KR20120074072A - 수증기 개질용 연료개질기 - Google Patents

수증기 개질용 연료개질기 Download PDF

Info

Publication number
KR20120074072A
KR20120074072A KR1020100136024A KR20100136024A KR20120074072A KR 20120074072 A KR20120074072 A KR 20120074072A KR 1020100136024 A KR1020100136024 A KR 1020100136024A KR 20100136024 A KR20100136024 A KR 20100136024A KR 20120074072 A KR20120074072 A KR 20120074072A
Authority
KR
South Korea
Prior art keywords
tube
core layer
hydrogen
membrane
steam
Prior art date
Application number
KR1020100136024A
Other languages
English (en)
Inventor
이신구
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020100136024A priority Critical patent/KR20120074072A/ko
Publication of KR20120074072A publication Critical patent/KR20120074072A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

튜브 내에 수소 농도의 낮춰 수소 생성 반응을 촉진시키는 수증기 개질용 연료개질기가 소개된다. 수증기 개질용 연료개질는 튜브(100) 내 활성촉매코어층(110)과 비활성코어층(120)이 교대로 배치되되, 튜브(100)의 내벽에는 반응물의 중에서 수소만을 선택적으로 투과시키는 멤브레인(200)이 설치되고, 비활성코어층에는 열전달 강화재질이 마련된다.

Description

수증기 개질용 연료개질기{FUEL REFORMER FOR STEAM REFORMING}
본 발명은 수증기 개질용 연료개질기에 관한 것으로, 보다 상세하게는 튜브 내에 수소를 선택적으로 투과시키는 멤브레인을 통해 반응물 중 수소를 낮추어 전체적인 수소 수득율을 향상시킬 수 있는 수증기 개질용 연료개질기에 관한 것이다.
연료전지는 수소와 산소의 전기화학 반응에 의해 화학 에너지를 전기 에너지로 변환시켜서 전기와 부산물인 물을 만들어 내는 발전 시스템으로, 에너지 효율이 우수하고 환경 친화적인 장점을 가지고 있어 현재 세계적으로 활발히 연구, 개발이 진행되고 있다.
이러한 연료전지에 있어서, 안정적인 수소 연료의 공급은 대단히 중요한데, 연료전지에 수소를 공급하는 방법으로는 대부분 수소를 함유하는 연료를 개질하여 수소를 생산해 내는 연료 개질 방법이 사용된다.
연료 개질 방법은 크게 자열 개질(Autothermal Reforming, ATR), 부분 산화 개질(Partial Oxidation, POX) 및 수증기 개질(Steam Reforming, SR)로 분류된다. 이들 중에서 수증기 개질 방법은 다른 개질 방법에 비하여 고농도의 수소를 생산할 수 있는 장점이 있으나, 반응기 내부에서 강한 흡열반응이 발생하므로 수소 생산성을 결정짓는 중요한 인자로서 외부로부터 유입되는 열전달 현상을 수반하게 된다.
일반적으로 반응기 내부로의 열공급 방법은 버너로부터 얻은 반응열을 반응기 주위로 흘려 주어 열을 공급하는 방식이 주로 채택되고 있다.
도 1a에 도시된 바와 같이, 연료주입구(1)로 유입되는 탄화수소 화합물 연료는 1차 촉매(2)와 2차 촉매(3)를 순차적으로 통과하며 수증기 개질을 통해 수소 가스로 전환되고, 수소 출구(4)를 통해 연료개질기를 빠져 나간다. 1차 촉매(2) 및 2차 촉매(3)에서 진행되는 수증기 개질 반응을 위한 반응열은 케이싱(5) 하부에 마련된 버너(6)를 통해 공급한다. 통상 버너(6)의 연료는 합성가스를 사용하는 것이 일반적이나, 도시와 같이 연료전지 출구 측에서 나온 미반응 연료를 공기와 혼합하여 사용하는 방법도 있다. 버너(6)에서 생성된 고온의 반응 가스는 2차 촉매(3) 및 1차 촉매(2) 측을 돌아 연소가스 출구(7)로 빠져 나가며 촉매를 지나는 개질 가스에 반응열을 공급한다. 이때 상기 1차 촉매(2) 및 2차 촉매(3)의 반응기 튜브(8)는 열전달 특성이 우수하고 고온 환경에서도 기계적 특성이 변하지 않는 재질로 선택되어야 한다.
도 1b에 도시된 바와 같이, 반응기(10)는 반응기 튜브(11)에 활성촉매(12)가 충진되어 있다. 반응기(10) 일단으로는 메탄(CH4)과 수증기가 공급되며, 흡열반응을 위한 열원이 반응기 튜브(11)의 외부로부터 공급된다. 일반적으로 수증기 개질용 활성촉매(12)로는 크롬과 8족 귀금속들도 활성을 갖기는 하여 사용될 수도 있으나 가격이 고가이므로, 상대적으로 가격이 저렴한 니켈(Ni)과 루테늄(Ru) 계열이 주로 사용되고 있다. 니켈과 루테늄 촉매는 300도 정도의 비교적 낮은 온도에서도 메탄을 전환시킬 수 있는 촉매 특성을 갖는다.
그러나 이러한 니켈, 루테늄 역시 우수한 촉매 특성을 나타내기는 하나, 여전히 비싼 편이다. 따라서 고가의 촉매 사용량을 최소화하기 위해서는 촉매의 활성도를 높여 효율성을 향상시키는 것이 매우 중요하다. 그러나 좋은 활성을 가진 촉매일지라도 강한 흡열반응을 동반한 반응에서는 열전달의 한계를 극복하는 것이 반응기의 중요한 설계 변수에 해당한다. 이에 따라, 열전달 효율성을 높여 반응기 튜브 수와 촉매량을 줄이고 나아가 생산비용을 절감할 수 있는 연료개질기의 개발이 요구되고 있다.
이러한 문제점을 해결하기 위한 본 발명의 목적은, 반응물의 화학평형에 따른 수소 생성 반응이 촉진되도록 튜브 내 수소 농도를 낮추어 전체적인 수소 수득율이 향상되도록 하는 수증기 개질용 연료개질기를 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명에 따른 수증기 개질용 연료개질기는, 튜브 내 활성촉매코어층과 비활성코어층이 교대로 배치되는 수증기 개질용 연료개질기로서, 상기 튜브의 내벽에는 반응물의 중에서 수소만을 선택적으로 투과시키는 멤브레인이 설치되고, 상기 비활성코어층에는 열전달 강화재질이 마련된다.
바람직하게, 상기 멤브레인은 메탈, 제올라이트, 세라믹스, 분자체 카본 중 선택된 어느 하나로 구성된다.
바람직하게, 상기 열전달 강화재질은 튜브 내벽을 따라 이격 배치되는 복수의 배플이다.
여기서, 상기 열전달 강화재질은 비활성코어층에 충진되는 알루미나 볼로 구성될 수 있고, 상기 멤브레인은 상기 활성촉매코어층이 형성된 튜브 내벽에만 설치될 수 있다.
본 발명에 의하면, 수소를 선택적으로 투과시키는 멤브레인을 튜브에 마련함으로써, 튜브 내 수소 농도를 낮추어 반응물의 화학평형에 따른 수소 생성 반응을 촉진시키고, 결국, 연료개질기를 통한 전체적인 수소 수득율을 향상시킬 수 있다는 이점이 있다.
도 1a은 종래 기술에 따른 열교환기형 개질기를 개략적으로 도시한 개략도.
도 1b는 종래 기술에 따른 연료개질기의 반응기 단면을 도시한 단면도.
도 2a 내지 도 2b는 본 발명에 따른 수증기 개질용 연료개질기를 도시한 구성도.
도 3a는 종래 기술에 따른 반응물의 몰 농도를 도시한 그래프.
도 3b는 본 발명에 따른 반응물의 몰 농도를 도시한 그래프.
우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하기로 한다.
첨부된 도면에 의거하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 2a에 도시된 바와 같이, 본 발명에 의한 열교환기형 개질기는, 활성촉매코어층(110)과 비활성코어층(120)이 교대로 배치된 튜브(100) 내에 수소만을 선택적으로 투과시키는 멤브레인(200)을 설치하여, 반응물의 화학평형에 따른 수소 생성 반응이 촉진되도록 한다.
구체적으로, 튜브(100) 내에는 활성촉매가 충진되는 활성촉매코어층(110)과 공간적 열회복을 위한 비활성코어층(120)이 교대로 배치되는데, 특히, 비활성코어층(120)에는 열전달 성능을 향상시키기 위해 열전달 강화재질이 마련된다.
열전달 강화재질은 비활성코어층(120) 내 이동되는 반응물에 대해 열전달 성능을 향상시켜 열적 혼합이 원활하게 이루어지도록 하는데, 본 실시예에서는 열전달 면적을 증대시켜 열전달 성능을 향상시킬 수 있는 알루미나 볼(400)이 설치된다.
도 2b에 도시된 바와 같이, 열전달 강화재질은 알루미나(Al2O3)와 같이 열전달 계수가 높은 금속으로 구성된 배플(300)이 튜브(100) 내벽의 일측에 고정 설치될 수 있다.
이 배플(300)은 튜브(100) 내벽을 따라 해당 길이방향으로 이격 배치되는 복수로 구성되며, 배플(300)의 단부는 튜브(100) 직경의 1/2을 초과하는 길이로 튜브(100)의 중심부까지 연장된다.
배플(300)은 튜브(100) 내벽, 보다 상세하게는 비활성코어층(120)이 형성된 튜브(100) 내벽에 2열 이상으로 설치될 수 있으며, 2열로 배치된 배플(300)은 서로 대향되는 반대측에 위치되어 튜브(100) 내 열적분포가 대칭을 이루도록 한다. 이때, 배플(300)은 튜브(100) 직경의 1/2을 초과하는 길이로 연장 형성되도록 구성함으로써, 배플(300)의 단부로 전달되는 열을 공급받아 열적 혼합이 보다 원활해지도록 할 수 있다.
본 실시예에서 배플(300)은 봉 형태 또는 원반 형태를 이루어 열전달 면적을 증대시키고 있으나, 열전달 면적을 증대시키기 위해 다양한 형태로 변경하여 적용될 수도 있다.
또한, 본 실시예에서는 열전달 강화재질로서 열전달 면적을 증대시켜 열전달 성능을 향상시킬 수 있는 배플(300) 구성에 대하여 설명하였으나, 이에 한정되지는 아니하며, 비활성코어층(120)에 충진되는 알루미나 볼(400)이 열전달 강화재질로 사용될 수도 있을 것이다.
튜브(100) 내에는 수소만을 선택적으로 투과시키는 멤브레인(200)이 설치된다. 이 멤브레인(200)은 튜브(100)의 내벽을 감싸는 형태로 구성되며, 메탈(metal), 제올라이트(zeolites), 세라믹스(ceramics) 또는 분자체 카본(molecular sieving carbon)으로 구성될 수 있다. 예를 들어, 분사체 카본으로 구성된 멤브레인(200)의 경우, 이 멤브레인(200)을 통해 튜브(100) 내에 생성된 수소가 빠져나갈 때, 수소 수득율(H2/CH4)을 비교해 보면, 수소 수득율이 3.0인 것으로 확인되었다.
다른 실시예에 따르면, 멤브레인(200)은 활성촉매코어층(110)이 형성된 튜브(100) 내벽에만 설치될 수 있다. 이에 따라, 활성촉매를 통해 반응된 수소는 활성촉매코어층(110)의 멤브레인(200)에 선택적으로 투과되어 이동될 수 있다.
한편, 반응물 중 수소를 제거하지 않은 종래 기술과, 반응물 중 수소를 멤브레인(200)을 통해 제거한 본 발명을 비교하여 설명하면 다음과 같다.
도 3a 및 도 3b에 도시된 바와 같이, 반응물 중 수소를 멤브레인(200)을 통해 제거한 본 발명의 경우, 반응물 농도가 종래 기술의 반응물 농도 보다 낮게 나타나는데, 본 발명의 반응물 농도가 종래 기술의 반응물 농도보다 낮은 것은 단순 촉매 반응을 통해 생성된 수소가 멤브레인(200)을 통해 제거되었기 때문이다.
그러나 다음 식 1의 Langmuir-Hinshelwood kinetics 반응을 살펴 보면, 촉매 반응에서는 반응물의 농도를 낮추어 줌으로써, 반응물 수소 농도가 낮아져 반응률이 상승함을 알 수 있다.
[식 1]
Figure pat00001
(여기서, k,DEN, KP은 통상의 반응상수이다.)
즉, 어떤 반응에서 반응률이 상승한다는 것은 적은 촉매량으로 동일 반응을 일으킬 수 있다는 것을 의미하므로, 화학평형상태를 살펴 볼 때, 수소 수득율이 저하되는 것으로는 보이지 않는다.
상술한 바와 같이, 본 발명은 수소를 선택적으로 투과시키는 멤브레인(200)을 튜브(100)를 튜브(100)에 설치함으로써, 수소 생성 반응을 촉진시켜 전체적인 수소 수득율을 향상시킬 수 있고, 종래 연료개질기의 후단측에 별도로 설치되었던 수소 분리장치가 불필요해 질 수 있는 등의 우수한 장점을 갖는다.
상기에서 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
100 :튜브 110 :활성촉매코어층
120 :비활성코어층 200 :멤브레인
300 :배플

Claims (5)

  1. 튜브 내 활성촉매코어층과 비활성코어층이 교대로 배치되는 수증기 개질용 연료개질기로서,
    상기 튜브(100)의 내벽에는 반응물의 중에서 수소만을 선택적으로 투과시키는 멤브레인(200)이 설치되고, 상기 비활성코어층(120)에는 열전달 강화재질이 마련되는 것을 특징으로 하는 수증기 개질용 연료개질기.
  2. 청구항 1에 있어서,
    상기 멤브레인(200)은 메탈, 제올라이트, 세라믹스, 분자체 카본 중 선택된 어느 하나로 구성되는 것을 특징으로 하는 수증기 개질용 연료개질기.
  3. 청구항 1에 있어서,
    상기 멤브레인(200)은 상기 활성촉매코어층(110)이 형성된 튜브(100) 내벽에만 설치되는 것을 특징으로 하는 수증기 개질용 연료개질기.
  4. 청구항 1에 있어서,
    상기 열전달 강화재질은 튜브(100) 내벽을 따라 이격 배치되는 복수의 배플(300)인 것을 특징으로 하는 수증기 개질용 연료개질기.
  5. 청구항 1에 있어서,
    상기 열전달 강화재질은 비활성코어층(120)에 충진되는 알루미나 볼(400)로 구성되는 것을 특징으로 하는 수증기 개질용 연료개질기.
KR1020100136024A 2010-12-27 2010-12-27 수증기 개질용 연료개질기 KR20120074072A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100136024A KR20120074072A (ko) 2010-12-27 2010-12-27 수증기 개질용 연료개질기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100136024A KR20120074072A (ko) 2010-12-27 2010-12-27 수증기 개질용 연료개질기

Publications (1)

Publication Number Publication Date
KR20120074072A true KR20120074072A (ko) 2012-07-05

Family

ID=46708338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100136024A KR20120074072A (ko) 2010-12-27 2010-12-27 수증기 개질용 연료개질기

Country Status (1)

Country Link
KR (1) KR20120074072A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316734B1 (ko) * 2021-05-31 2021-10-26 고등기술연구원연구조합 촉매투과부를 포함하는 수성가스전환 등온 촉매 반응장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316734B1 (ko) * 2021-05-31 2021-10-26 고등기술연구원연구조합 촉매투과부를 포함하는 수성가스전환 등온 촉매 반응장치

Similar Documents

Publication Publication Date Title
US7670395B2 (en) Compact reforming reactor
EP1899046B1 (en) Compact reforming reactor
EP1669133A1 (en) Small cylindrical reformer
KR20230026392A (ko) 막 반응기를 이용하는 수소 제조
CA2647797C (en) Solid oxide fuel cell and reformer
KR101133301B1 (ko) 수소 발생기 및 그의 용도
KR101243767B1 (ko) 고분자 전해질 연료전지용 수소생산시스템
US20020106539A1 (en) Catalytic reactor with U-tubes for improved heat transfer
KR20120074072A (ko) 수증기 개질용 연료개질기
KR100905422B1 (ko) 연료개질기 및 그 제조방법
JPH06325783A (ja) 内部改質型溶融炭酸塩型燃料電池システム
GB2384726A (en) Heating of autothermal hydrocarbon reformation reactor
US20140369900A1 (en) Heat exchange type prereformer
KR20120074074A (ko) 수증기 개질용 연료개질기
KR101769308B1 (ko) 열전달능이 우수한 연료개질기
KR20120074073A (ko) 수증기 개질용 연료개질방법
JP2007297238A (ja) 熱交換型改質器及び改質装置
Middleton Autothermal catalytic reforming with integrated internal heat exchange and enhanced oxygen feed: Design and construction of a device to convert gasoline into hydrogen for use in fuel cell automobiles.
JPH06287002A (ja) 燃料改質装置
KR20080027684A (ko) 연료전지 시스템의 개질기용 냉각장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application