KR20120112108A - Method of treating organic waste water by membrane separator activated sludge device - Google Patents

Method of treating organic waste water by membrane separator activated sludge device Download PDF

Info

Publication number
KR20120112108A
KR20120112108A KR20120031125A KR20120031125A KR20120112108A KR 20120112108 A KR20120112108 A KR 20120112108A KR 20120031125 A KR20120031125 A KR 20120031125A KR 20120031125 A KR20120031125 A KR 20120031125A KR 20120112108 A KR20120112108 A KR 20120112108A
Authority
KR
South Korea
Prior art keywords
sludge
membrane
membrane separation
tank
organic wastewater
Prior art date
Application number
KR20120031125A
Other languages
Korean (ko)
Other versions
KR101956383B1 (en
Inventor
가즈나리 고마츠
Original Assignee
쿠리타 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쿠리타 고교 가부시키가이샤 filed Critical 쿠리타 고교 가부시키가이샤
Publication of KR20120112108A publication Critical patent/KR20120112108A/en
Application granted granted Critical
Publication of KR101956383B1 publication Critical patent/KR101956383B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/22Activated sludge processes using circulation pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE: A treatment method of organic drainage is provided to stably implement a solid-liquid separating process using a membrane by maintaining the proper concentration of sludge. CONSTITUTION: A treatment method of organic drainage includes a membrane separation-activated sludge apparatus. The membrane separation-activated sludge apparatus includes an aerating bath(1) and a membrane separation bath(3). Organic drainage is introduced into the aerating bath. The membrane separation bath circulates sludge in the aerating bath and solid-liquid separates the sludge. [Reference numerals] (AA) Feed water; (BB) Treated water; (CC) Air; (DD) Aerating bath; (EE) Membrane separating bath; (FF) Air

Description

막분리 활성 오니 장치에 의한 유기성 배수의 처리 방법{METHOD OF TREATING ORGANIC WASTE WATER BY MEMBRANE SEPARATOR ACTIVATED SLUDGE DEVICE}METHODS OF TREATING ORGANIC WASTE WATER BY MEMBRANE SEPARATOR ACTIVATED SLUDGE DEVICE}

본 발명은, 유기성 배수를 폭기조에서 생물 처리하고, 막으로 고액 분리하는 처리 방법에 관한 것이다.The present invention relates to a treatment method in which organic wastewater is biologically treated in an aeration tank and solid-liquid separated into a membrane.

유기성 배수가 유입되는 폭기조와, 폭기조의 오니를 순환시키면서 막으로 고액 분리하는 막분리조를 구비한 막분리 활성 오니 장치 (MBR) 를 사용하는 유기성 배수의 처리 방법 (예를 들어 특허문헌 1, 2) 에 의하면, 막을 사용함으로써, 처리수의 수질을 양호하게 유지할 수 있고, 또한, 폭기조의 MLSS 농도를 높게 유지할 수 있어, 고부하 처리가 가능해지는 데다가, 침전조가 불필요해지기 때문에, 장치를 작게 할 수 있다.Treatment method of organic wastewater using the membrane separation active sludge apparatus (MBR) provided with the aeration tank into which organic wastewater flows in, and the membrane separation tank which solid-separates into a membrane, circulating the sludge of an aeration tank (for example, patent document 1, 2 By using the membrane, the water quality of the treated water can be maintained satisfactorily, and the MLSS concentration of the aeration tank can be maintained high, and the high load treatment is possible, and the settling tank is unnecessary, so that the apparatus can be made small. have.

이 막분리 활성 오니 처리 방법에서는, 오니 농도 (MLSS) 가 2,000 ㎎/ℓ 미만에서는 BOD 성분의 분해 능력이 불충분해져, BOD 성분이 분리막 모듈의 막면에 다량으로 흡착되어, 안정적으로 여과 처리를 실시할 수 없게 된다. 그래서, 특허문헌 3 에서는, 최초의 운전 개시까지, 미리 폭기조 내의 오니 농도가 2,000 ㎎/ℓ 이상이 되도록 종오니를 첨가하는 방법이 기재되어 있다.In the membrane separation activated sludge treatment method, when the sludge concentration (MLSS) is less than 2,000 mg / L, the decomposition ability of the BOD component is insufficient, and the BOD component is adsorbed in a large amount on the membrane surface of the membrane module, so that the filtration treatment can be stably performed. It becomes impossible. Therefore, Patent Literature 3 discloses a method of adding seed sludge so that the sludge concentration in the aeration tank is 2,000 mg / L or more before the first start of operation.

일본 공개특허공보 2009-50764호Japanese Unexamined Patent Publication No. 2009-50764 일본 공개특허공보 2004-8176호Japanese Unexamined Patent Publication No. 2004-8176 일본 공개특허공보 2000-189993호Japanese Unexamined Patent Publication No. 2000-189993

막분리 활성 오니 처리 방법에서는, 폭기조 내의 오니 농도를 높이기 위하여, 잉여 오니의 빼내기를 줄여 SRT (오니 체류 시간) 를 과도하게 길게 하면, 오니의 자기 소화 산물이 증가하여, 막을 오염시키기 쉬워지는 것이 알려져 있다.In the membrane separation activated sludge treatment method, it is known that when the sludge is removed to increase the concentration of the sludge in the aeration tank and excessively long SRT (slow residence time) increases the self-extinguishing product of the sludge, it becomes easy to contaminate the membrane. have.

따라서, 기동시에 충분량의 종오니가 얻어지지 않는 경우나, 계획 부하에 비해 낮은 부하의 조건이 길게 계속되는 경우에는, 오니 농도를 높게 유지하지 못하여, 안정적인 막 여과를 실시할 수 없었다. 특히, 최근, 물 회수의 요구가 높고, MBR 의 적용이 진행되고 있는 액정, 반도체 제조 공장의 배수는, 오니 전환율이 낮은 저분자 유기 화합물이 주성분이기 때문에, SRT 를 과도하게 길게 하지 않고, 오니 농도를 높게 유지하여 안정적인 운전을 실시하는 것이 어려웠다.Therefore, when sufficient amount of sludge is not obtained at the start-up, or when the load condition which is low compared with the planned load is continued for a long time, sludge concentration was not kept high and stable membrane filtration was not able to be performed. In particular, since the low molecular weight organic compound having low sludge conversion rate is a main component, the liquid crystals and semiconductor manufacturing plants in which the demand for water recovery is high and MBR is being applied in recent years, do not excessively lengthen the SRT. It was difficult to maintain high and perform stable operation.

본 발명은, 반도체 제조 공장 배수와 같이 저분자 유기 화합물을 주성분으로 하는 배수라도, 오니 농도를 높게 유지하여 안정적인 운전을 실시할 수 있는 유기성 배수의 처리 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for treating organic wastewater, which can maintain stable sludge concentration and perform stable operation even in wastewater containing a low molecular organic compound as a main component such as semiconductor manufacturing plant drainage.

본 발명 (청구항 1) 의 유기성 배수의 처리 방법은, 유기성 배수가 유입되는 폭기조와, 폭기조의 오니를 순환시키면서 막으로 고액 분리하는 막분리조를 구비한 막분리 활성 오니 장치를 사용하는 유기성 배수의 처리 방법에 있어서, 그 막분리조에 대한 오니의 순환량을 원수의 유기물 부하량에 따라 원수량의 1.5 ? 10 배 사이에서 전환하는 것을 특징으로 하는 것이다.The organic wastewater treatment method of the present invention (claim 1) is an organic wastewater using an aeration tank into which an organic wastewater flows in and a membrane separation active sludge apparatus having a membrane separation tank for solid-liquid separation into a membrane while circulating sludge of the aeration tank. In the treatment method, the amount of circulation of the sludge to the membrane separation tank is 1.5? Of the amount of raw water according to the organic matter load of the raw water. It is characterized by switching between 10 times.

청구항 2 의 유기성 배수의 처리 방법은, 청구항 1 에 있어서, 상기 막분리조의 오니 농도가 3,000 ? 20,000 ㎎/ℓ 가 되도록, 막분리조에 오니를 순환시키는 것을 특징으로 하는 것이다.The treatment method of the organic wastewater of Claim 2, The sludge concentration of the said membrane separation tank of Claim 1 is 3,000? The sludge is circulated in the membrane separation tank so as to be 20,000 mg / L.

청구항 3 의 유기성 배수의 처리 방법은, 청구항 1 또는 2 에 있어서, 잉여 오니로서, 1 일당 폭기조 및 막분리조의 전체 보유 오니량의 1/10 ? 1/50 을 빼내는 것을 특징으로 하는 것이다.The treatment method of the organic wastewater of Claim 3 is a sludge according to Claim 1 or 2 which is 1/10? Of the total amount of sludge retained in the aeration tank and the membrane separation tank per day. It is characterized by subtracting 1/50.

청구항 4 의 유기성 배수의 처리 방법은, 청구항 1 내지 3 중 어느 한 항에 있어서, 유기성 배수가, 액정 내지 반도체 제조 공장으로부터 배출되는 것인 것을 특징으로 하는 것이다.The processing method of the organic wastewater of Claim 4 is organic wastewater discharged from liquid crystal or a semiconductor manufacturing plant in any one of Claims 1-3, It is characterized by the above-mentioned.

본 발명의 유기성 배수의 처리 방법에서는, 유기성 배수가 유입되는 폭기조와, 폭기조의 오니를 순환시키면서 막으로 고액 분리하는 막분리조를 구비한 막분리 활성 오니 장치를 사용하는 유기성 배수의 처리 방법에 있어서, 막분리조에 대한 오니의 순환량을 원수의 유기물 부하량에 따라 원수량의 1.5 ? 10 배로 전환하고, 바람직하게는 막분리조의 오니 농도가 3000 ? 20000 ㎎/ℓ 가 되도록 막분리조에 오니를 순환시킨다.In the organic wastewater treatment method of the present invention, in the organic wastewater treatment method using an aeration tank into which the organic wastewater flows and a membrane separation tank for solid-liquid separation into membranes while circulating sludge in the aeration tank The amount of sludge circulated to the membrane separation tank can be changed to 1.5? 10 times, preferably the sludge concentration of the membrane separation tank is 3000? Sludge is circulated in the membrane separation tank to 20000 mg / l.

이로써, 충분량의 종오니가 얻어지지 않는 기동시나 저부하시에 있어서도, SRT 를 과도하게 길게 하지 않고, 적절한 오니 성상, 농도를 유지함으로써, 막에 의한 고액 분리를 안정적으로 실시할 수 있다.As a result, solid-liquid separation by membranes can be stably performed by maintaining the appropriate sludge properties and concentrations without excessively lengthening the SRT even at the time of starting or low load where a sufficient amount of sludge is not obtained.

도 1 은, 실시형태에 관련된 유기성 배수의 처리 방법의 플로우도이다.
도 2 는, 실험 결과를 나타내는 그래프이다.
도 3 은, 실험 결과를 나타내는 그래프이다.
1 is a flowchart of a method for treating organic wastewater according to an embodiment.
2 is a graph showing experimental results.
3 is a graph showing experimental results.

본 발명에 있어서, 처리 대상이 되는 유기성 배수는, 통상 생물 처리되는 유기물 함유 배수이면 되고, 특별히 한정되는 것은 아니지만, 예를 들어, 전자 산업 배수, 화학 공장 배수, 식품 공장 배수 등을 들 수 있다. 예를 들어, 전자 부품 제조 프로세스에서는, 현상 공정, 박리 공정, 에칭 공정, 세정 공정 등으로부터 각종의 유기성 배수가 다량으로 발생하고, 또한 배수를 회수하여 순수 레벨로 정화하여 재사용하는 것이 요망되고 있기 때문에, 이들 배수는 본 발명의 처리 대상 배수로서 적합하다. 이와 같은 유기성 배수로는 예를 들어, 이소프로필알코올, 에틸알코올 등을 함유하는 유기성 배수, 모노에탄올아민 (MEA), 테트라메틸암모늄하이드로옥사이드 (TMAH) 등의 유기태 질소, 암모니아태 질소를 함유하는 유기성 배수, 디메틸술폭시드 (DMSO) 등의 유기 황 화합물을 함유하는 유기성 배수를 들 수 있다. 유기성 배수의 유기물 농도는 특별히 한정되지 않지만, 본 발명은 특히 BOD 가 300 ? 5,000 ㎎/ℓ 인 유기물 함유 배수의 처리에 적합하다.In the present invention, the organic wastewater to be treated may be any organic-containing wastewater that is usually biologically treated, and is not particularly limited. Examples thereof include electronic industrial wastewater, chemical plant wastewater and food plant wastewater. For example, in the electronic component manufacturing process, various organic wastewaters are generated in a large amount from a developing process, a peeling process, an etching process, a cleaning process, and the like, and it is desired to recover the wastewater, purify it to a pure water level, and reuse it. These wastewaters are suitable as the wastewater to be treated in the present invention. Such organic drainage may include, for example, organic wastewater containing isopropyl alcohol, ethyl alcohol, organic wastewater containing monoethanolamine (MEA), tetramethylammonium hydroxide (TMAH), and organic wastewater containing ammonia nitrogen. And organic wastewater containing organic sulfur compounds such as dimethyl sulfoxide (DMSO). The organic matter concentration of the organic wastewater is not particularly limited, but the present invention particularly has a BOD of 300? It is suitable for the treatment of organic matter-containing wastewater of 5,000 mg / l.

이하, 본 발명의 실시형태를 도면에 의해 설명한다. 도 1 은 침지막을 이용한 활성 오니 처리 장치의 계통도이고, 이 장치는, 폭기조 (1), 산기 장치 (2), 막분리조 (3) 를 구비하고 있다. 막분리조 (3) 에는 침지형 막분리막 (4) 이 조내액에 침지된 상태로 형성되고, 분리막 (4) 을 투과시켜 조내액을 농축하도록 구성되어 있다. 원수를 원수로 (11) 로부터 폭기조 (1) 에 도입하고, 산기 장치 (2) 로부터 공기를 산기하여, 조 내의 활성 오니와 혼합하여 호기적으로 생물 처리한다. 조내액을 계로 (12) 로부터 막분리조 (3) 에 보내, 막분리한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described by drawing. 1 is a system diagram of an activated sludge treatment apparatus using an immersion membrane, and the apparatus includes an aeration tank 1, an air dispersing apparatus 2, and a membrane separation tank 3. In the membrane separation tank 3, an immersion type membrane separation membrane 4 is formed so as to be immersed in the crude liquid, and the membrane 4 is permeated to concentrate the crude liquid. Raw water is introduced into the aeration tank 1 from the raw water passage 11, air is diffused from the air dispersing apparatus 2, mixed with the activated sludge in the tank, and aerobic biological treatment. The crude liquid is sent from the system 12 to the membrane separation tank 3 to separate the membrane.

막분리조 (3) 에서는 펌프 (P) 를 구동시켜, 조내액을 침지형 막의 분리막 (4) 을 투과시켜, 처리수로서 배출한다. 막분리조 (3) 에서는 조 내를 호기적으로 유지함과 함께 분리막 (4) 표면에 대한 미생물 부착 방지를 위하여 산기 장치 (5) 로부터 공기를 산기한다. 투과액은 처리수로서 처리 수로 (13) 로부터 배출하고, 농축액은 반송(返送) 오니 계로 (14) 로부터 반송 오니로서 폭기조 (1) 에 반송한다. 또한, 이 계로는, 막분리조 (3) 로부터 오버플로우된 오니 (조내액) 를 폭기조 (1) 에 반송하도록 하고 있지만, 조 (3) 의 하부로부터 반송하도록 구성되어도 된다.In the membrane separation tank 3, the pump P is driven to allow the inner liquid to pass through the separation membrane 4 of the immersion type membrane and to be discharged as treated water. In the membrane separation tank 3, air is released from the air diffuser 5 in order to keep the inside of the tank aerobic and to prevent microbial adhesion to the surface of the membrane 4. The permeate is discharged from the treatment channel 13 as treated water, and the concentrated liquid is conveyed from the conveying sludge system 14 to the aeration tank 1 as the conveying sludge. In addition, in this system, although the sludge (tank liquid) which overflowed from the membrane separation tank 3 is conveyed to the aeration tank 1, you may be comprised so that it may convey from the lower part of the tank 3.

본 발명에서는, 계로 (12) 에 의한 폭기조 (1) 로부터 막분리조 (3) 에 대한 오니 (폭기조 (1) 의 조내액) 의 순환량을, 원수 부하에 따라, 원수량의 1.5 ? 10 배 사이에서 전환한다. 원수의 BOD 부하가 낮은 (예를 들어, 0.5 ㎏/㎥?d 미만) 경우에는 순환량을 줄여, 막분리조의 오니 농도가 바람직하게는 3,000 ? 20,000 ㎎/ℓ (3 ? 20 g/ℓ), 특히 바람직하게는 3,000 ? 12,000 ㎎/ℓ 가 되도록 한다. 또한, 막분리조의 오니 농도가 바람직하게는 3,000 ? 20,000 ㎎/ℓ 의 사이에서 선택된 목표치의 ±20 % 이내 특히 ±10 % 이내의 오니 농도가 되도록 순환량을 제어하는 것이 바람직하다.In the present invention, the amount of circulation of the sludge (inner tank liquid of the aeration tank 1) from the aeration tank 1 by the system 12 to the membrane separation tank 3 is 1.5? Switch between 10 times. When the BOD load of raw water is low (for example, less than 0.5 kg / m 3 · d), the circulation amount is reduced, and the sludge concentration of the membrane separation tank is preferably 3,000? 20,000 mg / l (3-20 g / l), particularly preferably 3,000? 12,000 mg / l. In addition, the sludge concentration of the membrane separation tank is preferably 3,000? It is preferable to control the circulation amount so as to have a sludge concentration within ± 20%, particularly ± 10%, of the target value selected between 20,000 mg / L.

폭기조 (1) 의 BOD 부하는 0.2 ? 2 ㎏/㎥?d, 특히 0.5 ? 1.2 ㎏/㎥?d 가 바람직하다. 또한, 폭기조 (1) 를 직렬로 복수 설치해도 된다. 폭기조 (1) 의 MLSS 농도는 1,000 ? 20,000 ㎎/ℓ, 특히 3,000 ? 12,000 ㎎/ℓ 정도인 것이 막 여과성의 면에서 바람직하다.The BOD load of the aeration tank 1 is 0.2? 2 kg / m 3? D, especially 0.5? 1.2 kg / m <3> -d is preferable. In addition, a plurality of aeration tanks 1 may be provided in series. The MLSS concentration in the aeration tank (1) is 1,000? 20,000 mg / l, especially 3,000? It is preferable from the viewpoint of membrane filterability that it is about 12,000 mg / L.

막분리조 (3) 의 막 (4) 은, MF, UF 가 바람직하고, 평막, 튜뷸러막, 중공사막 중 어느 것이어도 된다. 막면에 공기 등의 가스를 산기하여 세정함으로써 여과성이 향상된다.As for the membrane 4 of the membrane separation tank 3, MF and UF are preferable, and any of a flat membrane, a tubular membrane, and a hollow fiber membrane may be sufficient. Filterability is improved by scattering and cleaning gas such as air on the membrane surface.

잉여 오니로서, 1 일당 폭기조 및 막분리조의 전체 보유 오니량의 1/10 ? 1/50 (SRT 10 ? 50 일로 한다), 특히 1/20 ? 1/30 에 상당하는 양을 빼내도록 하는 것이 바람직하다. 빼내기는 조 (1, 3) 중 어느 것으로부터 실시해도 되고, 계로 (12 또는 14) 로부터 실시해도 된다.As surplus sludge, 1/10 of the total amount of sludge retained in the aeration tank and membrane separation tank per day. 1/50 (SRT 10 – 50 days), especially 1/20 – It is desirable to extract an amount corresponding to 1/30. Extraction may be performed from any of the tanks 1 and 3, and may be performed from 12 or 14 in the furnace.

실시예Example

이하, 실시예 및 비교예에 대하여 설명한다. 이하의 실시예 및 비교예에서 사용한 원수는 하기와 같고, 하기의 폭기조 및 막분리조를 가진 도 1 에 나타내는 장치를 사용하여 처리를 실시하였다.Hereinafter, an Example and a comparative example are demonstrated. The raw water used by the following example and the comparative example was as follows, and the process was performed using the apparatus shown in FIG. 1 which has the following aeration tank and membrane separation tank.

[원수][enemy]

액정 제조 공장의 모의 배수 (최초 30 일에 공급한 원수에서는 MEA 80 ㎎/ℓ, DMSO 40 ㎎/ℓ, 및 영양 무기염을 함유한다. BOD 농도 100 ㎎/ℓ.)Simulated drainage of the liquid crystal manufacturing plant (the raw water fed on the first 30 days contains 80 mg / l of MEA, 40 mg / l of DMSO, and nutrient inorganic salts. BOD concentration of 100 mg / l.)

원수 공급량 4 ㎥/dRaw water supply 4 ㎥ / d

[폭기조 및 막분리조][Aeration tank and membrane separation tank]

폭기조 2 ㎥. 막분리조에 소정의 유량으로 오니를 공급하고, 막분리조로부터 오버플로우된 오니가 폭기조로 되돌아오도록 구성.Aeration tank 2 ㎥. The sludge is supplied to the membrane separation tank at a predetermined flow rate, and the sludge overflowed from the membrane separation tank is returned to the aeration tank.

막분리조 0.4 ㎥. 미츠비시 레이온 제조의 MF 막 (막 면적 6 ㎡) 을 침지하고, 7 min 여과/1 min 휴지의 사이클로 막 여과수를 흡인 (실효 플럭스 0.5 m/d). 막간 차압이 30 ㎪ 를 초과한 시점에, 막을 집어올려, NaOH + NaClO 용액 (pH 12, 유효 염소 0.3 %) 에 하룻밤 침지하고 세정.Membrane separation vessel 0.4 ㎥. A MF membrane (membrane area 6 m 2) manufactured by Mitsubishi Rayon was immersed, and the membrane filtered water was sucked in a cycle of 7 min filtration / 1 min rest (effective flux 0.5 m / d). When the interlayer differential pressure exceeded 30 kPa, the membrane was picked up and immersed in a NaOH + NaClO solution (pH 12, 0.3% effective chlorine) overnight and washed.

[운전 방법][How to drive]

액정 제조 공장의 배수 처리 시설의 활성 오니를 종오니로 하고, 폭기조 및 막분리조의 오니 농도가 1,500 ㎎/ℓ 가 되는 것과 같은 양을 투입하고, 통수 개시부터 30 일째까지의 제 1 기에는 상기 농도의 모의 배수를 공급하고, 31 ? 60 일의 제 2 기에는 제 1 기 (0 ? 30 일) 의 2 배 농도의 모의 배수를 공급하고, 61 ? 90 일의 제 3 기에는 제 1 기의 3 배 농도의 모의 배수를 공급하였다. BOD 부하로는 다음과 같다.The activated sludge of the wastewater treatment facility of a liquid crystal manufacturing plant is made into the seed sludge, the amount of sludge of an aeration tank and a membrane separation tank is 1,500 mg / L, and the said density | concentration is input, and the said density | concentration is carried out in the 1st stage from the beginning of water supply to the 30th day. Supply a simulated drain of 31, The second stage of 60 days is supplied with simulated drainage of twice the concentration of the first stage (0-30 days), and the 61? The third phase of 90 days was fed a simulated drainage three times the concentration of the first phase. The BOD load is as follows.

제 1 기 (0 ? 30 일):0.2 ㎏/㎥?d1st stage (0-30 days): 0.2 kg / ㎥? D

제 2 기 (31 ? 60 일):0.4 ㎏/㎥?dSecond period (31 to 60 days): 0.4 kg / ㎥? D

제 3 기 (61 ? 90 일):0.6 ㎏/㎥?dThird period (61 to 90 days): 0.6 kg / ㎥? D

<비교예 1>&Lt; Comparative Example 1 &

폭기조 (1) 로부터 막분리조 (3) 에 대한 순환량을 일정 (20 ㎥/d (원수량의 5 배)) 하게 하고, SRT 20 일에 폭기조 (1) 로부터의 오니의 빼내기를 실시하도록 하여 운전을 실시하였다.The circulation rate from the aeration tank 1 to the membrane separation tank 3 is constant (20 m 3 / d (5 times the amount of raw water)), and the sludge is removed from the aeration tank 1 on the 20th day of SRT. Was carried out.

<비교예 2><Comparative Example 2>

폭기조 (1) 로부터 막분리조 (3) 에 대한 순환량을 일정 (20 ㎥/d (원수량의 5 배)) 하게 하고, 막분리조의 오니 농도가 3,000 ㎎/ℓ 이상이 되도록, 오니 빼내기량을 조정하여 운전을 실시하였다.The circulation rate from the aeration tank 1 to the membrane separation tank 3 is constant (20 m 3 / d (5 times the amount of raw water)), and the sludge extraction amount is adjusted so that the sludge concentration of the membrane separation tank is 3,000 mg / l or more. The operation was adjusted.

<실시예><Example>

SRT 20 일에 폭기조 (1) 로부터의 오니의 빼내기를 실시하고, 막분리조 (3) 의 오니 농도가 3,000 ㎎/ℓ 가 되도록 순환량을 7 ? 20 ㎥/d (원수량에 대하여 1.8 ? 5 배) 의 사이에서 조정하여 운전을 실시하였다.Sludge is removed from the aeration tank 1 on the 20th day of SRT, and the circulation rate is adjusted to 7 to 3,000 mg / l of the sludge concentration of the membrane separation tank 3. It operated by adjusting between 20 m <3> / d (1.8-5 times with respect to raw water quantity).

[결과][result]

비교예 1, 2, 실시예 1 모두 전체 기간을 통틀어 처리수의 BOD 농도는 5 ㎎/ℓ 미만이었다.In Comparative Examples 1, 2 and Example 1, the BOD concentration of the treated water was less than 5 mg / L throughout the entire period.

오니 농도의 추이를 도 2 에, 막간 차압의 추이를 도 3 에 나타낸다. 막의 세정 간격은, 제 3 기 (61 ? 90 일) 에 있어서는, 모두 15 일 전후로 차는 보이지 않았지만, 부하, 오니 농도가 낮은 제 1 기 및 제 2 기의 기간은, 비교예 1, 비교예 2 에서는 차압 상승이 격렬하고, 세정 빈도가 현저하게 짧아진 것에 반해, 실시예에서는 20 ? 30 일의 세정 간격을 유지할 수 있었다.The transition of sludge concentration is shown in FIG. 2, and the transition of interlude differential pressure is shown in FIG. In the third phase (61 to 90 days), the cleaning intervals of the membranes did not show any difference around 15 days, but the periods of the first and second phases with low load and sludge concentration were in Comparative Examples 1 and 2 In contrast to the sharp increase in the differential pressure and the markedly shortened washing frequency, in the examples, 20? A 30 day wash interval could be maintained.

막 막힘의 원인이 되는 조 내의 생물 대사 산물 (조 내 TOC) 농도는, 비교예 2 에서, 오니의 빼내기량을 줄인 20 일경까지는 높았지만, 그 이외에는 어느 계에서도 차이는 보이지 않았다. 본 실시예에 있어서의 차압 상승 속도의 저감은, 막분리조의 오니 농도를 높게 유지함으로써, 생물 대사 산물의 막 표면에 대한 흡착이 억제된 것에 의한 것이라고 생각된다.The concentration of the biological metabolite (TOC) in the tank which caused the clogging was high until 20 days when the sludge was removed in Comparative Example 2, but no difference was observed in any system other than that. The reduction in the differential pressure rising rate in the present embodiment is considered to be caused by the suppression of adsorption of the biometabolites to the membrane surface by maintaining the sludge concentration in the membrane separation tank.

이상의 실시예 및 비교예로부터도 분명한 바와 같이, 본 발명에 의하면, 충분량의 종오니가 얻어지지 않는 기동시나 저부하시에 있어서도, 막분리조에 있어서 막 여과에 적절한 오니 농도를 유지할 수 있어, 막에 의한 고액 분리를 안정적으로 실시할 수 있다.As is clear from the above examples and comparative examples, the present invention can maintain a sludge concentration suitable for membrane filtration in a membrane separation tank even at startup or at low load, when a sufficient amount of sludge is not obtained. Solid-liquid separation can be performed stably.

1 : 폭기조
3 : 막분리조
4 : 분리막
1: aeration tank
3: membrane separation tank
4: separator

Claims (4)

유기성 배수가 유입되는 폭기조와, 폭기조의 오니를 순환시키면서 막으로 고액 분리하는 막분리조를 구비한 막분리 활성 오니 장치를 사용하는 유기성 배수의 처리 방법에 있어서,
그 막분리조에 대한 오니의 순환량을 원수의 유기물 부하량에 따라 원수량의 1.5 ? 10 배 사이에서 전환하는 것을 특징으로 하는 유기성 배수의 처리 방법.
In the treatment method of organic wastewater using the membrane separation active sludge apparatus provided with the aeration tank into which organic wastewater flows in, and the membrane-separation tank which solid-separates into a membrane while circulating the sludge of an aeration tank,
The amount of sludge circulated to the membrane separation tank is 1.5? According to the organic load of the raw water. A method of treating organic drainage, characterized by switching between 10 times.
제 1 항에 있어서,
상기 막분리조의 오니 농도가 3,000 ? 20,000 ㎎/ℓ 가 되도록, 막분리조에 오니를 순환시키는 것을 특징으로 하는 유기성 배수의 처리 방법.
The method of claim 1,
The sludge concentration of the membrane separation tank is 3,000? A method for treating organic wastewater, wherein the sludge is circulated in the membrane separation tank so as to be 20,000 mg / l.
제 1 항 또는 제 2 항에 있어서,
잉여 오니로서, 1 일당 폭기조 및 막분리조의 전체 보유 오니량의 1/10 ? 1/50 을 빼내는 것을 특징으로 하는 유기성 배수의 처리 방법.
The method according to claim 1 or 2,
As surplus sludge, 1/10 of the total amount of sludge retained in the aeration tank and membrane separation tank per day. A method for treating organic wastewater, comprising extracting 1/50.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
유기성 배수가, 액정 내지 반도체 제조 공장으로부터 배출되는 것인 것을 특징으로 하는 유기성 배수의 처리 방법.
The method according to any one of claims 1 to 3,
Organic wastewater is discharged | emitted from a liquid crystal thru | or a semiconductor manufacturing plant, The processing method of organic wastewater characterized by the above-mentioned.
KR1020120031125A 2011-03-29 2012-03-27 Method of treating organic waste water by membrane separator activated sludge device KR101956383B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2011-072522 2011-03-29
JP2011072522A JP2012205997A (en) 2011-03-29 2011-03-29 Treatment method of organic wastewater by membrane separation activated sludge apparatus

Publications (2)

Publication Number Publication Date
KR20120112108A true KR20120112108A (en) 2012-10-11
KR101956383B1 KR101956383B1 (en) 2019-06-24

Family

ID=46987229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120031125A KR101956383B1 (en) 2011-03-29 2012-03-27 Method of treating organic waste water by membrane separator activated sludge device

Country Status (4)

Country Link
JP (1) JP2012205997A (en)
KR (1) KR101956383B1 (en)
CN (1) CN102730824A (en)
TW (1) TW201300329A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136699B2 (en) * 2013-07-23 2017-05-31 栗田工業株式会社 Biological treatment method for organic wastewater
JP6110276B2 (en) * 2013-10-25 2017-04-05 オルガノ株式会社 Oil-containing water treatment apparatus and oil-containing water treatment method
CN104671590B (en) * 2015-01-23 2017-12-29 先达恩那社水处理工程(天津)有限公司 The method of wastewater treatment of chip production line
JP6634862B2 (en) * 2015-03-16 2020-01-22 三菱ケミカル株式会社 Wastewater treatment method and wastewater treatment device
KR20200106960A (en) * 2018-02-27 2020-09-15 미쓰비시덴키 가부시키가이샤 Aeration amount control system and aeration amount control method
JP2020130077A (en) * 2019-02-21 2020-08-31 三菱ケミカルエンジニアリング株式会社 Anaerobic bacterium culture device equipped with mechanism for containing fine bubbles and ultrafine bubbles of gas containing nitrogen gas as main component in culture solution, and anaerobic bacterium culture method using the anaerobic bacterium culture device
WO2021192088A1 (en) * 2020-03-25 2021-09-30 三菱電機株式会社 Water treatment device and water treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189993A (en) 1998-12-24 2000-07-11 Mitsubishi Rayon Co Ltd Activated sludge treatment by membrane separation
JP2004008176A (en) 2002-06-11 2004-01-15 Kurita Water Ind Ltd Method for monitoring and controlling system of mixed microorganisms
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2009050764A (en) 2007-08-24 2009-03-12 Kurita Water Ind Ltd Membrane separation type wastewater treatment method and apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156410C (en) * 2000-12-15 2004-07-07 中国科学院生态环境研究中心 Split type film biological reactor and water treatment method
JP2002192182A (en) * 2000-12-26 2002-07-10 Kubota Corp Ultrahigh concentration membrane separation activated sludge method
EP2065343B1 (en) * 2006-09-21 2013-09-04 Asahi Kasei Chemicals Corporation Method of wastewater disposal
CN101514046A (en) * 2008-02-21 2009-08-26 东丽纤维研究所(中国)有限公司 Treatment process for manganese-containing organic wastewater membrane bioreactor
JP5614872B2 (en) * 2008-06-06 2014-10-29 旭化成ケミカルズ株式会社 Organic wastewater treatment method and wastewater treatment equipment
JP5469947B2 (en) * 2009-07-28 2014-04-16 株式会社神鋼環境ソリューション Wastewater treatment method
JP2012205992A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus and treatment method of organic matter containing wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189993A (en) 1998-12-24 2000-07-11 Mitsubishi Rayon Co Ltd Activated sludge treatment by membrane separation
JP2004008176A (en) 2002-06-11 2004-01-15 Kurita Water Ind Ltd Method for monitoring and controlling system of mixed microorganisms
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2009050764A (en) 2007-08-24 2009-03-12 Kurita Water Ind Ltd Membrane separation type wastewater treatment method and apparatus

Also Published As

Publication number Publication date
CN102730824A (en) 2012-10-17
JP2012205997A (en) 2012-10-25
KR101956383B1 (en) 2019-06-24
TW201300329A (en) 2013-01-01

Similar Documents

Publication Publication Date Title
KR20120112108A (en) Method of treating organic waste water by membrane separator activated sludge device
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
US20130256226A1 (en) Method and apparatus for treating organic wastewater
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
KR20120112142A (en) Method for treatment of organic substance-containing wastewater and device for treatment of organic substance-containing wastewater
JP2010017614A (en) Method and apparatus for treating organic wastewater
JP2011173040A (en) Waste water treatment method and apparatus
JP2008036514A (en) Wastewater treating method
JP2010017615A (en) Method and apparatus for treating dmso-containing wastewater
UA113511C2 (en) METHOD AND DEVICES FOR BIOLOGICAL PURPOSE OF COXOCHEMICAL MANUFACTURING
JP2012192367A (en) Treatment device for organic waste water containing nitrogen
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
JP6123840B2 (en) Organic wastewater treatment method
KR19980083279A (en) Treatment method of high concentration organic wastewater and nutrients using immersion type microfiltration membrane-activated sludge process
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
JP2012206041A (en) Treatment method of organic wastewater
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP5105608B2 (en) Waste water treatment system and operation method thereof
KR20120112143A (en) Method for treatment of organic substance-containing wastewater
JP5999087B2 (en) Water treatment apparatus and water treatment method
JP2009189943A (en) Water treatment method and apparatus
JP7119568B2 (en) Water treatment device and water treatment method
JP5817177B2 (en) Organic wastewater treatment equipment
JP6614175B2 (en) Organic wastewater treatment method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant