알칼리 활성화제의 혼합물을 일정 온도 범위로 가열하여 수열합성반응을 시행한 후, 수중 또는 공기 중에서 양생하여 만들어진다. The geopolymeric hybrid zeolite-LDH composite according to the present invention includes a binder made by mixing slag and fly ash at a certain ratio, and a magnesium oxide (MgO) powder and an alkali activator mixed with the binder, and the binder and It is made by heating a mixture of magnesium oxide powder and an alkali activator to a certain temperature range, performing a hydrothermal synthesis reaction, and curing it in water or air.

상기 플라이애쉬는 SiO2, Al2O3 및 Fe2O3를 포함하고, 일부는 결정 구조 또는 비정질 구조일 수 있다. 상기 슬래그는 주성분이 SiO2, Al2O3, Fe2O3 및 CaO로 이루어져 있으며, K2O, Na2O, MgO, TiO2 등과 같은 여러 다른 금속 산화물들이 소량 함유될 수 있다. 상기 바인더 전체 중량에 대한 슬래그의 중량비, 즉 슬래그/바인더(slag/binder)는 0.2 내지 0.6의 범위인 것이 바람직하다. The fly ash includes SiO 2 , Al 2 O 3 and Fe 2 O 3 , and some may have a crystalline structure or an amorphous structure. The slag is composed mainly of SiO 2 , Al 2 O 3 , Fe 2 O 3 and CaO, and various other metal oxides such as K 2 O, Na 2 O, MgO, and TiO 2 may be contained in a small amount. The weight ratio of the slag to the total weight of the binder, that is, the slag / binder (slag / binder) is preferably in the range of 0.2 to 0.6.

그리고 상기 산화마그네슘 (MgO) 분말은 바인더의 플라이애쉬 및 슬래그 미분말의 Al 성분과 반응하여 LDH(Hydrotalcite)(Mg6Al2CO3(OH)16·4(H2O)) 결정층을 형성함으로써 SO2-, PO4 3-, CN-와 같은 음이온을 흡착할 수 있다. 상기 산화마그네슘 (MgO) 분말은 마그네슘(Mg)/(알루미늄(Al)+규소(Si)의 몰비를 0.1~1.0 범위에서 혼입하는 것이 바람직하다. And the magnesium oxide (MgO) powder reacts with the Al component of the fly ash and the slag fine powder of the binder to form a LDH (Hydrotalcite) (Mg 6 Al 2 CO 3 (OH) 16 · 4 (H 2 O)) crystal layer. SO 2-, PO 4 3-, CN - can adsorb anions such as. The magnesium oxide (MgO) powder is preferably mixed in a molar ratio of magnesium (Mg) / (aluminum (Al) + silicon (Si) in the range of 0.1 to 1.0.

상기 알칼리 활성화제는 바인더에 혼합되어 지오폴리머(Geopolymer) 슬러리를 생성하게 되는데, 지오폴리머 슬러리는 일정 형태의 몰드에 넣은 다음 챔버 내에서 가열하면 수열합성반응을 일으켜 제올라이트 Na-P1(Na5.92Al6Si10O43.28)로 상변환된다. The alkali activator is mixed with a binder to produce a geopolymer slurry, which is placed in a mold of a certain type and then heated in a chamber to cause a hydrothermal synthesis reaction, thereby causing zeolite Na-P1 (Na 5.92 Al 6 Si 10O43.28 ).

상기 알칼리 활성화제는 바인더(플라이애쉬 + 슬래그) 100 중량부에 대해 50 ~ 60 중량부로 혼입되는 것이 바람직하다. 알칼리 활성화제로는 KS 3종 물유리(29% SiO2, 95% Na2O 및 615% H2O)와 수산화나트륨(NaOH) 수용액을 일정 중량비로 혼합하여 제조된 혼합물을 사용할 수 있다. 여기서 상기 물유리(waterglass)와 수산화나트륨(NaOH)의 중량비(waterglass/NaOH)는 0.4 ~0.6 이고, 수산화나트륨(NaOH) 수용액은 몰농도가 5~12M의 범위에서 제조되는 것이 바람직하다. waterglass/NaOH 가 0.4 미만인 경우 실리케이트(silicate)가 부족하여 C-A-S-H 겔이 성장하지 못하므로 압축강도가 낮아지게 되고, 0.6을 초과하는 경우 C-A-S-H 겔이 과도하게 성장하여 상대적으로 제올라이트 생성이 적어지게 된다.The alkali activator is preferably mixed with 50 to 60 parts by weight based on 100 parts by weight of the binder (fly ash + slag). As the alkali activator, a mixture prepared by mixing KS 3 water glass (29% SiO 2 , 95% Na 2 O and 615% H 2 O) with an aqueous sodium hydroxide (NaOH) solution in a constant weight ratio may be used. Here, the weight ratio (waterglass/NaOH) of the waterglass and sodium hydroxide (NaOH) is 0.4 to 0.6, and the sodium hydroxide (NaOH) aqueous solution is preferably prepared in a range of 5 to 12M molar concentration. When the waterglass/NaOH is less than 0.4, the CASH gel does not grow due to lack of silicate, so the compressive strength is lowered, and when it exceeds 0.6, the CASH gel grows excessively, resulting in relatively less zeolite production.

전술한 것처럼 플라이애쉬와 슬래그 미분말의 바인더에 알칼리 활성화제가 첨가되어 만들어진 지오폴리머 슬러리는 수열합성반응으로 인해 슬래그에 존재하는 CaO, Al2O3, SiO2가 물과 반응하여 시멘트의 특질을 가지는 C-A-S-H 겔(C=CaO, A=Al2O3, S=SiO2, H=H2O)을 형성한다. C-A-S-H겔의 형성은 초기 단계에서 응결시간을 가속시키고 추후 단계에서 강도 발전에 기여한다. As described above, the geopolymer slurry produced by adding an alkali activator to the binder of fly ash and fine slag powder is CASH having the characteristics of cement by reacting CaO, Al 2 O 3 , SiO 2 present in the slag with water due to the hydrothermal synthesis reaction. A gel (C=CaO, A=Al 2 O 3 , S=SiO 2 , H=H 2 O) is formed. The formation of CASH gel accelerates the setting time in the initial stage and contributes to the strength development in the later stage.

본 발명의 일 실시형태에서, 상기 수열합성반응 온도는 100 내지 130℃가 바람직하며, 압력은 0.15MPa이 바람직하고, 반응시간은 24 내지 48시간이 바람직하다. In one embodiment of the present invention, the hydrothermal synthesis reaction temperature is preferably 100 to 130°C, the pressure is preferably 0.15 MPa, and the reaction time is preferably 24 to 48 hours.

상기 수열합성반응이 양생 온도 100℃ 미만에서 수행되는 경우, 제올라이트 생성이 원활하게 이루어지 않으며, 양생 온도 130℃ 초과에서 수행되는 경우, 충분한 강도가 확보되지 않을 수 있다. 또한, 수열합성반응 수행중에 물 증발이 발생하는 것을 저감시키고 압력을 0.15MPa 로 유지하는 것이 강도 확보 및 제올라이트 생성에 중요한 역할을 하므로, 수열합성반응을 일으키는 챔버, 예를 들어 오토클레이브(Autoclave) 챔버에 챔버 전체의 용량 대비 물의 양을 0.2, 즉 20 Vol%로 유지하면서 수열합성반응을 진행하는 것이 바람직하다. 상기 물의 양이 20 Vol% 미만이면 충분한 수분 증발이 이루어지지 않아 내부 증기압이 작아질 수 있고, 20 Vol%를 초과하면 제올라이트 형성에 비하여 과도한 에너지 소모가 발생할 수 있다.When the hydrothermal synthesis reaction is performed at a curing temperature of less than 100°C, zeolite generation is not smoothly performed, and when the curing temperature is performed at a temperature of 130°C or higher, sufficient strength may not be secured. In addition, it is important to reduce water evaporation during the hydrothermal synthesis reaction and to maintain the pressure at 0.15 MPa, which plays an important role in securing strength and generating zeolite, thus causing a hydrothermal synthesis reaction, for example, an autoclave chamber. It is preferable to proceed with the hydrothermal synthesis reaction while maintaining the amount of water relative to the total volume of the chamber at 0.2, that is, 20 Vol%. When the amount of water is less than 20 Vol%, sufficient moisture evaporation is not achieved, so that the internal vapor pressure may be small, and when it exceeds 20 Vol%, excessive energy consumption may occur compared to zeolite formation.

이러한 조건에 따라 수열합성반응을 수행하는 경우, 상기 지오폴리머 슬러리가 결정형의 제올라이트로 상변환하면서 복합체가 다수의 나노 공극을 형성하게 된다.When performing the hydrothermal synthesis reaction according to these conditions, the geopolymer slurry is phase-converted to a crystalline zeolite, thereby forming a plurality of nano-pores.

수열합성반응이 완료되면, 복합체를 대략 25℃ 의 온도에서 수중 또는 공기 중에서 양생하여 복합체를 완성한다. When the hydrothermal synthesis reaction is completed, the complex is cured in water or air at a temperature of approximately 25°C to complete the complex.

제조예 1: 알칼리 활성화제의 제조Preparation Example 1: Preparation of alkali activator

10M의 수산화나트륨 수용액과 KS 3종 물유리(29% SiO2, 95% Na2O 및 615% H2O)를 중량비 2:1로 혼합하여 물유리/수산화나트륨(NaOH) 수용액의 중량비가 0.5 인 알칼리 활성화제를 제조하였다.10M sodium hydroxide aqueous solution and KS 3 water glass (29% SiO 2 , 95% Na 2 O and 615% H 2 O) are mixed at a weight ratio of 2:1, and the water glass/sodium hydroxide (NaOH) aqueous solution has an alkali weight ratio of 0.5 Activators were prepared.

실시예 1: 제올라이트-LDH 복합체의 제조Example 1: Preparation of zeolite-LDH complex

80g의 플라이애쉬와 20g의 슬래그 미분말을 믹서기에서 1분 동안 건비빔하였다. 상기 플라이애쉬와 슬래그 미분말이 혼합된 바인더에 산화마그네슘(MgO) 분말 70g을 혼합하고 건비빔한 후, 여기에 제조예 1에서 제조한 알칼리 활성화제를 바인더(플라이애쉬 + 슬래그)의 50 중량%인 50g을 투입하여 15분간 혼합하여 지오폴리머 슬러리를 제조하였다. 80 g of fly ash and 20 g of slag fine powder were dry for 1 minute in a blender. After mixing and drying 70 g of magnesium oxide (MgO) powder in the binder in which the fly ash and the fine slag powder are mixed, the alkali activator prepared in Preparation Example 1 is 50 wt% of the binder (fly ash + slag). 50 g was added and mixed for 15 minutes to prepare a geopolymer slurry.

이렇게 제조된 지오폴리머 슬러리를 테프론 몰드에 타설하고, 500ml 용량의 오토클레이브(Auto-clave) 챔버에 넣은 후, 100℃, 0.15 MPa 조건 하에서 48시간 동안 수열합성반응을 수행하였다. 이 때, 500ml 용량의 챔버 안에 100ml정도의 물을 채워 넣어 물/오토클레이브 챔버 부피비는 0.2가 되도록 하였다. 그런 다음, 하루동안 25 ℃에서 공기 중에서 양생하여 블록 형태의 제올라이트-LDH 복합체를 제조하였다.The geopolymer slurry thus prepared was poured into a Teflon mold, placed in an auto-clave chamber having a capacity of 500 ml, and subjected to a hydrothermal synthesis reaction for 48 hours at 100° C. and 0.15 MPa. At this time, 100ml of water was filled into a 500ml chamber, so that the volume ratio of the water/autoclave chamber was 0.2. Then, it was cured in air at 25° C. for one day to prepare a block-shaped zeolite-LDH composite.

제조된 제올라이트-LDH 복합체는 XRD (X선 회절분석) 실험을 위해서 분말로 만들어 실험을 수행하였다. 실험 결과, 도 1에서 보는 바와 같이 수열합성반응 전에는 없었던 제올라이트 결정 피크와 LDH가 생성된 것을 알 수 있었다.The prepared zeolite-LDH complex was made into a powder for XRD (X-ray diffraction analysis) experiments to perform the experiment. As shown in FIG. 1, it was found that zeolite crystal peaks and LDH were formed before the hydrothermal synthesis reaction.

실시예 2: 제올라이트-LDH 복합체의 제조Example 2: Preparation of zeolite-LDH complex

플라이애쉬와 슬래그 미분말을 각각 60g과 40g을 사용하여 바인더를 제조하는 것을 제외하고 실시예 1과 동일한 방법으로 제올라이트-LDH 복합체를 제조하였다.A zeolite-LDH composite was prepared in the same manner as in Example 1, except that a binder was prepared using 60 g and 40 g of fly ash and fine slag powder, respectively.

실시예 3: 제올라이트-LDH 복합체의 제조Example 3: Preparation of zeolite-LDH complex

플라이애쉬와 슬래그 미분말을 각각 40g과 60g을 사용하여 바인더를 제조하는 것을 제외하고 실시예 1과 동일한 방법으로 제올라이트-LDH 복합체를 제조하였다.A zeolite-LDH composite was prepared in the same manner as in Example 1, except that a binder was prepared using 40 g and 60 g of fly ash and fine slag powder, respectively.

비교예 1: 제올라이트 블록의 제조Comparative Example 1: Preparation of zeolite block

80g의 플라이애쉬와 20g의 슬래그 미분말을 믹서기에서 1분 동안 건비빔하였다. 여기에 제조예 1에서 제조한 알칼리 활성화제를 바인더(플라이애쉬 + 슬래그)의 90 중량%인 90g을 투입하여 15분간 혼합하여 지오폴리머 슬러리를 제조하였다. 80 g of fly ash and 20 g of slag fine powder were dry for 1 minute in a blender. Here, the alkali activator prepared in Preparation Example 1 was added to 90 g, which is 90% by weight of the binder (fly ash + slag), and mixed for 15 minutes to prepare a geopolymer slurry.

이렇게 제조된 지오폴리머 슬러리를 테프론 몰드에 타설하고, 500ml 용량의 오토클레이브(Auto-clave) 챔버에 넣은 후, 100℃, 0.15 MPa 조건 하에서 48시간 동안 수열합성반응을 수행하고, 하루 동안 25 ℃에서 공기 중에서 양생하여 제올라이트 블록을 제조하였다.The prepared geopolymer slurry was poured into a Teflon mold, placed in an auto-clave chamber having a capacity of 500 ml, and subjected to a hydrothermal synthesis reaction for 48 hours at 100°C and 0.15 MPa, and at 25°C for one day. The zeolite block was prepared by curing in air.

비교예 2: 제올라이트 블록의 제조Comparative Example 2: Preparation of zeolite block

비교예 2-1: 지오폴리머 블록의 제조Comparative Example 2-1: Preparation of geopolymer block

80g의 플라이 애시와 20g의 슬래그 미분말을 믹서기에서 1분 동안 건비빔하였다. 여기에 제조예 1에서 제조한 알칼리 활성화제 90g을 투입하였다. 2분 동안 혼합 후에 얻어진 페이스트를 1인치 큐빅 몰드에 넣었다. 그 후, 80℃의 오븐에서 24시간 동안 양생시켰다. 그런 다음, 주위 온도로 냉각시켜 경화하고, 몰드에서 탈형하여 지오폴리머 블록을 제조하였다.80 g of fly ash and 20 g of slag fine powder were dry for 1 minute in a blender. 90 g of the alkali activator prepared in Production Example 1 was added thereto. The paste obtained after mixing for 2 minutes was placed in a 1 inch cubic mold. Then, it was cured in an oven at 80° C. for 24 hours. Then, it was cured by cooling to ambient temperature, and demoulded in a mold to prepare a geopolymer block.

비교예 2-2: 제올라이트의 제조Comparative Example 2-2: Preparation of zeolite

비교예 2-1에서 제조한 지오폴리머 블록을 500ml 용량의 오토클레이브(Auto-clave) 챔버에 넣은 후, 수열합성반응을 수행하였다. 이 때 온도는 100℃이며, 챔버 안에 50ml 정도의 물을 채워 넣어 블록이 물에 완전히 잠기도록 담근 후, 24시간 동안 반응을 수행하였다. 그런 다음, 하루 동안 25 ℃에서 공기 중에서 양생하여 제올라이트 블록을 제조하였다.After the geopolymer block prepared in Comparative Example 2-1 was placed in an auto-clave chamber having a capacity of 500 ml, a hydrothermal synthesis reaction was performed. At this time, the temperature is 100° C., and 50 ml of water is filled into the chamber so that the block is completely immersed in water, and then the reaction is performed for 24 hours. Then, curing was performed in air at 25° C. for one day to prepare a zeolite block.

도 1은 상기 실시예 1의 제올라이트-LDH 복합체와 비교예 1의 one-step 제올라이트 합성 방식에 의한 제올라이트 블록, 비교예 2의 two-step 제올라이트 합성 방식에 의한 제올라이트 블록의 XRD 그래프로서, 이 그래프에서 Z는 제올라이트, H는 LDH(Hydrotalcite)를 나타낸다. 도 1의 그래프를 통해 알 수 있는 것과 같이, one-step 제올라이트 합성 방식을 이용하고 산화마그네슘(MgO) 분말을 혼합한 본 발명의 제올라이트-LDH 복합체 실시예에서는 제올라이트와 LDH(Hydrotalcite)가 동시에 형성되는 것을 확인할 수 있었지만, 산화마그네슘(MgO) 분말을 혼합하지 않은 비교예 1 및 비교예 2는 제올라이트만 형성되며, LDH(Hydrotalcite)는 형성되지 않는 것을 확인할 수 있었다. 1 is an XRD graph of the zeolite-LDH composite of Example 1 and the zeolite block by the one-step zeolite synthesis method of Comparative Example 1, and the zeolite block by the two-step zeolite synthesis method of Comparative Example 2, in this graph Z represents zeolite and H represents LDH (Hydrotalcite). As can be seen through the graph of FIG. 1, in the embodiment of the zeolite-LDH composite of the present invention using a one-step zeolite synthesis method and mixing magnesium oxide (MgO) powder, zeolite and LDH (Hydrotalcite) are formed at the same time. Although it was confirmed that Comparative Example 1 and Comparative Example 2 without mixing magnesium oxide (MgO) powder, only zeolite was formed, and it was confirmed that LDH (Hydrotalcite) was not formed.

또한 도 2는 슬래그 함량에 따른 제올라이트와 LDH(Hydrotalcite)의 형성 정도를 비교하여 나타낸 실시예 1, 2, 3에 대한 XRD 그래프로서, 슬래그의 함량이 바인더 전체 중량 대비 40 중량%인 실시예 2의 복합체에서 제올라이트 Na-P1과 LDH(Hydrotalcite)의 최대치를 갖는 것으로 확인되었다. FIG. 2 is an XRD graph of Examples 1, 2, and 3 showing comparison of the formation of zeolite and LDH (Hydrotalcite) according to the slag content, wherein the content of slag is 40% by weight compared to the total weight of the binder. It was confirmed that the complex had a maximum of zeolite Na-P1 and LDH (Hydrotalcite).

이와 같이 본 발명은 기존의 제올라이트를 첨가하는 방식이 아닌 제올라이트 결정상의 형성과 비정질 지오폴리머 겔의 결정질 제올라이트로의 전환이 동시에 진행되는 One-step 제올라이트 합성법을 사용함과 더불어 산화마그네슘(MgO) 분말을 혼입함으로써 복합체 내에서 LDH 결정층을 형성할 수 있다. As described above, the present invention uses a one-step zeolite synthesis method in which the formation of a zeolite crystal phase and the conversion of an amorphous geopolymer gel to a crystalline zeolite are carried out simultaneously, rather than a conventional method of adding zeolite, and magnesium oxide (MgO) powder is incorporated. By doing so, the LDH crystal layer can be formed in the composite.

이러한 제조 방법에 의해 제조된 본 발명의 제올라이트-LDH 복합체는 모르타르 또는 콘크리트 블록으로 이용될 수 있고, 양이온과 함께 음이온을 흡착할 수 있으므로 수중 또는 대기의 유해 이온을 제거하는 벌크형의 수질 및 환경 정화용 블록 또는 프리캐스트 제품으로 이용될 수 있다. The zeolite-LDH composite of the present invention manufactured by such a manufacturing method can be used as a mortar or concrete block, and can adsorb negative ions together with positive ions, so it is a bulk type water and environmental purification block that removes harmful ions from water or atmosphere Or it can be used as a precast product.

또한 도 3에 도시한 실시예 2에 대한 압축강도 시험 결과를 통해 확인할 수 있는 것과 같이, 본 발명의 제올라이트-LDH 복합체는 20.34 MPa의 높은 28일 압축강도를 갖는 것으로 확인되었다. In addition, as can be seen through the compressive strength test results for Example 2 shown in Figure 3, it was confirmed that the zeolite-LDH composite of the present invention has a high 28-day compressive strength of 20.34 MPa.

본 발명의 제올라이트-LDH 복합체는 대량의 중금속 이온을 흡착할 수 있을 뿐만 아니라, 매우 우수한 역학적 강도와 내구성을 갖는 호안블록 또는 프리캐스트 패널/블록 제품으로 만들어질 수 있다. The zeolite-LDH composite of the present invention can not only adsorb a large amount of heavy metal ions, but also can be made of a revetment block or precast panel/block product having very good mechanical strength and durability.

이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.In the above, the present invention has been described in detail with reference to examples, but those skilled in the art to which the present invention pertains will be capable of various substitutions, additions, and modifications without departing from the technical spirit described above. Of course, it should be understood that such modified embodiments also belong to the protection scope of the present invention as defined by the appended claims.

Z : 제올라이트
H : LDH(Hydrotalcite)
Z: Zeolite
H: LDH (Hydrotalcite)

Claims (11)

슬래그와 플라이애쉬를 일정 비율로 혼합하여 만들어진 바인더; 및
상기 바인더에 혼합되는 산화마그네슘(MgO) 분말과 알칼리 활성화제;
를 포함하고,
상기 바인더와 산화마그네슘 분말과 알칼리 활성화제의 혼합물을 일정 온도 범위로 가열하여 수열합성반응을 시행한 후, 수중 또는 공기 중에서 양생하여 만들어진 지오폴리머성 하이브리드 제올라이트-LDH 복합체.
A binder made by mixing slag and fly ash in a certain ratio; And
Magnesium oxide (MgO) powder mixed with the binder and an alkali activator;
Including,
A geopolymeric hybrid zeolite-LDH composite made by heating a mixture of the binder, magnesium oxide powder and an alkali activator to a certain temperature range and performing a hydrothermal synthesis reaction, followed by curing in water or air.
제1항에 있어서, 상기 알칼리 활성화제는 50 ~ 60 중량부로 혼입된 지오폴리머성 하이브리드 제올라이트-LDH 복합체.The geopolymeric hybrid zeolite-LDH complex according to claim 1, wherein the alkali activator is incorporated in an amount of 50 to 60 parts by weight. 제1항에 있어서, 상기 바인더 전체 중량에 대한 슬래그의 중량비(slag/binder)는 0.2 내지 0.6인 지오폴리머성 하이브리드 제올라이트-LDH 복합체.According to claim 1, The weight ratio of the slag to the total weight of the binder (slag / binder) is 0.2 to 0.6 geopolymeric hybrid zeolite-LDH composite. 제1항에 있어서, 상기 산화마그네슘은 마그네슘(Mg)/(알루미늄(Al)+규소(Si)의 몰비가 0.1~1.0 범위인 지오폴리머성 하이브리드 제올라이트-LDH 복합체.According to claim 1, The magnesium oxide is a geopolymeric hybrid zeolite-LDH composite having a molar ratio of magnesium (Mg)/(aluminum (Al) + silicon (Si) in the range of 0.1 to 1.0. 제1항에 있어서, 상기 알칼리 활성화제는 물유리(waterglass)/수산화나트륨(NaOH)의 중량비가 0.4 ~0.6 이고, 수산화나트륨(NaOH) 수용액은 몰농도가 5~12M의 범위인 지오폴리머성 하이브리드 제올라이트-LDH 복합체.The method of claim 1, wherein the alkali activator is a water glass (waterglass) / sodium hydroxide (NaOH) weight ratio of 0.4 ~ 0.6, sodium hydroxide (NaOH) aqueous solution is a geopolymeric hybrid zeolite having a molar concentration in the range of 5 ~ 12M -LDH complex. 제1항 내지 제5항 중 어느 한 항에 따른 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법으로서,
(S1) 슬래그와 플라이애쉬를 일정 비율로 혼합하여 바인더를 만드는 단계;
(S2) 상기 바인더에 산화마그네슘(MgO) 분말을 첨가하고 건비빔하여 혼합하는 단계;
(S3) 상기 바인더와 산화마그네슘(MgO) 분말의 혼합물에 알칼리 활성화제를 첨가하여 혼합하는 단계;
(S4) 상기 바인더와 산화마그네슘(MgO) 분말과 알칼리 활성화제의 혼합물을 일정 온도 범위에서 수열합성반응시키는 단계; 및,
(S5) 상기 양생된 바인더와 산화마그네슘(MgO) 분말과 알칼리 활성화제의 혼합물을 수중 또는 공기 중에서 양생하는 단계;
를 포함하는 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법.
A method for producing the geopolymeric hybrid zeolite-LDH composite according to any one of claims 1 to 5,
(S1) mixing the slag and fly ash in a certain ratio to make a binder;
(S2) adding magnesium oxide (MgO) powder to the binder and mixing by drying;
(S3) adding and mixing an alkali activator to the mixture of the binder and magnesium oxide (MgO) powder;
(S4) subjecting the mixture of the binder, magnesium oxide (MgO) powder and an alkali activator to a hydrothermal synthesis reaction in a predetermined temperature range; And,
(S5) curing the mixture of the cured binder, magnesium oxide (MgO) powder and an alkali activator in water or in air;
Method for producing a geopolymeric hybrid zeolite-LDH composite comprising a.
제6항에 있어서, 상기 (S2) 단계에서 혼합되는 산화마그네슘은 마그네슘(Mg)/(알루미늄(Al)+규소(Si)의 몰비가 0.1~1.0 범위인 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법.The preparation of a geopolymeric hybrid zeolite-LDH composite according to claim 6, wherein the magnesium oxide mixed in the step (S2) has a molar ratio of magnesium (Mg)/(aluminum (Al)+silicon (Si)) in the range of 0.1 to 1.0. Way. 제6항에 있어서, 상기 (S3)에서 혼합되는 알칼리 활성화제는 물유리(waterglass)/수산화나트륨(NaOH)의 중량비가 0.4 ~ 0.6이고, 수산화나트륨(NaOH) 수용액은 몰농도가 5~12M의 범위인 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법.The method according to claim 6, wherein the alkali activator mixed in (S3) has a weight ratio of water glass/sodium hydroxide (NaOH) of 0.4 to 0.6, and an aqueous sodium hydroxide (NaOH) solution has a molar concentration in the range of 5 to 12M. Method for producing phosphorus geopolymeric hybrid zeolite-LDH composite. 제6항에 있어서, 상기 (S4) 단계는 챔버 내에서 일정 시간 동안 100 ~ 130℃의 온도 범위에서 수열합성반응을 진행하는 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법.The method of claim 6, wherein the step (S4) is a method of manufacturing a geopolymeric hybrid zeolite-LDH complex that undergoes a hydrothermal synthesis reaction in a temperature range of 100 to 130°C for a predetermined time in a chamber. 제9항에 있어서, 상기 (S4) 단계는 챔버에서 챔버 전체의 용량 대비 물의 양을 0.2로 유지하여 챔버 내의 내부 증기압을 0.15MPa 로 유지하면서 수열합성반응을 진행하는 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법.The geopolymeric hybrid zeolite-LDH composite according to claim 9, wherein the step (S4) proceeds a hydrothermal synthesis reaction while maintaining an internal vapor pressure of 0.15 MPa in the chamber by maintaining the amount of water relative to the entire volume of the chamber in the chamber at 0.2. Method of manufacture. 제6항에 있어서, 상기 알칼리 활성화제는 50 ~ 60 중량부로 혼입된 지오폴리머성 하이브리드 제올라이트-LDH 복합체의 제조 방법.7. The method of claim 6, wherein the alkali activator is mixed with 50 to 60 parts by weight of a geopolymeric hybrid zeolite-LDH composite.
KR1020180158137A 2018-12-10 2018-12-10 Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same KR20200070701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180158137A KR20200070701A (en) 2018-12-10 2018-12-10 Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180158137A KR20200070701A (en) 2018-12-10 2018-12-10 Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same

Publications (1)

Publication Number Publication Date
KR20200070701A true KR20200070701A (en) 2020-06-18

Family

ID=71143387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180158137A KR20200070701A (en) 2018-12-10 2018-12-10 Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same

Country Status (1)

Country Link
KR (1) KR20200070701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021113470A1 (en) 2020-05-26 2021-12-02 Hyundai Mobis Co., Ltd. POWER SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THEREOF
WO2023237186A1 (en) * 2022-06-07 2023-12-14 Oxara Ag Mineral binder for use as cement-replacement in building materials
WO2023237599A1 (en) * 2022-06-07 2023-12-14 Oxara Ag Mineral binder for use as cement-replacement in building materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961564B1 (en) 2010-03-17 2010-06-07 충남대학교산학협력단 The methods to manufacture an high-functional concrete utilizing natural zeolite, synthetic zeolite, ca type artificial zeolite and active carbon for purification of water and environment
KR101273444B1 (en) 2011-09-06 2013-06-11 경북대학교 산학협력단 Cement brick for purifying water using microorganism and zeolite, and method for preparing the same
KR20160125188A (en) 2015-04-21 2016-10-31 최기재 Porous Water treatment filter media and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961564B1 (en) 2010-03-17 2010-06-07 충남대학교산학협력단 The methods to manufacture an high-functional concrete utilizing natural zeolite, synthetic zeolite, ca type artificial zeolite and active carbon for purification of water and environment
KR101273444B1 (en) 2011-09-06 2013-06-11 경북대학교 산학협력단 Cement brick for purifying water using microorganism and zeolite, and method for preparing the same
KR20160125188A (en) 2015-04-21 2016-10-31 최기재 Porous Water treatment filter media and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021113470A1 (en) 2020-05-26 2021-12-02 Hyundai Mobis Co., Ltd. POWER SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THEREOF
WO2023237186A1 (en) * 2022-06-07 2023-12-14 Oxara Ag Mineral binder for use as cement-replacement in building materials
WO2023237599A1 (en) * 2022-06-07 2023-12-14 Oxara Ag Mineral binder for use as cement-replacement in building materials

Similar Documents

Publication Publication Date Title
Cong et al. Advances in geopolymer materials: A comprehensive review
De Rossi et al. In-situ synthesis of zeolites by geopolymerization of biomass fly ash and metakaolin
KR101984862B1 (en) High-Strength Zeolite and Simple One-step Process for Preparing the Same
KR101654478B1 (en) A method and electrical conducting heating concrete containing graphene
KR20200070701A (en) Geopolymer-supported Hybrid Zeolite-hydrotalcite(LDH) Composite And Method for Manufacturing the Same
KR101905120B1 (en) Synthetic formulations and methods of manufacturing and using thereof
KR101621024B1 (en) Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
KR101687349B1 (en) Zeolite and Process for Preparing the Same
CN111018422B (en) Porous self-supported zeolite material prepared from acid-process lithium slag and preparation method and application thereof
KR20070047029A (en) Non-sintering inorganic binder using fly-ash
KR20170075990A (en) A cement block method and lightweight cement method and lightweight cement high-strength containing graphene
Li et al. Fabrication and application of porous materials made from coal gangue: A review
CN115385593A (en) Full-solid waste nano calcium silicate hydrate gel early strength agent and preparation method and application thereof
Li et al. Seawater used to Metakaolinite-based geopolymer preparation
CN111217547B (en) Graphene geopolymer material, and preparation method, application and regeneration method thereof
KR20200071177A (en) Porous Water Purification Structure And Method for Manufacturing the Same
Saraya et al. Characterization and evaluation of natural zeolite as a pozzolanic material
CN114560640B (en) Preparation method of acid-excited fly ash geopolymer
CN112758955B (en) Method for preparing cancrinite molecular sieve by gasified coarse slag under anhydrous template-free condition
Khamlue et al. The effects of biochar additive on the properties of geopolymer materials
CN113912373A (en) High-performance curing agent for quickly curing soft soil with high water content into roadbed filler
KR101619584B1 (en) Manufacturing method of geopolymer having high strength by using slag from waste spent catalyst
Thammarong et al. The effects of replacement metakaolin with diatomite in geopolymer materials
KR20170075991A (en) A cement block method and lightweight cement method and lightweight cement thermal conductivity containing graphene
Tashima et al. Spent FCC catalyst for preparing alkali-activated binders: an opportunity for a high-degree valorization

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application