KR20120100535A - 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자 - Google Patents

알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자 Download PDF

Info

Publication number
KR20120100535A
KR20120100535A KR1020110019509A KR20110019509A KR20120100535A KR 20120100535 A KR20120100535 A KR 20120100535A KR 1020110019509 A KR1020110019509 A KR 1020110019509A KR 20110019509 A KR20110019509 A KR 20110019509A KR 20120100535 A KR20120100535 A KR 20120100535A
Authority
KR
South Korea
Prior art keywords
carbon atoms
substituted
hydrogen atom
alkyl group
group
Prior art date
Application number
KR1020110019509A
Other languages
English (en)
Other versions
KR101838531B1 (ko
Inventor
문두경
이장용
송호준
송관욱
최민희
허수원
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020110019509A priority Critical patent/KR101838531B1/ko
Publication of KR20120100535A publication Critical patent/KR20120100535A/ko
Application granted granted Critical
Publication of KR101838531B1 publication Critical patent/KR101838531B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자(Organic photovoltaic device; OPV device)에 관한 것으로서, 더욱 상세하게는 우수한 광전변환 효율을 나타내는 다양한 전자끌게 특성을 갖는 분자(n-type molecular)와 알킬리덴플루오렌을 주쇄로 하여 고분자의 산화안정성과 평면성을(planarity)을 증가시키고, 분자간 상호작용으로 정공(hole)의 이동 특성을 향상시켜 고효율의 광전변환특성을 나타내는 유기 광전변환고분자 및 상기 고분자와 PCBM(Phenyl-C61-butyric acid methyl ester; PC61BM 혹은 phenyl C71-butyric acid methyl ester; PC71BM)을 이용한 벌크헤테로정션 타입(bulk heterojunction type) 유기 광전변환소자에 관한 것이다.

Description

알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자{Light emitting polymer containing alkylidenefluorene and electroluminescence device using the same}
본 발명은 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자(Organic photovoltaic device; OPV device)에 관한 것으로서, 더욱 상세하게는 우수한 광전변환 효율을 나타내는 다양한 전자끌게 특성을 갖는 분자(n-type molecular)와 알킬리덴플루오렌을 주쇄로 하여 고분자의 산화안정성과 평면성을(planarity)을 증가시키고, 분자간 상호작용으로 정공(hole)의 이동 특성을 향상시켜 고효율의 광전변환특성을 나타내는 유기 광전변환고분자 및 상기 고분자와 PCBM(Phenyl-C61-butyric acid methyl ester; PC61BM 혹은 phenyl C71-butyric acid methyl ester; PC71BM)을 이용한 벌크헤테로정션 타입(bulk heterojunction type) 유기 광전변환소자에 관한 것이다.
최근 고유가 및 환경오염 문제가 대두되면서 저가의 친환경에너지원에 대한 요구가 급격히 증대되고 있다.
친환경 에너지원으로는 태양광, 풍력, 수력, 파력, 지열 등이 대표적인데, 이중 태양광을 이용하여 전력을 생산할 수 있는 태양광 발전은 환경오염의 위험이 없는 무궁무진한 에너지원이다. 일례로 지구상에서 실제 사용가능한 태양에너지 양은 600TW(1TW=1×1,012Watts)로, 현재 사용되고 있는 모든 에너지의 60배로 평가되는 매우 막대한 양이다. 이러한 이유로 태양광을 이용한 광전소자에 대한 연구는 지난 수십 년간 수행되어 왔으며, 현재는 실리콘 웨이퍼를 이용한 무기 태양전지가 상용화되어 있다.
그러나, 무기 태양전지는 원료비용이 많이 들어 장기간의 대단위 발전용으로 사용될 뿐 저가의 전자제품용 에너지원이나 유연디스플레이와 결합된 유연태양전지 또는 입을 수 있는 태양전지에는 적합하지 않다. 이에 유기반도체를 이용한 태영전지에 대한 연구가 활발히 진행되고 있다.
태양광은 5%의 자외선, 46%의 가시광선과 49%의 적외선으로 이루어져 있다. 구부릴 수 있는 태양전지의 구현을 위해 지금까지 개발된 공액고분자는 2eV 이상의 밴드갭을 갖기 때문에 광자(photon)를 흡수할 수 있는 범위가 한정되어 있다. 이를 극복하기 위해서는 보다 작은 밴드갭을 갖는 low band gap 고분자 물질의 개발이 절실하다.
유기 전기발광현상(photovoltaic, PV)은 태양광을 받은 유기활성층에서 광자나 전자(electron)과 정공(hole)으로 분리되어 엑시톤을 형성하고, 이는 전자주게(donor)와 전자받게(acceptor) 물질의 계면으로 이동하고 각각의 LUMO 레벨의 차이에 의해 분리되어 전기를 생산하는 것을 의미한다.
유기물에서의 광전변환현상은 1987년 이스트만 코닥사(Eastmann Kodak Co.)의 탕 등(Tang et al.,)이 ITO/CuPc(30mm)/PV(50mm)/Ag의 구조로 소자를 만들어 AM2.0 조건 하에서 0.95%의 광전변환효율을 처음 보고하였다. 이후 1% 이하의 광전변환효율에 머물던 것이 플러렌(fullerene)의 도입 및 이의 유도체인 PCBM의 개발에 힘입어 상당한 진보를 이루었다.
일반적으로 유기막 형성 시 저분자를 이용하는 경우, 저분자는 정제하기가 용이하여 불순물을 거의 제거할 수 있으므로 전기적 특성이 우수하다. 그러나 고효율의 광전변환 효율을 위해서는 넓은 범위의 태양광을 흡수 할 수 있는 photon harvesting 특성이 선행되어야 한다. 이를 위해서는 고분자의 주쇄에 전자를 제공할 수 있는 전자주게와 전자받게 물질을 교대로 도입하여 push-pull 구조를 형성함으로서 효과적으로 작은 밴드갭을 갖는 고분자를 합성할 수 있지만, 동시에 작은 밴드갭을 갖는 물질은 빛에 산화안정성이 떨어진다는 단점도 갖고 있다.
따라서, 고효율의 유기태양전지를 사용화하기 위해서는 산화안정성을 갖고 잘 조화된 HOMO, LUMO 레벨을 갖는 물질의 합성이 요구되고 있다.
이에 본 발명자들은 산화안정성이 우수한 다양한 전자끌게 특성을 갖는 분자(n-type molecular)와 평면성이 우수해 전공 이동 특성이 우수한 알킬리덴플루오렌을 포함하는 새로운 광전변환고분자와 이를 이용한 우수한 광전변환 효율을 갖는 광전변환소자를 개발하고 본 발명을 완성하였다.
본 발명의 목적은, 고분자의 산화안정성과 평면성 향상에 의해 에너지 레벨을 최적화하고, 분자간 상호작용의 활성화 및 정공의 전달을 원활화시켜 우수한 전류 밀도를 갖도록 전자끌게 특성을 갖는 분자와 알킬리덴플루오렌을 포함하는 유기 광전변환고분자를 제공하는데 있다.
또한, 본 발명은 상기 유기 광전변환고분자를 광활성층으로 채용한 유기 광전변환소자(Organic photovoltaic device; OPV device)를 제공하는데 다른 목적이 있다.
상기 목적을 달성하기 위하여, 본 발명은 전자끌게 특성을 갖는 분자와 알킬리덴플루오렌을 주쇄로 하여 고분자의 산화안정성과 평면성을 증가시켜 고효율의 광전변환특성을 나타내는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자를 제공한다.
상기와 같은 본 발명에 따르면, 우수한 산화안정성 및 평면성을 갖는 유기광전변환 고분자 및 상기 고분자를 활성층으로 채용한 높은 광전변환효율을 보이는 유기 광전변환소자를 제공하는 효과가 있다.
본 발명에 따른 유기 광전변환소자는 스핀코팅 등의 비교적 간단한 공정으로 제조가 용이하며, 적절한 전자주게물질과 전자받게물질을 선택하여 분자내 전하 이동 효과(Intramolecular charge transfer effect; ICT effect)를 이용함으로써 안정된 HOMO, LUMO 레벨 및 작은 밴드갭을 갖기 때문에 광전변환효율이 우수한 효과가 있다.
도 1은 화학식 3 및 화학식 4로 표시되는 광전변환고분자 화합물의 전자주게 물질의 제조과정을 보여주는 것이다.
도 2는 화학식 3 및 화학식 4로 표시되는 광전변환고분자 화합물의 전자끌게 물질의 제조과정을 보여주는 것이다.
도 3은 화학식 3 및 화학식 4로 표시되는 광전변환고분자 화합물의 중합과정을 보여주는 것이다.
도 4는 화학식 3으로 표시되는 광전변환고분자 화합물의 1H-NMR을 보여주는 것이다.
도 5는 화학식 3 및 화학식 4로 표시되는 광전변환고분자 화합물의 UV 흡수 스펙트럼을 나타내는 도면이다((a) PAFSeQ, (b) PHFDBT).
도 6은 화학식 3으로 표시되는 광전변환고분자 화합물의 열중량 분석(TGA)를 나타내는 도면이다.
도 7은 화학식 3 및 화학식 4로 표시되는 광전변환 고분자 화합물의 전기화학적 특성 측정 결과를 보여주는 도면이다((a) PAFSeQ, (b) PHFDBT).
도 8은 화학식 3 및 화학식 4로 표시되는 광전변환 고분자 화합물의 광전변환 특성을 측정하기 위하여 제작한 유기 광전변환소자의 구조를 보여주는 단면도이다.
도 9는 화학식 3 및 화학식 4로 표시되는 광전변환 고분자 화합물의 광전 변환(photoelectric transformation) 특성 전류-전압 그래프을 나타내는 그래프이다((a) PAFSeQ, (b) PHFDBT).
도 10은 화학식 3 및 화학식 4로 표시되는 광전변환 고분자 화합물의 외부양자효율(incident photon to current conversion efficiency; IPCE) 그래프이다((a) PAFSeQ, (b) PHFDBT).
도 11은 화학식 3으로 표시되는 광전변환 고분자 화합물 박막의 AFM 측정 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 전자끌게 특성을 갖는 분자와 알킬리덴플루오렌을 주쇄로 포함한 하기 화학식 1로 표시되는 유기 광전변환고분자를 제공한다.
Figure pat00001
본 발명에 있어서, 상기 식에서 l과 m은 0~10의 정수이며, n은 1~100,000의 정수이다. 화학식 1의 R 은 수소원자; 탄소수 1 내지 25의 알킬기; 탄소수 1 내지 25의 알콕시기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되며, 스페이서는 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되는 것이 바람직하다.
또한, 절자끌게 특성을 갖는 분자(n-type molecule)는 하기 화학식 2로 표시되는 화합물 중에서 1종 이상 선택되는 것이 바람직하다.
Figure pat00002
상기 화학식 2에서 R2부터 R36까지는 독립적으로 수소원자; 탄소수 1 내지 25의 알킬기; 탄소수 1 내지 25의 알콕시기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되고, R37은 비치환기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되며, l과 m은 독립적으로 1~100,000의 정수이고, n은 1~100,000의 정수인 것이 바람직하다. 더욱 바람직하게는 상기 전자끌게 특성을 갖는 분자는 퀴녹살린(quinoxaline) 혹은 2,1,3-벤조싸이아다이아졸(2,1,3-benzothiadiazole)이다.
또한, 가장 바람직하게는 하기 화학식 3으로 표시되는 폴리[9-(1'-옥틸노닐디엔)플루오렌-알트-2,5-비스(셀레노-2-일)-2,3-비스(4-헥실록시페닐)퀴녹살린 (poly[9-(1'-octylnonylidene)fluorene-alt-2,5-bis(seleno-2-yl)-2,3-bis(4-hexyloxyphenyl)quinoxaline], PAFSeQ)의 구조를 갖는 유기 광전변환고분자를 제공한다. PAFSeQ는 전자끌게 특성을 갖는 분자가 퀴녹살린으로 R13과 R14는 각각 헥톡시벤젠이며, R은 옥틸기이고, 스페이서는 셀레노펜으로 l과 m은 1이다.
Figure pat00003
단, 상기 식에서 n은 1~100,000의 정수이다.
또한, 가장 바람직하게는 하기 화학식 4로 표시되는 폴리(9-(1'-헥실헵타디엔)플루오렌-2,7-디일-알트-4,7-디씨에닐-2,1,3-벤조싸이아디아졸-2,2'-디일) Poly(9-(1'-hexylheptylidene)fluorene-2,7-dieyl-alt-4,7-dithienyl-2,1,3-benzothiadiazole-2,2'-dieyl), PHFDTB)의 구조를 갖는 유기 광전변환고분자를 제공한다. PHFDBT는 전자끌게 특성을 갖는 분자가 벤조싸이아디아졸로 R3과 R4는 각각 수소이며, R은 헥실기이고, 스페이서는 싸이오펜으로 l과 m은 1이다.
Figure pat00004
단, 상기 식에서 n은 1~100,000의 정수이다.
본 발명은 상기 화학식 1로 표시되는 유기광전변환 고분자를 광활성층(active layer)으로 채용한 유기 광전변환소자를 제공한다.
구체적으로, 본 발명에 따른 유기 광전변환소자의 제조방법은 다음과 같다.
먼저, 기판 상부에 애노드 전극용 물질을 스퍼팅(sputting)한다. 이때, 기판으로는 통상적인 유기 광전변환소자에서 사용되는 기판을 사용하는데 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리 기판 또는 투명 플라스틱 기판을 사용하는 것이 바람직하다.
또한, 애노드 전극용 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화 주석(SnO2), 산화아연(ZnO) 등을 사용하는 것이 바람직하고, 캐소드 형성용 금속으로는 일함수(Work function)가 작은 리튬(Li), 마그네슘(Mg), 알루미늄(Al), Al:Li, Al:BaF2, Al:BaF2:Ba 등을 사용하는 것이 바람직하다.
본 발명의 유기 광전변환소자의 구성은 애노드/광전변환층/캐소드의 가장 일반적인 소자 구성은 물론 정공수송층 및/또는 전자수송층이 더 포함될 수 있다. 이때, 상기 광전변환층은 스핀 코팅에 의해 형성될 수 있고, 그 두께는 10~10,000Å의 범위를 갖는 것이 바람직하다. 또한, 상기 정공수송층은 애노드 전극 상부에 진공증착 또는 스핀코팅으로 형성될 수 있으며, 상기 전자수송층은 캐소드를 형성하기 전에 광전변환층의 상부에 형성된다. 또한, 상기 전자수송층은 통상적인 전자수송층 형성용 물질을 사용할 수 있고, 상기 정공수송층 및 전자수송층의 두께는 1~10,000Å의 범위인 것이 바람직하다.
본 발명에서 상기 정공수송층 및 전자수송층 물질은 특별히 제한되지는 않으나, 바람직하게는 정공수송층 물질로는 PEDOT:PSS (Poly(3,4-ethylenediocy-thiophene) doped with poly(styrenesulfonic acid)), N,N'-비스(3-메틸페닐)-N,N-디페닐-[1,1'-비페닐]-4,4'-디아민(TPD)을 사용하는 것이 좋으며, 전자수송층 물질로는 알루미늄 트리하이드록시퀴놀린(aluminium trihydroxyquinoline; Alq3), 1,3,4-옥사다이아졸 유도체인 PBD(2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole, 퀴녹살린 유도체인 TPQ(1,3,4-tris[(3-phenyl-6-trifluoromethyl)quinoxaline-2-yl]benzene) 및 트리아졸 유도체 등을 사용하는 것이 좋다. 상기 전자수송층 및 정공수송층은 전자와 정공을 광전변환고분자로 효율적으로 전달시켜 줌으로써 생성되는 전하의 전극으로의 이동확률을 높이는 역할을 한다.
또한, 광전변환층은 상기의 화학식 1과 같은 구조로 합성된 고분자와 PC61BM(phenyl C61-butyric acid methyl ester) 혹은 PC71BM(phenyl C71-butyric acid methyl ester) 및 다양한 풀러렌(fullerene) 유도체와의 벌크헤테로정션 타입으로 형성된다. 이때, 고분자와 PCBM은 1:10 내지 10:1 범위의 비율(w/w)로 혼합되는 것이 바람직하고, 혼합 후에는 최대의 특성을 나타낼 수 있도록 50 내지 300℃의 온도에서 1초 내지 24시간 동안 어닐링하는 것이 바람직하다.
또한, 본 발명의 유기전기발광소자는 상술한 바와 같이 애노드/정공수송층/광전변환층/전자수송층/캐소드의 순으로 제조될 수도 있고, 그 반대의 순서, 즉 캐소드/전자수송층/광전변환층/정공수송층/애노드의 순으로 제조하여도 무방하다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1.
도 1, 2 및 3에 도시된 메카니즘에 따라 하기에 명시한 방법으로 제조하였다. 4,7-디브로모-2,1,3-벤조싸이아다이아졸(4,7-Dibromo-2,1,3-benzothiadiazole, 4) 및 3,6-디브로모-1,2-페닐렌디아민(3,6-dibromo-1,2-phenylenediamine, 5)은 이전의 문헌을 참고하여 제조하였다(X. Li, W. Zeng, Y. Zhang, Q. Hou, W. Yang and Y. Cao, Eur. Polym. J., 2005, 41, 2923-2933; R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang and Y. Cao, Macromolecules, 2005, 38, 244-253).
(1)9-( 비스 - 메틸썰퍼닐 -메틸렌)-2,7- 디브로모 - 플루오렌 (9-( Bis -methylsulfanyl-methylene)-2,7-dibromo-fluorene, 1)의 제조
2,7-디브로모-9H-플루오렌(2,7-dibromo-9H-fluorene) (24.9g, 77mmol)을 디메틸썰폭사이드(dimethylsulfoxide ,DMSO) 250㎖에 녹인 후, 상온에서 소듐 터트-부톡사이드(Sodium tert-butoxide) (15.75g, 162.00mmol)를 조금씩 나누어 천천히 넣었다. 그 후, 반응기에 카본 디썰파이트(Carbon disulfide) (6.47g, 85.90mmol)를 한 번에 넣었다. 30분간 교반한 후, 메틸 아이오다이드(methyl iodide) (23.00g, 162.0mmol)을 천천히 넣고 24시간동안 상온에서 교반하였다. 증류수 250㎖를 넣어 반응을 종결하고, 클로로포름으로 추출한 후, 얻어진 유기상 용액은 여러 차례 씻어준 후 Na2SO4 수분을 제거하였다. 용매 제거 후 실리카겔 컬럼으로 정제하자 밝은 노란색 고체 11.54g이 얻어졌다(35% 수율).
Found: C, 44.7; H, 3.1. C16H12Br2S2 requires C, 44.9; H, 2.8; δH(300㎒; CDCl3: Me4Si) 8.90 (s, 2H), 7.51 (2H, d, J= 8.2Hz), 7.42 (2H, d,J=8.2Hz), 2.57 (s, 6H); δC(75㎒; CDCl3; Me4Si) 147.30, 139.40, 137.54, 134.28, 130.33, 129.13, 121.21, 120.41, 19.14.
(2)2,7- 디브로모 -9-( 헵타데카닐덴 )- 플루오렌 (2,7- dibromo -9-(heptadecanylidene)-fluorene, 2)의 제조
테트라하이드로퓨란(THF) 125㎖에 9-(비스-메틸썰퍼닐-메틸렌)-2,7-디브로모-플루오렌(9-(Bis-methylsulfanyl-methylene)-2,7-dibromo-fluorene, 1) (11.03g, 25.76mmol) 과 Li2CuCl4 (7.1ml, 0.1M solution in THF, 0.71mmol)를 넣고, 0℃로 냉각하였다. 온도를 0℃로 유지하면서 테트라하이드로퓨란에 녹인 n-옥틸마그네슘 브로마이드(n-octylmagnesium bromide) (13.15g, 60.49 mmol)을 천천히 첨가하였다. 0℃에서 4시간동안 교반한 후, 10%의 NaOH 수용액을 넣어 반응을 종결하였다. 셀라이트(celite)를 이용해 필터링한 후, 유기상은 Na2SO4 수분 제거하였다. 용매 제거 후, 연한 노란색의 바늘형 고체 생성물 7.94g이 얻어졌다(55% 수율).
Found: C, 64.6; H, 6.7. C30H40Br2 requires C, 64.3; H, 7.2; δH(300㎒; CDCl3: Me4Si) 7.86 (2H, s, J=1.4Hz), 7.58 (2H, d, J=8.1Hz), 7.43 (2H, dd, J =8.1 & 1.4Hz), 2.72 (4H, t, J=8.3 Hz), 1.68 (4H, m), 1.54 (4H, m), 1.32 (8H, m), 0.90 (6H, t, J=6.7Hz); δC(75㎒; CDCl3; Me4Si) 155.31, 139.95, 137.42, 129.80, 129.37, 127.92, 121.15, 120.49, 37.54, 31.85, 30.06, 29.40, 29.30, 27.82, 22.68, 14.14.
(3) 2,2'-[9-( 헵타데카닐덴 )- 플루오렌 -2,7- 디일 ] 비스 (4,4,5,5- 테트라메틸 -[1,3,2]디 옥사보 로레인) (2,2'-[9-( heptadecanylidene )- fluorene -2,7- diyl ] bis (4,4,5,5- tetramethyl -[1,3,2]-dioxaborolane), (A))의 제조
2,7-디브로모-9-(헵타데카닐덴)-플루오렌 (2,7-dibromo-9-(heptadecanylidene)-fluorene, 2) (5.1g, 9.11mmol)을 THF 50㎖에 녹이고 -78℃까지 냉각시켰다. 온도를 유지하며 2.2 당량의 n-BuLi(2.5M in hexane) (8.1㎖, 20.04mmol)을 천천히 한 방울씩 떨어뜨렸다. -78℃에서 1시간 동안 교반한 후, 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-디옥사보로레인(2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3.729g, 4.088ml, 20.04mmol)을 천천히 넣었다. 1시간 동안 온도를 -78℃로 유지하며 교반하였다. 상온으로 온도를 서서히 올리고 24시간 동안 교반하였다. 증류수를 부어 반응을 종결하고 클로로포름으로 추출하였다. 증류수로 여러 번 씻어준 후, 용매를 제거하여 실리카겔 컬럼으로 정제하였다.
δH(400㎒; CDCl3: Me4Si) 0.89 (3H, t, J=8Hz), 1.36(22H, m), 1.57(3H, m), 1.71(2H, m), 2.82 (2H, t, J=8Hz), 7.78 (2H, dd, J =7.6 & 7.6 Hz), 8.24(1H, s).
(4)2,7- 디브로모 -9-( 트리데카닐덴 )- 플루오렌 (2,7- dibromo -9-(tridecanylidene)-fluorene, 3)의 제조
테트라하이드로퓨란(THF) 125㎖에 9-(비스-메틸썰퍼닐-메틸렌)-2,7-디브로모-플루오렌(9-(Bis-methylsulfanyl-methylene)-2,7-dibromo-fluorene, 1) (11.03g, 25.76mmol) 과 Li2CuCl4 (7.1ml, 0.1M solution in THF, 0.71mmol)를 넣고, 0℃로 냉각하였다. 온도를 0℃로 유지하면서 테트라하이드로퓨란에 녹인 n-헥실마그네슘 브로마이드(n-hexylmagnesium bromide) (11.46g, 60.49 mmol)을 천천히 첨가하였다. 0℃에서 4시간동안 교반한 후, 10%의 NaOH 수용액을 넣어 반응을 종결하였다. 셀라이트(celite)를 이용해 필터링한 후, 유기상은 Na2SO4 수분 제거하였다. 용매 제거 후, 연한 노란색의 바늘형 고체 생성물 7.14g이 얻어졌다(55% 수율).
Found: C, 61.8; H, 6.1. C26H32Br2 requires C, 61.9; H, 6.4; δH(300㎒; CDCl3: Me4Si) 7.84 (2H, d, J =1.5Hz), 7.55 (2H, d, J=8.1Hz), 7.41 (2H, dd, J= 8.1 & 1.5 Hz), 2.70 (4H, t, J= 8.3Hz), 1.67 (4H, m), 1.55 (4H, m), 1.39(8H, m), 0.94 (6H, t, J=6.9 Hz); δC(75㎒; CDCl3; Me4Si) 155.24, 139.96, 137.43, 129.82, 129.37, 127.91, 121.16, 120.49, 37.55, 31.66, 29.74, 27.79, 22.69, 14.13.
(5) 2,2'-[9-( 트리데카닐덴 )- 플루오렌 -2,7- 디일 ] 비스 (4,4,5,5- 테트라메틸 -[1,3,2]디 옥사보 로레인) (2,2'-[9-( tridecanylidene )- fluorene -2,7-diyl]bis(4,4,5,5-tetramethyl-[1,3,2]-dioxaborolane), (B))의 제조
2,7-디브로모-9-(트리데카닐덴)-플루오렌 (2,7-dibromo-9-(tridecanylidene)-fluorene, 3) (4.60g, 9.11mmol)을 THF 50㎖에 녹이고 -78℃까지 냉각시켰다. 온도를 유지하며 2.2 당량의 n-BuLi(2.5M in hexane) (8.1㎖, 20.04mmol)을 천천히 한 방울씩 떨어뜨렸다. -78℃에서 1시간 동안 교반한 후, 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-디옥사보로레인(2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3.729g, 4.088ml, 20.04mmol)을 천천히 넣어주었다. 1시간 동안 온도를 -78℃로 유지하며 교반하였다. 상온으로 온도를 서서히 올리고 24시간 동안 교반하였다. 증류수를 부어 반응을 종결하고 클로로포름으로 추출하였다. 증류수로 여러 번 씻어준 후, 용매를 제거하여 실리카겔 컬럼으로 정제하였다.
δH(400㎒; CDCl3: Me4Si) 0.94(3H, t, J=7.4Hz), 1.36(16H, m), 1.57(3H, m), 1.73(2H, m), 2.82(2H, t, J=8Hz), 7.78 (2H, dd, J =7.6 & 7.6 Hz).
실시예 2.
(1)2,3- 비스 (4- 메톡시페닐 )-5,8- 디브로모퀴녹살린 (2,3-Bis(4-methoxyphenyl)-5,8-dibromoquinoxaline, 7)의 제조
부탄올 100㎖에 3,6-디브로모-1,2-페닐렌디아민(3,6-dibromo-1,2-phenylenediamine, 6) 6g(12.4mmol)과 4,4'-디메톡시벤질(4,4'-methoxybenzil) 7.2g(26.9mmol)을 녹이고, 빙초산(glacial acetic acid)를 2~3방울 적하한 후 120℃에서 5시간 교반하였다. 반응 혼합물은 0℃로 냉각하여 여과한 다음, 분리된 고체를 뜨거운 에탄올로 두 번 씻어주고 진공 하에서 건조하여 노란색 고체 4g 을 얻었다(65% 수율).
Found: C, 52.68; H, 3.17; N, 5.6. C22H16N2O2Br2 requires C, 52.76; H, 3.17; N, 5.6%; δH(400㎒; CDCl3: Me4Si) 3.85 (6H, s), 6.88 (4H, d, J= 8㎐), 7.65 (4H, d, J = 8㎐), 7.85 (2H, s); δC(400㎒; CDCl3; Me4Si) 62.4, 114.6, 130.2, 132.9, 133.2, 142.2, 149.8, 157.3, 161.4.
(2)2,3- 비스 (4- 하이드록시페닐 )-5,8- 디브로모퀴녹살린 (2,3-Bis(4-hydroxyphenyl)-5,8-dibromoquinoxaline, 8)의 제조
2구 플라스크(two neck flask)에 상기에서 제조한 2,3-비스(4-메톡시페닐)-5,8-디브로모퀴녹살린(2,3-Bis(4-methoxyphenyl)-5,8-dibromoquinoxaline, 7) 4g(8mmol)과 염산피리딘드(pyridine hydrochloride) 30eq.을 넣고 200℃에서 8시간 동안 교반한 후 혼합물을 실온까지 냉각하여 염산 수용액(aqueous hydrochloric acid)을 넣어주고, 에테르(ether)로 추출하였다. 유기층은 희석 염산 수용액(dilute aqueous hydrochloric acid), 수산화나트륨 수용액(aqueous sodium hydroxide) 및 염산 수용액으로 씻은 다음 염수(brine)로 다시 씻어준 후 Na2SO4로 수분을 제거하였다. 용매 제거 후에는 노란색 고체 3.58g을 얻었다(95% 수율).
Found: C, 50.77; H, 2.55; N, 5.93. C20H12N2O2Br2 requires C, 50.85; H, 2.54; N, 5.93%; δH(400㎒; CDCl3; Me4Si) 5.17 (2H, s), 6.82 (4H, d, J = 8㎐), 7.62 (4H, d, J = 8㎐), 7.85 (2H, s); δC(400㎒; CDCl3; Me4Si) 118.7, 130.2, 132.9, 133.2, 142.2, 149.8, 158.1, 169.1.
(3)2,5- 비스 (4- 헥실옥시페닐 )-5,8- 디브로모퀴녹살린 (2,5-Bis(4-hexyloxyphenyl)-5,8-dibromoquinoxaline, 9)의 제조
에탄올 50㎖에 상기에서 제조한 2,3-비스(4-하이드록시페닐)-5,8-디브로모퀴녹살린(2,3-Bis(4-hydroxyphenyl)-5,8-dibromoquinoxaline, 8) 3.58g(7.6mmol)을 수산화칼륨 수용액(aqueous potassium hydroxide) 4eq.을 녹여, 반응용액을 상온에서 1시간 동안 교반하고, n-브로모헥산(n-bromohexane)을 첨가하였다. 용액은 70℃에서 24시간 동안 교반하고, -20℃까지 냉각시킨 후 여과하고 메탄올로 재결정하여 노란색 고체 2.35g을 얻었다(48% 수율).
Found: C, 59.88; H, 5.64; N, 4.33. C32H36N2O2Br2 requires C, 59.97; H, 5.63; N, 4.38%; δH(400㎒; CDCl3; Me4Si) 0.91 (6H, t, J = 8㎐), 1.34 (8H, m, J = 4㎐), 1.48 (4H, m, J = 6㎐), 1.79 (4H, m, J = 6㎐), 3.99 (4H, t, J = 6㎐), 6.88 (4H, d, J = 8㎐), 7.65 (4H, d, J = 8㎐), 7.85 (2H, s); δC(400㎒; CDCl3; Me4Si) 14.5, 23.1, 29.6, 29.7, 30.1, 32.3, 68.8, 114.6, 130.2, 132.9, 133.2, 142.2, 149.8, 157.3, 160.4.
(4)2,5- 비스 (4- 헥실옥시페닐 )-5,8- 디(셀레노페닐)퀴녹살린 (2,5- Bis (4- hexyloxyphenyl )-5,8-di(selenophene-2-yl)quinoxaline, 10)의 제조
테트라하이드로퓨란(THF) 30㎖에 2,5-비스(4-헥실옥시페닐)-5,8-디브로모퀴녹살린 (2,5-Bis(4-hexyloxyphenyl)-5,8-dibromoquinoxaline, 9) (3.14g, 4.9mmol)과 트리부틸(2-셀레노페닐)스테인 (tributyl(2-selenophenyl)stannane) (5.0g, 11.9mmol)을 넣고 모두 녹였다. 균일하게 반응물이 녹은 용액에 디클로로비스(트리페닐포스핀)팔라듐(2) (Dichlorobis(triphenylphosphine)palladium(2)) (0.07g, 2mol%)를 넣은 후, 12시간동안 환류시켰다. 플라스크의 온도를 상온으로 내리고 희석한 염산 수용액을 넣어 반응을 종결하였다. 클로로포름으로 추출한 후, Na2SO4 수분을 제거하였다. 용매 제거 후, 실리카겔로 컬럼 정제하여 2.72g의 붉은 바늘형 고체를 얻었다(75% 수율).
δH(400㎒; CDCl3; Me4Si) 0.92 (6H, t, J=3.6Hz), 1.37(8H, m), 1.49(4H, m), 1.81(4H, m), 4.03(4H, m), 4.03(4H, t, J=8Hz), 6.93(4H, d), 7.27(2H, d), 7.43(2H, t), 7.54(4H, d), 7.59(2H, d), 8.01(2H, s).
(5)5,8- 비스 (5- 브로모셀레노페닐 )-2,3- 비스(4-헥실옥시페닐)퀴녹살린 (5,8-bis(5-bromoselenophene-2-yl)-2,3-bis(4-hexyloxyphenyl)quinoxaline, (C))의 제조
클로로포름 30㎖와 아세트산 30㎖에 2,5-비스(4-헥실옥시페닐)-5,8-디(셀레노페닐)퀴녹살린 (2,5-Bis(4-hexyloxyphenyl)-5,8-di(selenophene-2-yl)quinoxaline, 10) (2.74g, 3.7mmol)을 녹였다. N-bromosuccinimide(NBS) (1.4g, 7.8mmol)를 한 번에 넣고 상온에서 24시간 동안 교반하였다. 반응 후, 상온에서 석출된 고체 입자를 필터링하여 회수하고, N,N-디메틸포름아미드(DMF)로 재결정하였다. 빛나는 붉은색 바늘형 고체 1.36g이 얻어졌다(41% 수율).
δH(400㎒; CDCl3; Me4Si) 0.92 (6H, t, J=3.6Hz), 1.37(8H, m), 1.49(4H, m), 1.81(4H, m), 4.03(4H, t, J=8Hz), 6.93(4H, d), 7.34(2H, d), 7.54(4H, d), 7.66(2H, d), 8.01(2H, s); δC(400㎒; CDCl3; Me4Si) 14.09, 22.65, 25.79, 29.29, 31.67, 68.12, 123.14, 123.6, 125.78, 130.12, 131.58, 132.02, 132.11, 136.02, 142.7, 152.45, 160.11.
(6)4,7-디( 싸이오펜 -2- yl )- 벤조[1,2,5]싸이아디아졸 (4,7- di ( thiophene -2- yl )-benzo[1,2,5]thiadiazole, 11)의 제조
테트라하이드로퓨란(THF) 207㎖에 4,7-디브로모-2,1,3-벤조싸이아다이아졸(4,7-Dibromo-2,1,3-benzothiadiazole, 5) (10g, 34mmol)과 3-트리메틸스테닐싸이오펜 (3-trimethylstannyl thiophene) (30.47g, 81.64mmol)을 넣고 모두 녹였다. 균일하게 반응물이 녹은 용액에 디클로로비스(트리페닐포스핀)팔라듐(2) (Dichlorobis(triphenylphosphine)palladium(2)) (0.48g, 0.68mmol)를 넣은 후, 12시간동안 환류시켰다. 플라스크의 온도를 상온으로 내리고 희석한 염산 수용액을 넣어 반응을 종결하였다. 클로로포름으로 추출한 후, Na2SO4 수분을 제거하였다. 용매 제거 후, 실리카겔로 컬럼 정제하여 2.1294g의 붉은 주황색 고체를 얻었다(49% 수율).
Found: C, 56.14; H, 2.64; N, 9.07; S, 31.82. C14H8N2S3 requires C, 55.97; H, 2.68; N, 9.32; S, 32.02 ; δH(400㎒; CDCl3; Me4Si) 7.19 (2H, dd, J = 5.22 and 3.85 Hz), 7.45 (2H, dd, J = 5.22 and 1.1 Hz), 7.79 ( 2H, s), 8.08 (2H, dd, J = 3.85 and 1.1 Hz); δC(400㎒; CDCl3; Me4Si) 126.2, 126.4, 127.2, 127.9, 128.4, 139.8, 153.
(7)4,7- 비스 (5- 브로로싸이오펜 -2- yl )- 벤조[1,2,5]싸이아디아졸 (4,7-bis(5-bromothiophene-2-yl)-benzo[1,2,5]thiadiazole, (D))의 제조
σ-디클로로벤젠(σ-dichlorobenzene) 40㎖에 4,7-디(싸이오펜-2-yl)-벤조[1,2,5]싸이아디아졸 (4,7-di(thiophene-2-yl)-benzo[1,2,5]thiadiazole, 11) (2g, 6.66mmol)을 녹였다. NBS (2.49g, 13.99mmol)를 넣고 55℃까지 온도를 올려 3시간 동안 교반하였다. 그 후 다시 150℃까지 온도를 올려 용액 내의 고체가 모두 녹으면, 상온으로 천천히 냉각시켰다. 상온에서 석출된 고체 입자를 필터링하여 회수하고, 증류수와 에탄올로 헹궈주었다. 검붉은색 고체 2.7g이 얻어졌다(88% 수율).
Found: C, 36.76; H, 1.51; N, 6.09; S, 20.76. C14H6Br2N2S3 requires C, 36.70; H, 1.32; N, 6.11; S, 20.99; δH(400㎒; CDCl3; Me4Si) 7.17 (2H, d, J = 3.85 Hz), 7.80(2H, s), .7.82 (2H, d, J = 3.85 Hz); δC(400㎒; CDCl3; Me4Si) 115.09, 125.42, 125.75 127.72, 131.13, 140.94, 152.53.
실시예 3.
(1) 폴리 [9-(1'- 옥틸노닐디엔 ) 플루오렌 - 알트 -2,5- 비스 ( 셀레노 -2-일)-2,3-비스(4- 헥실록시페닐)퀴녹살린 ( poly [9-(1'- octylnonylidene ) fluorene - alt -2,5-bis(seleno-2-yl)-2,3-bis(4-hexyloxyphenyl)quinoxaline], PAFSeQ)
톨루엔 용매에 상기 실시예에서 제조한 2,2'-[9-(헵타데카닐덴)-플루오렌-2,7-디일]비스(4,4,5,5-테트라메틸-[1,3,2]디옥사보로레인) (2,2'-[9-(heptadecanylidene)-fluorene-2,7-diyl]bis(4,4,5,5-tetramethyl-[1,3,2]-dioxaborolane), (A)와 5,8-비스(5-브로모셀레노페닐)-2,3-비스(4-헥실옥시페닐)퀴녹살린 (5,8-bis(5-bromoselenophene-2-yl)-2,3-bis(4-hexyloxyphenyl)quinoxaline, (C) 및 Pd(PPh3)4 1.0mol%를 넣고 질소분위기 하 90~95 ℃에서 48시간 동안 교반하고, 혼합물은 상온까지 서서히 식힌 후 메탄올에 부어 여과한 다음 메탄올로 수차례 재침전하였다. Soxhlet 장치를 이용하여 메탄올, 아세톤 및 헥산으로 각각 24시간 동안 씻어준 후 클로로포름으로 녹는 부분을 수거하여, 수거한 고분자 용액은 용매를 제거하고 50℃에서 24시간 동안 건조시켜 검보라색 고체를 얻었다.
(2) 폴리(9-(1'- 헥실헵타디엔 ) 플루오렌 -2,7- 디일 - 알트 -4,7- 디씨에닐 -2,1,3-벤조싸이아디아졸-2,2'- 디일 ) Poly(9-(1'- hexylheptylidene ) fluorene -2,7- dieyl -alt-4,7-dithienyl-2,1,3-benzothiadiazole-2,2'-dieyl), PHFDTB)
톨루엔 용매에 상기 실시예에서 제조한 2,2'-[9-(트리데카닐덴)-플루오렌-2,7-디일]비스(4,4,5,5-테트라메틸-[1,3,2]디옥사보로레인) (2,2'-[9-(tridecanylidene)-fluorene-2,7-diyl]bis(4,4,5,5-tetramethyl-[1,3,2]-dioxaborolane), (B)와 4,7-비스(5-브로로싸이오펜-2-yl)-벤조[1,2,5]싸이아디아졸 (4,7-bis(5-bromothiophene-2-yl)-benzo[1,2,5]thiadiazole, (D) 및 Pd(PPh3)4 1.0mol%를 넣고 질소분위기 하 90~95 ℃에서 48시간 동안 교반하고, 혼합물은 상온까지 서서히 식힌 후 메탄올에 부어 여과한 다음 메탄올로 수차례 재침전하였다. Soxhlet 장치를 이용하여 메탄올, 아세톤 및 헥산으로 각각 24시간 동안 씻어준 후 클로로포름에 녹는 부분을 수거하여, 수거한 고분자 용액은 용매를 제거하고 50℃에서 24시간 동안 건조시켜 검보라색 고체를 얻었다.
이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다.

Claims (11)

  1. 전자끌게 특성을 갖는 분자와 알킬리덴플루오렌을 주쇄로 포함한 하기 화학식 1의 구조를 갖는 유기 광전변환고분자.
    [화학식 1]
    Figure pat00005

    단, 상기에서 화학식 1의 R 은 수소원자; 탄소수 1 내지 25의 알킬기; 탄소수 1 내지 25의 알콕시기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되며, 스페이서는 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되며, l과 m은 0~10의 정수이며, n은 1~100,000의 정수이다.
  2. 제 1항에 있어서,
    상기 전자끌게 특성을 갖는 분자(n-type molecule)는 하기 화학식 2로 표시되는 화합물 중에서 1종 이상 선택되는 것을 특징으로 하는 유기 광전변환고분자.
    [화학식 2]
    Figure pat00006

    상기 R2부터 R36까지는 독립적으로 수소원자; 탄소수 1 내지 25의 알킬기; 탄소수 1 내지 25의 알콕시기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되고, R37은 비치환기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되며, l과 m은 독립적으로 1~100,000의 정수이고, n은 1~100,000의 정수이다.
  3. 제 1항에 있어서,
    상기 전자끌게 특성을 갖는 분자(n-type molecule)는 퀴녹살린(quinoxaline) 인 것을 특징으로 하는 유기 광전변환고분자.
  4. 제 1항에 있어서,
    상기 전자끌게 특성을 갖는 분자(n-type molecule)는 2,1,3-벤조싸이아다이아졸(2,1,3-benzothiadiazole)인 것을 특징으로 하는 유기 광전변환고분자.
  5. 제 1항에 있어서,
    상기 유기 광전변환고분자는 하기 화학식 3으로 표시되는 폴리[9-(1'-옥틸노닐디엔)플루오렌-알트-2,5-비스(셀레노-2-일)-2,3-비스(4-헥실록시페닐)퀴녹살린(poly[9-(1'-octylnonylidene)fluorene-alt-2,5-bis(seleno-2-yl)-2,3-bis(4-hexyloxyphenyl)quinoxaline], PAFSeQ)인 것을 특징으로 하는 유기 광전변환고분자.
    [화학식 3]
    Figure pat00007

    단, 상기 식에서 n은 1~100,000의 정수이다.
  6. 제 1항에 있어서,
    상기 유기 광전변환고분자는 하기 화학식 4로 표시되는 폴리(9-(1'-헥실헵타디엔)플루오렌-2,7-디일-알트-4,7-디씨에닐-2,1,3-벤조싸이아디아졸-2,2'-디일) Poly(9-(1'-hexylheptylidene)fluorene-2,7-dieyl-alt-4,7-dithienyl-2,1,3-benzothiadiazole-2,2'-dieyl), PHFDTB))인 것을 특징으로 하는 유기 광전변환고분자.
    [화학식 4]
    Figure pat00008

    단, 상기 식에서 n은 1~100,000의 정수이다.
  7. 제1항의 유기 광전변환고분자를 광활성층(active layer)으로 채용한 유기 광전변환소자.
  8. 제 7항에 있어서,
    상기 소자는 광활성층 및 정공수송층 및/또는 전자수송층을 스핀 코팅하는 것을 특징으로 하는 유기 광전변환소자.
  9. 제 7항에 있어서,
    상기 소자는 애노드, 광전변환층 및 캐소드를 포함하며, 정공수송층 및/또는 전자수송층을 더 포함하는 것을 특징으로 하는 유기 광전변환소자.
  10. 제 8항에 있어서,
    상기 정공수송층은 PEDOT:PSS (Poly(3,4-ethylenediocy-thiophene) doped with poly(styrenesulfonic acid)) 또는 N,N'-비스(3-메틸페닐)-N,N-디페닐-[1,1'-비페닐]-4,4'-디아민(TPD)인 것을 특징으로 하는 유기 광전변환소자.
  11. 제 8항에 있어서,
    상기 전자수송층은 알루미늄 트리하이드록시퀴놀린(aluminium trihydroxyquinoline; Alq3), 1,3,4-옥사다이아졸 유도체인 PBD(2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole, 퀴녹살린 유도체인 TPQ(1,3,4-tris[(3-phenyl-6-trifluoromethyl)quinoxaline-2-yl]benzene) 및 트리아졸 유도체에서 선택되는 것을 특징으로 하는 유기 광전변환소자.
KR1020110019509A 2011-03-04 2011-03-04 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자 KR101838531B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110019509A KR101838531B1 (ko) 2011-03-04 2011-03-04 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110019509A KR101838531B1 (ko) 2011-03-04 2011-03-04 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자

Publications (2)

Publication Number Publication Date
KR20120100535A true KR20120100535A (ko) 2012-09-12
KR101838531B1 KR101838531B1 (ko) 2018-03-15

Family

ID=47110247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110019509A KR101838531B1 (ko) 2011-03-04 2011-03-04 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자

Country Status (1)

Country Link
KR (1) KR101838531B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004163A (zh) * 2013-02-27 2014-08-27 海洋王照明科技股份有限公司 含亚烷基芴与噻吩并[3,4-b]噻吩聚合物及其制备方法和有机太阳能电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004163A (zh) * 2013-02-27 2014-08-27 海洋王照明科技股份有限公司 含亚烷基芴与噻吩并[3,4-b]噻吩聚合物及其制备方法和有机太阳能电池

Also Published As

Publication number Publication date
KR101838531B1 (ko) 2018-03-15

Similar Documents

Publication Publication Date Title
EP2611880B1 (en) Novel photoactive polymer and photovoltaic cell containing the same
EP3134458B1 (en) Photovoltaic cell with benzodithiophene-containing polymer
EP1902439B1 (en) Photovoltaic cells with polymers with low band gaps and high charge mobility
KR101473083B1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
EP2702048B1 (en) Novel photoactive polymers
JP5501526B2 (ja) 縮合環チオフェン単位を含むキノキサリン共役重合体、該共役重合体の製造方法及びその応用
JP5788489B2 (ja) 重合体および光電変換素子
Song et al. A low-bandgap alternating copolymer containing the dimethylbenzimidazole moiety
US20220396661A1 (en) Novel polymer and organic electronic device using same
Murali et al. Narrow band gap conjugated polymer for improving the photovoltaic performance of P3HT: PCBM ternary blend bulk heterojunction solar cells
KR102439270B1 (ko) 신규한 중합체 및 이를 이용하는 유기 전자 소자
Ong et al. Design and synthesis of benzothiadiazole–oligothiophene polymers for organic solar cell applications
KR20210027929A (ko) N-형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 태양전지
KR101595147B1 (ko) 방향족 화합물 및 이를 포함하는 유기 태양전지
KR102446165B1 (ko) (아릴옥시)알킬기가 치환된 화합물 및 이를 이용하는 유기 전자 소자
KR101562426B1 (ko) 방향족융합고리 화합물 및 이를 이용한 유기 태양전지
KR101328526B1 (ko) 유기광전변환 고분자 및 이의 제조방법
Song et al. Dimethyl-2H-benzimidazole based small molecules as donor materials for organic photovoltaics
KR102091053B1 (ko) 신규한 화합물 및 이를 이용하는 유기 전자 소자
KR101183528B1 (ko) 반도체성 유기 고분자 재료 및 이를 포함하는 광기전력 소자
KR101550844B1 (ko) 유기태양전지용 공액 고분자 및 이를 포함하는 유기태양전지
KR101214546B1 (ko) 유기광전변환 고분자 및 이를 활성층으로 채용한 유기광전소자
KR101838531B1 (ko) 알킬리덴플루오렌을 함유하는 유기 광전변환고분자 및 이를 이용한 유기 광전변환소자
KR20130038548A (ko) 페나진 유도체를 포함하는 유기광전변환 고분자 및 이의 제조방법
KR101386049B1 (ko) 유기광전변환 파이-파이 공액 고분자 및 이의 제조방법

Legal Events

Date Code Title Description
AMND Amendment
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant