KR101429463B1 - Composition for Concrete Block - Google Patents

Composition for Concrete Block Download PDF

Info

Publication number
KR101429463B1
KR101429463B1 KR1020140017864A KR20140017864A KR101429463B1 KR 101429463 B1 KR101429463 B1 KR 101429463B1 KR 1020140017864 A KR1020140017864 A KR 1020140017864A KR 20140017864 A KR20140017864 A KR 20140017864A KR 101429463 B1 KR101429463 B1 KR 101429463B1
Authority
KR
South Korea
Prior art keywords
weight
parts
particle size
composition
mixture
Prior art date
Application number
KR1020140017864A
Other languages
Korean (ko)
Inventor
장영일
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020140017864A priority Critical patent/KR101429463B1/en
Application granted granted Critical
Publication of KR101429463B1 publication Critical patent/KR101429463B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0001Living organisms, e.g. microorganisms, or enzymes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0087Ion-exchanging agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

The present invention relates to a composition for manufacturing a concrete block and, more specifically, to a composition for manufacturing a concrete block which comprises a crushed rock or concrete waste recycled coarse aggregate having the particle size of 5 mm or greater, sand or concrete waste recycled fine aggregate having the particle size of 5mm or less, a binder, a microorganism mixing solution, and an admixture.

Description

콘크리트 블록 제조용 조성물{Composition for Concrete Block}[Composition for Concrete Block]

본 발명은 콘크리트 블록 제조용 조성물에 관한 것이다. 보다 구체적으로는 하수처리용 미생물 및 이온교환재를 포함하는 콘크리트 블록 제조용 조성물에 관한 것이다.The present invention relates to a composition for producing a concrete block. More particularly, the present invention relates to a composition for producing a concrete block comprising a microorganism for sewage treatment and an ion exchange material.

하천은 오랜 세월동안 인간의 삶과 문화의 중심지 역할을 수행하였으며, 환경적, 생태적으로도 중요한 가치를 지닌 천연자원이다. 최근 하천의 가치에 대한 인식이 변화하고 하천정비의 목적이 단순히 치수나 이수뿐만 아니라 오염된 하천을 정화시키고 다양한 환경적 잠재기능을 복원시킬 수 있는 방향으로 전환이 요구되고 있다. 하천주변 자연생태계의 보전·복원, 수변 친수 공간 형성 등 환경 친화적 기능들이 강조되고 있으며, 환경오염 최소화는 물론 훼손된 하천환경을 복원시키기 위한 정책적 노력을 경주하고 있다.Rivers have served as centers of human life and culture for many years, and are natural resources with important environmental and ecological values. Recent changes in the perception of the value of rivers and the need to change the direction of the river maintenance to clean the polluted rivers and restore various environmental potential functions as well as the size and number of rivers. Environmental friendly functions such as conservation and restoration of natural ecosystem around rivers and formation of waterside hydrophilic space are emphasized and policy efforts are being made to minimize environmental pollution and to restore damaged river environment.

하지만 기존에 치수 및 이수를 목적으로 하천에 시공되는 콘크리트 2차 제품으로 예를 들면, 호안블록, 사면보호용 옹벽블록, 어도·어소블록, 세굴방지블록은 대부분 호안 및 사면보호 등의 물의 이·치수 성능은 우수하나 구조안정성 검토 미흡과 수질악화, 자연정화기능 곤란, 식물의 생육곤란, 주변 자연 생태계의 파괴 및 단절, 지중 사막화의 초래 및 미관 저해 등의 문제점이 있다.However, it is a secondary concrete product to be installed in the river for the purpose of the dimension and the water flow. For example, the waterproofing block, slope protection retaining wall block, Although the performance is excellent, there are problems such as insufficient structural stability review and deterioration of water quality, difficulty of natural purification function, difficulty of growing of plants, destruction and interruption of surrounding natural ecosystem, occurrence of desertification in the earth and inhibition of aesthetics.

따라서, 친수환경 구축을 위한 사회적 요구에 부응하고, 기존의 하천정비 산업 시 시공되는 콘크리트 2차 제품의 문제점을 개선하기 위해서는 하천호안 구조물로서의 구조안정성을 만족시키면서 훼손된 자연환경을 조기에 복원하고 주변 생태계와의 조화시킬 수 있는 환경 친화적 기능들이 동시에 요구되고 있다.Therefore, in order to meet the social demand for the construction of the hydrophilic environment and to improve the problems of the concrete secondary product to be installed in the existing river maintenance industry, it is necessary to restore the damaged natural environment early while satisfying the structural stability as the river revetment structure, And environment-friendly functions that can harmonize with each other.

현재까지 환경오염물질의 분해·제거 성능이 우수한 미생물은 주로 토양개량, 유기농 농작물 재배, 축산퇴비의 제조 등의 농업분야와 하수종말처리장에서의 폐수를 정화시키기 위하여 미생물 배양용액 자체를 이용하는 경우가 주를 이루고 있을 뿐만 아니라 특히 콘크리트에 복합적인 미생물을 활용한 연구가 일부 있으나, 복합미생물을 단순히 첨가하여 사용함으로써 미생물의 생식과 활성화가 매우 낮아지며, 유해오염원을 직접적으로 분해할 수 있는 미생물을 집중적으로 활용하지 않았기 때문에 미생물에 의한 수질정화 효과를 크게 기대할 수 없다.Microorganisms that have excellent decomposition and removal performance of environmental pollutants are mainly used in agricultural fields such as soil improvement, organic crop cultivation, production of livestock compost, and microbial culture solution itself in order to purify wastewater in a sewage end treatment plant. In addition, there are some studies that use complex microorganisms in concrete. However, the use of complex microorganisms simply decreases the reproduction and activation of microorganisms, and intensively uses microorganisms capable of directly decomposing harmful pollutants The effect of purifying water by microorganisms can not be expected.

최근 콘크리트 내부에 인위적인 연속공극을 형성시킨 친환경 콘크리트에 대한 연구가 이루어지고 있으며, 이를 이용한 공법이 일부 적용되었으나 다음과 같은 문제점이 있다. 먼저, 공극형성으로 수질정화 기능이 있으나 포러스콘크리트의 물리적인 공극에 의한 단순 폭기현상을 고려하였을 뿐 오염된 수질환경 정화에는 효과가 미약하다. 둘째, 다량의 연속공극에 미생물이 서식하는 기반을 제공하고 활성화된 미생물의 대사 작용에 의해 오염 하천수를 정화시키는 원리로 원활한 수질정화 성능을 위해서는 미생물의 착상· 서식까지 오랜 시간이 소요된다. 셋째, 유사 및 퇴적토에 의한 공극 충진으로 수질정화효과가 쇠퇴되며 지속적인 성능을 기대하기 곤란하다. 마지막으로, 복합체 내부에 다량의 연속공극의 형성으로 강도 및 내구성이 저하되는 문제점이 있다.Recently, eco-friendly concrete with artificial continuous voids formed in concrete has been studied, and some methods using this method have been applied. However, there are the following problems. First, it has a function of water purification by pore formation, but it only takes into account the simple aeration phenomenon caused by the physical pore of porous concrete, and it is not effective for the purification of polluted water environment. Second, it provides a basis for microorganisms in a large number of continuous voids and purifies polluted river water by the metabolism of activated microorganisms. For smooth water purification performance, it takes a long time for microorganisms to form and form. Third, the pore filling by pseudo-sediments and sediments reduces the water purification effect and it is difficult to expect continuous performance. Finally, there is a problem that strength and durability are deteriorated due to the formation of a large amount of continuous voids inside the composite.

본 발명의 목적은 상기의 문제점을 해결하기 위한 것으로, 하수처리용 미생물 및 이온교환재를 콘크리트 블록 제조용 조성물에 첨가함으로써, 하천환경복원 성능인 수질정화 및 식생능력을 개선할 수 있는 콘크리트 블록 제조용 조성물을 제공하는 것이다.SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems and to provide a concrete block composition for improving water quality and improving vegetation ability as a river environment restoration performance by adding microbes for sewage treatment and an ion exchange material to a composition for producing concrete blocks .

본 발명은 콘크리트 블록 제조용 조성물에 관한 것이다.The present invention relates to a composition for producing a concrete block.

이하는 본 발명의 콘크리트 블록 제조용 조성물에 대하여 구체적으로 설명한다.Hereinafter, the composition for producing a concrete block of the present invention will be described in detail.

본 발명의 콘크리트 블록 제조용 조성물은 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재, 입도가 5 ㎜이하의 모래 또는 폐콘크리트 순환 잔골재, 결합재, 미생물 혼합액 및 혼화제를 포함한다.The composition for producing a concrete block of the present invention includes coarse aggregate or waste concrete recycled coarse aggregate having a particle size of 5 mm or more, sand or waste concrete circulating fine aggregate having a particle size of 5 mm or less, a binder, a mixture of microorganisms and an admixture.

상기 콘크리트 블록 제조용 조성물은 필요에 의해 조절한 것으로 예를 들면, 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 5 ㎜이하의 모래 또는 폐콘크리트 순환 잔골재 0.1 ~ 100 중량부, 결합재 10 ~ 30 중량부, 미생물 혼합액 2 ~ 18 중량부 및 혼화제 0.001 ~ 0.9 중량부를 포함할 수 있지만, 반드시 이에 제한되지는 않는다.The composition for preparing a concrete block may be adjusted as necessary. For example, it may contain 0.1 to 100 parts by weight of sand or a waste concrete circulating fine aggregate of 5 mm or less with respect to 100 parts by weight of recycled coarse aggregate having a particle size of 5 mm or more, 10 to 30 parts by weight of a binder, 2 to 18 parts by weight of a microbial mixture and 0.001 to 0.9 part by weight of an admixture.

또한, 필요에 따라 상기 콘크리트 블록 제조용 조성물에 이온교환재를 더 포함할 수 있다. 상기 이온교환재는 오수 및 폐수의 유입 등에 대비하고, 조기생태복원을 위하여 하천주변, 하천수중의 중금속 및 각종 유해물질을 제거하기 위하여 사용할 수 있다. 구체적으로 예를 들면, 이온교환재는 제올라이트 분말 및 이산화티타늄 분말 중에서 선택되는 어느 하나 또는 둘 이상의 혼합분말을 사용할 수 있으며, 그 함량은 필요에 의해 조절한 것으로, 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 0.01 ~ 10 중량부 바람직하게는 1 ~ 10 중량부, 더욱 바람직하게는 1 ~ 5 중량부 사용하는 것이 중금속 및 각종 유해물질을 제거하기 위하여 바람직하다.In addition, if necessary, the composition for producing a concrete block may further comprise an ion exchange material. The ion exchange material can be used to prepare for the inflow of sewage and wastewater, and to remove heavy metals and various harmful substances in the vicinity of rivers, river water, and the like for early ecological restoration. Specifically, for example, the ion exchange material may use any one or two or more mixed powders selected from zeolite powder and titanium dioxide powder, and the content thereof may be adjusted as necessary, and may be 5 mm or more of cobalt or waste concrete. The use of 0.01 to 10 parts by weight, preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the aggregate is preferable in order to remove heavy metals and various harmful substances.

본 발명의 순환골재는 폐콘크리트를 조 크러셔(Jaw crusher)로 파쇄하여 잘게 분쇄한 것으로 입도 5 ㎜이하, 바람직하게는 0.05 ~ 5 ㎜, 더욱 바람직하게는 0.05 ~ 4.5 ㎜인 순환 잔골재와 입도 5 ㎜이상의 순환 굵은골재를 사용할 수 있다. 상기 순환 굵은골재는 바람직하게는 입도 5 ~ 10 ㎜, 8 ~ 13 ㎜ 또는 8 ~ 25 ㎜인 순환 굵은골재의 단일입도로 선별하여 콘크리트 블록 제조용 조성물에 포함시키는 것이 좋다. 상기의 입도범위를 갖는 순환 잔골재 및 순환 굵은골재를 포함하는 것이 콘크리트 블록 제조용 조성물 제조 시 공극률, 강도, 경도 및 유연성을 향상시키기에 바람직하다. 그 함량은 필요에 의해 조절한 것으로, 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 입도가 5 ㎜이하의 모래 또는 폐콘크리트 순환 잔골재 0.1 ~ 100 중량부 바람직하게는 0.5 ~ 50 중량부 더욱 바람직하게는 1 ~ 15 중량부를 사용하는 것이 콘크리트의 강도와 내구성능이 좋은 이유로 바람직하지만, 반드시 이에 제한되지는 않는다.The recycled aggregate of the present invention is obtained by crushing waste concrete by crushing waste concrete with a jaw crusher and finely pulverizing fine aggregate having a particle size of 5 mm or less, preferably 0.05 to 5 mm, more preferably 0.05 to 4.5 mm, The above-mentioned circulating coarse aggregate can be used. The recycled coarse aggregate is preferably selected as a single particle size of recycled coarse aggregate having a particle size of 5 to 10 mm, 8 to 13 mm, or 8 to 25 mm and incorporated into the composition for producing a concrete block. The reclaimed fine aggregate having the above-mentioned particle size range and the recycled coarse aggregate are preferable for improving porosity, strength, hardness and flexibility in the production of the concrete block composition. The content thereof is adjusted as necessary and is preferably 0.1 to 100 parts by weight, preferably 0.5 to 100 parts by weight, of sand or waste concrete having a particle size of 5 mm or less, based on 100 parts by weight of coarse aggregate or recycled coarse aggregate having a particle size of 5 mm or more. To 50 parts by weight, more preferably from 1 to 15 parts by weight, is used for reasons of good strength and durability of concrete, but not always limited thereto.

상기 결합재는 골재와 골재 사이에서 물과 혼합하여 경화되어 하나의 조성물로 만드는 역할을 하기 위해 사용된다. 구체적으로 예를 들면, 보통포틀랜드 시멘트, 보통포틀랜드 시멘트와 고로슬래그 미분말을 혼합한 저탄소 2종 혼합시멘트, 보통포틀랜드 시멘트와 고로슬래그 미분말 및 플라이애시를 혼합한 저탄소 3종 혼합시멘트 중에서 선택되는 어느 하나 또는 둘 이상인 것을 포함할 수 있다. 그 함량은 필요에 의해 조절한 것으로 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 10 ~ 30 중량부, 좋게는 15 ~ 25 중량부를 사용하는 것이 압축강도 및 내구성을 향상시키기에 바람직하다.The binder is used between the aggregate and the aggregate to mix with water and cure to form a single composition. Specifically, for example, any one selected from among low-carbon two-component cement mixed with ordinary portland cement, ordinary Portland cement and blast furnace slag, ordinary low-carbon three-component cement mixed with Portland cement and blast furnace slag fine powder and fly ash Two or more. It is preferable that 10 to 30 parts by weight, preferably 15 to 25 parts by weight, based on 100 parts by weight of coarse aggregate or recycled coarse aggregate having a particle size of 5 mm or more and adjusted by necessity, is used to improve the compressive strength and durability .

상기 보통포틀랜드 시멘트와 고로슬래그 미분말 혼합 시, 보통포틀랜드 시멘트 20 ~ 90 중량% 및 고로슬래그 미분말 10 ~ 80 중량%를 포함하는 것이 바람직하며, 또한, 보통포틀랜드 시멘트, 고로슬래그 미분말 및 플라이애시 혼합 시, 보통포틀랜드 시멘트 20 ~ 90 중량%, 고로슬래그 미분말 1 ~ 65 중량% 및 플라이애시 1 ~ 45 중량%를 포함하는 것이 바람직하다. 상기 고로슬래그 미분말과 플라이애시를 상기와 같은 범위로 사용하는 경우, 모세공극이 감소하여 조직이 치밀해져 내구성이 향상되며, 초기강도 감소에 대한 문제점을 해결할 수 있으므로 바람직하다.It is preferable that 20 to 90% by weight of the ordinary Portland cement and 10 to 80% by weight of the fine blast furnace slag are mixed when mixing the ordinary Portland cement and the blast furnace slag fine powder, and when mixing the usual Portland cement, blast furnace slag fine powder and fly ash, It is preferable that the fly ash contains 20 to 90% by weight of Portland cement, 1 to 65% by weight of blast furnace slag, and 1 to 45% by weight of fly ash. When the blast furnace slag fine powder and fly ash are used in the same range as above, it is preferable because the capillary void decreases and the structure becomes denser to improve the durability and to solve the problem of the initial strength reduction.

또한, 내구성 향상 및 강도가 감소되는 것을 막아주기 위하여, 고로슬래그 미분말의 분말도는 3,000 ~ 10,000 ㎠/g이고, 플라이애쉬의 분말도는 3,000 ~ 6,000 ㎠/g인 것을 사용하는 것이 바람직하지만, 반드시 상기 범위에 제한되지는 않는다.In order to improve the durability and reduce the strength, it is preferable to use a blast furnace slag fine powder having a powder degree of 3,000 to 10,000 cm 2 / g and a fly ash having a powder degree of 3,000 to 6,000 cm 2 / g. But is not limited to the above range.

기존 콘크리트 조성물에 복합미생물을 단순히 첨가하여 사용했을 경우, 미생물의 생식과 활성화가 매우 낮았으며, 유해오염원을 직접적으로 분해할 수 있는 미생물을 활용하지 않아 미생물에 의한 수질정화 효과를 크게 기대할 수 없었다.When the complex microorganism was simply added to the existing concrete composition, the microbial reproduction and activation were very low, and the microorganisms that could directly decompose the pollutant source were not utilized, so that the effect of purifying the water by microorganisms could not be expected.

또한, 미생물을 바로 콘크리트에 혼입하는 경우, 시멘트와 물의 수화작용으로 인한 결합재의 수산화화합물 고정화로 미생물의 활발한 대사 작용이 이루어지기 어려우며, 지속적인 정화효과를 기대할 수 없었다.In addition, when the microorganisms are directly incorporated into the concrete, immobilization of the hydroxide compound of the binder due to hydration of the cement and water hardly causes the active metabolism of the microorganisms, and a constant purification effect can not be expected.

본 발명은 유해오염원을 직접적으로 분해할 수 있는 미생물 혼합액을 콘크리트 블록 제조용 조성물에 첨가함으로써, 수질정화 효과를 향상시키고, 생화학적 산소 요구량(BOD : Biochemical Oxygen Demand)을 감소시켰다. 상기 미생물 혼합액은 필요에 의해 조절한 것으로 물과 하수처리용 미생물을 1 : 0.001 ~ 1, 바람직하게는 1 : 0.01 ~ 0.5, 더욱 바람직하게는 1 : 0.05 ~ 0.2의 중량비로 사용할 수 있으며, 상기 범위로 사용하는 경우 미생물 혼합액을 콘크리트에 첨가함에 따라 발생하는 압축강도 및 내구성능의 저하를 방지할 수 있는 이유로 바람직하지만, 반드시 제한되지는 않는다. 상기 하수처리용 미생물은 인축적 미생물(PAOs : Phosphate Accumulating Organisms) 및 탈질 미생물(DPAOs : De-Nitrifying Phosphate Accumulating Organisms)에서 선택되는 하나 또는 둘 이상의 혼합미생물을 사용할 수 있다. 상기 인축적 미생물은 Acinetobacter 군을 사용할 수 있으며, 상기 탈질 미생물은 구체적으로 예를 들면, Micrococcus, Pseudomonas, Archomobacter, Bacillus, Paracoccus, Nitrosomonas, Nitrobacter, Nitrobactern, Nitrosococcus, Nitrosospira, Nitrosolobus, Nitrosorobrio, Nitrococcus, Nitrospira 및 Nitrospina의 군에서 선택되는 하나 또는 둘 이상인 것을 사용할 수 있지만, 반드시 이에 제한되지는 않는다. 상기 미생물 혼합액의 함량은 예를 들면, 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 2 ~ 18 중량부, 바람직하게는 2.1 ~ 10 중량부, 더욱 바람직하게는 2.2 ~ 8 중량부를 사용하는 것이 수질정화 효과를 향상시키기 위한 함량 범위로 바람직하다.The present invention improves the water purification effect and reduces the biochemical oxygen demand (BOD) by adding a microbial mixture capable of directly decomposing a harmful pollution source to a composition for producing a concrete block. The microbial mixture may be used in a weight ratio of 1: 0.001 to 1, preferably 1: 0.01 to 0.5, more preferably 1: 0.05 to 0.2, It is preferable, but not necessarily, to be able to prevent degradation of compressive strength and durability caused by adding the microbial mixture to concrete. The microorganism for sewage treatment may be one or more mixed microorganisms selected from the group consisting of PAOs (Phosphate Accumulating Organisms) and DPAOs (De-Nitrifying Phosphate Accumulating Organisms). The denitrifying microorganism may be, for example, Micrococcus, Pseudomonas, Archomobacter, Bacillus, Paracoccus, Nitrosomonas, Nitrobacter, Nitrobacter, Nitrosococcus, Nitrosospira, Nitrosolobus, Nitrosorobrio, Nitrococcus, Nitrospira, One or more selected from the group of Nitrospina may be used, but the present invention is not limited thereto. The content of the microbial mixed solution is, for example, 2 to 18 parts by weight, preferably 2.1 to 10 parts by weight, more preferably 2.2 to 10 parts by weight, per 100 parts by weight of recycled coarse aggregate having a particle size of 5 mm or more, 8 parts by weight is preferably used in the content range for improving the water purification effect.

특히, 본 발명의 콘크리트 블록 제조용 조성물에 하수처리용 미생물 및 이온교환재를 첨가함으로써 시너지 효과로 미생물에 의한 수질정화 효과를 향상시키고, 하천의 주요 오염원인 질소(N)와 인(P)을 정화시키며, 생화학적 산소 요구량(BOD : Biochemical Oxygen Demand)을 감소시킬 수 있으며, 동시에 해수중의 중금속 및 유해물질을 제거할 수 있으며, 수질 정화 효과가 매우 향상될 수 있다.In particular, by adding a microorganism and an ion exchange material for sewage treatment to the composition for producing a concrete block of the present invention, it is possible to improve the effect of purifying water by microorganisms by synergy effect and purify nitrogen (N) and phosphorus (P) , It is possible to reduce the biochemical oxygen demand (BOD: Biochemical Oxygen Demand), at the same time to remove the heavy metals and harmful substances in the seawater, and the water purification effect can be greatly improved.

상기 혼화제는 고성능 AE감수제, 유동화제 및 AE제에서 선택되는 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 그 함량은 필요에 의해 조절한 것으로 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 0.001 ~ 0.9 중량부 사용하는 것이 바람직하며, 상기 범위로 사용하는 경우 결합재의 유동성확보와 콘크리트 조성물의 강도가 향상될 수 있다.The admixture may be one or a mixture of two or more selected from high performance AE water reducing agents, fluidizing agents and AE agents. The content is preferably 0.001 to 0.9 part by weight based on 100 parts by weight of recycled coarse aggregate having a particle size of 5 mm or more and recycled coarse aggregate having a particle size adjusted as necessary. The strength of the concrete composition can be improved.

또한, 본 발명의 콘크리트 블록 제조용 조성물에 라텍스계 SBR 중합체 또는 아크릴계 수지 중합체를 콘크리트 블록의 압축강도 및 내구성 향상의 목적으로 더 포함할 수 있으며, 그 함량은 제한되지는 않지만 예를 들면, 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 0.001 ~ 8 중량부, 바람직하게는 0.1 ~ 5 중량부, 더욱 바람직하게는 0.1 ~ 1 중량부를 사용하는 것이 콘크리트의 강도 특성 및 경제성의 이유로 바람직하다.In addition, the latex-based SBR polymer or acrylic resin polymer may further be included in the composition for producing concrete block of the present invention for the purpose of improving the compressive strength and durability of the concrete block, and its content is not limited. However, 0.001 to 8 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of the recycled coarse aggregate or recycled coarse aggregate, For reasons.

또한, 본 발명의 콘크리트 블록 제조용 조성물에 단섬유 소재를 휨강도 및 휨인성 향상의 이유로 더 포함하여 사용할 수 있으며, 상기 단섬유는 길이가 5 ~ 20 ㎝인 것을 의미한다. 상기 단섬유는 구체적으로 예를 들면, 폴리비닐알콜섬유, 폴리프로필렌섬유, 나일론섬유 및 탄소섬유 중에서 선택되는 하나 또는 둘 이상을 혼합한 혼합섬유를 사용할 수 있다. 그 함량은 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 0.0005 ~ 0.7 중량부, 바람직하게는 0.01 ~ 0.1 중량부, 더욱 바람직하게는 0.01 ~ 0.05 중량부를 사용할 수 있으며, 상기 범위를 사용하는 경우 압축강도, 휨강도, 내마모성 및 동결융해저항성이 향상되어 건조수축, 균열발생 등을 억제할 수 있으므로 바람직하다.In addition, a short fiber material may be further included in the composition for producing a concrete block of the present invention for reasons of improvement in flexural strength and flexural toughness, and the short fiber means a length of 5 to 20 cm. Concretely, for example, the above-mentioned staple fibers may be a mixed fiber comprising one or two or more selected from polyvinyl alcohol fiber, polypropylene fiber, nylon fiber and carbon fiber. The content thereof may be 0.0005 to 0.7 part by weight, preferably 0.01 to 0.1 part by weight, more preferably 0.01 to 0.05 part by weight, based on 100 parts by weight of cinder block or recycled coarse aggregate having a particle size of 5 mm or more, When the above range is used, the compressive strength, the bending strength, the abrasion resistance, and the freeze-thaw resistance are improved, so that drying shrinkage and cracking can be suppressed.

또한, 상기 콘크리트 블록 제조용 조성물을 이용한 환경복원용 블록도 본 발명의 범위에 포함되며, 상기 환경복원용블록에는 수질정화용블록, 하천호안블록, 옹벽블록, 어도· 어소블록 및 세굴방지블록 등이 포함될 수 있다.Also, a block for recovering the environment using the composition for producing a concrete block is also included in the scope of the present invention, and the block for reclamation of the environment includes a water quality purification block, a river waterproof block, a retaining wall block, .

본 발명은 콘크리트 블록 제조용 조성물에 하수처리용 미생물 및 이온교환재가 포함됨으로써, 수질정화 효과가 향상되며, 하천의 오염원인 질소(N)와 인(P)을 정화시키고 생물학적 산소요구량(BOD)을 감소시키며, 하천의 중금속 및 각종 유해물질을 제거할 수 있다.The present invention relates to a method for purifying nitrogen (N) and phosphorus (P), which are pollutants of streams, by decreasing the biological oxygen demand (BOD) by reducing microbes and ion exchange materials for sewage treatment, And can remove heavy metals and various harmful substances from the river.

이하는 본 발명을 보다 구체적으로 설명하기 위하여, 일예를 들어 설명하는바, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.

본 발명에서 콘크리트 블록의 생물학적 산소요구량(BOD), 화학적 산소요구량(COD), 총 질소(T-N), 총 인(T-P)은 “수질오염공정시험법”에 준하여 실시하였다.
In the present invention, the biological oxygen demand (BOD), the chemical oxygen demand (COD), the total nitrogen (TN) and the total phosphorus (TP) of the concrete block were measured in accordance with the "water pollution process test method".

이하 물성은 하기의 방법으로 측정하였다.The following physical properties were measured by the following methods.

1) 생물학적 산소요구량(BOD)1) Biological oxygen demand (BOD)

시료를 20℃에서 5시간 저장하여 두었을 때 시료중의 호기성 미생물의 증식과 호흡작용에 의하여 소비되는 용존산소의 양으로부터 측정하였다.When the samples were stored at 20 ° C for 5 hours, they were measured from the amount of dissolved oxygen consumed by the aerobic microorganism growth and respiration in the sample.

BOD(㎎/ℓ) = (D1 - D2) × PBOD (mg / L) = (D 1 - D 2 ) × P

D1 : 희석한 시료의 15분간 방치한 후의 DO(㎎/ℓ)D 1 : DO (mg / l) after leaving the diluted sample for 15 minutes,

D2 : 5일간 배양한 다음의 희석한 시료의 DO평균치(㎎/ℓ)D 2 : DO average value (mg / l) of the diluted sample after 5 days of incubation,

P : 희석시료 중 시료의 희석배수(희석시료량/시료량)
P: Dilution ratio of the sample in the diluted sample (diluted sample amount / sample amount)

2) 화학적 산소요구량(COD)2) Chemical oxygen demand (COD)

시료를 알칼리성으로 하여 과망간산칼륨 일정과량을 넣어 일정시간 가열 반응시키고 요오드화칼륨 및 황산을 넣어 남아 있는 과망간산칼륨에 의하여 유리된 요오드의 양으로부터 산소의 양을 측정하였다.The sample was made alkaline, and a certain amount of potassium permanganate was added. The mixture was heated for a predetermined time, and potassium iodide and sulfuric acid were added thereto to measure the amount of oxygen from the amount of iodine liberated by the remaining potassium permanganate.

COD(㎎/ℓ) = (a-b)× f× 1000 / V× 0.2 COD (mg / l) = (a-b) x f 1000 / V x 0.2

a : 바탕시험 적정에 소비된 0.025N - 티오황산나트륨액(㎖) a: 0.025 N sodium thiosulfate solution (ml) consumed in the blank test titration,

b : 시험 적정에 소비된 0.025N - 티오황산나트륨액(㎖) b: 0.025 N sodium thiosulfate solution (ml) consumed in the test titration;

f : 0.025N - 티오황산나트륨액의 역가(Factor) f: Factor of 0.025 N sodium thiosulfate solution

V : 시료의 양(㎖)
V: Amount of sample (ml)

3) 총 질소(T-N)(㎎/ℓ)3) Total nitrogen (T-N) (mg / l)

총 질소(T-N) 측정시험은 과황산분해법을 사용했으며, NO2 - 표준용액을 제조하고 220 ㎚ 파장에서의 흡광도를 흡광분석기를 사용하여 표준용액의 흡광도를 분석 한 후 검량선을 작성하고 측정일별 채취된 검사수를 흡광분석기에 의해 흡광도를 측정한 후 이 값을 검량선에 대입하여 검사수의 T-N (㎎/ℓ)농도를 구하였다.
The measurement of total nitrogen (TN) was carried out using persulfate digestion method. The NO 2 - standard solution was prepared and the absorbance at 220 nm wavelength was analyzed by absorbance analyzer. After the absorbance of the standard solution was analyzed, The absorbance of the test water was measured by an absorption analyzer, and the TN (mg / l) concentration of the test water was determined by substituting this value into the calibration curve.

4) 총 인(T-P)(㎎/ℓ)4) Total phosphorus (T-P) (mg / l)

총 인(T-P) 측정시험은 아스코르빈산 환원법을 사용했으며, KH2PO4표준용액을 제조하고 880 ㎚ 파장에서의 흡광도를 흡광분석기를 사용하여 표준용액의 흡광도를 분석 한 후 검량선을 작성하고 측정일별 채취된 검사수를 흡광분석기에 의해 흡광도를 측정한 후 이 값을 검량선에 대입하여 검사수의 T-P (㎎/ℓ)농도를 구하였다.
The total phosphorus (TP) measurement test was performed using ascorbic acid reduction method. KH 2 PO 4 standard solution was prepared, and the absorbance at 880 nm wavelength was analyzed by absorbance analyzer, and the calibration curve was prepared and measured The absorbance of the test water sampled every day was measured by an absorption analyzer, and this value was substituted into the calibration curve to determine the TP (mg / l) concentration of the test water.

[실시예 1] [Example 1]

8 ~ 13 ㎜ 단일입도의 부순돌(흡수율 0.89 %, 밀도 2.62 g/cm3) 1,610 ㎏, 입도가 0.08 ~ 4.5 ㎜인 모래(흡수율 0.95 %, 밀도 2.55 g/cm3) 163 ㎏, 결합재(보통포틀랜드 시멘트) 380 ㎏, 미생물 혼합액[물 80 ㎏, 하수처리용 미생물 7㎏(인축척 미생물인 Acinetobacter군과 탈질 미생물인 Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas 및 Bacillus군이 함유된 하수처리장의 폐수 40 L를 채취한 후 상온 20℃의 조건에서 인공폐수 원액을 500 mL/일 투입하여 미생물을 배양함)] 및 혼화제(폴리카본산계 고성능 AE감수제_실크로드시앤티사, ROADCON-PEMA SR3000) 570 g을 옴니믹서에 투입하고 혼합하여 콘크리트 블록 제조용 조성물을 제조하였다. 상기 콘크리트 블록 제조용 조성물을 이용하여 300 × 300 × 50 ㎜ 의 콘크리트 블록을 제조하였으며, 상기 방법으로 제조된 콘크리트 블록의 생물학적 산소요구량(BOD), 화학적 산소요구량(COD), 총 질소(T-N), 총 인(T-P)을 하기 표 2에 나타냈다.
8 ~ 13 ㎜ Crushed of a single particle (water absorption 0.89%, density 2.62 g / cm 3) 1,610 ㎏ , the sand particle size of 0.08 ~ 4.5 ㎜ (0.95% water absorption, density 2.55 g / cm 3) 163 ㎏ , a binder (usually Portland cement) 380 ㎏, mixed microbial solution [40 L of wastewater from a sewage treatment plant containing 80 kg of water, 7 kg of microorganisms for sewage treatment (Acinetobacter group, which is a direct microorganism, and Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas and Bacillus, denitrifying microorganisms, And 570 g of an admixture (polycarboxylic acid-based high-performance AE water reducing agent, Silad Road Sanitary Co., Ltd., ROADCON-PEMA SR3000) was placed in an omni- The mixture was charged into a mixer and mixed to prepare a composition for producing a concrete block. (BOD), chemical oxygen demand (COD), total nitrogen (TN), and total nitrogen (BOD) of the concrete block manufactured by the method described above were manufactured by using the composition for making the concrete block. (TP) are shown in Table 2 below.

[실시예 2][Example 2]

8 ~ 13 ㎜ 단일입도의 부순돌(흡수율 0.89 %, 밀도 2.62 g/cm3) 1,610 ㎏, 입도가 0.08 ~ 4.5 ㎜인 모래(흡수율 0.95 %, 밀도 2.55 g/cm3) 153 ㎏, 결합재(보통포틀랜드 시멘트) 342 ㎏, 이온교환재(제올라이트 분말 28 ㎏ 및 이산화티타늄 분말 10 ㎏의 혼합분말) 38 ㎏, 미생물 혼합액[물 80 ㎏, 하수처리용 미생물 7㎏(인축척 미생물인 Acinetobacter군과 탈질 미생물인 Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas 및 Bacillus군이 함유된 하수처리장의 폐수 40 L를 채취한 후 상온 20℃의 조건에서 인공폐수 원액을 500 mL/일 투입하여 미생물을 배양함) ] 및 혼화제(폴리카본산계 고성능 AE감수제_실크로드시앤티사, ROADCON-PEMA SR3000) 570 g을 옴니믹서에 투입하고 혼합하여 콘크리트 블록 제조용 조성물을 제조하였다. 상기 콘크리트 블록 제조용 조성물을 이용하여 300 × 300 × 50 ㎜ 의 콘크리트 블록을 제조하였으며, 상기 방법으로 제조된 콘크리트 블록의 생물학적 산소요구량(BOD), 화학적 산소요구량(COD), 총 질소(T-N), 총 인(T-P)을 하기 표 2에 나타냈다.
(Absorption rate: 0.95%, density: 2.55 g / cm 3 ) 153 kg, binder (normal density: 0.89%, density: 2.62 g / cm 3 ) 1,610 kg, particle size of 0.08 to 4.5 mm (Mixed powder of 28 kg of zeolite powder and 10 kg of titanium dioxide powder), a mixed microorganism mixture (water 80 kg, microorganisms 7 kg of sewage treatment (Acinetobacter group and denitrifying microorganism 40 L of wastewater from a sewage treatment plant containing Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas, and Bacillus group was collected and the microorganism was cultivated at a room temperature of 20 ° C at a temperature of 20 ° C for 500 mL / day) 570 g of carbonaceous high-performance AE water reducing agent (Silk Road, San Jose, ROADCON-PEMA SR3000) was put into an omni mixer and mixed to prepare a composition for producing a concrete block. (BOD), chemical oxygen demand (COD), total nitrogen (TN), and total nitrogen (BOD) of the concrete block manufactured by the method described above were manufactured by using the composition for making the concrete block. (TP) are shown in Table 2 below.

[실시예 3][Example 3]

8 ~ 13 ㎜ 단일입도의 부순돌(흡수율 0.89 %, 밀도 2.62 g/cm3) 1,610 ㎏, 입도가 0.08 ~ 4.5 ㎜인 모래(흡수율 0.95 %, 밀도 2.55 g/cm3) 153 ㎏, 결합재(보통포틀랜드 시멘트) 342 ㎏, 이온교환재(제올라이트 분말 28 ㎏ 및 이산화티타늄 분말 10 ㎏의 혼합분말) 38 ㎏, 미생물 혼합액[물 76 ㎏, 하수처리용 미생물 7㎏(인축척 미생물인 Acinetobacter군과 탈질 미생물인 Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas 및 Bacillus군이 함유된 하수처리장의 폐수 40 L를 채취한 후 상온 20℃의 조건에서 인공폐수 원액을 500 mL/일 투입하여 미생물을 배양함) ], SBR 중합체(밀도 1.12 g/㎠, 점도 78 mPs, 고형분함량이 50 %, pH 9.3) 4 ㎏ 및 혼화제(폴리카본산계 고성능 AE감수제_실크로드시앤티사, ROADCON-PEMA SR3000) 570 g을 옴니믹서에 투입하고 혼합하여 콘크리트 블록 제조용 조성물을 제조하였다. 상기 콘크리트 블록 제조용 조성물을 이용하여 300 × 300 × 50 ㎜ 의 콘크리트 블록을 제조하였으며, 상기 방법으로 제조된 콘크리트 블록의 생물학적 산소요구량(BOD), 화학적 산소요구량(COD), 총 질소(T-N), 총 인(T-P)을 하기 표 2에 나타냈다.
(Absorption rate: 0.95%, density: 2.55 g / cm 3 ) 153 kg, binder (normal density: 0.89%, density: 2.62 g / cm 3 ) 1,610 kg, particle size of 0.08 to 4.5 mm 38 ㎏ of mixed ionic liquid (Portland cement), 38 ㎏ of ion exchange material (mixed powder of 28 ㎏ of zeolite powder and 10 ㎏ of titanium dioxide powder), mixed microbial solution [76 ㎏ of water, 7 ㎏ of sewage treatment microorganism (Acinetobacter group and denitrifying microorganism 40 L of wastewater from a sewage treatment plant containing Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas, and Bacillus were collected and incubated at a room temperature of 20 ° C for 500 mL / (Density: 1.12 g / cm2, viscosity: 78 mPs, solids content: 50%, pH: 9.3) and 570 g of an admixture (polycarboxylic acid-based high performance AE water reducing agent: Silk Roadsystem, ROADCON-PEMA SR3000) To prepare a composition for producing a concrete block. (BOD), chemical oxygen demand (COD), total nitrogen (TN), and total nitrogen (BOD) of the concrete block manufactured by the method described above were manufactured by using the composition for making the concrete block. (TP) are shown in Table 2 below.

[실시예 4][Example 4]

8 ~ 13 ㎜ 단일입도의 부순돌(흡수율 0.89 %, 밀도 2.62 g/cm3) 1,610 ㎏, 입도가 0.08 ~ 4.5 ㎜인 모래(흡수율 0.95 %, 밀도 2.55 g/cm3) 153 ㎏, 결합재(보통포틀랜드 시멘트) 342 ㎏, 이온교환재(제올라이트 분말 28 ㎏ 및 이산화티타늄 분말 10 ㎏의 혼합분말) 38 ㎏, 물 미생물 혼합액[물 76 ㎏, 하수처리용 미생물 7㎏(인축척 미생물인 Acinetobacter군과 탈질 미생물인 Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas 및 Bacillus군이 함유된 하수처리장의 폐수 40 L를 채취한 후 상온 20℃의 조건에서 인공폐수 원액을 500 mL/일 투입하여 미생물을 배양함) ], SBR 중합체(밀도 1.12 g/㎠, 점도 78 mPs, 고형분함량이 50 %, pH 9.3) 4 ㎏, 폴리비닐알콜섬유(밀도 1.3g/㎠, 길이 12 ㎝, 인장강도 1,700 ㎫이상, 탄성계수 45 ㎬) 231 g 및 혼화제(폴리카본산계 고성능 AE감수제_실크로드시앤티사, ROADCON-PEMA SR3000) 570 g을 옴니믹서에 투입하고 혼합하여 콘크리트 블록 제조용 조성물을 제조하였다. 상기 콘크리트 블록 제조용 조성물을 이용하여 300 × 300 × 50 ㎜ 의 콘크리트 블록을 제조하였으며, 상기 방법으로 제조된 콘크리트 블록의 생물학적 산소요구량(BOD), 화학적 산소요구량(COD), 총 질소(T-N), 총 인(T-P)을 하기 표 2에 나타냈다.
(Absorption rate: 0.95%, density: 2.55 g / cm 3 ) 153 kg, binder (normal density: 0.89%, density: 2.62 g / cm 3 ) 1,610 kg, particle size of 0.08 to 4.5 mm 38 ㎏ of water, 34 ㎏ of Portland cement), 38 ㎏ of ion exchange material (28 ㎏ of zeolite powder and 10 ㎏ of titanium dioxide powder) and a mixture of water microorganism [water 76 ㎏, microorganisms for sewage treatment 7 ㎏ (Acinetobacter group, 40 L of wastewater from a sewage treatment plant containing microorganisms Nitrosomonas, Nitrobacter, Micrococcus, Pseudomonas, and Bacillus were collected and cultured at a room temperature of 20 ° C for 500 mL / (Density 1.3 g / cm 2, length 12 ㎝, tensile strength 1,700 ㎫ or more, modulus of elasticity 45 ㎬) of 4 kg, a density of 1.12 g / cm 2, a viscosity of 78 mPs, a solid content of 50% g and an admixture (polycarboxylic acid-based high-performance AE water reducing agent, Silk Roads, Inc., ROADCON-PEMA SR3000) 570 g The composition for producing concrete blocks were charged into a mixer and mixed to manufacture the omnidirectional. (BOD), chemical oxygen demand (COD), total nitrogen (TN), and total nitrogen (BOD) of the concrete block manufactured by the method described above were manufactured by using the composition for making the concrete block. (TP) are shown in Table 2 below.

[비교예 1][Comparative Example 1]

상기 실시예 1에서 물 87 ㎏을 첨가하고 하수처리용 미생물을 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였으며, 상기 방법으로 제조된 콘크리트 블록(300 × 300 × 50 ㎜)의 생물학적 산소요구량(BOD), 화학적 산소요구량(COD), 총 질소(T-N), 총 인(T-P)을 하기 표 2에 나타냈다.
The same procedure as in Example 1 was carried out except that 87 kg of water was added in Example 1 and no sewage treatment microorganism was added. The concrete block (300 x 300 x 50 mm) The oxygen demand (BOD), the chemical oxygen demand (COD), the total nitrogen (TN) and the total phosphorus (TP) are shown in Table 2 below.

[표 1][Table 1]

Figure 112014015223237-pat00001

Figure 112014015223237-pat00001

[표 2][Table 2]

Figure 112014015223237-pat00002
Figure 112014015223237-pat00002

상기 표 2는 실시예와 비교예에 따른 콘크리트 블록의 수질정화 시험결과로 생물학적 산소요구량(BOD), 화학적 산소요구량(COD), 총 질소(T-N), 총 인(T-P)을 비교한 것이다. Table 2 compares the biological oxygen demand (BOD), the chemical oxygen demand (COD), the total nitrogen (T-N) and the total phosphorus (T-P) as a result of the water quality purification test of the concrete block according to the examples and the comparative examples.

상기 표 2의 인공폐수 원액은 수돗물 24,000 g, 염화암모늄(NH4Cl) 1.83 g, 포타슘하이드로겐포스페이트(KH2PO4)0.63 g, 마그네슘설페이트 헵타하이드레이트(MgSO4·7H2O)3.60 g, 칼슘클로라이드 디하이드레이트(CaCl2·2H2O)0.48 g, 염화나트륨(NaCl)1.20 g 및 글루코오스 6.76 g을 혼합하여 제조하였다.24.0 g of tap water, 1.83 g of ammonium chloride (NH 4 Cl), 0.63 g of potassium hydrogen phosphate (KH 2 PO 4 ), 3.60 g of magnesium sulfate hepta hydrate (MgSO 4 .7H 2 O) 0.48 g of calcium chloride dihydrate (CaCl 2 .2H 2 O), 1.20 g of sodium chloride (NaCl) and 6.76 g of glucose.

하수처리용 미생물과 이온교환재를 활용한 콘크리트 블록 제조용 조성물의 오염도를 평가하기 위하여 상기 방법으로 인공폐수를 제조하여 사용하고 본 발명에 의해 제작된 300 × 300 × 50 ㎜ 의 콘크리트 블록을 실내수질정화 수로에 투입한 후 물을 2 ℓ/분으로 일정량 순환시켰으며, 일조량의 조절을 2.000lux의 인공조명을 12시간 주기로 점등과 소등을 반복하면서 T-N, T-P농도 측정을 실시하였다.
In order to evaluate the contamination degree of the composition for preparing a concrete block using microorganisms for sewage treatment and an ion exchange material, artificial wastewater was manufactured by using the above method, and a 300 × 300 × 50 mm concrete block manufactured by the present invention was purified The water was circulated at a rate of 2 L / min, and the amount of TN and TP was measured while the amount of sunshine was controlled by turning on and off the lamp with 2.000 lux artificial lighting for 12 hours.

[표 3][Table 3]

Figure 112014015223237-pat00003
Figure 112014015223237-pat00003

상기 표 3에서 콘크리트 블록 제조용 조성물에 하수처리용 미생물과 이온교환재를 첨가함으로써, COD 제거율, BOD 제거율, 하천의 오염도로 평가되는 T-N 제거율 및 T-P 제거율이 하수처리용 미생물 및 이온교환재를 첨가하지 않은 콘크리트 블록에 비하여 월등히 증대되는 것을 확인할 수 있다.In Table 3, by adding microorganisms for sewage treatment and an ion exchange material to the composition for producing concrete blocks, TN removal rate and TP removal rate, which are evaluated by COD removal rate, BOD removal rate, and river pollution degree, Which is higher than that of the concrete block.

Claims (11)

입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재, 입도가 5 ㎜이하의 모래 또는 폐콘크리트 순환 잔골재, 결합재, 혼화제, 미생물 혼합액 및 제올라이트 분말과 이산화티타늄 분말의 혼합분말인 이온교환재를 포함하며,
상기 미생물 혼합액은 인축적 미생물(PAOs : Phosphate Accumulating Organisms) 및 탈질 미생물(DPAOs : De-Nitrifying Phosphate Accumulating Organisms)에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 콘크리트 블록 제조용 조성물.
And an ion exchange material which is a mixed powder of a cobalt or a waste concrete circulating coarse aggregate having a particle size of 5 mm or more, a sand or waste concrete circulating fine aggregate having a particle size of 5 mm or less, a binder, an admixture, a mixture of microbes and a zeolite powder and a titanium dioxide powder ,
Wherein the microbial mixture solution contains one or more selected from the group consisting of PAOs (Phosphate Accumulating Organisms) and DPAOs (De-Nitrifying Phosphate Accumulating Organisms).
제 1항에 있어서,
상기 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 입도가 5 ㎜이하의 모래 또는 폐콘크리트 순환 잔골재 0.1 ~ 100 중량부, 결합재 10 ~ 30 중량부, 미생물 혼합액 2 ~ 18 중량부, 혼화제 0.001 ~ 0.9 중량부 및 이온교환재 0.01 ~ 10 중량부를 포함하는 것인 콘크리트 블록 제조용 조성물.
The method according to claim 1,
0.1 to 100 parts by weight of a sand or waste concrete circulating fine aggregate having a particle size of 5 mm or less, 10 to 30 parts by weight of a binding material, 2 to 18 parts by weight of a mixture of recycled coarse aggregates having a particle size of 5 mm or more, 0.001 to 0.9 part by weight of an admixture and 0.01 to 10 parts by weight of an ion exchange material.
삭제delete 제 1항에 있어서,
상기 이온교환재는 제올라이트 분말 : 이산화티타늄 분말 = 50 ~ 80 : 20 ~ 50의 중량비로 혼합된 것인 콘크리트 블록 제조용 조성물.
The method according to claim 1,
Wherein the ion exchange material is a mixture of zeolite powder and titanium dioxide powder in a weight ratio of 50:80 to 20:50.
제 1항에 있어서,
상기 결합재는 보통포틀랜드 시멘트,
보통포틀랜드 시멘트 및 고로슬래그 미분말을 혼합한 저탄소 2종 혼합시멘트,
보통포틀랜드 시멘트, 고로슬래그 미분말 및 플라이애시를 혼합한 저탄소 3종 혼합시멘트에서 선택되는 어느 하나 또는 둘 이상인 것인 콘크리트 블록 제조용 조성물.
The method according to claim 1,
The binder is usually Portland cement,
Mixed low-carbon two-component cement mixed with ordinary portland cement and blast furnace slag powder,
A mixture of low-carbon three-component cement mixed with Portland cement, blast furnace slag fine powder and fly ash.
제 1항에 있어서,
상기 미생물 혼합액은 물과 하수처리용 미생물을 1 : 0.001 ~ 1의 중량비로 포함하는 것인 콘크리트 블록 제조용 조성물.
The method according to claim 1,
Wherein the microbial mixture solution contains water and microorganisms for sewage treatment at a weight ratio of 1: 0.001 to 1.
삭제delete 제 1항에 있어서,
상기 혼화제는 고성능 AE감수제, 유동화제 및 AE제에서 선택되는 하나 또는 둘 이상의 혼합물을 사용하는 것인 콘크리트 블록 제조용 조성물.
The method according to claim 1,
Wherein the admixture is one or a mixture of two or more selected from high performance AE water reducing agents, fluidizing agents and AE agents.
제 1항에 있어서,
상기 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 라텍스계 SBR 중합체 또는 아크릴계 수지 중합체를 0.001 ~ 8 중량부 더 포함하는 것인 콘크리트 블록 제조용 조성물.
The method according to claim 1,
Wherein the latex-based SBR polymer or acrylic resin polymer is further added in an amount of 0.001 to 8 parts by weight based on 100 parts by weight of the recycled coarse aggregate having a particle size of 5 mm or more.
제 1항에 있어서,
상기 입도가 5 ㎜이상의 부순돌 또는 폐콘크리트 순환 굵은골재 100 중량부에 대하여, 폴리비닐알콜섬유, 폴리프로필렌섬유, 나일론섬유 및 탄소섬유 중에서 선택되는 어느 하나 또는 둘 이상을 혼합한 유기계 섬유를 0.0005 ~ 0.7 중량부 더 포함하는 것인 콘크리트 블록 제조용 조성물.
The method according to claim 1,
Wherein the organic fiber obtained by mixing at least one member selected from the group consisting of polyvinyl alcohol fibers, polypropylene fibers, nylon fibers and carbon fibers with 100 parts by weight of the recycled coarse aggregate having a particle size of 5 mm or more, 0.7 part by weight based on the total weight of the composition.
제 1항, 제 2항, 제 4항 내지 제 6항 및 제 8항 내지 제 10항에서 선택되는 한 항에 따른 콘크리트 블록 제조용 조성물을 이용한 환경복원용 블록.A block for restoring an environment using a composition for manufacturing a concrete block according to any one of claims 1, 2, 4 to 6, and 8 to 10.
KR1020140017864A 2014-02-17 2014-02-17 Composition for Concrete Block KR101429463B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140017864A KR101429463B1 (en) 2014-02-17 2014-02-17 Composition for Concrete Block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140017864A KR101429463B1 (en) 2014-02-17 2014-02-17 Composition for Concrete Block

Publications (1)

Publication Number Publication Date
KR101429463B1 true KR101429463B1 (en) 2014-08-13

Family

ID=51750265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140017864A KR101429463B1 (en) 2014-02-17 2014-02-17 Composition for Concrete Block

Country Status (1)

Country Link
KR (1) KR101429463B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571700B1 (en) * 2015-02-05 2015-11-25 주식회사 천지콘텍 A Base Concrete Composite Using Effective Micro-organisms and the Base Concrete Product Thereby
KR101620075B1 (en) * 2015-03-27 2016-05-13 동산콘크리트산업(주) Mortar for 3D Printing, Concrete and Manufacturing Method of the Concrete using it
KR101620074B1 (en) * 2015-03-27 2016-05-13 동산콘크리트산업(주) Concrete composition for 3D Printing, Concrete and Manufacturing Method of the Concrete using it
KR20160095823A (en) 2015-02-04 2016-08-12 강원대학교산학협력단 Water purification bio block with lapillus and cement and fabrication method thereof
CN107098638A (en) * 2017-04-13 2017-08-29 越艳 Insulation blocks containing building waste aggregate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010069443A (en) * 2001-03-23 2001-07-25 박승범 Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products
KR20080061812A (en) * 2006-12-28 2008-07-03 주인산업(주) Environmentally favorable revetment block including effective micro-organism
KR20110126446A (en) * 2010-05-17 2011-11-23 한국건설생활환경시험연구원 Porosity concrete composite using composition beneficial microorganisms and functional media and porosity concrete block for restoring river ecology manufactured by this

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010069443A (en) * 2001-03-23 2001-07-25 박승범 Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products
KR20080061812A (en) * 2006-12-28 2008-07-03 주인산업(주) Environmentally favorable revetment block including effective micro-organism
KR20110126446A (en) * 2010-05-17 2011-11-23 한국건설생활환경시험연구원 Porosity concrete composite using composition beneficial microorganisms and functional media and porosity concrete block for restoring river ecology manufactured by this

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160095823A (en) 2015-02-04 2016-08-12 강원대학교산학협력단 Water purification bio block with lapillus and cement and fabrication method thereof
KR101571700B1 (en) * 2015-02-05 2015-11-25 주식회사 천지콘텍 A Base Concrete Composite Using Effective Micro-organisms and the Base Concrete Product Thereby
KR101620075B1 (en) * 2015-03-27 2016-05-13 동산콘크리트산업(주) Mortar for 3D Printing, Concrete and Manufacturing Method of the Concrete using it
KR101620074B1 (en) * 2015-03-27 2016-05-13 동산콘크리트산업(주) Concrete composition for 3D Printing, Concrete and Manufacturing Method of the Concrete using it
CN107098638A (en) * 2017-04-13 2017-08-29 越艳 Insulation blocks containing building waste aggregate and preparation method thereof

Similar Documents

Publication Publication Date Title
Yang et al. Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge
KR101429463B1 (en) Composition for Concrete Block
Wang et al. Performance and mechanisms of a microbial-earthworm ecofilter for removing organic matter and nitrogen from synthetic domestic wastewater
KR101041607B1 (en) Bio restorating agent for purificating polluted ground and water deposit
CN102266752B (en) Method for preparing carbonizing absorption grains used for purifying water
KR101273444B1 (en) Cement brick for purifying water using microorganism and zeolite, and method for preparing the same
WO2010116602A1 (en) Method for backfilling subaqueous borrow pit
CN103508622B (en) Material and method for biologically purifying water body by using carbon nano-tube
Jin et al. Blackwater treatment using vertical greening: efficiency and microbial community structure
KR101438380B1 (en) Concrete block for purifying water
KR101344922B1 (en) Moss brick for purifying water and method for preparing the same
CN104478090A (en) Multi-channel efficient biological filler and preparation method and application thereof
CN112321255A (en) Pervious concrete with biological water purification function and preparation method thereof
KR100994335B1 (en) Manufacturing methods of water purification concrete using micro-organisms and solution
CN111072139A (en) Preparation method of sulfur autotrophic denitrification biological brick and biological brick prepared by same
Yang et al. Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics
Jaeel et al. COD removal from synthetic wastewater using pervious concrete
KR101012708B1 (en) A sinter for water purification and method for manufacturing the same
JP2004237170A (en) Method and apparatus for treating nitrate nitrogen and phosphorus-containing water
CN114890535A (en) Composite environment-friendly water purifying agent suitable for improving water quality of rivers and lakes and preparation method thereof
Pacheco-Torgal et al. Biotechconcrete: An innovative approach for concrete with enhanced durability
KR101026817B1 (en) Concret composition comprising carbonized powder originated from wasting wood and inorganic antibiotics, and water-purifying concret made of the same
JP5921022B2 (en) Phytoplankton, seaweed and / or seaweed breeding aggregate and cement composition cured body using the same
CN201809223U (en) Ecological padding structure of man-made land sewage treatment system
Hunter et al. Bioreactor media for treatment of slag leachate

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170728

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180723

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190730

Year of fee payment: 6