KR20120103406A - System and method for supplying fuel for high pressure natural gas injection engine - Google Patents
System and method for supplying fuel for high pressure natural gas injection engine Download PDFInfo
- Publication number
- KR20120103406A KR20120103406A KR1020110101399A KR20110101399A KR20120103406A KR 20120103406 A KR20120103406 A KR 20120103406A KR 1020110101399 A KR1020110101399 A KR 1020110101399A KR 20110101399 A KR20110101399 A KR 20110101399A KR 20120103406 A KR20120103406 A KR 20120103406A
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- refrigerant
- boil
- liquefied
- high pressure
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0245—High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/38—Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0203—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
- F02M21/0215—Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0221—Fuel storage reservoirs, e.g. cryogenic tanks
- F02M21/0224—Secondary gaseous fuel storages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0287—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/089—Layout of the fuel vapour installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M31/00—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
- F02M31/02—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
- F02M31/16—Other apparatus for heating fuel
- F02M31/18—Other apparatus for heating fuel to vaporise fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M31/00—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
- F02M31/20—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
- Y02T70/5218—Less carbon-intensive fuels, e.g. natural gas, biofuels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Ocean & Marine Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
본 발명은 고압 천연가스 분사 엔진의 연료 공급 시스템 및 공급 방법에 관한 것으로서, 더욱 상세하게는 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 사용하는 해상 구조물에 있어서 증발가스 재액화에 사용된 후 버려지는 액화에너지를 회수하여 재액화에 필요한 전체 에너지 소요량을 절감할 수 있는 고압 천연가스 분사 엔진용 연료 공급 시스템 및 방법에 관한 것이다.The present invention relates to a fuel supply system and a supply method of a high pressure natural gas injection engine, and more particularly, it is discarded after being used for reliquefaction of boil-off gas in offshore structures using a high pressure natural gas injection engine, such as a ME-GI engine. Relates to a fuel supply system and method for a high pressure natural gas injection engine capable of recovering liquefied energy and reducing the overall energy requirement for reliquefaction.
근래, LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있는 추세이다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다.Recently, the consumption of liquefied gas such as LNG (Liquefied Natural Gas) and LPG (Liquefied Petroleum Gas) is increasing worldwide. The liquefied gas is transported in a gas state through a gas pipe on land or sea, or transported to a distant consumer while stored in a liquefied gas carrier in a liquefied state. Liquefied gas such as LNG or LPG is obtained by cooling natural gas or petroleum gas to cryogenic temperature (approximately -163 ℃ in case of LNG), and its volume is greatly reduced than in gas state, so it is very suitable for long distance transportation by sea. .
액화가스 운반선은, 액화가스를 싣고 바다를 운항하여 육상 소요처에 이 액화가스를 하역하기 위한 것이며, 이를 위해, 액화가스의 극저온에 견딜 수 있는 저장탱크(흔히, '화물창'이라 함)를 포함한다.Liquefied gas carriers are used to load liquefied gas into the sea and unload this liquefied gas to land requirements. To this end, a liquefied gas carrier includes a storage tank (commonly referred to as a cargo hold) that can withstand the cryogenic temperature of liquefied gas. do.
이와 같이 극저온 상태의 액화가스를 저장할 수 있는 저장탱크가 마련된 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV (Regasification Vessel)와 같은 선박이나 LNG FSRU (Floating Storage and Regasification Unit), LNG FPSO (Floating, Production, Storage and Off-loading)와 같은 구조물 등을 들 수 있다.Examples of offshore structures in which storage tanks for storing liquefied gas in such a cryogenic state are provided include vessels such as LNG Regasification Vessel (LV RV), LNG Floating Storage and Regasification Unit (FSRU), LNG Floating, Production, Structures such as storage and off-loading).
LNG RV는 자력 항해 및 부유가 가능한 액화가스 운반선에 LNG 재기화 설비를 설치한 것이고, LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 액화 천연가스를 저장탱크에 저장한 후 필요에 따라 액화 천연가스를 기화시켜 육상 수요처에 공급하는 해상 구조물이다. 그리고, LNG FPSO는 채굴된 천연가스를 해상에서 정제한 후 직접 액화시켜 저장탱크 내에 저장하고, 필요시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 해상 구조물이다. 본 명세서에서 해상 구조물이란, 액화가스 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 구조물까지도 모두 포함하는 개념이다.LNG RV is a LNG regasification facility installed on a liquefied gas carrier that can be self-driving and floating. LNG FSRU stores liquefied natural gas, which is unloaded from LNG carriers, in a storage tank after liquefaction as needed. It is an offshore structure that vaporizes natural gas and supplies it to land demand. In addition, LNG FPSO is a marine structure that is used to directly purify mined natural gas from the sea and liquefy directly to store it in a storage tank, and to transfer LNG stored in the storage tank to an LNG carrier if necessary. In the present specification, the offshore structure is a concept including not only vessels such as liquefied gas carriers and LNG RVs but also structures such as LNG FPSO and LNG FSRU.
천연가스의 액화온도는 상압에서 약 -163℃의 극저온이므로, LNG는 그 온도가 상압에서 -163℃ 보다 약간만 높아도 증발된다. 종래의 LNG 운반선의 경우를 예를 들어 설명하면, LNG 운반선의 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열이 LNG에 지속적으로 전달되므로, LNG 운반선에 의해 LNG를 수송하는 도중에 LNG가 LNG 저장탱크 내에서 지속적으로 기화되어 LNG 저장 탱크 내에 증발가스(BOG; Boil-Off Gas)가 발생한다.The liquefaction temperature of natural gas is about -163 ° C at ambient pressure, so LNG is evaporated even if its temperature is slightly higher than -163 ° C at normal pressure. In the case of a conventional LNG carrier, for example, the LNG storage tank of the LNG carrier is insulated, but since the external heat is continuously transmitted to the LNG, LNG is transported while the LNG carrier is transporting the LNG. Boil-off gas (BOG) is generated in the LNG storage tank by continuously vaporizing it in the LNG storage tank.
발생된 증발가스는 저장탱크 내의 압력을 증가시키며 선박의 요동에 따라 액화가스의 유동을 가속시켜 구조적인 문제를 야기시킬 수 있기 때문에, 증발가스의 발생을 억제할 필요가 있다.Since the generated boil-off gas increases the pressure in the storage tank and accelerates the flow of the liquefied gas in response to the fluctuation of the vessel, it may cause structural problems, so it is necessary to suppress the generation of the boil-off gas.
종래, 액화가스 운반선의 저장탱크 내에서의 증발가스를 억제하기 위해, 증발가스를 저장탱크의 외부로 배출시켜 소각해 버리는 방법, 증발가스를 저장탱크의 외부로 배출시켜 재액화 장치를 통해 재액화시킨 후 다시 저장탱크로 복귀시키는 방법, 선박의 추진기관에서 사용되는 연료로서 증발가스를 사용하는 방법, 저장탱크의 내부압력을 높게 유지함으로써 증발가스의 발생을 억제하는 방법 등이 단독으로 혹은 복합적으로 사용되고 있었다.Conventionally, in order to suppress evaporated gas in a storage tank of a liquefied gas carrier, a method of discharging the evaporated gas to the outside of the storage tank for incineration, and discharging the evaporated gas to the outside of the storage tank to reliquefy through a reliquefaction apparatus. And the method of returning to the storage tank again, using the boil-off gas as fuel used in the ship's propulsion engine, and suppressing the generation of the boil-off gas by maintaining the internal pressure of the storage tank alone or in combination. It was used.
증발가스 재액화 장치가 탑재된 종래의 해상 구조물의 경우, 저장탱크의 적정 압력 유지를 위해 저장탱크 내부의 증발가스를 저장탱크 외부로 배출시켜 재액화 장치를 통해 재액화시키게 되는데, 재액화 작업이 이루어지기 전에 증발가스를 대략 4 내지 8 bara 정도의 저압으로 압축시켜 재액화 장치로 공급한다. 압축된 증발가스는 질소 냉동 사이클을 포함하는 재액화 장치에서 초저온으로 냉각된 질소와의 열교환을 통해 재액화된 후 저장탱크로 복귀된다.In the case of a conventional offshore structure equipped with a boil-off gas reliquefaction device, the boil-off gas inside the storage tank is discharged to the outside of the storage tank in order to maintain an appropriate pressure in the storage tank to be re-liquefied through the re-liquefaction device. The evaporated gas is compressed to a low pressure of approximately 4 to 8 bara and fed to the reliquefaction apparatus before it is done. The compressed boil-off gas is liquefied through heat exchange with nitrogen cooled to cryogenic temperatures in a reliquefaction apparatus including a nitrogen refrigeration cycle and then returned to the storage tank.
증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하지만, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에 재액화된 액화증발가스의 압력이 지나치게 높으면 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하게 된다. 따라서, 재액화 효율은 낮지만 상기한 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없다는 문제가 있다.In order to increase the efficiency of reliquefaction of the boil-off gas, it is preferable to compress the boil-off gas to a high pressure. However, since the LNG stored in the storage tank is kept at a normal pressure, if the pressure of the re-liquefied liquefied liquefied gas is too high, When flash gas (flash gas) is generated. Therefore, although the re-liquefaction efficiency is low, there is a problem in that the boil-off gas can be compressed at a low pressure of about 4 to 8 bara.
즉, 도 1에 도시된 바와 같이, 종래에는 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 4 내지 8 bara 정도의 저압으로 압축시킨 후, 이 저압 BOG를 질소가스를 냉매로 사용하는 재액화 장치로 공급한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 저장탱크로 복귀하면서 플래시 가스가 발생하는 문제가 있었으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 저압으로 압축시킬 수밖에 없었다.That is, as shown in FIG. 1, conventionally, after supplying the boil-off gas generated in the storage tank, that is, NBOG to the boil-off gas compressor and compressing it to a low pressure of about 4 to 8 bara, the low-pressure BOG is a nitrogen gas refrigerant. It is supplied to the reliquefaction apparatus used. In the reliquefaction apparatus, the liquefied boil-off gas, that is, LBOG, had a problem in that flash gas was generated when it returned to the storage tank, thereby compressing the pressure of the boil-off gas to a low pressure in the boil-off gas compressor.
또한, 종래 저장탱크에서 발생된 증발가스를 선박의 추진기관에서 사용되는 연료로서 사용하는 방법이 알려져 있었으며, 증발가스를 연료로서 사용할 수 있는 종래의 추진기관으로서는 스팀 터빈이나 DFDE 등의 엔진이 공지되어 있었다. 그런데, 스팀 터빈이나 DFDE는 수 bar 내지 수십 bar 정도의 압력으로 압축된 증발가스를 연료로서 소모할 수는 있지만 중유 등을 연료로서 사용하는 디젤 엔진에 비해 효율이 낮다는 문제가 있어, 선박의 주 추진기관으로 활용하기에는 선결되어야 할 문제가 많은 것이었다.In addition, a method of using evaporated gas generated in a storage tank as a fuel used in a propulsion engine of a ship has been known. As a conventional propulsion engine capable of using evaporated gas as a fuel, an engine such as a steam turbine or a DFDE is known. there was. By the way, steam turbines and DFDEs can consume the boil-off gas compressed at a pressure of several bar to several tens of bar as fuel, but they are less efficient than diesel engines using heavy oil as fuel. There were many problems that had to be pre-empted to be used as a driving agency.
결국, 종래에는 저장탱크에서 발생되는 증발가스는 재액화 장치를 통해 재액화한 후 저장탱크에 복귀시키는 것이 전형적인 증발가스 처리방법으로 활용되고 있었으며, 재액화 이후 저장탱크 복귀시 플래시 가스 발생을 가능한 한 억제하기 위해 재액화되는 증발가스의 압력을 높이지 않는 것이 기본적인 개념으로 굳어져 있었다.As a result, conventionally, the evaporated gas generated from the storage tank is re-liquefied through the reliquefaction apparatus and then returned to the storage tank. As a typical method of treating the evaporated gas, the flash gas is generated as much as possible. The basic concept was to not raise the pressure of the re-liquefied boil-off gas to suppress it.
증발가스를 재액화시키는 재액화 장치로서는 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 것이 사용될 수 있다.
As the reliquefaction apparatus for reliquefying the boil-off gas, those disclosed in WO 2007/117148 and WO 2009/136793 can be used.
또한, 증발가스의 재액화를 위하여 종래에는 질소 냉동 사이클, 혼합냉매 사이클 등이 이용되는데, 질소 냉동 사이클은 냉매로서 질소가스(N2)를 사용하여 액화 효율이 낮은 문제가 있고, 혼합냉매 사이클은 냉매로서 질소와 탄화수소 가스 등이 혼합된 냉매를 사용하기 때문에 안정성이 떨어지는 문제가 있다.In addition, conventionally, a nitrogen refrigeration cycle, a mixed refrigerant cycle, and the like are used to reliquefy the boil-off gas. However, the nitrogen refrigeration cycle has a problem of low liquefaction efficiency using nitrogen gas (N 2 ) as a refrigerant. Since a refrigerant in which nitrogen and a hydrocarbon gas, etc. are mixed as the refrigerant is used, there is a problem of inferior stability.
더욱 상세하게는, 종래의 선박이나 해상 플랜트 등의 해상용 LNG 재액화 장치에서는 터보 팽창기(tubo expander) 방식의 질소 역브레이튼 사이클을 구현하여 증발가스를 재액화하였고, 육상용 LNG 액화 플랜트에서는 혼합냉매를 이용하는 줄-톰슨 냉동 사이클을 구현하여 천연가스를 액화시켰다. 해상용으로 사용하던 질소 역브레이튼 사이클은 상대적으로 장치의 구성이 단순하여 공간이 한정된 선박이나 해상 구조물에서 유리하지만 효율이 낮은 문제가 있고, 육상용으로 사용하던 혼합냉매 줄-톰슨 냉동 사이클은 상대적으로 효율이 높지만 혼합냉매의 특성상 기액상태가 동시에 존재할 때 이를 분리하기 위한 세퍼레이터를 사용해야 하는 등 장치 구성이 복잡해지는 문제가 있다.More specifically, in a conventional LNG reliquefaction apparatus such as a ship or a marine plant, a turbo expander-type nitrogen reverse Brayton cycle was implemented to reliquefy the boil-off gas, and a mixed refrigerant in a land LNG liquefaction plant. A Joule-Thompson refrigeration cycle was implemented to liquefy natural gas. Nitrogen reverse Brayton cycles used for marine use are advantageous in ships or offshore structures where space is limited due to their relatively simple configuration, but have low efficiency. The mixed refrigerant Joule-Thomson refrigeration cycles used for land use are relatively Although the efficiency is high, due to the characteristics of the mixed refrigerant, there is a problem in that the device configuration is complicated, such as the use of a separator to separate when a gas-liquid state exists at the same time.
그 밖에도 LNG 등의 액화가스를 저장하는 저장탱크를 구비한 해상 구조물에 대하여, 저장탱크에서 지속적으로 발생하는 증발가스를 효율적으로 처리하되, 플래시 가스의 발생을 억제할 수 있는 방법에 대한 연구 개발이 계속해서 이루어질 필요가 있다.In addition, for offshore structures equipped with storage tanks for storing liquefied gas such as LNG, research and development on how to efficiently treat the evaporated gas continuously generated in the storage tanks and suppress the generation of flash gas It needs to be done over and over again.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 액화가스 저장탱크로부터 발생하는 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진의 연료로 활용하되, 증발가스 재액화에 사용된 후 버려지는 액화에너지를 회수하여 재액화에 필요한 전체 에너지 소요량을 절감할 수 있는 고압 천연가스 분사 엔진용 연료 공급 시스템 및 공급 방법을 제공하고자 하는 것이다.The present invention is to solve the conventional problems as described above, while utilizing the boil-off gas generated from the liquefied gas storage tank as a fuel of a high-pressure natural gas injection engine, for example, ME-GI engine, used to re-liquefy the boil-off gas It is to provide a fuel supply system and a supply method for a high-pressure natural gas injection engine that can recover the liquefied energy that is discarded afterwards to reduce the total energy required for reliquefaction.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치, 상기 재액화 장치에서 액화된 액화증발가스를 압축시키는 고압 펌프, 그리고 상기 고압 펌프에서 압축된 액화증발가스를 기화시키기 위한 고압 기화기를 포함하여, 고압 천연가스 분사 엔진에 연료를 공급하는 시스템으로서, 상기 증발가스 압축부에서 압축된 증발가스와 상기 고압 펌프에서 압축된 액화증발가스를 열교환함으로써 증발가스를 냉각하여 상기 재액화 장치에 공급하는 동시에 액화증발가스를 가열하여 상기 고압 기화기에 공급하는 열교환기를 포함하며, 상기 재액화 장치는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스, 상기 콜드 박스에서 가열된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템이 제공된다.According to an aspect of the present invention for achieving the above object, the evaporation gas compression unit for compressing the evaporation gas generated in the storage tank received from the storage tank, the liquefied gas supplied by the evaporation gas compressed in the evaporation gas compression unit A high pressure natural gas injection engine comprising a reliquefaction apparatus, a high pressure pump for compressing liquefied liquefied gas liquefied in the reliquefaction apparatus, and a high pressure vaporizer for vaporizing liquefied liquefied gas compressed in the high pressure pump. A system comprising: cooling an evaporation gas by heat-exchanging an evaporation gas compressed by the evaporation gas compression unit with a liquefied evaporation gas compressed by the high pressure pump, and supplying the liquefied evaporation gas to the high pressure vaporizer. And a heat exchanger, wherein the reliquefaction apparatus includes a heat bridge between a refrigerant and an evaporation gas. The cold box, compression means for compressing the refrigerant heated in the cold box, expansion means for reducing the temperature by expanding the compressed refrigerant, and refrigerant gas-liquid separator for separating the refrigerant in the gas state and the liquid state Provided is a fuel supply system for a high pressure natural gas injection engine comprising a.
상기 연료 공급 시스템은, .상기 재액화 장치에서 냉각 및 액화된 액화증발가스를 공급받아 기체 성분을 분리하여 액체 성분만을 상기 고압 펌프에 공급하기 위한 버퍼 탱크를 더 포함하는 것이 바람직하다.The fuel supply system preferably further includes a buffer tank for receiving a cooled and liquefied liquefied evaporation gas from the reliquefaction apparatus to separate gaseous components and supply only liquid components to the high pressure pump.
상기 증발가스 압축부는, 증발가스를 압축하는 하나 이상의 증발가스 압축기와, 상기 증발가스 압축기에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기를 포함하는 것이 바람직하다.The boil-off gas compressor may include at least one boil-off gas compressor for compressing the boil-off gas and at least one intermediate cooler for cooling the boil-off gas whose temperature has risen while being compressed by the boil-off gas compressor.
상기 저장탱크에서 발생되어 배출된 증발가스는, 상기 증발가스 압축부에서 12 내지 45 bara(절대압력)로 압축된 후 상기 재액화 장치에 공급되는 것이 바람직하다.The boil-off gas generated and discharged from the storage tank is preferably compressed to 12 to 45 bara (absolute pressure) in the boil-off gas compression unit and then supplied to the reliquefaction apparatus.
상기 재액화 장치는 복수의 냉매 기액분리기를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기에는 상류측에 배치되는 냉매 기액분리기에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 다시 혼합된 후 공급되는 것이 바람직하다.The reliquefaction apparatus includes a plurality of refrigerant gas-liquid separators, and among the plurality of refrigerant gas-liquid separators, the refrigerant gas-liquid separator disposed at the downstream side is a gaseous refrigerant and a liquid state separated from the refrigerant gas-liquid separator disposed upstream. It is preferable that the refrigerants of the mixture are supplied after being mixed again.
복수의 냉매 기액분리기 중에서 상류측에 배치되는 냉매 기액분리기에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기에 공급되기 전에, 냉매 압축기에 의해 압축되고 냉매 냉각기에 의해 냉각되는 과정을 거치는 것이 바람직하다.The gaseous refrigerant separated from the refrigerant gas-liquid separator disposed upstream of the plurality of refrigerant gas-liquid separators is compressed by the refrigerant compressor and cooled by the refrigerant cooler before being supplied to the refrigerant gas-liquid separator disposed most downstream. It is preferable to go through.
또한, 본 발명의 또 다른 측면에 따르면, 액화가스를 저장하는 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 배출시켜 압축하고, 압축된 증발가스를 재액화 장치에서 액화하고, 액화된 액화증발가스를 고압으로 압축시킨 후 기화시켜 고압 천연가스 분사 엔진에 연료로서 공급하는 연료 공급 방법으로서, 상기 재액화 장치는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스, 상기 콜드 박스에서 가열된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 복수의 냉매 기액분리기를 포함하며, 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기에는 상류측에 배치되는 냉매 기액분리기에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 다시 혼합된 후 공급되는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 방법이 제공된다.In addition, according to another aspect of the present invention, the evaporated gas generated in the storage tank for storing the liquefied gas is discharged from the storage tank and compressed, liquefied compressed boiled gas in the reliquefaction apparatus, liquefied liquefied evaporation gas Is a fuel supply method for compressing the gas to a high pressure and then vaporizing and supplying it as a fuel to the high pressure natural gas injection engine, wherein the reliquefaction apparatus is configured to compress a cold box in which heat exchange between a refrigerant and an evaporation gas is performed, And a plurality of refrigerant gas-liquid separators for separating the refrigerant in the gaseous state and the liquid state, and an expansion means for expanding the compressed refrigerant to lower the temperature, and the most downstream of the plurality of refrigerant gas-liquid separators. The refrigerant gas-liquid separator disposed in the gaseous phase separator separated from the refrigerant gas-liquid separator disposed upstream Provided is a fuel supply method for a high pressure natural gas injection engine, wherein the refrigerant and the liquid refrigerant are mixed again and supplied.
상기 연료 공급 방법은, 액화되기 전의 증발가스와 기화되기 전의 액화증발가스를 열교환함으로써 액화증발가스가 가지는 액화 에너지를 증발가스가 회수하여 사용함으로써 증발가스를 액화하기 위한 에너지를 절감하는 것이 바람직하다.In the fuel supply method, it is preferable to reduce the energy for liquefying the boil-off gas by recovering and using the liquefied energy of the liquefied boil-off gas by heat-exchanging the boil-off gas before liquefaction with the liquefied evaporation gas before vaporization.
본 발명에 따르면, 액화가스 저장탱크로부터 발생하는 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진의 연료로 활용하되, 증발가스 재액화에 사용된 후 버려지는 액화에너지를 회수하여 재액화에 필요한 전체 에너지 소요량을 절감할 수 있는 고압 천연가스 분사 엔진용 연료 공급 시스템 및 방법이 제공될 수 있다.According to the present invention, while using the evaporated gas generated from the liquefied gas storage tank as a fuel of a high-pressure natural gas injection engine, such as a ME-GI engine, to recover the liquefied energy that is discarded after being used for the reliquefaction of the boil-off gas for reliquefaction A fuel supply system and method can be provided for a high pressure natural gas injection engine that can reduce the overall energy requirement required.
본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템 및 방법에 의하면, 증발가스의 재액화에 사용된 냉열을 버리지 않고 회수하여 활용함에 따라 액화에너지를 절감할 수 있게 된다.According to the fuel supply system and method for a high-pressure natural gas injection engine of the present invention, it is possible to save the liquefied energy by recovering and utilizing the cold heat used for the reliquefaction of the boil-off gas.
또한, 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템 및 방법에 의하면, 고압 천연가스 분사 엔진에 연료로서 공급하기 위해 액화증발가스를 기화시키는 단계에서 기화에 필요한 열 매개체의 열 부하를 감소시킬 수 있게 된다.Further, according to the fuel supply system and method for a high pressure natural gas injection engine of the present invention, the heat load of the heat medium required for vaporization can be reduced in the step of vaporizing liquefied evaporation gas for supplying as a fuel to the high pressure natural gas injection engine. Will be.
도 1은 종래기술에 따른 증발가스 재액화를 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 2는 본 발명에 따른 연료 공급을 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 3b는 본 발명의 제1 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 4a는 본 발명의 비폭발성 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4b는 탄화수소 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4c는 천연가스의 가압 압력에 따른 액화 온도를 나타내는 그래프,
도 5는 비폭발성 혼합냉매를 구성하기 위한 냉매 성분들의 끓는점을 나타내는 그래프,
도 6은 증발가스의 재액화 장치에서 비폭발성 혼합냉매 냉동사이클을 사용한 경우와 질소가스 냉동 사이클을 사용한 경우의 소모동력을 비교한 그래프들,
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 7b는 본 발명의 제2 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8b는 본 발명의 제3 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9b는 본 발명의 제4 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도, 그리고
도 10b는 본 발명의 제5 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도이다.1 is a schematic block diagram for explaining a method for treating boil-off gas through re-liquefaction of boil-off gas according to the prior art;
2 is a schematic block diagram for explaining a method for treating boil-off gas through fuel supply according to the present invention;
3A is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to the first embodiment of the present invention;
3B is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the first embodiment of the present invention;
Figure 4a is a graph showing the freezing point and boiling point of the components contained in the non-explosive mixed refrigerant of the present invention,
Figure 4b is a graph showing the freezing point and boiling point of the components contained in the hydrocarbon mixed refrigerant,
Figure 4c is a graph showing the liquefaction temperature according to the pressurized pressure of natural gas,
5 is a graph showing boiling points of refrigerant components for constructing a non-explosive mixed refrigerant;
Figure 6 is a graph comparing the power consumption when using the non-explosive mixed refrigerant refrigeration cycle and the nitrogen gas refrigeration cycle in the reliquefaction apparatus of the boil-off gas,
7A is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a second embodiment of the present invention;
7B is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the second embodiment of the present invention;
8A is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a third embodiment of the present invention;
8B is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the third embodiment of the present invention;
9A is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a fourth embodiment of the present invention;
9B is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the fourth embodiment of the present invention;
10A is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a fifth embodiment of the present invention; and
10B is a configuration diagram showing a fuel supply system for a high pressure natural gas injection engine according to a modification of the fifth embodiment of the present invention.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the following examples can be modified in various forms, and the scope of the present invention is not limited to the following examples.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.In general, it is nitrogen oxides (NOx) and sulfur oxides (SOx) that are regulated by the International Maritime Organization among the waste gas discharged from ships, and is trying to regulate the emission of carbon dioxide (CO 2 ). Particularly, in the case of nitrogen oxide (NOx) and sulfur oxides (SOx), it was submitted through the Protocol of the Maritime Pollution Prevention Convention (MARPOL) in 1997, In May, the requirements for the fermentation were satisfied and the regulations are being implemented.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위하여 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선을 위하여 고압 천연가스 분사 엔진, 예를 들어 ME-GI 엔진이 개발되어 사용되고 있다.Therefore, in order to meet these regulations, various methods have been introduced to reduce NOx emissions. Among these methods, a high pressure natural gas injection engine, for example, a ME-GI engine, has been developed and used for LNG carriers. .
이와 같은 ME-GI 엔진은 LNG(Liquefied Natural Gas)를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 해상 구조물(본 명세서에서 해상 구조물이란, LNG 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 해상 플랜트까지도 모두 포함하는 개념이다.)에 설치될 수 있으며, 이 경우 천연가스를 연료로 사용하게 되며, 그 부하에 따라 대략 150 ∼ 400 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.Such ME-GI engines are marine structures such as LNG carriers for storing and transporting LNG (Liquefied Natural Gas) in cryogenic storage tanks. It can be installed in a marine plant such as LNG FPSO and LNG FSRU.) In this case, natural gas is used as fuel, and high pressure of about 150 ~ 400 bara (absolute pressure) depending on the load. Gas supply pressure is required.
ME-GI 엔진과 같은 고압 천연가스 분사 엔진을 탑재한 해상 구조물의 경우에도, LNG 저장탱크에서 발생하는 증발가스(Boil Off Gas; BOG)를 처리하기 위해서는 재액화(Reliquefaction) 장치가 여전히 필요하게 된다. ME-GI 엔진과 같은 고압 천연가스 분사 엔진과, 증발가스를 처리하기 위한 재액화 장치를 모두 탑재한 종래의 해상 구조물의 경우, 가스와 연료유 가격의 변화와 배출가스의 규제 정도에 따라 증발가스를 연료로 사용할 것인지, 아니면 증발가스를 재액화하여 저장탱크로 보내고 중유(Heavy Fuel Oil; HFO)를 사용할 것인지 선택할 수 있는 장점이 있으며, 특히, 특정규제를 받는 해역을 통과시 간편하게 LNG를 기화시켜서 연료로 사용할 수 있다는 장점이 있고, 차세대 친환경적인 엔진으로서 효율이 50%에 육박하여 향후에는 LNG 운반선의 메인 엔진으로서 사용될 수 있다.
Even for offshore structures equipped with high pressure natural gas injection engines, such as ME-GI engines, a reliquefaction device is still needed to treat Boil Off Gas (BOG) from LNG storage tanks. . In the case of a conventional offshore structure equipped with both a high-pressure natural gas injection engine such as a ME-GI engine and a reliquefaction device for treating boil-off gas, the boil-off gas is changed depending on the change in gas and fuel oil prices and the degree of regulation of exhaust gas. Can be used as a fuel or to liquefy evaporated gas to a storage tank and use heavy fuel oil (HFO) .In particular, it is possible to easily vaporize LNG when passing through certain regulated waters. It has the advantage of being able to be used as fuel, and is the next-generation eco-friendly engine, which can reach 50% efficiency and can be used as the main engine of LNG carriers in the future.
도 2에는 본 발명에 따른 연료 공급 방법을 설명하기 위한 개략적인 블록선도가 도시되어 있다. 본 발명의 연료 공급 방법에 의하면, 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 12 내지 45 bara 정도의 중압으로 압축시킨 후, 이 중압 BOG를 비폭발성 혼합냉매(Non Flammable Mixed Refrigerant)를 냉매로 사용하는 재액화 장치로 공급한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 연료 공급 시스템에서 ME-GI 엔진에서 요구하는 압력(예컨대 400 bara 정도의 고압)으로 압축된 후 ME-GI 엔진에 연료로서 공급된다. 본 발명에 의하면, 재액화 장치에서 연료 공급 시스템에 공급되는 LBOG가 저장탱크로 복귀하지 않으므로 종래기술에서와 같이 플래시 가스가 발생하는 문제를 방지할 수 있으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 중압으로 압축시킬 수있다.2 is a schematic block diagram illustrating a fuel supply method according to the present invention. According to the fuel supplying method of the present invention, after supplying the boil-off gas generated from the storage tank, that is, NBOG to the boil-off gas compressor and compressing it to medium pressure of about 12 to 45 bara, the medium pressure BOG is a non-flammable mixed refrigerant (Non Flammable). Mixed Refrigerant) is supplied to the reliquefaction apparatus using the refrigerant. The liquefied boil-off gas, LBOG, in the reliquefaction apparatus is compressed to the pressure required by the ME-GI engine in the fuel supply system (high pressure of about 400 bara, for example) and then supplied as fuel to the ME-GI engine. According to the present invention, since the LBOG supplied to the fuel supply system in the reliquefaction apparatus does not return to the storage tank, it is possible to prevent a problem of generating flash gas as in the prior art, and thus, the pressure of the boil-off gas in the evaporative gas compressor. Can be compressed to medium pressure.
본 명세서에 있어서, 고압이 의미하는 압력범위는 고압 천연가스 분사 엔진에서 요구하는 연료 공급 압력인 대략 150 내지 400 bara 정도의 압력이고, 중압이 의미하는 압력범위는 증발가스 압축부(13)에서 증발가스를 압축하는 대략 12 내지 45 bara 정도의 압력이고, 저압이 의미하는 압력범위는 종래 기술에서 증발가스를 재액화 장치로 공급하기 위해 압축하는 대략 4 내지 8 bara 정도의 압력이다.
In the present specification, the pressure range of the high pressure means a pressure of about 150 to 400 bara, which is a fuel supply pressure required by the high pressure natural gas injection engine, and the pressure range of the medium pressure means the evaporation in the evaporation
(제1 실시형태)(First embodiment)
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 3a에는, 천연가스를 연료로 사용할 수 있는 ME-GI 엔진을 설치한 LNG 운반선에 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템이 적용된 예가 도시되어 있지만, 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템은 액화가스 저장탱크가 설치된 모든 종류의 해상 구조물, 즉 LNG 운반선, LNG RV와 같은 선박을 비롯하여, LNG FPSO, LNG FSRU와 같은 해상 플랜트에 적용될 수 있다.FIG. 3A is a block diagram showing a fuel supply system of an offshore structure, in particular a liquefied natural gas carrier, having a high pressure natural gas injection engine, such as a ME-GI engine, according to a first embodiment of the present invention. 3A shows an example in which a fuel supply system for a high pressure natural gas injection engine of the present invention is applied to an LNG carrier equipped with a ME-GI engine capable of using natural gas as a fuel, but for the high pressure natural gas injection engine of the present invention The fuel supply system can be applied to all types of offshore structures with liquefied gas storage tanks, namely ships such as LNG carriers, LNG RVs, as well as offshore plants such as LNG FPSOs and LNG FSRUs.
본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급된다. 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.According to the fuel supply system of the offshore structure having the high pressure natural gas injection engine according to the first embodiment of the present invention, the boil-off gas (NBOG) generated and discharged from the liquefied
고압 펌프(33)에 의해 고압으로 압축된 액화증발가스(즉, 액화천연가스)는 초임계압 상태이므로 사실상 액상과 기상을 구별할 수 없다. 그렇지만 본 명세서에서는 고압 상태에서 액화증발가스를 주위온도(혹은 고압 천연가스 분사 엔진에서 요구하는 온도)까지 가열하는 것을 기화시킨다고 표현하고 있으며, 고압 상태에서 액화증발가스를 주위온도까지 가열하는 장치를 고압 기화기라고 표현한다.The liquefied evaporation gas (ie, liquefied natural gas) compressed to a high pressure by the
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.Storage tanks are equipped with sealed and insulated barriers to store liquefied gases, such as LNG, in cryogenic conditions, but they cannot completely block heat from the outside. Accordingly, the liquefied gas is continuously evaporated in the
배출된 증발가스는 증발가스 배출라인(L1)을 통해 증발가스 압축부(13)에 공급된다. 증발가스 압축부(13)는 하나 이상의 증발가스 압축기(14)와, 이 증발가스 압축기(14)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함한다. 도 3a에서는 5개의 증발가스 압축기(14)와 5개의 중간 냉각기(15)를 포함하는 5단 압축의 증발가스 압축부(13)가 예시되어 있다.The discharged boil-off gas is supplied to the boil-off
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 재액화 장치(20)에 공급된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다. 재액화 장치(20)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다.The boil-off gas compressed by the boil-off
콜드 박스(21)에서의 열교환을 통해 재액화된 증발가스는 버퍼 탱크(31)에서 기체와 액체 상태로 분리되며, 액체 상태의 액화증발가스만이 연료 공급라인(L3)을 통해 고압 펌프(33)에 공급된다. 고압 펌프(33)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.The evaporated gas re-liquefied through heat exchange in the
고압 펌프(33)에서는 액화증발가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(33)에서 송출되는 액화증발가스는 대략 150 ∼ 400 bara(절대압력) 정도의 고압을 갖는다.
In the
도 3a에 예시된 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 하나 이상의 냉매 기액분리기(22)와, 이 냉매 기액분리기(22)에서 분리된 기체 상태의 냉매를 압축시키기 위한 하나 이상의 냉매 압축기(23)와, 냉매 압축기(23)에서 압축된 냉매를 냉각시키기 위한 냉매 냉각기(24)와, 냉매 압축기(23)에서 압축된 후 냉매 냉각기(24)에서 냉각된 냉매를 팽창시켜 온도를 낮추는 냉매 팽창밸브(25)와, 냉매 기액분리기(22)에서 분리된 액체 상태의 냉매를 냉매 팽창밸브(25)에 공급하기 위한 냉매 펌프(26)를 포함한다.The
냉매 펌프(26)를 통하여 냉매 팽창밸브(25)에 공급되는 냉매는 냉매 팽창밸브(25)의 상류측에서 냉매 냉각기(24)를 통과한 후 냉매 팽창밸브(25)에 공급되는 냉매와 혼합되는 것이 바람직하다.The refrigerant supplied to the
한편, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.On the other hand, the refrigerant supplied to the
또한, 냉매 냉각기(24)에서 냉각된 냉매는 또 다른 냉매 기액분리기에 공급되어 기체 상태의 냉매와 액체 상태의 냉매로 분리되어 처리될 수 있다. 이를 위해 도 3a의 재액화 장치(20)는 각각 2개씩의 냉매 기액분리기(22), 냉매 압축기(23), 냉매 냉각기, 및 냉매 펌프(26)를 포함하는 것으로 예시되어 있지만, 이는 본 발명을 한정하지 않으며 설계시 필요에 따라 설치 개수는 가감될 수 있다.
In addition, the refrigerant cooled in the
(제1 실시형태의 변형예)(Modified example of the first embodiment)
도 3b에는 본 발명의 바람직한 제1 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제1 실시형태의 변형예는, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제1 실시형태에 비해 부분적으로 상이하므로, 이하에서는 그 차이점만을 설명한다.3b shows a fuel supply system according to a variant of the first preferred embodiment of the invention. Since the structure of the boil-off
도 3b에 예시된 본 제1 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 3a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 3a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.The boil-off
또한, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단을 포함한다.In addition, the
더욱 상세하게는, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제1 냉매 기액분리기(22a)와, 이 제1 냉매 기액분리기(22a)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제1 냉매 압축기(23a)와, 이 제1 냉매 압축기(23a)에서 압축된 냉매를 냉각시키기 위한 제1 냉매 냉각기(24a)와, 이 제1 냉매 냉각기(24a)에서 냉각된 냉매를 2차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제2 냉매 기액분리기(22b)와, 이 제2 냉매 기액분리기(22b)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제2 냉매 압축기(23b)와, 이 제2 냉매 압축기(23b)에서 압축된 냉매를 냉각시키기 위한 제2 냉매 냉각기(24b)와, 제1 냉매 기액분리기(22a)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제1 냉매 펌프(26a)와, 제2 냉매 기액분리기(22b)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제2 냉매 펌프(26b)와, 제2 냉매 냉각기(24b)에서 냉각된 냉매를 3차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제3 냉매 기액분리기(22c)와, 이 제3 냉매 기액분리기(22c)에서 분리된 액체 상태의 냉매를 팽창시켜 온도를 떨어뜨리기 위한 냉매 팽창밸브(25)와, 액체 상태의 냉매를 제3 냉매 기액분리기(22c)에서 냉매 팽창밸브(25)에 공급하기 위한 제3 냉매 펌프(26c)를 포함한다.More specifically, the
제1 및 제2 냉매 기액분리기(22a, 22b)에서 제2 냉매 냉각기(24b)에 공급되는 액체 상태의 냉매는 합류된 후, 제2 냉매 압축기(23b)에서 제2 냉매 냉각기(24b)로 공급되는 기체 상태의 냉매와 혼합된 상태로 제2 냉매 냉각기(24b)에 공급될 수 있다. 또한, 제3 기액 분리기(22c)에서 분리된 기체 상태의 냉매는 제3 냉매 펌프(26c)에 의해 냉매 팽창밸브(25)에 공급되는 액체 상태의 냉매와 혼합될 수 있다. 또한, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.The liquid refrigerant supplied to the second refrigerant cooler 24b from the first and second refrigerant gas-
도 3b의 재액화 장치(20)는 예시일 뿐이고 본 발명을 한정하지 않으며, 설계시 필요에 따라 재액화 장치의 구성은 변화될 수 있다.
The
(비폭발성 혼합냉매)(Non-explosive mixed refrigerant)
본 발명에 따르면, 재액화 장치(20) 내에서 순환하는 냉매로서는 종래와는 달리 R14를 포함하는 비폭발성 혼합냉매가 사용된다. 복수의 비폭발성 냉매를 혼합하여 이루어지는 비폭발성 혼합냉매는 중압으로 압축된 증발가스를 재액화할 때의 액화온도에서도 응결되지 않는 특성을 가지도록 하는 혼합 조성비를 갖는다.According to the present invention, as the refrigerant circulating in the
혼합냉매의 상변화를 이용한 냉동 사이클은 질소만을 냉매로 하는 질소가스 냉동 사이클보다 효율이 높다. 종래의 혼합냉매는 폭발성 냉매가 혼합되어 안전성에 문제가 있었지만, 본 발명의 비폭발성 혼합냉매는 비폭발성 냉매를 혼합한 냉매이므로 안정성이 높다.The refrigeration cycle using the phase change of the mixed refrigerant is more efficient than the nitrogen gas refrigeration cycle using only nitrogen as a refrigerant. Conventional mixed refrigerants have a problem in safety due to the mixing of explosive refrigerant, but the non-explosive mixed refrigerant of the present invention is high in stability because it is a mixture of non-explosive refrigerant.
본 발명의 비폭발성 혼합냉매에 의해, 혼합냉매 줄-톰슨 냉동 사이클을 해상용 LNG 재액화 장치에 적용하는 것이 가능해질 수 있다. 한편, 종래 육상용 LNG 액화 플랜트에서 혼합냉매를 사용하는 것이 알려져 있었지만, 이 혼합냉매는 탄화수소(Hydro-Carbon; 이하, "HC" 라 함) 혼합냉매로서 폭발성을 가져 취급에 어려움이 있었다. 본 발명의 비폭발성 혼합냉매는 아르곤, 하이드로플루오르카본(Hydro-Fluoro-Carbon; 이하, "HFC" 라 함) 냉매, 및 플루오르카본(Fluoro-Carbon; 이하, "FC" 라 함) 냉매로 이루어져 폭발성이 없다.With the non-explosive mixed refrigerant of the present invention, it is possible to apply the mixed refrigerant Joule-Thomson refrigeration cycle to the marine LNG reliquefaction apparatus. On the other hand, it has been known to use a mixed refrigerant in an onshore LNG liquefaction plant, but this mixed refrigerant is a hydrocarbon (Hydro-Carbon; hereinafter referred to as "HC") mixed refrigerant and has difficulty in handling. The non-explosive mixed refrigerant of the present invention is composed of argon, hydrofluorocarbon (hereinafter referred to as "HFC") refrigerant, and fluorocarbon refrigerant (hereinafter referred to as "FC") refrigerant. There is no
HFC/FC 냉매로서는 다음 표 1과 같은 것이 사용될 수 있다. 표 1에는 아르곤을 함께 표시하였다.
As the HFC / FC refrigerant, those shown in Table 1 may be used. Table 1 also shows the argon.
표 1에 나타낸 냉매 이외에도, 이러한 냉매들을 2 이상 혼합하여 별도의 냉매 번호(R400 및 R500 계열)를 붙여 사용하기도 한다. 이러한 HFC/FC 혼합냉매는 표 2에 표시하였다.
In addition to the refrigerants shown in Table 1, two or more of these refrigerants may be mixed and used with different refrigerant numbers (R400 and R500 series). These HFC / FC mixed refrigerants are shown in Table 2.
다만, 도 4a 및 도 4b에 도시된 바와 같이, HFC/FC 냉매의 경우 어는점이 LNG의 일반적인 온도(-163℃)보다 높아 LNG의 재액화시 냉매로서 사용할 수 없다. 그러나, 본 발명자들은, 도 4c에 도시된 바와 같이, 천연가스(혹은 증발가스)의 압력이 높아질수록 액화(혹은 재액화) 온도가 상승하는 점에 착안하여, 효율이 높고 안전한 HFC/FC 혼합냉매(즉, 비폭발성 혼합냉매) 줄-톰슨 냉동 사이클에 의해 해상 구조물에서의 LNG 저장탱크로부터 발생하는 증발가스를 재액화할 수 있는 재액화 장치를 개발하였다. 다시 말해서, 본 발명에 따르면, 증발가스를 재액화하기 전에 12 내지 45 bara의 중압으로 가압함으로써, 상압에서의 증발가스 재액화 온도보다 높은 온도, 즉 비폭발성 혼합냉매의 어는점보다 높은 온도에서 증발가스의 재액화가 가능해지도록 한다.However, as illustrated in FIGS. 4A and 4B, in the case of the HFC / FC refrigerant, the freezing point is higher than the general temperature of LNG (−163 ° C.) and thus cannot be used as a refrigerant during LNG reliquefaction. However, the inventors pay attention to the fact that the liquefaction (or reliquefaction) temperature rises as the pressure of the natural gas (or evaporated gas) increases, as shown in FIG. 4C, and thus a highly efficient and safe HFC / FC mixed refrigerant. A non-explosive mixed refrigerant has been developed to reliquefy the boil-off gas from LNG storage tanks in offshore structures by Joule-Thomson refrigeration cycle. In other words, according to the present invention, before the reliquefaction of the boil-off gas by pressurizing to a medium pressure of 12 to 45 bara, the boil-off gas at a temperature higher than the temperature of the boil-off liquid reliquefaction at normal pressure, that is, higher than the freezing point of the non-explosive mixed refrigerant Allow reliquefaction of
본 발명의 비폭발성 혼합냉매는, 비등점이 천연가스 액화온도(혹은 증발가스 재액화온도)와 상온 사이에 골고루 분포되어 넓은 상변화 구간을 이용할 수 있도록 다양한 성분의 냉매를 혼합하여 만들어진다. 끓는점이 서로 유사한 냉매들을 5개의 계열로 분류하여, 각각의 계열에서 하나 이상의 성분을 선택하여 본 발명의 비폭발성 혼합냉매를 구성하는 것이 바람직하다. 즉, 본 발명의 비폭발성 혼합냉매는 5개의 계열에서 각각 적어도 하나의 성분을 선택하여 혼합함으로써 만들어진다.Non-explosive mixed refrigerant of the present invention, the boiling point is evenly distributed between natural gas liquefaction temperature (or evaporation gas reliquefaction temperature) and room temperature is made by mixing the refrigerant of various components to use a wide phase change section. It is preferable to classify the refrigerants having similar boiling points into five series, and to select one or more components from each series to constitute the non-explosive mixed refrigerant of the present invention. That is, the non-explosive mixed refrigerant of the present invention is made by selecting and mixing at least one component from each of five series.
도 5에 도시된 바와 같이, 계열 I에는 냉매들 중 끓는점이 가장 낮은 Ar이 포함되고, 계열 II에는 R14가 포함되고, 계열 III에는 R23, R116, 및 R41이 포함되고, 계열 IV에는 R32, R410A, R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, 및 R227ea가 포함되고, 계열 V에는 R236fa 및 R245fa가 포함된다.As shown in FIG. 5, Series I includes Ar having the lowest boiling point among refrigerants, Series II includes R14, Series III includes R23, R116, and R41, and Series IV includes R32, R410A , R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, and R227ea, and Series V include R236fa and R245fa.
이들 5개의 계열에서 각각 하나 이상의 냉매를 선택하여 이루어지는 본 발명의 비폭발성 혼합냉매는, 냉매 수급의 용이함, 비용 등을 감안하여 볼 때, 다음 표 1과 같은 구성성분과 조성을 가지는 것이 바람직하다. 비폭발성 혼합냉매의 조성 비율은, 증발가스와의 열교환이 이루어지는 열교환기, 즉 콜드박스(21)에서의 고온 유체(즉, 증발가스)와 저온 유체(즉, 비폭발성 혼합냉매) 사이의 온도차가 가능한 한 일정하게 유지되도록 정해지는 것이 효율면에서 바람직하다.
The non-explosive mixed refrigerant of the present invention in which at least one refrigerant is selected from each of these five series has a component and a composition as shown in the following Table 1 in view of ease of supply of refrigerant, cost, and the like. The composition ratio of the non-explosive mixed refrigerant is a temperature difference between the heat exchanger that exchanges heat with the boil-off gas, that is, the hot fluid (ie, the boil-off gas) in the
비폭발성 혼합냉매를 사용할 경우, 종래기술에서와 같이 질소가스 냉매를 사용하여 증발가스를 재액화할 때에 비하여 소모되는 동력, 즉 전력(kW)을 절감할 수 있어 재액화 효율을 향상시킬 수 있다.When the non-explosive mixed refrigerant is used, power consumption, that is, power (kW) can be reduced as compared to when the evaporated gas is reliquefied using nitrogen gas refrigerant as in the prior art, thereby improving reliquefaction efficiency.
더욱 상세하게는, 본 발명은 종래의 재액화 장치에서 사용되는 재액화시 증발가스 압력에 비해 상대적으로 높은 압력인 12 내지 45 bara 정도의 중압으로 증발가스를 압축시켜 재액화하고 있기 때문에 재액화시 소요되는 동력을 절감할 수 있는 것이며, 여기에서 본 발명에 따른 압력범위(즉, 12 내지 45 bara)는 재액화 장치에서 냉매로 사용하는 상기 조성의 비폭발성 혼합냉매의 특성으로 인해 정해진 것이다. 즉, 상기 조성의 비폭발성 혼합냉매를 사용할 경우, 증발가스가 바람직하게는 12 내지 45 bara 정도의 압력을 가질 때 재액화 장치에서의 재액화 효율을 가장 양호하게 유지할 수 있게 된다.More specifically, since the present invention compresses and reliquefies the evaporated gas to a medium pressure of about 12 to 45 bara, which is a relatively high pressure, compared to the evaporated gas pressure used in the conventional reliquefaction apparatus, when reliquefying It is possible to reduce the power required, wherein the pressure range according to the present invention (
또한, 증발가스의 압력이 12 bara일 때의 재액화 온도는 약 -130℃이고, 이 온도까지 증발가스를 냉각시키기 위해서 비폭발성 혼합냉매의 온도는 약 -155℃ 로 낮아진다. 상기 조성의 비폭발성 혼합냉매는 -155℃ 이하에서 동결이 발생할 우려가 있으므로, 증발가스의 압력이 12 bara보다 낮은 경우에는 비폭발성 혼합냉매를 사용하는 냉동사이클이 구성되기 어렵다.In addition, when the pressure of the boil-off gas is 12 bara, the reliquefaction temperature is about -130 ° C, and the temperature of the non-explosive mixed refrigerant is lowered to about -155 ° C in order to cool the boil-off gas to this temperature. Since the non-explosive mixed refrigerant having the composition may cause freezing at -155 ° C. or lower, a refrigeration cycle using the non-explosive mixed refrigerant is difficult to configure when the pressure of the boil-off gas is lower than 12 bara.
또한, 주성분이 메탄인 증발가스의 임계압력이 약 46 bara 정도이며 이 임계압력 이상에서는 상이 존재하지 않아 액화의 의미가 없어지므로, 증발가스 압력의 상한은 45 bara 정도로 정해지는 것이 바람직하다.In addition, since the critical pressure of the boil-off gas whose main component is methane is about 46 bara, and there is no phase above this critical pressure, the meaning of liquefaction becomes meaningless, and the upper limit of the boil-off gas pressure is preferably set to about 45 bara.
도 6의 (a)를 참조하면, 중압, 즉 12 내지 45 bara의 압력범위(증발가스 4.3 ton/h 기준)에 있어서, 질소가스 냉매를 사용하는 종래의 재액화 장치에 비해 본 발명의 상기한 바와 같은 조성을 갖는 비폭발성 혼합냉매를 사용하는 재액화 장치가 대략 10 내지 20% 정도 동력이 절감됨을 알 수 있다.Referring to Figure 6 (a), in the medium pressure, that is, the pressure range of 12 to 45 bara (based on 4.3 ton / h of evaporation gas), the above-mentioned of the present invention compared to the conventional reliquefaction apparatus using a nitrogen gas refrigerant It can be seen that the reliquefaction apparatus using the non-explosive mixed refrigerant having the composition as described above saves power by approximately 10 to 20%.
도 6의 (b)에는, 종래기술에 따른 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 질소가스(N2)이고 재액화 장치에 공급되는 증발가스의 압력은 8bara인 경우)에서의 동력 필요량과, 본 발명에 따른 비폭발성 혼합냉매(NFMR)를 사용하는 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 비폭발성 혼합냉매(NFMR)이고 재액화 장치에 공급되는 증발가스의 압력은 12 내지 45bara인 경우)에서의 동력 필요량을 비교한 그래프가 도시되어 있다. 도 6의 (b)를 참조하면, 질소 냉매를 사용하는 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 된다.6 (b) shows the conditions of the reliquefaction apparatus according to the prior art (i.e., when the refrigerant used in the reliquefaction apparatus is nitrogen gas (N2) and the pressure of the boil-off gas supplied to the reliquefaction apparatus is 8 bara). Power requirements and the conditions of the reliquefaction apparatus using the non-explosive mixed refrigerant (NFMR) according to the present invention (i.e., the refrigerant used in the reliquefaction apparatus is a non-explosive mixed refrigerant (NFMR) and evaporation supplied to the reliquefaction apparatus). A graph comparing the power requirement at the pressure of the gas (from 12 to 45 bara) is shown. Referring to Figure 6 (b), compared to the power consumed in the conventional reliquefaction apparatus (refrigeration cycle) using a nitrogen refrigerant, the reliquefaction apparatus of the present invention can be operated with only about 50 to 80% of the power. Able to know. As described above, since the present invention can be operated with considerably less power than in the related art, the generator capacity can be reduced and the generator can be miniaturized.
한편, 본 발명의 재액화 장치는 냉매의 팽창 수단으로서 줄-톰슨 밸브(Joule Thomson valve)를 사용하므로, 팽창기(expander)를 사용하는 종래의 질소 컴팬더(N2 compander)보다 전체 시스템이 단순해져 경제적이라는 장점을 얻을 수 있다.On the other hand, the reliquefaction apparatus of the present invention uses a Joule Thomson valve as an expansion means of the refrigerant, so that the entire system is simpler and more economical than the conventional N2 compander using an expander. You can get the advantage.
또한 표 1에는 기재하지 않았지만, 본 발명의 비폭발성 혼합냉매는 표 1에 기재된 성분 이외의 비폭발성 냉매 성분을 미소량 함유할 수 있다.
Although not shown in Table 1, the non-explosive mixed refrigerant of the present invention may contain a small amount of non-explosive refrigerant components other than those shown in Table 1.
(제2 실시형태)(Second Embodiment)
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 7a에 도시된 제2 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 중압으로 압축시킨 후 재액화 장치에서 재액화시키기 전에, 고압 펌프(33)에서 고압 기화기(37)로 공급되는 LNG와 열교환시켜 예냉한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.FIG. 7A is a block diagram showing a fuel supply system for an offshore structure having a high pressure natural gas injection engine (eg, a ME-GI engine) according to a second embodiment of the present invention. FIG. The fuel supply system of the second embodiment shown in FIG. 7A has a
도 7a에 도시된 바와 같이, 고압 펌프(33)에서 고압으로 압축된 액화증발가스는, 고압 기화기(37)에 공급되기 전에, 재액화 장치(20)에 공급되는 증발가스와 열교환기(35)에서 열교환된다. 고압 기화기(37)에 공급되는 액화증발가스는 재액화 장치(20)에 공급되는 증발가스에 비해 상대적으로 저온이므로, 열교환기(35)를 통과하면서 재액화 장치(20)에 공급되는 증발가스의 온도를 낮출 수 있어 재액화 장치(20)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(37)에 공급되는 액화증발가스는 열교환기(35)를 통과하면서 가열되어 고압 기화기(37)에서의 기화 에너지를 절감할 수 있다.As shown in FIG. 7A, the liquefied evaporated gas compressed at high pressure in the
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 증발가스 공급라인(L2)의 도중에는 열교환기(35)가 설치되어 있으며, 전술한 바와 같이 열교환기(35)에서 상대적으로 고온의 압축된 증발가스와 고압 펌프(33)로부터 배출된 상대적으로 저온의 액화증발가스는 서로 열교환한다. 열교환기(35)를 통과하면서 냉각된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
The boil-off gas compressed by the boil-off
(제2 실시형태의 변형예)(Modification of 2nd Embodiment)
도 7b에는 본 발명의 바람직한 제2 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제2 실시형태의 변형예는, 제1 실시형태의 변형예에서 설명한 바와 같이, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제2 실시형태에 비해 부분적으로 상이하다.7B shows a fuel supply system according to a modification of the second preferred embodiment of the present invention. The modification of this 2nd Embodiment is partially different from the 2nd Embodiment mentioned above in the structure of the boil-off
즉, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 7a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 7a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.That is, although the boil-off
또한, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.In addition, the
특히, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
In particular, the
(제3 실시형태)(Third Embodiment)
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 8a에 도시된 제3 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 압축시키기 전에 예열한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.8A is a block diagram showing a fuel supply system of an offshore structure having a high pressure natural gas injection engine (for example, a ME-GI engine) according to a third embodiment of the present invention. The fuel supply system of the third embodiment shown in FIG. 8A differs from each other only in that it preheats before compressing the boil-off gas as compared with the fuel supply system of the first embodiment described above, and therefore, in the following description, The differences are explained mainly.
도 8a에 도시된 바와 같이, 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급되기 전에 증발가스 압축부(13)의 상류측에 설치된 증발가스 예열기(41)에 공급된다. 증발가스 압축부(13)에서 대략 12 내지 45 bara로 압축되고 중간 냉각기(15)를 통해 대략 40℃ 정도로 냉각된 증발가스는 증발가스 예열기(41)에서 액화가스 저장탱크(11)에서 배출된 극저온의 증발가스와 열교환됨으로써 냉각된 후 재액화 장치(20)에 공급된다.As shown in FIG. 8A, according to the fuel supply system of an offshore structure having a high pressure natural gas injection engine according to a second embodiment of the present invention, the boil-off gas (NBOG) generated and discharged from the liquefied
제3 실시형태에 따르면 재액화 장치(20)에 공급될 증발가스의 온도를 증발가스 예열기(41)를 통해 낮출 수 있어 콜드 박스(21)에서의 열부하를 감소시킬 수 있다. 또한, 증발가스 압축부(13)에 공급되는 극저온 상태의 증발가스와, 증발가스 압축부(13)에서 압축된 상대적으로 온도가 높은 증발가스를, 증발가스 압축부(13)의 상류측에 위치한 증발가스 예열기(41)에서 열교환함으로써, 증발가스 압축부에 공급되는 증발가스의 온도를 상승시키고 증발가스 압축부(즉, 증발가스 압축기)의 입구온도를 일정하게 유지할 수 있게 된다.According to the third embodiment, the temperature of the boil-off gas to be supplied to the
증발가스 압축부(13)에서 압축된 후 증발가스 예열기(41)를 통과한 증발가스는 전술한 제1 실시형태의 연료 공급 시스템과 마찬가지로 재액화 장치(20)에 공급된다. 계속해서, 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
The boil-off gas, which has been compressed by the boil-off
(제3 실시형태의 변형예)(Modification of 3rd Embodiment)
도 8b에는 본 발명의 바람직한 제3 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제3 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제3 실시형태에 비해 부분적으로 상이하다.8B shows a fuel supply system according to a modification of the third preferred embodiment of the present invention. The modification of this 3rd Embodiment differs in part from the structure of the
즉, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.That is, the
특히, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
In particular, the
(제4 실시형태)(Fourth Embodiment)
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 9a에 도시된 제4 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 수단, 즉 이종연료엔진(DFDE)과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하므로, 이어지는 설명에서는 제2 실시예와의 차이점을 위주로 설명한다.9A is a block diagram showing a fuel supply system of an offshore structure having a high pressure natural gas injection engine (for example, a ME-GI engine) according to a fourth embodiment of the present invention. The fuel supply system of the fourth embodiment shown in FIG. 9A has a means for treating surplus boil-off gas, that is, a heterogeneous fuel engine (DFDE) and a stable fuel supply, as compared with the fuel supply system of the third embodiment described above. Since the means, that is, the LNG supply line is different from each other in the added, the following description focuses on the differences from the second embodiment.
본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많을 경우, 잉여의 액화증발가스(LBOG)는 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 기액분리기를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다.According to the fuel supply system of the offshore structure having the high pressure natural gas injection engine according to the fourth embodiment of the present invention, when the load of the high pressure natural gas injection engine is reduced or the amount of generated evaporated gas is large, the excess liquefied vaporization gas The LBOG is depressurized through the
더욱 상세하게는, LBOG 팽창밸브(51)에서 감압되어 플래시 가스를 포함하는 LBOG는 LBOG 기액분리기(53)로 공급되어 액체 성분과 기체 성분으로 분리되며, LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 발전 등을 위해 해상 구조물 내에 설치될 수 있는 이종연료엔진(DFDE)에 연료로서 공급된다. 이종연료엔진에 공급되는 연료가스의 압력은 연료가스 공급라인(L6)의 도중에 있어서의 LBOG 기액분리기(53)의 하류측에 설치되는 압력조절밸브에 의해 조절될 수 있으며, 역시 연료가스 공급라인(L6)의 도중에 설치되는 연료가스 히터(55)에서 연료가스의 온도는 이종연료엔진에서 요구하는 온도까지 가열될 수 있다. 또한, LBOG 기액분리기(53)에서 분리된 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크로 복귀된다.More specifically, the LBOG containing the flash gas reduced in pressure by the
이때, 이종연료엔진에 대한 연료가스 공급압력은 일반적으로 5 내지 8 bara 정도이므로, LBOG 기액분리기(53)에서 분리된 액체 성분의 압력이 여전히 상압보다 높을 수 있다. 이 경우, LBOG 기액분리기(53)에서 분리된 액체 성분(즉, LBOG)은 또 다른 LBOG 팽창밸브(52)를 통하여 추가적으로 감압되고, 계속해서 또 다른 LBOG 기액분리기(54)에 공급되어 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 상압의 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. 또 다른 LBOG 기액분리기(54)에서 분리된 기체 성분은 가스 연소 유닛(GCU; Gas Combustion Unit)에 공급되어 연소됨으로써 소비될 수 있다.At this time, since the fuel gas supply pressure for the heterogeneous fuel engine is generally about 5 to 8 bara, the pressure of the liquid component separated in the LBOG gas-
한편, 이종연료엔진에 공급되는 연료가 부족하면, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 이종연료엔진(즉, DFDE)에 연료를 공급하는 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 이종연료엔진에 연료가 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.On the other hand, when the fuel supplied to the heterogeneous fuel engine is insufficient, the fuel is diverted from the fuel supply line L3 supplying the fuel to the high pressure natural gas injection engine (ie, ME-GI) to supply fuel to the heterogeneous fuel engine (ie, DFDE). Fuel may be additionally supplied to the heterogeneous fuel engine through the branch line L5 connected to the fuel gas supply line L6. The branch line (L5) is provided with a valve for the pressure drop.
또한, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.In addition, when the boil-off gas reliquefaction apparatus does not operate or the amount of the boil-off gas generated in the
이와 같이 이종연료엔진은 압력 차이로 인하여 저장탱크(11)에 복귀되는 도중의 LBOG로부터 발생할 수 있는 플래시 가스를 처리할 수 있는 플래시 가스 처리수단으로서 기능하게 된다.As such, the heterogeneous fuel engine functions as a flash gas treating means capable of treating flash gas generated from the LBOG on the way back to the
한편, 도면에는 도시하지 않았지만, LBOG 기액분리기(53)에서 분리된 기체성분은 이종연료엔진 대신에 가스터빈이나, 보일러 등과 같은 소비처로 공급되어 연료로서 사용될 수 있다. 또한, 이 기체성분은, 대기중에 천연가스를 방출하는 가스 방출장치나, 대기중에서 연소시키는 가스 연소장치(예컨대 플레어 타워) 등에 공급되어 처리될 수 있다. 이때 이종연료엔진, 가스터빈, 보일러, 가스 방출장치나 플레어 타워 등은 플래시 가스 처리수단에 포함되며, 이와 같은 플래시 가스 처리수단에 공급되는 기체성분은 연료가스 히터(55)에서 가열될 수 있다.On the other hand, although not shown in the figure, the gas component separated in the LBOG gas-
증발가스 압축부(13)에서 12 내지 45 bara 정도의 중압으로 압축된 후 재액화 장치(20)에서 액화된 증발가스를 ME-GI 엔진과 같은 고압 천연가스 분사 엔진에서 모두 소비하지 못하는 경우에는, 중압 상태의 액화된 증발가스를 저장탱크(11)에 복귀시킬 필요가 있다. 본 발명자들은, 저장탱크(11)의 압력은 상압 상태이므로, 액화된 증발가스를 저장탱크에 공급하기 전에 압력을 낮출 필요가 있으나, 압력을 낮추는 과정에서 플래시 가스가 발생한다는 점을 인식하여 플래시 가스를 처리할 수 있는 수단을 갖춘 연료 공급 시스템을 발명하였다. 이와 같이 본 발명에 따르면 상기된 바와 같은 플래시 가스 처리수단이 구비되어 있기 때문에, 재액화 장치에 공급되는 증발가스를 12 내지 45 bara 정도의 중압으로 압축하여 공급할 수 있으며, 그에 따라 재액화시의 에너지 소모량을 절감할 수 있게 된다.
When the boil-off gas liquefied in the
(제4 실시형태의 변형예)(Modification of 4th Embodiment)
도 9b에는 본 발명의 바람직한 제4 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제4 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제4 실시형태에 비해 부분적으로 상이하고, 잉여의 증발가스가 발생할 경우 증발가스 압축부(13)로부터 혹은 그 하류측 끝에서 분기되는 라인을 통해 잉여의 증발가스를 처리한다는 점이 제4 실시형태에 비해 상이하다.9B shows a fuel supply system according to a modification of the fourth preferred embodiment of the present invention. The modified example of the fourth embodiment is partially different from the above-described fourth embodiment in the configuration of the
도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.The
특히, 도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.In particular, the
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 소요량보다 많은 증발가스가 발생할 경우, 증발가스 압축부(13)로부터 분기하는 제2 분기라인(L8)을 통해 잉여 증발가스를 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.In addition, the fuel supply system according to the modification of the fourth embodiment illustrated in FIG. 9B is surplus through the second branch line L8 branching from the boil-off
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.Alternatively, the excess boil-off gas may be configured to be supplied to the gas turbine through a third branch line L9 branching from the rear end of the boil-off
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 전술한 제4 실시형태에 비해 LBOG 복귀라인(L4)에 LBOG 팽창밸브 및 LBOG 기액분리기가 각각 하나씩 배치되는 것으로 구성되어 있지만, 필요에 따라 전술한 제4 실시형태와 마찬가지로 또 다른 LBOG 팽창밸브(52) 및 LBOG 기액분리기(54)가 추가로 배치되도록 구성될 수 있다.
In addition, the fuel supply system according to the modification of the fourth embodiment illustrated in FIG. 9B is composed of one LBOG expansion valve and one LBOG gas-liquid separator disposed in the LBOG return line L4, respectively, as compared with the fourth embodiment described above. However, as needed, another
(제5 실시형태)(Fifth Embodiment)
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 10a에 도시된 제5 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 수단, 즉 가스 연소 유닛(GCU; Gas Combustion Unit)과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하다. 또한, 잉여 증발가스가 발생하지 않도록 증발가스 중 일부를 재액화 이전에 분기시켜 소비하기 위한 수단, 즉 이종연료엔진(DFDE) 혹은 가스터빈 등을 가진다는 점에서 서로 상이하다. 이어지는 설명에서는 제3 실시형태와의 차이점을 위주로 설명한다.10A is a block diagram showing a fuel supply system of an offshore structure having a high pressure natural gas injection engine (for example, a ME-GI engine) according to a fifth embodiment of the present invention. The fuel supply system of the fifth embodiment shown in FIG. 10A is more stable than the fuel supply system of the third embodiment described above, that is, a means for treating excess evaporated gas, that is, a gas combustion unit (GCU). They differ from each other in that means for fuel supply, ie LNG supply lines, have been added. In addition, they differ from each other in that they have a means for branching and consuming some of the boil-off gas prior to reliquefaction so as not to generate excess boil-off gas, that is, a heterogeneous fuel engine (DFDE) or a gas turbine. In the following description, the differences from the third embodiment will be mainly described.
본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상될 경우에는, 증발가스 압축부(13)에서 압축된 혹은 압축되고 있는 도중의 증발가스를 분기라인을 통해 분기시켜 증발가스 소비수단에서 사용한다.According to the fuel supply system of the offshore structure having the high pressure natural gas injection engine according to the fifth embodiment of the present invention, the load of the high pressure natural gas injection engine is reduced or the amount of generated evaporated gas is large, so that the excess liquefied vaporization gas (LBOG) If is expected to occur, the boil-off gas compressed in the boil-off
즉, 잉여 증발가스를 증발가스 압축부(13)에서 분기하는 제2 분기라인(L8)을 통해 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.That is, the surplus evaporation gas may be configured to be supplied to the heterogeneous fuel engine DFDE through the second branch line L8 branched from the evaporation
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.Alternatively, the excess boil-off gas may be configured to be supplied to the gas turbine through a third branch line L9 branching from the rear end of the boil-off
한편, 상기된 바와 같이 재액화 장치(20)에 공급되는 증발가스의 양을 감소시켰음에도 불구하고 고압 천연가스 분사 엔진에서 요구하는 증발가스의 양보다 공급되는 연료로서의 증발가스의 양이 많은 경우에는, 잉여의 증발가스를, 전술한 제4 실시형태에서와 마찬가지로 처리한다.On the other hand, even if the amount of boil-off gas supplied to the
즉, 잉여의 증발가스는, 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 LBOG 기액분리기(53)를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 가스 연소 유닛(GCU)에 연료로서 공급된다.That is, the excess evaporated gas is depressurized through the
한편, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 잉여의 증발가스가 GCU에 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.On the other hand, the excess evaporated gas is branched from the fuel supply line (L3) for supplying fuel to the high-pressure natural gas injection engine (ie, ME-GI) and connected to the fuel gas supply line (L6). It can be supplied in addition to the GCU. The branch line (L5) is provided with a valve for the pressure drop.
또한, 전술한 제4 실시형태와 마찬가지로, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.In addition, as in the fourth embodiment described above, when the boil-off gas reliquefaction apparatus does not operate or the amount of boil-off gas generated in the
지금까지 설명한 제4 및 제5 실시형태에 있어서, 발생된 플래시 가스를 처리하기 위한 수단으로 설명된 DFDE(제4 실시형태), GCU(제5 실시형태) 등의 장치와, 플래시 가스가 발생하지 않도록 잉여의 증발가스를 재액화 이전에 미리 소비하는 수단으로 설명된 DFDE(제5 실시형태), 가스터빈(제5 실시형태) 등의 장치는, 모두 플래시 가스의 발생을 억제할 수 있는 것이므로 플래시 가스 억제수단으로 통칭할 수 있다.
In the fourth and fifth embodiments described so far, devices such as DFDE (fourth embodiment) and GCU (fifth embodiment) described as means for treating the generated flash gas, and no flash gas are generated. The devices such as the DFDE (fifth embodiment) and the gas turbine (fifth embodiment), which are described as means for pre-consuming excess evaporated gas before reliquefaction, are all capable of suppressing the generation of flash gas. It can be named as gas suppression means.
(제5 실시형태의 변형예)(Modification of 5th Embodiment)
도 10b에는 본 발명의 바람직한 제5 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제5 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제5 실시형태에 비해 부분적으로 상이하다.10B shows a fuel supply system according to a modification of the fifth preferred embodiment of the present invention. In the modification of the fifth embodiment, the configuration of the
즉, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.That is, the
특히, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
In particular, the
상기된 바와 같은 본 발명의 제1 내지 제5 실시형태 및 그 변형예들에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템은 종래에 비해 다음과 같은 장점을 갖는다.The fuel supply system of an offshore structure having a high pressure natural gas injection engine according to the first to fifth embodiments of the present invention and its modifications as described above has the following advantages over the prior art.
일반적으로, 증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하다. 그러나 종래에는 증발가스를 재액화 장치에 의해 재액화하여 저장탱크로 복귀시켰으며, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에, 재액화된 액화증발가스의 압력이 지나치게 높아 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하지 않도록, 재액화 효율은 낮지만 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없었다.In general, in order to increase the reliquefaction efficiency of the boil-off gas, it is preferable to compress the boil-off gas to a high pressure. However, conventionally, the liquefied gas is re-liquefied by the reliquefaction apparatus and returned to the storage tank, and since the LNG stored in the storage tank is maintained at atmospheric pressure, the pressure of the reliquefied liquefied liquefied gas is too high to return to the storage tank. In order to prevent flash gas from being generated, the reliquefaction efficiency was low, but the boil-off gas was compressed at a low pressure of about 4 to 8 bara.
그에 비해 본 발명에 의하면, 저장탱크로부터 배출된 증발가스를 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 플래시 가스 발생을 우려할 필요 없이 증발가스를 종래에 비해 높은 압력으로 압축시켜 재액화시킴으로써 재액화 효율을 높일 수 있다.In contrast, according to the present invention, since the boil-off gas discharged from the storage tank is used as a fuel in a high-pressure natural gas injection engine, the boil-off gas is compressed and re-liquefied by compressing the boil-off gas to a higher pressure than in the prior art without having to worry about generating flash gas. The liquefaction efficiency can be improved.
이와 같이 본 발명에 의하면, 재액화된 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급하기 때문에 재액화된 증발가스를 저장탱크로 재저장을 위해 복귀시킬 필요가 없어 저장탱크로의 복귀시 발생될 수 있는 플래시 가스의 발생을 방지할 수 있고, 플래시 가스의 발생이 억제됨으로써 재액화 이전에 증발가스의 압력을 종래에 비해 높은 압력, 즉 12 내지 45 bara 정도의 중압으로 압축시켜 재액화할 수 있다. 이러한 중압으로 증발가스를 압축시켜 재액화함에 따라 비폭발성 혼합냉매에 의한 재액화 효율을 종래와 같이 질소가스 냉매를 사용하는 것에 비해 크게 증대시킬 수 있다. 즉, 종래의 질소가스 냉매를 사용하는 것에 비해 비폭발성 혼합냉매를 사용하는 본 발명의 재액화 장치는 상당히 적은 에너지만을 사용하여 증발가스를 재액화해서 엔진에 연료로서 공급하는 것이 가능하게 된다.
Thus, according to the present invention, since the reliquefied evaporated gas is supplied as a fuel to a high-pressure natural gas injection engine, for example, a ME-GI engine, it is not necessary to return the reliquefied evaporated gas to the storage tank for restoring. It is possible to prevent the generation of flash gas, which can be generated upon return to the furnace, and suppresses the generation of flash gas, thereby compressing the pressure of the boil-off gas to a higher pressure than conventionally, that is, 12 to 45 bara before the reliquefaction. To reliquefy. As the evaporated gas is compressed and reliquefied at such a medium pressure, the reliquefaction efficiency by the non-explosive mixed refrigerant can be greatly increased as compared with the use of a nitrogen gas refrigerant as in the prior art. That is, the reliquefaction apparatus of the present invention using a non-explosive mixed refrigerant compared to the conventional nitrogen gas refrigerant can be used to re-liquefy the boil-off gas using a very small amount of energy to supply the engine as fuel.
재액화 장치(20)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다. 즉, 상술한 제1 내지 제5 실시형태 및 그 변형예에서 설명된 바와 같은 구성의 비폭발성 혼합냉매를 활용한 재액화 시스템이 사용될 수 있다. 또한, 종래 공지되어 있는 질소냉매를 활용한 재액화 시스템이 사용될 수도 있으며, 예를 들어 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 것이 사용될 수도 있다.As the
본 발명에 따른 연료가스 공급 시스템에 의하면, 해상 구조물의 운항 중 대부분의 기간 동안, 저장탱크에서 발생된 증발가스를 액화시켜 모두 고압 천연가스 분사 엔진에서 연료로서 사용하고 있으며, 그에 따라 LBOG 복귀라인(L4)을 통하여 저장탱크(11)에 복귀하는 액화가스를 없앨 수 있다. LBOG 복귀라인(L4)은, 해상 구조물을 항구 내에 접안하기 위해 예인하는 경우, 운하를 통과하는 경우, 혹은 저속 운항중인 경우와 같이 고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 적은 극히 예외적인 경우에만, LBOG를 버퍼탱크(31)로부터 저장탱크(11)에 복귀시키는 용도로 사용될 수 있다. 또한, 버퍼탱크의 고장이나 유지보수시 버퍼탱크 내에 남아있는 LBOG를 저장탱크(11)에 복귀시키는 용도로 사용될 수 있다.According to the fuel gas supply system according to the present invention, during most of the operation of the offshore structure, the liquefied evaporated gas generated in the storage tank is all used as fuel in the high-pressure natural gas injection engine, according to the LBOG return line ( The liquefied gas returned to the
본 실시형태에 따르면, 해상 구조물의 운항시 대부분의 기간 동안 LBOG를 저장탱크로 복귀시키지 않고 전량 엔진에서 사용할 수 있으므로, 그 기간 동안에는 복귀하는 LBOG 자체를 없앨 수 있고, 그에 따라 LBOG의 복귀 도중에 압력 차이로 인하여 발생할 수 있는 플래시 가스를 원천적으로 제거할 수 있다. 본 명세서에서 "플래시 가스를 제거한다"는 표현은, 발생된 플래시 가스를 소모함으로써 플래시 가스가 저장탱크(11)의 내부에 공급되지 않도록 하는 것과, 재액화된 증발가스가 저장탱크(11)에 되돌아가는 것을 방지하여 복귀 도중의 플래시 가스 발생을 원천적으로 차단함으로써 플래시 가스의 발생 자체를 방지하는 것을 모두 포함하는 개념이다.According to this embodiment, since the LBOG can be used in all engines without returning the LBOG to the storage tank during most of the operation of the offshore structure, the returning LBOG itself can be eliminated during that period, and thus the pressure difference during the return of the LBOG. It is possible to remove the flash gas that may occur due to the source. In this specification, the expression "remove flash gas" means that the flash gas is not supplied into the
또한, 본 명세서에서의 "고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 많다거나 적다"는 표현 중에서 '고압 천연가스 분사 엔진의 연료 소모량' 은, 고압 천연가스 분사 엔진 이외에도 해상 구조물 내에 증발가스를 연료로서 사용하는 엔진, 예컨대 DFDE, 가스 터빈 등이 존재할 경우, 이들 엔진에서의 연료 소모량과 고압 천연가스 분사 엔진의 연료 소모량이 더해진 것으로 간주되어야 한다. 물론, 증발가스를 연료로서 사용하는 엔진이 고압 천연가스 분사 엔진뿐이라면, 고압 천연가스 분사 엔진의 연료 소모량만을 의미하는 것이다.
In addition, in the present specification, "the fuel consumption of the high pressure natural gas injection engine is more or less than the amount of boil-off gas generated in the storage tank" in the expression "fuel consumption of the high pressure natural gas injection engine" is, the high pressure natural gas injection engine In addition, if there are engines using evaporated gas as fuel in the offshore structure, such as DFDE, gas turbines, etc., the fuel consumption of these engines and the fuel consumption of the high pressure natural gas injection engine should be regarded as added. Of course, if the only engine using the boil-off gas as a fuel is a high pressure natural gas injection engine, it means only the fuel consumption of the high pressure natural gas injection engine.
국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 종래 공지된 재액화 장치의 경우에는, 기본적으로 재액화 장치에 의해 재액화된 LBOG를 LNG 저장탱크로 복귀시키는 개념을 가지고 있었기 때문에, LNG 저장탱크 내부의 온도(대략 -163℃)에 맞춰 4 내지 8bara에서의 포화온도보다 훨씬 낮은 온도로 증발가스를 과냉시키고 있었다.In the case of the conventionally known reliquefaction apparatus disclosed in WO 2007/117148 and WO 2009/136793, the concept of basically returning the LBOG reliquefied by the reliquefaction apparatus to the LNG storage tank is disclosed. Because of this, the boil-off gas was supercooled to a temperature much lower than the saturation temperature at 4 to 8 bara in accordance with the temperature (approximately -163 ° C) inside the LNG storage tank.
그러나, 본 발명의 연료 공급 시스템에 따르면, 기본적으로 재액화된 LBOG를 고압 천연가스 분사 엔진에 연료로서 공급하여 사용하는 개념을 가지고 있기 때문에, 증발가스를 대략 12 내지 45bara로 압축하고 있으며, 재액화 장치에서의 재액화 온도 역시 해당 압력에서의 포화 온도보다 대략 1℃ 정도만 낮은 온도로 재액화 장치를 운전하고 있다.However, according to the fuel supply system of the present invention, since it has a concept of basically supplying the re-liquefied LBOG as a fuel to the high-pressure natural gas injection engine, the evaporated gas is compressed to about 12 to 45 bara, and reliquefaction The reliquefaction temperature in the apparatus is also running the reliquefaction apparatus at a temperature only approximately 1 ° C. below the saturation temperature at that pressure.
본 발명에 따르면, 재액화 장치에서 재액화된 LBOG를 저장탱크로 복귀시키지 않기 때문에 저장탱크 내부에 저장된 LNG의 온도 및 압력을 고려할 필요가 없다. 또한, 종래 LBOG를 저장탱크까지 이송하는 배관의 길이가 상대적으로 긴 것에 비해, 본 발명의 경우 LBOG의 과냉 상태를 유지하면서 이송해야 하는 배관의 길이가 상대적으로 짧아 포화 온도보다 지나치게 낮은 온도까지 증발가스를 과냉시킬 필요가 없다.According to the present invention, since the reliquefied LBOG is not returned to the storage tank, it is not necessary to consider the temperature and pressure of the LNG stored in the storage tank. In addition, the length of the pipe to transfer the LBOG to the storage tank is relatively long, in the case of the present invention is a relatively short length of the pipe to be transported while maintaining the supercooled state of the LBOG evaporated gas to a temperature too low than the saturation temperature There is no need to overcool it.
그러므로, 증발가스의 액화온도를 포화온도보다 약간만 낮은 온도로 설정(예컨대 1℃ 정도만 과냉)하여 재액화 장치(20)를 가동함으로써 재액화 장치의 동력 소모를 감소시킬 수 있다.Therefore, it is possible to reduce the power consumption of the reliquefaction apparatus by operating the
또, 본 실시형태에 따르면, 증발가스를 해당 압력에서의 포화온도보다 1℃ 정도만 과냉시켜 액화시킨 후 버퍼탱크(31)에 공급하더라도, 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 고압 펌프(33)에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다.
Further, according to the present embodiment, even if the boil-off gas is quenched by only about 1 ° C. below the saturation temperature at the corresponding pressure and liquefied, and then supplied to the
종래 재액화 장치를 구비한 해상 구조물에서는, 증발가스를 저장탱크에 복귀시킬 것을 염두에 두고 증발가스를 재액화하였기 때문에, 복귀시 플래시 가스 발생을 억제하고자 증발가스의 압력을 4 내지 8bara 정도의 저압으로 압축시키는 것이 당연하였다. 그러나, 전술한 바와 같은 본 발명의 연료가스 공급 시스템에서는, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하고 있다. 이러한 개념은, 증발가스를 재액화한 후 저장탱크에 복귀시키던 종래에는 전혀 생각하지 못하던 본 발명 특유의 신규하고 진보적인 개념이라 할 수 있다.In the offshore structure provided with the conventional reliquefaction apparatus, since the vaporization gas was reliquefied with the intention of returning the vaporization gas to the storage tank, the pressure of the vaporization gas was reduced to 4 to 8 bara to suppress the generation of flash gas upon return. Naturally it was compressed. However, in the fuel gas supply system of the present invention as described above, since all of the vaporized gas is used as a fuel in a high pressure natural gas injection engine after reliquefaction of the boiled gas, the vaporized gas is compressed to a relatively high pressure of about 12 to 45 bara. . This concept can be said to be a novel and progressive concept peculiar to the present invention, which was never conceived before, after re-liquefaction of the boil-off gas and returned to the storage tank.
또한, 종래에는 재액화된 LBOG를 저장탱크에 다시 주입하는 과정에서 감압을 통해 플래시 가스가 생성되고, 이 플래시 가스를 다시 재액화 장치로 보내 재액화 장치의 효율을 떨어뜨리고 있었으나, 본 발명에서는 재액화된 LBOG를 감압 없이(오히려 가압하여) 고압 천연가스 분사 엔진에서 연료로 전량 사용함으로써 재액화 장치의 효율을 종래에 비해 향상시킬 수 있다.In addition, in the past, the flash gas is generated by depressurizing the re-liquefied LBOG into the storage tank, and the flash gas is sent back to the reliquefaction apparatus to reduce the efficiency of the reliquefaction apparatus. By using the entire amount of the liquefied LBOG as fuel in the high pressure natural gas injection engine without depressurization (rather than pressurizing), the efficiency of the reliquefaction apparatus can be improved as compared with the conventional art.
이와 같이 본 발명의 연료가스 공급 시스템에 따르면, 대부분의 운항 기간 동안에, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하는 것이 가능하다. 그에 따라, 도 6을 참조하여 전술한 바와 같이, 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 되고, 비용을 절감할 수 있게 된다.Thus, according to the fuel gas supply system of the present invention, since most of the operation period, after the re-liquefaction of the boil off gas is used as fuel in the high-pressure natural gas injection engine, the boil off gas at a relatively high pressure of about 12 to 45 bara It is possible to compress. Accordingly, as described above with reference to FIG. 6, it can be seen that the reliquefaction apparatus of the present invention can operate with only about 50 to 80% of the power compared to the power consumed in the conventional reliquefaction apparatus (refrigeration cycle). have. As described above, since the present invention can be operated with considerably less power than in the related art, the generator capacity can be reduced, so that the generator can be miniaturized and the cost can be reduced.
더욱이, 종래의 재액화 장치의 경우 대기 상태로 운전하는데 대략 1 내지 1.5 MW의 전력이 소모되었으나, 본 발명의 경우 밸러스트 운항 중에는 대부분의 기간동안 재액화 장치의 운전을 중단시킬 수 있기 때문에, 재액화 장치에서 소모하는 전력을 절약할 수 있다. 예를 들어, 연간 밸러스트 운항을 150일로 가정하고, 재액화 장치의 운전을 위해 연료 소비 183g/kWh의 디젤 발전기를 사용한다고 가정하면, 연간 660 내지 923ton의 HFO를 절약할 수 있다. 2011년 9월 중순 현재 싱가포르 HFO 가격이 ton당 671 USD 정도이므로, 연간 0.4 내지 0.6 mil USD를 절감할 수 있다는 현저한 효과가 있다.
Moreover, while the conventional reliquefaction apparatus consumes approximately 1 to 1.5 MW of power to operate in the standby state, the reliquefaction apparatus of the present invention can stop the operation of the reliquefaction apparatus for most of the period during the ballast operation. You can save the power consumed by the device. For example, assuming an annual ballast operation of 150 days and using a diesel generator with a fuel consumption of 183 g / kWh for the operation of the reliquefaction unit, an annual HFO of 660 to 923 tonnes can be saved. As of mid-September 2011, Singapore's HFO price is about $ 671 per ton, which can save 0.4 to 0.6 mil USD annually.
이상에서는 본 발명의 연료 공급 시스템 및 방법이 LNG 운반선 등의 해상 구조물에 적용된 것을 예로 들어 설명이 이루어졌지만, 본 발명의 연료 공급 시스템 및 방법은 육상에서의 고압 천연가스 분사 엔진에 대한 연료 공급에 적용될 수 있음은 물론이다.In the above description, the fuel supply system and method of the present invention has been described as an example applied to offshore structures such as LNG carriers, but the fuel supply system and method of the present invention is applied to fuel supply for high pressure natural gas injection engines on land. Of course it can.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention will be.
11 : 저장탱크 13 : 증발가스 압축부
14 : 증발가스 압축기 15 : 중간 냉각기
20 : 재액화 장치 21 : 콜드 박스
22 : 냉매 기액분리기 23 : 냉매 압축기
24 : 냉매 냉각기 25 : 냉매 팽창밸브
26 : 냉매 펌프 31 : 버퍼 탱크
33 : 고압 펌프 37 : 고압 기화기
41 : 증발가스 열교환기 51, 52 : LBOG 팽창밸브
53, 54 : LBOG 기액분리기 55 : 연료가스 히터
57 : LNG 공급펌프 L1 : 증발가스 배출라인
L2 : 증발가스 공급라인 L3 : 연료 공급라인
L4 : LBOG 복귀라인 L5 : 분기라인
L6 : 연료가스 공급라인 L7 : LNG 공급라인
L8 : 제2 분기라인 L9 : 제3 분기라인11: storage tank 13: boil-off gas compression unit
14: boil off gas compressor 15: intermediate cooler
20: reliquefaction apparatus 21: cold box
22: refrigerant gas-liquid separator 23: refrigerant compressor
24: refrigerant cooler 25: refrigerant expansion valve
26
33: high pressure pump 37: high pressure vaporizer
41: boil-off
53, 54: LBOG gas-liquid separator 55: fuel gas heater
57: LNG supply pump L1: boil-off gas discharge line
L2: Evaporative Gas Supply Line L3: Fuel Supply Line
L4: LBOG Return Line L5: Branch Line
L6: Fuel Gas Supply Line L7: LNG Supply Line
L8: second branch line L9: third branch line
Claims (8)
상기 증발가스 압축부에서 압축된 증발가스와 상기 고압 펌프에서 압축된 액화증발가스를 열교환함으로써 증발가스를 냉각하여 상기 재액화 장치에 공급하는 동시에 액화증발가스를 가열하여 상기 고압 기화기에 공급하는 열교환기를 포함하며,
상기 재액화 장치는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스, 상기 콜드 박스에서 가열된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템.Evaporation gas compression unit for compressing the evaporated gas generated in the storage tank supplied from the storage tank, a reliquefaction apparatus for liquefied by receiving the evaporated gas compressed in the evaporation gas compression unit, liquefied evaporation gas liquefied in the reliquefaction apparatus A system for supplying fuel to a high pressure natural gas injection engine, including a high pressure pump for compressing the gas and a high pressure vaporizer for vaporizing the liquefied evaporated gas compressed in the high pressure pump,
A heat exchanger that cools the evaporated gas by heat-exchanging the evaporated gas compressed by the boil-off gas compression unit and the liquefied evaporated gas compressed by the high pressure pump, and supplies the liquefied evaporated gas to the high-pressure vaporizer. Include,
The reliquefaction apparatus includes a cold box in which heat exchange between a refrigerant and an evaporation gas is performed, compression means for compressing the refrigerant heated in the cold box, expansion means for expanding the compressed refrigerant to lower the temperature, and a gaseous refrigerant. And a refrigerant gas-liquid separator for separating the refrigerant in the liquid state.
상기 재액화 장치에서 냉각 및 액화된 액화증발가스를 공급받아 기체 성분을 분리하여 액체 성분만을 상기 고압 펌프에 공급하기 위한 버퍼 탱크를 더 포함하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템.The method according to claim 1,
The fuel supply system for a high-pressure natural gas injection engine, characterized in that it further comprises a buffer tank for receiving the cooled and liquefied liquefied evaporation gas from the reliquefaction apparatus to separate the gas component and supply only the liquid component to the high pressure pump.
상기 증발가스 압축부는, 증발가스를 압축하는 하나 이상의 증발가스 압축기와, 상기 증발가스 압축기에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기를 포함하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템.The method according to claim 1,
The boil-off gas compression unit includes at least one boil-off gas compressor for compressing the boil-off gas, and at least one intermediate cooler for cooling the boil-off gas whose temperature has risen while being compressed by the boil-off gas compressor. Fuel supply system.
상기 저장탱크에서 발생되어 배출된 증발가스는, 상기 증발가스 압축부에서 12 내지 45 bara(절대압력)로 압축된 후 상기 재액화 장치에 공급되는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템.The method according to claim 1,
The boil-off gas generated and discharged from the storage tank is compressed to 12 to 45 bara (absolute pressure) in the boil-off gas compression unit and then supplied to the reliquefaction apparatus. .
상기 재액화 장치는 복수의 냉매 기액분리기를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기에는 상류측에 배치되는 냉매 기액분리기에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 다시 혼합된 후 공급되는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템.The method according to claim 1,
The reliquefaction apparatus includes a plurality of refrigerant gas-liquid separators, and among the plurality of refrigerant gas-liquid separators, the refrigerant gas-liquid separator disposed at the downstream side is a gaseous refrigerant and a liquid state separated from the refrigerant gas-liquid separator disposed upstream. The fuel supply system for a high-pressure natural gas injection engine, characterized in that the refrigerant is supplied after mixing again.
복수의 냉매 기액분리기 중에서 상류측에 배치되는 냉매 기액분리기에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기에 공급되기 전에, 냉매 압축기에 의해 압축되고 냉매 냉각기에 의해 냉각되는 과정을 거치는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템.The method according to claim 5,
The gaseous refrigerant separated from the refrigerant gas-liquid separator disposed upstream of the plurality of refrigerant gas-liquid separators is compressed by the refrigerant compressor and cooled by the refrigerant cooler before being supplied to the refrigerant gas-liquid separator disposed most downstream. A fuel supply system for a high pressure natural gas injection engine, characterized in that through.
상기 재액화 장치는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스, 상기 콜드 박스에서 가열된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 복수의 냉매 기액분리기를 포함하며,
복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기에는 상류측에 배치되는 냉매 기액분리기에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 다시 혼합된 후 공급되는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 방법.Evaporated gas generated in the storage tank for storing liquefied gas is discharged from the storage tank and compressed, liquefied compressed evaporated gas in the reliquefaction apparatus, compressed liquefied liquefied liquefied gas to high pressure and then vaporized by high pressure natural gas As a fuel supply method for supplying fuel to an injection engine,
The reliquefaction apparatus includes a cold box in which heat exchange between a refrigerant and an evaporation gas is performed, compression means for compressing the refrigerant heated in the cold box, expansion means for expanding the compressed refrigerant to lower the temperature, and a gaseous refrigerant. And a plurality of refrigerant gas-liquid separators for separating a refrigerant in a liquid state,
High-pressure natural gas, characterized in that the refrigerant gas-liquid separator disposed on the downstream side of the plurality of refrigerant gas-liquid separator is supplied after mixing the refrigerant in the gas state and the liquid refrigerant in the refrigerant gas-liquid separator disposed upstream Fuel supply method for injection engines.
액화되기 전의 증발가스와 기화되기 전의 액화증발가스를 열교환함으로써 액화증발가스가 가지는 액화 에너지를 증발가스가 회수하여 사용함으로써 증발가스를 액화하기 위한 에너지를 절감하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 방법.The method of claim 7,
For high pressure natural gas injection engines, the energy for liquefying evaporated gas is reduced by recovering and using the liquefied energy of the liquefied evaporation gas by heat-exchanging the evaporated gas before liquefaction and the liquefied evaporation gas before vaporization. Fueling method.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110022101 | 2011-03-11 | ||
KR1020110022101 | 2011-03-11 | ||
KR1020110025398 | 2011-03-22 | ||
KR20110025398 | 2011-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20120103406A true KR20120103406A (en) | 2012-09-19 |
Family
ID=45840453
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110096463A KR101147365B1 (en) | 2011-03-11 | 2011-09-23 | Method for operating a fuel supplying system for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
KR1020110096464A KR101115466B1 (en) | 2011-03-11 | 2011-09-23 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
KR1020110101399A KR20120103406A (en) | 2011-03-11 | 2011-10-05 | System and method for supplying fuel for high pressure natural gas injection engine |
KR1020110101401A KR101823026B1 (en) | 2011-03-11 | 2011-10-05 | Method for supplying fuel for high pressure natural gas injection engine |
KR1020110101400A KR20120103407A (en) | 2011-03-11 | 2011-10-05 | System for supplying fuel for high pressure natural gas injection engine |
KR1020110101402A KR20120103409A (en) | 2011-03-11 | 2011-10-05 | Non-flammable mixed refrigerant using for reliquifaction apparatus in system for supplying fuel for high pressure natural gas injection engine |
KR1020110107231A KR101255132B1 (en) | 2011-03-11 | 2011-10-19 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
KR1020110107230A KR101300708B1 (en) | 2011-03-11 | 2011-10-19 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
KR1020110124107A KR20120103421A (en) | 2011-03-11 | 2011-11-25 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110096463A KR101147365B1 (en) | 2011-03-11 | 2011-09-23 | Method for operating a fuel supplying system for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
KR1020110096464A KR101115466B1 (en) | 2011-03-11 | 2011-09-23 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110101401A KR101823026B1 (en) | 2011-03-11 | 2011-10-05 | Method for supplying fuel for high pressure natural gas injection engine |
KR1020110101400A KR20120103407A (en) | 2011-03-11 | 2011-10-05 | System for supplying fuel for high pressure natural gas injection engine |
KR1020110101402A KR20120103409A (en) | 2011-03-11 | 2011-10-05 | Non-flammable mixed refrigerant using for reliquifaction apparatus in system for supplying fuel for high pressure natural gas injection engine |
KR1020110107231A KR101255132B1 (en) | 2011-03-11 | 2011-10-19 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
KR1020110107230A KR101300708B1 (en) | 2011-03-11 | 2011-10-19 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
KR1020110124107A KR20120103421A (en) | 2011-03-11 | 2011-11-25 | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine |
Country Status (1)
Country | Link |
---|---|
KR (9) | KR101147365B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160142159A (en) * | 2015-06-02 | 2016-12-12 | 대우조선해양 주식회사 | Device and method for BOG re-liquefaction |
KR102196129B1 (en) * | 2019-12-27 | 2020-12-29 | 김성훈 | Direct injection apparatus of bi-fuel having dual injector |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101309631B1 (en) | 2012-03-20 | 2013-09-17 | 에스티엑스조선해양 주식회사 | Fuel supply system for lng fuelled vessel |
KR101398357B1 (en) * | 2013-04-24 | 2014-05-23 | 현대중공업 주식회사 | Device for driving high pressure pump and fuel gas supply system of liquefied natural gas |
KR101468808B1 (en) * | 2013-05-29 | 2014-12-03 | 현대중공업 주식회사 | A Treatment System of Liquefied Natural Gas |
US20140352330A1 (en) | 2013-05-30 | 2014-12-04 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas treatment system |
KR101289212B1 (en) * | 2013-05-30 | 2013-07-29 | 현대중공업 주식회사 | A treatment system of liquefied gas |
KR102049477B1 (en) * | 2013-06-05 | 2019-11-28 | 한국조선해양 주식회사 | A Treatment System of Liquefied Natural Gas |
KR102053927B1 (en) * | 2013-06-05 | 2019-12-11 | 한국조선해양 주식회사 | A Treatment System of Liquefied Natural Gas |
KR20150026674A (en) * | 2013-08-29 | 2015-03-11 | 대우조선해양 주식회사 | Arrangement Structure of Floating and Storage Gas Power Plant |
KR102276355B1 (en) | 2013-09-17 | 2021-07-13 | 대우조선해양 주식회사 | Apparatus for disposing boil off gas and liquefied gas carrier including the same |
KR101941314B1 (en) * | 2014-04-02 | 2019-01-23 | 현대중공업 주식회사 | A Treatment System Liquefied Gas |
KR102200362B1 (en) * | 2014-05-19 | 2021-01-08 | 한국조선해양 주식회사 | A Treatment System of Liquefied Gas |
WO2015178634A1 (en) * | 2014-05-19 | 2015-11-26 | 현대중공업 주식회사 | Liquefied gas treatment system |
KR101938914B1 (en) * | 2014-10-06 | 2019-01-16 | 현대중공업 주식회사 | Fuel Supply System for Engine and Method of Sypplying Fuel using the same |
KR101938916B1 (en) * | 2014-10-06 | 2019-01-16 | 현대중공업 주식회사 | Fuel Supply System for Engine and Method of Sypplying Fuel using the same |
KR101938915B1 (en) * | 2014-10-06 | 2019-01-16 | 현대중공업 주식회사 | Fuel Supply System for Engine and Method of Sypplying Fuel using the same |
KR101763677B1 (en) | 2014-11-24 | 2017-08-02 | 삼성중공업 주식회사 | Reliquefaction system |
KR101763696B1 (en) | 2014-11-25 | 2017-08-02 | 삼성중공업 주식회사 | Reliquefaction system |
KR101763639B1 (en) | 2014-11-28 | 2017-08-02 | 삼성중공업 주식회사 | System for seperating of heterogeneous liquefied gas |
KR101690939B1 (en) | 2014-11-28 | 2016-12-30 | 삼성중공업 주식회사 | Reliquefaction system, and ship including the same |
KR20160068344A (en) | 2014-12-05 | 2016-06-15 | 삼성중공업 주식회사 | Reliquefaction system |
KR101701719B1 (en) | 2014-12-12 | 2017-02-02 | 삼성중공업 주식회사 | Reliquefaction system |
KR101707511B1 (en) * | 2015-01-08 | 2017-02-16 | 대우조선해양 주식회사 | Apparatus and method for controlling fuel gas supply in ship |
KR102295430B1 (en) | 2015-01-12 | 2021-08-31 | 삼성중공업 주식회사 | Reliquefaction system |
KR20160087117A (en) | 2015-01-13 | 2016-07-21 | 삼성중공업 주식회사 | Reliquefaction system |
KR101741756B1 (en) | 2015-03-20 | 2017-05-30 | 삼성중공업 주식회사 | Reliquefaction system |
KR20160120373A (en) | 2015-04-07 | 2016-10-18 | 삼성중공업 주식회사 | Fuel gas supply system |
KR101672180B1 (en) * | 2015-04-09 | 2016-11-04 | 삼성중공업 주식회사 | Fuel gas supply system |
KR101672175B1 (en) * | 2015-04-09 | 2016-11-04 | 삼성중공업 주식회사 | Fuel gas supply system |
KR20170036177A (en) | 2015-09-23 | 2017-04-03 | 삼성중공업 주식회사 | Apparatus for retreating boil off gas and retreating method thereof |
KR101987983B1 (en) * | 2016-01-29 | 2019-06-11 | 현대중공업 주식회사 | A Treatment System Liquefied Gas |
KR102654825B1 (en) * | 2016-12-29 | 2024-04-04 | 한화오션 주식회사 | Fuel Supply System of Engine for Vessel |
CN107013389B (en) * | 2017-04-07 | 2019-05-14 | 四川森洁燃气设备有限公司 | A kind of dual-purpose pipeline structure of engine oil gas |
KR102285470B1 (en) | 2017-04-18 | 2021-08-05 | 삼성중공업 주식회사 | Fuel gas supply system |
KR102260378B1 (en) | 2017-05-12 | 2021-06-04 | 삼성중공업 주식회사 | Fuel gas supplying system in ships |
KR102334542B1 (en) | 2017-06-08 | 2021-12-07 | 삼성중공업 주식회사 | Reliquefaction system |
KR101957399B1 (en) * | 2017-09-01 | 2019-03-21 | 유니셈(주) | Mixed Refrigerant of Mixed Refrigerant Refrigeration System |
KR102334541B1 (en) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | Reliquefaction system |
KR102334545B1 (en) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | Reliquefaction system |
KR102334540B1 (en) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | Reliquefaction system |
KR102334731B1 (en) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | Reliquefaction system |
KR102462000B1 (en) | 2018-09-19 | 2022-11-03 | 삼성중공업 주식회사 | Liquefied gas regasification system |
KR102153624B1 (en) * | 2018-11-14 | 2020-09-09 | 대우조선해양 주식회사 | Boil-Off Gas Treatment System And Method For Ship |
KR102624234B1 (en) * | 2018-11-30 | 2024-01-12 | 한화오션 주식회사 | System amd Method for Re-liquefying Boil-Off Gas |
AU2019439816B2 (en) | 2019-04-01 | 2023-03-23 | Samsung Heavy Ind. Co., Ltd. | Cooling system |
KR102538530B1 (en) * | 2019-04-01 | 2023-06-05 | 삼성중공업 주식회사 | Liquefaction system |
KR102572928B1 (en) | 2019-08-27 | 2023-08-31 | 삼성중공업 주식회사 | Reliquefaction system and ship comprising the same |
KR102528221B1 (en) | 2019-09-11 | 2023-05-03 | 삼성중공업 주식회사 | Gas processing system |
KR102632433B1 (en) | 2019-12-09 | 2024-02-02 | 삼성중공업 주식회사 | Fuel supply providing system used in ship |
KR102631167B1 (en) | 2019-12-09 | 2024-01-31 | 삼성중공업 주식회사 | Fuel supply providing system used in ship |
KR102631166B1 (en) | 2019-12-09 | 2024-01-31 | 삼성중공업 주식회사 | Fuel supply providing system used in ship |
KR20220021972A (en) | 2020-08-14 | 2022-02-23 | 삼성중공업 주식회사 | Ship |
KR20220037528A (en) | 2020-09-16 | 2022-03-25 | 삼성중공업 주식회사 | Reliquefaction system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010077227A (en) * | 2000-02-01 | 2001-08-17 | 윤상국 | Reliquefication system of boiled-off-gas using cold energy in LNG and mothod therefor |
KR100857487B1 (en) | 2000-06-28 | 2008-09-09 | 브룩스 오토메이션 인코퍼레이티드 | Nonflammable mixed refrigerants mr for use with very low temperature throttle-cycle refrigeration systems |
KR101301024B1 (en) * | 2004-06-23 | 2013-08-29 | 엑손모빌 업스트림 리서치 캄파니 | Mixed refrigerant liquefaction process |
JP2008286211A (en) | 2007-05-15 | 2008-11-27 | Ihi Corp | Bog compression installation and its operation method |
KR20090025514A (en) * | 2007-09-06 | 2009-03-11 | 신영중공업주식회사 | A bog re-liquefaction system for lng carrier |
NO330187B1 (en) * | 2008-05-08 | 2011-03-07 | Hamworthy Gas Systems As | Gas supply system for gas engines |
KR101009920B1 (en) * | 2008-08-18 | 2011-01-20 | 에스티엑스조선해양 주식회사 | Apparatus and method for supplying fuel gas in ships, floating vessels or floating facilities |
KR101187532B1 (en) * | 2009-03-03 | 2012-10-02 | 에스티엑스조선해양 주식회사 | boil-off gas management apparatus of electric propulsion LNG carrier having reliquefaction function |
KR101559403B1 (en) * | 2009-03-31 | 2015-11-20 | 대우조선해양 주식회사 | Apparatus and method for treating boil-off gas to reduce reliquefaction power consumption |
KR20100136691A (en) * | 2009-06-19 | 2010-12-29 | 삼성중공업 주식회사 | Apparatus and method for supplying fuel gas in ships |
KR101069812B1 (en) * | 2009-08-17 | 2011-10-04 | 삼성중공업 주식회사 | Fuel gas supply system |
-
2011
- 2011-09-23 KR KR1020110096463A patent/KR101147365B1/en active IP Right Grant
- 2011-09-23 KR KR1020110096464A patent/KR101115466B1/en not_active IP Right Cessation
- 2011-10-05 KR KR1020110101399A patent/KR20120103406A/en not_active Application Discontinuation
- 2011-10-05 KR KR1020110101401A patent/KR101823026B1/en active IP Right Grant
- 2011-10-05 KR KR1020110101400A patent/KR20120103407A/en not_active Application Discontinuation
- 2011-10-05 KR KR1020110101402A patent/KR20120103409A/en not_active Application Discontinuation
- 2011-10-19 KR KR1020110107231A patent/KR101255132B1/en not_active IP Right Cessation
- 2011-10-19 KR KR1020110107230A patent/KR101300708B1/en active IP Right Grant
- 2011-11-25 KR KR1020110124107A patent/KR20120103421A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160142159A (en) * | 2015-06-02 | 2016-12-12 | 대우조선해양 주식회사 | Device and method for BOG re-liquefaction |
KR102196129B1 (en) * | 2019-12-27 | 2020-12-29 | 김성훈 | Direct injection apparatus of bi-fuel having dual injector |
Also Published As
Publication number | Publication date |
---|---|
KR20120103412A (en) | 2012-09-19 |
KR101300708B1 (en) | 2013-08-26 |
KR20120103411A (en) | 2012-09-19 |
KR20120103408A (en) | 2012-09-19 |
KR20120103409A (en) | 2012-09-19 |
KR20120103407A (en) | 2012-09-19 |
KR20120103421A (en) | 2012-09-19 |
KR101115466B1 (en) | 2012-02-24 |
KR101255132B1 (en) | 2013-04-15 |
KR101147365B1 (en) | 2012-05-22 |
KR101823026B1 (en) | 2018-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101106089B1 (en) | Method for supplying fuel for high pressure natural gas injection engine | |
KR101115466B1 (en) | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine | |
KR101106088B1 (en) | Non-flammable mixed refrigerant using for reliquifaction apparatus in system for supplying fuel for high pressure natural gas injection engine | |
JP5806381B2 (en) | Fuel supply system for high pressure natural gas injection engine with excess boil-off gas consumption means | |
JP5611476B2 (en) | Offshore structure fuel supply system with reliquefaction device and high pressure natural gas injection engine | |
KR20110118604A (en) | Gas supplying apparatus | |
KR20120107831A (en) | System for supplying fuel for high pressure natural gas injection engine having means for consuming excess boil off gas | |
US20140069118A1 (en) | Method and system for supplying fuel to high-pressure natural gas injection engine | |
KR20120107832A (en) | System and method for supplying fuel for high pressure natural gas injection engine | |
KR20120107835A (en) | System for supplying fuel for a marine structure having a reliquefaction apparatus and a high pressure natural gas injection engine | |
KR20120103413A (en) | System for supplying fuel for high pressure natural gas injection engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal |