KR20120038854A - 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법 - Google Patents

라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법 Download PDF

Info

Publication number
KR20120038854A
KR20120038854A KR1020100100538A KR20100100538A KR20120038854A KR 20120038854 A KR20120038854 A KR 20120038854A KR 1020100100538 A KR1020100100538 A KR 1020100100538A KR 20100100538 A KR20100100538 A KR 20100100538A KR 20120038854 A KR20120038854 A KR 20120038854A
Authority
KR
South Korea
Prior art keywords
prop
mmol
ynyl
phenyl
benzyl
Prior art date
Application number
KR1020100100538A
Other languages
English (en)
Other versions
KR101207742B1 (ko
Inventor
신승구
정용식
서민수
윤혜주
이희윤
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020100100538A priority Critical patent/KR101207742B1/ko
Priority to CN201180048175.4A priority patent/CN103228621B/zh
Priority to PCT/KR2011/006225 priority patent/WO2012026743A2/ko
Priority to EP11820170.6A priority patent/EP2610243A4/en
Priority to JP2013525824A priority patent/JP5683706B2/ja
Priority to US13/818,489 priority patent/US8809012B2/en
Publication of KR20120038854A publication Critical patent/KR20120038854A/ko
Application granted granted Critical
Publication of KR101207742B1 publication Critical patent/KR101207742B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/51Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)

Abstract

수소 동위원소를 활용함과 동시에 라벨링제의 합성 비용은 줄이면서도 한 번에 다중의 시료를 정량할 수 있는 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure pat00015

상기 화학식 1에서, R1, R2, R3 및 R4는 명세서에 기재된 정의와 같다.

Description

라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법 {Labeling reagent and analytical methods for simultaneous peptide sequencing and multiplexed protein quantification using thereof}
본 발명은 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 정량 동시 분석방법에 관한 것으로, 보다 상세하게는 강한 정량 신호를 나타낼 수 있는 라벨링제와 이를 이용한 아미노산 서열 및 단백질 다중정량 동시 분석방법에 관한 것이다.
단백질과 펩티드의 동정과 정량분석에는 질량분석기술이 널리 이용되고 있다. 예를 들어 단백질을 효소로 분해하여 생기는 펩티드들을 말디 이온화법(Matrix-Assisted Laser Desorption/Ionization, MALDI) 또는 전자 분무 이온화법(Electrospray Ionization, ESI)을 이용하여 이온화시킨 후 질량분석기기로 질량을 정확히 측정하고 유전자 서열이 주는 펩티드 정보와 비교하여 단백질의 정체를 밝혀내기도 하고, 좀 더 명확하게는 일부 펩티드들을 질량분석기기로 선택하여 기체와 충돌 분해를 시켜 생기는 조각이온으로부터 펩티드의 서열을 얻어 단백질의 정체를 밝히기도 한다.
단백질과 펩티드의 정량분석에는 동위원소를 포함하고 있는 화학 표지물을 분석 대상 단백질 또는 펩티드에 표지하여 질량을 분석하는 방법이 널리 사용되고 있다. 정량적으로 비교해야 하는 동일한 종류의 여러 단백질과 펩티드 시료에 동위원소가 서로 다르게 표지되어 있는 동일한 화학 표지물을 붙여 질량분석을 하면 동위원소의 질량 차이 때문에 질량분석 스펙트럼 또는 탄뎀 질량분석 스펙트럼 상에서 각 시료의 질량이 다르게 나타나게 되어 그 상대적 존재량를 비교함으로써 정량분석이 가능하게 된다.
상기 설명한 단백질 또는 펩티드의 동정과 정량분석을 동시에 수행하기 위하여 동중체 화학표지법이 이용되고 있다. 미국특허 공개번호 US 2005/0148087 및 국제특허 공개번호 WO 2005/068446 등에는, 펩티드에 붙여 충돌 분해시키면 탄뎀 질량분석 스펙트럼에서 정량신호가 나타나도록 고안된 동중체 화학 표지물을 개시하고 있다. 그러나 상기 문헌이 제시하는 라벨링제들은 탄소-13, 질소-15, 또는 산소-18 등의 동위원소를 사용하고 있어 다양한 동중체의 합성에 한계가 있으며 가격이 비싸다는 문제를 가진다. 이에, 수소의 치환이 다양하게 가능하며 상대적으로 가격이 저렴한 수소 동위원소를 이용하여 아미노산 서열과 단백질의 양을 동시에 확인할 수 있는 새로운 동중체 라벨링제가 요구된다.
한편, 본 발명자는 대한민국특허 출원번호 제2008-0070272호를 통하여, 수소 동위원소만을 이용하고 정량신호의 질량 조절이 가능하며 디펩티드 구조를 가진 MBIT(Mass-balanced isotope tag)라고 명명된 새로운 동중체 라벨링제를 제시한 바 있다. 또한, 대한민국특허 공개번호 제2010-0009466호, 대한민국특허 공개번호 제2010-0009479호, 및 국제특허 공개번호 WO 10/008159를 통하여, 질량조절기를 변형하여 동중체 라벨링제의 물성 및 정량신호질량을 다변화시킨 가변질량 라벨링제 및 라벨링제 세트를 제시한 바 있으며, 이를 활용한 다중 정량분석법으로 2종 이상의 라벨링제를 이용한 3개 이상 시료의 동시 다중 정량분석법인 multi 2-plex 정량법도 제시한 바 있다. 상기의 방법으로 쉽고 저렴한 동중체 라벨링제의 합성이 가능하고 다중의 시료도 정량할 수 있으나, multi 2-plex 정량법으로 다중 정량을 할 때에는 기준이 되는 시료의 소비가 많아지고 한 번에 분석해야 하는 시료의 전체 양도 증가하는 문제가 있다.
이에 본 발명자는, 수소 동위원소를 활용함과 동시에 라벨링제의 합성 비용은 줄이면서도 한 번에 다중의 시료를 정량할 수 있는 라벨링제를 연구하던 중, 새로운 화학구조를 통하여 이러한 목적이 달성됨을 확인하여 본 발명을 완성하였다. 또한, 다중의 시료를 분석하는 경우, 정량신호의 세기가 약해지고 정량 정확도가 줄어드는 점을 종래 기술을 개선하여 탄뎀 질량분석시에 정량신호가 강하게 발생됨을 확인하여 본 발명을 완성하였다.
본 발명은, 수소 동위원소를 활용함과 동시에 라벨링제의 합성 비용은 줄이면서도 한 번에 다중의 시료를 정량할 수 있는 새로운 화학구조의 화합물을 제공하기 위한 것이다.
또한 본 발명은, 상기 화합물을 두 종류 이상 포함하는 조성물을 제공하기 위한 것이다.
또한 본 발명은, 상기 화합물 또는 상기 조성물을 이용하여 두 종류 이상의 분석체를 동시에 정량분석할 수 있는 새로운 정량분석 방법을 제공하기 위한 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure pat00001
상기 식에서,
R1은 C1-10 알킬 또는
Figure pat00002
이고;
R2는 C1-10 알킬 또는
Figure pat00003
이고;
R3는 아미노산 잔기의 측쇄이고;
R4는 하이드록시 또는 반응성 링커이고;
R5는 수소, C1-4 알킬 또는 C2-4 알키닐이고;
R6는 수소, C1-4 알킬 또는 C2-4 알키닐이고;
n과 m은 각각 독립적으로 1 내지 4의 정수이고; 및
상기 R1 및 R2는 중수소를 포함하지 않거나, 또는 상기 R1 및 R2 중 적어도 하나는 중수소를 포함한다.
상기 화학식 1로 표시되는 화합물의 일례를 도 1을 참조하여 설명한다. 도 1에 나타난 바와 같이, 상기 화학식 1로 표시되는 화합물이 탄뎀 질량분석에 사용될 경우, 정량 신호를 나타내는 이온이 생기게 되며, 특히 R1 + 및 R1-NH+=CH-R3가 정량 신호를 나타내는 이온이 된다. 본 발명의 일실시예에 따르면 R1에 벤질기가 치환되는 경우, R1 +가 강한 정량신호를 나타내는 것을 확인할 수 있었다.
바람직하게는, 상기 화학식 1로 표시되는 화합물의 정량신호는 4-(1-프로피닐)벤질 양이온이다. R1에 중수소가 포함됨으로서 정량신호가 다르게 나타날 수 있으며, 일례로 정량신호는 129 Th(CH3?C≡C?C6H4?CH2 +), 131 Th(CH3?C≡C?C6H4?CD2 +), 132 Th(CD3?C≡C?C6H4?CH2 +) 또는 134 Th(CD3?C≡C?C6H4?CD2 +)가 가능하다.
바람직하게는 상기 화학식 1에서,
R1은 C6-9 알킬 또는
Figure pat00004
이고,
R2는 C6-9 알킬 또는
Figure pat00005
이고,
R5는 수소, 프로필 또는 프로프-1-이닐(prop-1-ynyl)이고;
R6는 수소, 프로필 또는 프로프-1-이닐(prop-1-ynyl)이고; 및
n과 m은 각각 독립적으로 1 내지 4의 정수이다.
보다 바람직하게는 상기 화학식 1에서,
R1은 옥틸이고; R2는 헵틸이다.
또한, 상기 화학식 1에서 R1과 R2는 종류가 같은 것이 바람직하며, 즉 R1은 C1-10 알킬이고, R2는 C1-10 알킬이거나; 또는 R1
Figure pat00006
이고, R2
Figure pat00007
인 것이 바람직하다.
또한, 바람직하게는 상기 R1 및 R2는,
각각 CH3?C≡C?C6H4?CH2 및 CD3?C≡C?C6H4?CD2?CH2이거나;
각각 CH3?C≡C?C6H4?CD2 및 CD3?C≡C?C6H4?CH2?CH2이거나;
각각 CD3?C≡C?C6H4?CH2 및 CH3?C≡C?C6H4?CD2?CH2이거나; 또는
각각 CD3?C≡C?C6H4?CD2 및 CH3?C≡C?C6H4?CH2?CH2인 것이 바람직하다.
상기 화학식 1에서, R3는 아미노산의 잔기의 측쇄이며, 이는 화학식 1이 아미노산의 아민기에 R1 및 R2가 치환된 구조를 가지는 것에 기인한다.
본 발명에서 사용되는 용어 "아미노산"은 천연 아미노산 또는 인공 아미노산을 의미하며, 바람직하게는 천연 아미노산을 의미한다. 예컨대 상기 아미노산은 글리신, 알라닌, 세린, 발린, 류신, 이소류신, 메티오닌, 글루타민, 아스파라진, 시스테인, 히스티딘, 페닐알라닌, 아르기닌, 티로신 또는 트립토판을 의미한다.
또한, 본 발명에서 사용되는 용어 "아미노산의 잔기의 측쇄"란, 아미노산의 구조 중 NH2CH2COOH를 제외한 나머지 구조, 즉 NH2CH2COOH의 CH2에 치환된 기를 의미한다. 예컨대, 글리신의 경우 글리신의 잔기의 측쇄는 수소를 의미하고, 세린의 경우 세린의 잔기의 측쇄는 하이드록시메틸을 의미한다. 상기 화학식 1의 제조과정에서, 상기 R3를 아미노산의 종류에 따라 자유롭게 조절이 가능하며, 이에 따라 정량신호의 조절 또한 가능하다.
상기 화학식 1에서, R4는 하이드록시 또는 반응성 링커이다.
본 발명에서 사용되는 용어 "반응성 링커"란, 상기 화학식 1의 화합물과 분석체가 결합될 수 있도록 하는 반응기를 의미한다. 본 발명에서 상기 화학식 1의 화합물을 단백질 또는 펩티드의 분석에 사용하는 경우, 단백질 또는 펩티드에 존재하는 아민기 또는 하이드록시기와 반응할 수 있는 반응기가 바람직하다. 일례로, 숙신이미드-N-옥시, 3-설포숙신이미드-N-옥시, 벤조트리아졸-1-일옥시, 펜타할로벤질옥시, 4-니트로페녹시 또는 2-니트로페녹시일 수 있으며, 이에 제한되지 않는다. 또한, R4가 하이드록시인 경우에는 상기 화학식 1이 전체적으로 카르복시기를 가진 화합물이므로, 카르복시기를 반응성 링커가 치환된 카보닐기로 만들 수 있다.
상기 화학식 1로 표시되는 화합물 중 바람직한 화합물의 예는 하기와 같다:
1) 2-(N-(4-(프로프-1-이닐)벤질)-3-(4-(프로프-1-이닐)페닐)프로판아미도)아세트 산;
2) 2-(N-(4-(프로프-1-이닐)벤질)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도-3,3-d 2)아세트 산;
3) 2-(N-(4-(프로프-1-이닐)벤질-1,1-d 2)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도)아세트 산;
4) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질)-3-(4-(프로프-1-이닐)페닐)프로판아미도-3,3-d 2)아세트 산;
5) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질-1,1-d 2)-3-(4-(프로프-1-이닐)페닐)프로판아미도)아세트 산;
6) 2-(N-(4-프로필벤질)-2-(4-프로필페닐)아세트아미도)아세트 산;
7) 2-(5-페닐-N-(3-페닐프로필)펜탄아미도)아세트 산; 및
8) 2-(N-옥틸옥탄아미도)아세트 산.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 두 종류 이상 포함하는 조성물을 제공한다.
본 발명에서 사용되는 용어 "두 종류 이상"이란, 서로의 화학구조가 동일하지 않은 화합물이 두 종류 이상 포함된 것을 의미하며, 바람직하게는 2 내지 4 종류의 화합물을 포함하는 것이 바람직하다. 보다 바람직하게는 중수소와 수소의 치환여부에 대해서만 화학구조가 동일하지 않은 화합물을 두 종류 이상 포함하는 것이 바람직하다.
바람직하게는, 상기 두 종류 이상의 화합물은 서로 중수소의 수가 동일한 것이 바람직하다. 서로의 화학구조가 동일하지 않으면서도, 서로 중수소의 수는 동일하기 때문에, 정량신호를 나타내는 이온의 질량 차이가 생기므로 질량분석 스펙트럼 또는 탄뎀 질량분석 스펙트럼 상에서 각 시료의 질량이 다르게 나타나게 되어 그 상대적 존재량을 비교 분석하여 정량분석이 가능하다.
상기 조성물의 일례로는, 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나 이상의 화합물을 포함하는 조성물을 들 수 있다:
1) 2-(N-(4-(프로프-1-이닐)벤질)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도-3,3-d 2)아세트 산;
2) 2-(N-(4-(프로프-1-이닐)벤질-1,1-d 2)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도)아세트 산;
3) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질)-3-(4-(프로프-1-이닐)페닐)프로판아미도-3,3-d 2)아세트 산; 및
4) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질-1,1-d 2)-3-(4-(프로프-1-이닐)페닐)프로판아미도)아세트 산.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물, 또는 상기 화학식 1로 표시되는 화합물을 두 종류 이상 포함하는 조성물을 이용하여 분석체를 정량분석하는 방법을 제공한다. 분석체를 정량분석 하기 위해서는 상기 화합물을 분석체에 결합시켜야 하며, 상기 화합물과 분석체의 결합은 링커가 분석체의 아민과 반응하며 리빙그룹으로 작용하여 분리되면서 이루어진다.
상기 분석체는 단백질, 탄수화물 또는 지질인 것을 특징으로 한다. 또한, 상기 분석체는 펩티드인 것을 특징으로 한다. 또한, 상기 분석체는 핵산 또는 핵산 유도체인 것을 특징으로 한다. 또한, 상기 분석체는 스테로이드인 것을 특징으로 한다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 두 종류 이상 포함하는 조성물을 분석체에 결합시키는 단계; 및 상기 분석체를 분해하여 상기 분석체를 정량하는 단계를 포함하는 것을 특징으로 하는 아미노산 서열 및 단백질 정량 동시 분석방법을 제공한다.
상기 정량을 위한 분해법은 탄뎀 질량분석법인 것이 바람직하다. 상기 정량신호질량을 주는 정량신호는 R1 + 또는 R1?NH+=CH?R3의 내부조각이며, 바람직한 양태로서, 상기 정량신호질량을 주는 정량신호는 4-(1-프로피닐)벤질 양이온이다.
바람직하게는, 상기 정량신호질량을 주는 정량신호는 129 Th(CH3?C≡C?C6H4?CH2 +), 131 Th(CH3?C≡C?C6H4?CD2 +), 132 Th(CD3?C≡C?C6H4?CH2 +) 또는 134 Th(CD3?C≡C?C6H4?CD2 +)이다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공하며, 구체적인 제조방법을 도 3 내지 도 5를 참조하여 설명한다.
도 3에 기재된 바와 같이, 상기 화학식 1로 표시되는 화합물은 할로알칸 형태의 reporter unit과 카복시산 형태의 balance unit 및 에스테르화된 아미노산을 사용하여 합성된다.
또한, 중수소를 포함하는 상기 화학식 1로 표시되는 화합물은, reporter unit과 balance unit에 중수소를 도입하는 반응을 진행한 후 이를 이용하여 제조할 수 있다. 중수소를 도입하는 방법은 본 발명이 속하는 분야에 알려진 방법을 사용할 수 있다. 구체적으로 도 2에 기재된 방법을 사용할 수 있다. 하나의 중수소를 도입하는 방법에는 염기성의 중수(D2O)에서 말단 알킨의 수소를 중수소로 치환하는 방법과 하나의 카보닐기를 중수소화붕소나트륨(NaBD4) 또는 중수소화알루미늄리튬(LiAlD4)으로 부분적으로 환원시키는 방법이 있다. 두 개의 중수소를 도입하는 방법에는 알켄을 금속 촉매 하에서 중수소 기체(D2)로 환원하는 방법과 펩티드 결합이나 에스테르 결합의 카보닐기를 LiAlD4로 환원하는 방법과 메톡사이드나트륨(NaOCD3)를 사용하여 에스테르 화합물의 알파 위치에 중수소를 도입하는 방법이 있다. 세 개의 중수소는 요오드화메탄-d 3 (CD3I)를 사용하여 2차 아민이나 말단 알킨을 알킬화 시키는 방법으로 도입할 수 있다. 네 개의 중수소를 도입하는 방법에는 두 개의 카보닐기를 LiAlD4를 사용하여 환원하는 방법과 알킨을 금속 촉매 하에서 D2로 환원하는 방법이 있다. 이들 방법 중에서 본 발명에서는, 일 실시예로, 에스테르 결합의 카보닐기를 LiAlD4로 환원시켜서 2개의 중수소를 도입하는 방법과 알킨을 CD3I로 알킬화하여 3개의 중수소를 도입하는 방법을 조합하여 4중의 동중체 라벨링제(도 1(b), tag α)를 합성하였다.
본 발명에서는, 일례로 reporter unit을 먼저 합성하고, 합성된 reporter unit의 일부를 3 단계의 추가 반응으로 변형하여 balance unit을 합성하였으며, 구체적인 Reporter unit 및 balance unit의 제조방법은 도 4를 참조하여 설명한다.
먼저, Reporter unit의 합성 방법은 다음과 같다.
팔라듐 촉매와 요오드화제일구리를 사용한 소노가시라 결합법(Sonogashira coupling)을 통해서 4-브로모벤조산 메틸 에스테르에 트리메틸실릴(TMS)로 보호된 알킨을 도입한다. 이어서 에스테르를 알코올로 환원시킨다. 이 때 수소화알루미늄리튬(LiAlH4) 또는 중수소화알루미늄리튬(LiAlD4)을 사용하면 각각의 경우에 수소 또는 중수소가 두 개씩 치환된 화합물이 생성된다.
생성된 알코올을 염화 tert-부틸디메틸실란(TBSCl)으로 처리하여 tert-부틸디메틸실란(TBS)으로 보호하고, 탄산칼륨을 이용하여 알킨을 보호하고 있는 TMS만 선택적으로 제거한다. 이렇게 생성된 말단 알킨에 요오드화메탄-d 0 (CH3I) 또는 -d 3 (CD3I)를 사용하여 메틸-d 0 또는 -d 3 를 도입한다. 이어서 불화 테트라-n-부틸암모늄(TBAF)을 사용하여 TBS를 제거한다.
생성된 화합물에 염화 메탄술폰산을 처리하고 요오드화나트륨을 사용하여 요오드로 치환하면 reporter unit이 합성된다. 반응 중간에 LiAlH4/LiAlD4와 CH3I/CD3I의 조합에 따라서 총 네 종류의 reporter unit이 얻어진다. LiAlH4과 CH3I를 사용하면 중수소가 없는 reporter-d 0 가 생성되고, LiAlD4와 CH3I를 사용하면 두 개의 중수소가 포함된 reporter-d 2 가 생성되며, LiAlH4와 CD3I를 사용하면 세 개의 중수소가 포함된 reporter-d 3 가 생성되며, LiAlD4와 CD3I를 사용하면 다섯 개의 중수소가 포함된 reporter-d 5 가 생성된다.
다음으로, Balance unit의 합성 방법은 다음과 같다.
합성된 reporter unit의 일부를 사용하여 말론산 디에틸을 알킬화한다. 환류(reflux)를 통하여 말론산의 카르복실기 하나를 제거한 후, 수산화나트륨 수용액으로 에틸 에스테르를 가수분해하여 balance unit을 합성한다. Reporter unit을 balance unit으로 변형하는 과정에는 중수소를 사용하지 않으므로, balance unit의 중수소의 수는 사용한 reporter unit에 의해서 결정된다.
상기와 같이 제조된 reporter unit과 balance unit을 이용하여 중수소를 포함하는 화학식 1로 표시되는 화합물을 도 3에 기재된 방법으로 제조할 수 있으며, 이 때 reporter unit과 balance unit에 포함된 중수소의 전체 수를 유지한다. 즉, 도 6과 같이 4중 동중체 라벨링제 tag α를 예로 들면, reporter-d n 을 사용한 경우에는 balance unit은 5-n개의 중수소가 포함된 것(balance-d 5-n )을 사용하여 동중체를 합성한다. 글리신 메틸 에스테르의 아민을 reporter-d n (n = 0, 2, 3, 및 5)으로 알킬화 한다. 합성된 화합물과 balance-d 5-n 을 1-에틸-3-(3-디메틸아미노프로필)카보디이미드(EDC), 1-하이드록시벤조트리아졸(HOBt), 및 N,N-디이소프로필에틸아민(DIPEA)를 사용하여 결합 반응을 진행하고, 수산화나트륨 수용액으로 메틸 에스테르를 가수분해하면 정량신호의 질량값이 129+n인 산형의 동중체 라벨링제 tag α129+n가 얻어진다. 또한 상기와 유사한 방법으로 도 5와 같이, tag β를 제조할 수 있다.
본 발명은 수소 동위원소를 포함하면서, 정량신호의 세기를 강하게 나타낼 수 있고, 둘 이상의 단백질을 동시에 정량분석할 수 있는 새로운 화합물, 및 상기 화합물을 두 종류 이상 포함하는 조성물을 제공하고, 상기 라벨링제 또는 조성물을 이용하여 아미노산 서열을 분석하고 동시에 단백질의 양을 정량분석하는 방법을 제공할 수 있다.
도 1은, 본 발명에 따른 화합물의 구조를 나타낸다. 도 1(a)는 본 발명의 화합물의 대표 구조 및 화합물에서 생성되는 정량신호의 구조를 나타낸다. 도 1(b) 내지 1(d)는 본 발명의 일실시예에 따른 화합물의 네 가지 구조를 나타낸 것이다. 도 1(b)는 수소 동위원소를 이용하여 다중 동중체로 합성된 구조이며, 여기서 각각의 X1-X4는 선택적으로 수소 동위원소로 치환되는 위치를 나타낸다.
도 2는, 본 발명에 따른 화합물을, 수소 동위원소를 사용하여 동중체 라벨링제로 제조하기 위하여, 활용가능한 대표적인 중수소 첨가 및 치환 반응을 나타낸 것이다.
도 3은, 본 발명의 화합물의 합성 과정을 나타낸 것이다. 할로알칸 형태의 reporter unit(R1-Br)과 카복시산 형태의 balance unit(R2-COOH) 및 에스테르화된 아미노산을 사용하여 합성된다.
도 4는, 본 발명의 일실시예에 따른 화합물(tag α)의 합성에 필요한 reporter unit과 balance unit을 중수소 첨가 및 치환 반응을 사용하여 합성하는 과정을 나타낸 것이다. Balance unit은 reporter unit의 변형을 통해 합성한다. 두 가지의 중수소 도입 방법(에스테르 결합의 카보닐기를 LiAlD4로 환원시켜서 2개의 중수소를 도입하는 방법과 알킨을 CD3I로 알킬화하여 3 개의 중수소를 도입하는 방법)을 조합해서 reporter 및 balance unit을 각각 네 종류씩 합성한다.
도 5는, 본 발명의 일실시예에 따른 화합물(tag β)의 합성에 필요한 reporter unit과 balance unit을 합성하는 과정을 나타낸 것이다. Balance unit은 reporter unit의 변형을 통해 합성한다.
도 6은, 본 발명의 일실시예에 따른 화합물의 구조를 나타낸 것이다. n개의 중수소를 포함한 reporter-d n , 5-n개의 중수소를 포함한 balance-d 5-n 및 글리신을 사용하여 합성한 것으로, tag αm은 정량신호의 질량값이 m인 tag α를 의미한다.
도 7은, 본 발명에 따른 화합물의 활성화 방법의 일실시예를 나타낸 것으로, 화합물을 숙신이미딜 에스테르로 활성화하고 펩티드에 결합하는 방법을 나타낸 것이다.
도 8은, 본 발명의 일실시예의 화합물과 결합된 모델 펩티드(DRVYIHPF)의 탄뎀 질량분석 스펙트럼을 나타낸 것이다. 도 8(a) 내지 8(d)는 다중 동중체(tag α129134)를 사용한 결과이며, 도 8(e) 내지 8(g)는 비동중체(tag β-δ)를 사용한 결과를 나타낸 것이다.
도 9는, 본 발명의 일실시예의 화합물에서 생성되는 정량신호(벤질 양이온과 이미늄 양이온)의 상대적 세기를 나타낸 것이다. 정량신호의 세기는 모델 펩티드로부터 생성된 히스티딘 임모늄 이온(110 Th)의 세기에 대하여 상대적인 값으로 표시하였다.
도 10은, 본 발명의 일실시예의 다중 동중체로 표지된 모델 펩티드들를 일정 비율로 섞어서 탄뎀 질량분석한 결과를 나타낸 것이다. 도 10(a)는 다중 동중체로 표지된 펩티드를 2:1:2:1(tag α129131132134)의 비율로 섞은 시료의 결과를 나타낸 것이고, 도 10(b)는 1:2:1:2(tag α129131132134)의 비율로 섞은 시료의 결과를 나타낸 것이다.
도 11은, 다중 동중체(tag α129134)를 이용해서 측정할 수 있는 펩티드의 양 또는 농도 범위를 측정한 결과를 나타낸 것이다. 다중 동중체로 표지된 tryptic BSA(소 혈청 알부민, bovine serum albumin) 중에서 FGER, VASLR 및 SEIAHR을 탄뎀 질량분석한 결과를 나타낸 것으로, tag α129와 tag α131로 표지된 펩티드들을 3:1의 비율로 섞고 전체 단백질의 양을 4.2 피코몰에서 13 펨토몰까지 변화시킨 다음, 탄뎀 질량분석한 결과이다. 각 농도에서 관측되는 어미 이온의 세기를 도 11(a)에 나타내었고, 탄뎀 질량분석으로 측정된 정량신호의 비율은 도 11(b)에 나타내었다.
도 12는, 액체 크로마토그래피(LC)와 MALDI 질량분석기를 연동하여 다중 동중체로 표지된 tryptic BSA를 정량분석한 결과를 나타낸 것이다. 도 12(a)는 각 펩티드들이 LC에서 용출된 시간에 따라 MALDI 질량분석기로 관측된 어미 이온의 세기를 나타낸 것이며, 도 12(b)는 각 펩티드들에서 측정된 정량신호의 양을 tag α129의 정량신호의 양과 비교해서 나타낸 것이다. 동중체로 표지된 tryptic BSA 중에서 6 가지의 펩티드(FGER, VASLR, QEPER, AWSVAR, SEIAHR 및 YLYEIAR)로부터 얻은 결과이다.
이하, 실시예 및 첨부된 도면을 참조하여 본 발명에 따른 화합물과, 이를 이용한 아미노산 서열 및 단백질 정량 동시 분석방법에 대하여 상세하게 설명하지만, 본 발명이 후술하는 내용에 제한되는 것은 아니며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다.
실시예: 라벨링제의 합성
도 1(a)로 대표되는 화합물(라벨링제)에서 R1, R2, 및 R3 위치에 다양한 구조 또는 작용기를 도입할 수 있다. 본 발명에서는, 실시예로 도 1(b) 내지 도 1(e)에 나타난 바와 같이, 네 가지 구조를 갖는 화합물(tag α-δ)을 합성하고 각 구조 또는 작용기에 따라서 정량신호가 어떻게 나타나는지 확인하였다.
네 가지 구조 중에서 도 1(b)는 수소 동위원소를 이용하여 다중의 단백질을 정량할 수 있는 동중체 라벨링제로 합성한 예이다. 도 1(b)의 X1 내지 X4는 치환된 중수소의 위치를 나타낸다.
실시예 1: 비동중체 라벨링제의 합성
라벨링제는 도 3에 기재된 바와 같은 순서로 합성하였다. 비동중체 라벨링제 중에서 reporter unit과 balance unit을 상업적으로 구할 수 있는 tag γ와 δ의 경우는 각 unit(γ의 reporter unit, 3-아이오도프로필 벤젠; δ의 reporter unit, 1-아이오도옥탄; γ의 balance unit, 5-페닐펜탄산; 및 δ의 balance unit, 옥탄산)을 구입하여 각 라벨링제 합성을 진행하였으며, tag β의 경우는 라벨링제를 구성하는 reporter unit(1-(아이오도메틸)-4-프로필벤젠)과 balance unit(2-(4-프로필페닐)아세트산)은 도 5의 과정으로 합성하고 이들을 사용하여 tag β를 합성하였다.
tag β의 합성
먼저, reporter unit을 합성한 과정 및 각 단계에서 생성된 화합물들의 핵자기공명(NMR) 결과들을 하기 단계 1 내지 8에 나타내었다
단계 1 : 4-((트리메틸실릴)에티닐)벤조산 메틸 에스테르의 합성
아르곤 조건 하에서 10 mL의 잘 건조된 테트라히드로퓨란(dry THF)에 4-브로모벤조산 메틸 에스테르(500 mg, 2.33 mmol), 비스(트리페닐포스핀)팔라듐디클로라이드(Pd(PPh3)2Cl2; 86.1 mg, 0.116 mmol), 트리페닐포스핀(PPh3; 18.3 mg, 0.0698 mmol), 트리메틸실릴아세틸렌(TMS acetylene; 493 μL, 3.49 mmol), 트리에틸아민(Et3N; 486 μL, 3.49 mmol)을 녹인 후, 20분 동안 실온에서 교반하였다. 여기에 다시 요오드화제일구리(CuI; 8.86 mg, 0.0465 mmol)를 가하고 실온에서 15시간 동안 교반하였다. 반응이 완결되면 용매를 감압 증류로 제거한 후, n-펜탄 20 mL를 넣어주고 셀라이트(Celite) 패드로 필터하여 침전물을 제거하였다. 얻어진 용액을 감압 증류로 농축하여 관 크로마토그래피로 정제하여 목적화합물을 503 mg(2.16 mmol, 93%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.93 (dd, 2H, J = 6.8 Hz, J = 1.7 Hz), 7.48 (dd, 2H, J = 6.7 Hz, J = 1.8 Hz), 3.88 (s, 3H), 0.22 (s, 9H).
단계 2 : (4-((트리메틸실릴)에티닐)페닐)메탄올의 합성
아르곤 조건 하에서 dry THF 5 mL에 4-((트리메틸실릴)에티닐)벤조산 메틸 에스테르(316 mg, 1.36 mmol)를 녹인 후, 0℃로 냉각하고 LiAlH4(2.04 mL, 1.0 M THF 용액, 2.04 mmol)를 천천히 가하였다. 30분 동안 0℃에서 교반한 후 반응이 완결되면, 차례로 물 77 μL, 10% 수산화나트륨 수용액 154 μL, 물 231 μL를 가하여 반응을 종결시켰다. 흰색 점성 침전이 생성되면 실리카 패드로 필터하여 침전물을 제거하였다. 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 258 mg(1.26 mmol, 93%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.44 (d, 2H, J = 8.2 Hz), 7.27 (d, 2H, J = 8.1 Hz), 4.66 (s, 2H), 1.67 (br, 1H), 0.23 (s, 9H).
단계 3 : tert -부틸디메틸((4-((트리메틸실릴)에티닐)벤질)옥시)실란의 합성
아르곤 조건 하에서 dry THF 5 mL에 (4-((트리메틸실릴)에티닐)페닐)메탄올(258 mg, 1.26 mmol)을 녹인 후, 0℃로 냉각하고 이미다졸(103 mg, 1.52 mmol)과 dry THF 3 mL에 녹인 TBSCl(228 mg, 1.52 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 15시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 10 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(10 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 383 mg(1.20 mmol, 95%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.41 (d, 2H, J = 8.2 Hz), 7.23 (d, 2H, J = 8.1 Hz), 4.70 (s, 2H), 0.90 (s, 9H), 0.22 (s, 9H), 0.00 (s, 6H).
단계 4 : tert -부틸((4-에티닐벤질)옥시)디메틸실란의 합성
아르곤 조건 하에서 메탄올 4 mL에 tert-부틸디메틸((4-((트리메틸실릴)에티닐)벤질)옥시)실란(383 mg, 2.40 mmol)과 탄산칼륨(332 mg, 2.40 mmol)을 녹인 후, 2시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 10 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 280 mg(1.14 mmol, 95%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.44 (d, 2H, J = 8.2 Hz), 7.25 (d, 2H, J = 8.5 Hz), 4.72 (s, 2H), 3.02 (s, 1H), 0.92 (s, 9H), 0.01 (s, 6H).
단계 5 : tert -부틸디메틸((4-(프로프-1-인-1-일)벤질)옥시)실란의 합성
아르곤 조건 하에서 dry THF 5 mL에 tert-부틸((4-에티닐벤질)옥시)디메틸실란(247 mg, 1.00 mmol)을 녹인 후, -78℃로 냉각하고 n-부틸리튬(805 μL, 2.49 M n-헥산 용액, 2.00 mmol)을 천천히 가하였다. 20분 동안 -78℃에서 교반한 후 여기에 다시 요오드화메탄(313 μL, 5.00 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 30분 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 10 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축시켜 관 크로마토그래피로 정제하여 목적화합물을 253 mg(0.971 mmol, 97%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.35 (d, 2H, J = 8.2 Hz), 7.22 (d, 2H, J = 8.2 Hz), 4.70 (s, 2H), 2.03 (s, 3H), 0.93 (s, 9H), 0.07 (s, 6H).
단계 6 : tert -부틸디메틸((4-프로필벤질)옥시)실란의 합성
에틸 아세테이트 20 mL에 tert-부틸디메틸((4-(프로프-1-인-1-일)벤질)옥시)실란(252 mg, 0.968 mmol)을 녹인 후, 20 bar의 수소 압력을 가지는 H-Cube 장비에 10% Pd/C 카트리지를 장착하고 실온에서 분당 0.5 mL의 속도로 통과시켰다. 통과된 용액을 감압 증류로 농축시켜 목적화합물을 251 mg(0.949 mmol, 98%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.23 (d, 2H, J = 8.1 Hz), 7.12 (d, 2H, J = 8.1 Hz), 4.69 (s, 2H), 2.26 (t, 2H, J = 7.4 Hz), 1.65-1.58 (m, 2H), 0.94-0.85 (m, 12H), 0.08 (s, 6H).
단계 7 : (4-프로필페닐)메탄올의 합성
아르곤 조건 하에서 dry THF 5 mL에 tert-부틸디메틸((4-프로필벤질)옥시)실란(275 mg, 1.04 mmol)을 녹인 후, 불화-n-부틸암모늄(TBAF; 1.56 mL, 1.0 M 테트라히드로퓨란 용액, 1.56 mmol)을 천천히 가하고 30분 동안 0℃에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 5 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 198 mg(0.838 mmol, 95%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.25 (d, 2H, J = 8.0 Hz), 7.18 (d, 2H, J = 8.0 Hz), 4.57 (s, 2H), 2.97 (s, 1H), 2.62 (t, 2H, J = 7.4 Hz), 1.74-1.62 (m, 2H), 0.99 (t, 3H, J = 7.4 Hz).
단계 8 : 1-(아이오도메틸)-4-프로필벤젠의 합성
잘 건조된 디클로로메탄(DCM) 3 mL에 아르곤 조건 하에서 (4-프로필페닐)메탄올(100 mg, 0.666 mmol)를 녹인 후, 0℃로 냉각하고 염화 메탄술폰산(MsCl; 62.1 μL, 0.799 mmol)과 트리에틸아민(Et3N; 140 μL, 0.999 mmol)을 가하였다. 30분 동안 0℃에서 교반한 후 반응이 완결되면 물 5 mL를 가하여 반응을 종결시키고 DCM으로 추출하여(3 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하고 침전물을 걸러내었다. 얻어진 용액을 감압 증류하여 농축하고 이를 다시 아세톤 6 mL에 녹인 후, 요오드화나트륨(NaI; 150 mg, 0.999 mmol)을 가하였다. 15분 동안 실온에서 교반한 후 반응이 완결되면 용매를 감압증류로 건조시킨다. 여기에 물 10 mL를 가하고 에틸 아세테이트로 추출하여(5 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물(tag β reporter unit)을 157 mg(0.604 mmol, 90%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.27 (d, 2H, J = 8.1 Hz), 7.08 (d, 2H, J = 8.0 Hz), 4.44 (s, 2H), 2.53 (t, 2H, J = 7.4 Hz), 1.67-1.54 (m, 2H), 0.92 (t, 3H, J = 7.4 Hz).
상기에서 합성된 tag β의 reporter unit으로부터 balance unit을 합성하는 과정 및 각 단계에서 생성된 화합물들의 NMR 결과들을 하기 단계 9와 10에 나타내었다.
단계 9 : 2-(4-프로필페닐)아세토나이트릴의 합성
아르곤 조건 하에서 잘 건조된 N,N-디메틸포름아미드(dry DMF) 1 mL에 1-(아이오도메틸)-4-프로필벤젠(73.6 mg, 0.283 mmol)을 녹인 후, 시안화나트륨(NaCN; 27.7 mg, 0.566 mmol)을 가하고 2시간 동안 실온에서 교반하였다. 반응이 완결되면 물 3 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하여(3 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 41.0 mg(0.257 mmol, 91%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.23-7.16 (m, 4H), 3.69 (s, 2H), 2.58 (t, 2H, J = 7.3 Hz), 1.69-1.57 (m, 2H), 1.93 (t, 3H, J = 7.3 Hz).
단계 10 : 2-(4-프로필페닐)아세트 산의 합성
30% 수산화나트륨 수용액 1 mL에 2-(4-프로필페닐)아세토나이트릴(41.0 mg, 0.257 mmol)를 녹인 후 4시간 동안 환류(reflux) 조건 하에서 교반하였다. 반응이 완결되면 10% 염화수소 수용액 3 mL를 가하여 용액을 산성화시키고, 디에틸 에테르로 추출하여(3 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물(tag β의 balance unit)을 34.8 mg(0.195 mmol, 76%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.24-7.13 (m, 4H), 3.16 (s, 2H), 2.58 (t, 2H, J = 7.3 Hz), 1.70-1.58 (m, 2H), 0.95 (t, 3H, J = 7.4 Hz).
상기에서 제조된 reporter unit과 balance unit을 이용하여, 도 3과 같은 과정으로 tag β의 합성을 진행하였으며, 구체적인 합성 방법 및 각 단계에서 합성된 화합물의 NMR 결과들을 하기 단계 11 내지 13에 나타내었다.
단계 11 : 메틸 2-((4-프로필벤질)아미노)아세테이트의 합성
아르곤 조건 하에서 dry DMF 5 mL에 글리신 메틸 에스테르(448 mg, 3.57 mmol)를 녹인 후, N,N-디이소프로필에틸아민(DIPEA; 777 μL, 4.46 mmol)과 1-(아이오도메틸)-4-프로필벤젠(232 mg, 0.892 mmol)를 가하고 1일 동안 실온에서 교반하였다. 반응이 완결되면 물 10 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하고(10 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 152 mg(0.687 mmol, 77%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.20 (d, 2H, J = 7.9 Hz), 7.10 (d, 2H, J = 7.9 Hz), 3.73 (s, 2H), 3.68 (s, 3H), 3.38 (s, 2H), 2.54 (t, 2H, J = 7.4 Hz), 1.94 (br, 1H), 1.67-1.54 (m, 2H), 0.91 (t, 3H, J = 7.3 Hz).
단계 12 : 메틸 2-(N-(4-프로필벤질)-2-(4-프로필페닐)아세트아미도)아세테이트의 합성
잘 건조된 DCM 1 mL에 아르곤 조건 하에서 메틸 2-((4-프로필벤질)아미노)아세테이트(24.5 mg, 0.0983 mmol)와 2-(4-프로필페닐)아세트 산(17.5 mg, 0.0983 mmol)를 녹인 후, EDC(56.5 mg, 0.295 mmol), HOBt(39.8 mg, 0.295 mmol) 및 DIPEA(84.3 μL, 0.491 mmol)를 가하고 20시간 동안 실온에서 교반하였다. 반응이 완결되면 물 3 mL를 가하여 반응을 종결시키고 DCM으로 추출하여(3 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 31.1 mg(0.0789 mmol, 80%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.24-7.10 (m, 6H), 6.96-6.94 (m, 2H), 4.55 (s, 2H), 4.20 (s, 2H), 3.80 (s, 2H), 3.69 (s, 3H), 2.57-2.51 (m, 4H), 1.67-1.54 (m, 4H), 1.94-1.88 (m, 6H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.24-7.10 (m, 6H), 6.96-6.94 (m, 2H), 4.62 (s, 2H), 3.90 (s, 2H), 3.67 (s, 2H), 3.61 (s, 3H), 2.57-2.51 (m, 4H), 1.67-1.54 (m, 4H), 1.94-1.88 (m, 6H).
단계 13 : 2-(N-(4-프로필벤질)-2-(4-프로필페닐)아세트아미도)아세트 산의 합성
메탄올 0.5 mL에 메틸 2-(N-(4-프로필벤질)-2-(4-프로필페닐)아세트아미도)아세테이트(30.0 mg, 0.0786 mmol)를 녹인 후, 20% 수산화나트륨 수용액 100 μL를 가하고 2시간 동안 실온에서 교반하였다. 반응이 완결되면 에틸 아세테이트 3 mL를 가하여 묽히고 10% 염화수소 수용액 200 μL를 가하여 용액을 중화시켰다. 무수 황산마그네슘으로 수분을 제거하고 침전물은 걸러내어 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 26.4 mg(0.0718 mmol, 91%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.24-6.88 (m, 8H), 4.54 (s, 2H), 3.98 (s, 2H), 3.77 (s, 2H), 2.55-2.47 (m, 4H), 1.64-1.51 (m, 4H), 0.93-0.87 (m, 6H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.24-6.88 (m, 8H), 4.58 (s, 2H), 3.83 (s, 2H), 3.63 (s, 2H), 2.55-2.47 (m, 4H), 1.64-1.51 (m, 4H), 0.93-0.87 (m, 6H).
tag γ의 합성
구입한 reporter 및 balance unit을 사용하여, 도 3과 같은 과정으로 tag γ의 합성을 진행하였으며, 구체적인 합성 방법 및 각 단계에서 합성된 화합물의 NMR 결과들을 하기 단계 1 내지 3에 나타내었다
단계 1 : 메틸 2-((3-페닐프로필)아미노)아세테이트의 합성
아르곤 조건 하에서 dry DMF 3 mL에 글리신 메틸 에스테르(330 mg, 2.63 mmol)를 녹인 후, DIPEA(573 μL, 3.29 mmol)과 1-브로모-3-페닐프로판(100 μL, 0.658 mmol)를 가하고 1일 동안 실온에서 교반하였다. 반응이 완결되면 물 5 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하고(4 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 19.6 mg(0.0946 mmol, 14%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.28-7.23 (m, 2H), 7.18-7.13 (m, 3H), 3.70 (s, 3H), 3.39 (s, 2H), 2.68-2.60 (m, 4H), 1.86-1.76 (m, 2H).
단계 2 : 메틸 2-(5-페닐-N-(3-페닐프로필)펜탄아미도)아세테이트의 합성
잘 건조된 DCM 1 mL에 아르곤 조건 하에서 메틸 2-((3-페닐프로필)아미노)아세테이트(20.0 mg, 0.0965 mmol)와 5-페닐발레르 산(22.0 mg, 0.116 mmol)를 녹인 후, EDC(55.5 mg, 0.289 mmol), HOBt(39.1 mg, 0.289 mmol) 및 DIPEA(82.7 μL, 0.482 mmol)를 가하고 20시간 동안 실온에서 교반하였다. 반응이 완결되면 물 3 mL를 가하여 반응을 종결시키고 DCM으로 추출하여(3 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 34.2 mg(0.0931 mmol, 96%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.31-7.23 (m, 4H), 7.21-7.14 (m, 6H), 4.01 (s, 2H), 3.69 (s, 3H), 3.30 (t, 2H, J = 7.9 Hz), 2.62-2.56 (m, 4H), 2.24 (t, 2H, J = 6.9 Hz), 1.90-1.85 (m, 2H), 1.68-1.59 (m, 4H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.31-7.23 (m, 4H), 7.21-7.14 (m, 6H), 3.95 (s, 2H), 3.72 (s, 3H), 3.42 (t, 2H, J = 7.9 Hz), 2.62-2.56 (m, 4H), 2.18 (t, 2H, J = 6.9 Hz), 1.90-1.85 (m, 2H), 1.68-1.59 (m, 4H).
단계 3 : 2-(5-페닐-N-(3-페닐프로필)펜타아미도)아세트 산의 합성
메탄올 0.5 mL에 메틸 2-(5-페닐-N-(3-페닐프로필)펜탄아미도)아세테이트(34.2 mg, 0.0931 mmol)를 녹인 후, 20% 수산화나트륨 수용액 100 μL를 가하고 2시간 동안 실온에서 교반하였다. 반응이 완결되면 에틸 아세테이트 3 mL를 가하여 묽히고 10% 염화수소 수용액 200 μL를 가하여 용액을 중화시켰다. 무수 황산마그네슘으로 수분을 제거하고 침전물은 걸러내어 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 26.2 mg(0.0741 mmol, 80%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.26-7.12 (m, 10H), 3.99 (s, 2H), 3.28 (t, 2H, J = 7.7 Hz), 2.61-2.52 (m, 4H), 2.21 (t, 2H, J = 6.5 Hz), 1.91-1.76 (m, 2H), 1.61-1.55 (m, 4H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.26-7.12 (m, 10H), 3.91 (s, 2H), 3.40 (t, 2H, J = 7.3 Hz), 2.61-2.52 (m, 4H), 2.21 (t, 2H, J = 6.5 Hz), 1.91-1.76 (m, 2H), 1.61-1.55 (m, 4H).
tag δ의 합성
구입한 reporter 및 balance unit을 사용하여, 도 3과 같은 과정으로 tag δ의 합성을 진행하였으며, 구체적인 합성 방법 및 각 단계에서 합성된 화합물의 NMR 결과들을 하기 단계 1 내지 3에 나타내었다
단계 1 : 메틸 2-(옥틸아미노)아세테이트의 합성
아르곤 조건 하에서 dry DMF 2 mL에 글리신 메틸 에스테르(358 mg, 2.85 mmol)를 녹인 후, DIPEA(620 μL, 3.56 mmol)과 1-브로모옥탄(123 μL, 0.712 mmol)를 가하고 1일 동안 실온에서 교반하였다. 반응이 완결되면 물 5 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하고(4 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 31.6 mg(0.157 mmol, 22%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 3.68 (s, 3H), 3.36 (s, 2H), 2.54 (t, 2H, J = 7.1 Hz), 1.77 (s, 1H), 1.47-1.40 (m, 2H), 1.24-1.22 (m, 10H), 0.83 (t, 3H, J = 6.5 Hz)
단계 2 : 메틸 2-(N-옥틸옥타아미도)아세테이트의 합성
잘 건조된 DCM 1 mL에 아르곤 조건 하에서 메틸 2-(옥틸아미노)아세테이트(31.6 mg, 0.157 mmol)와 n-옥탄산(30.0 μL, 0.188 mmol)를 녹인 후, EDC(90.3 mg, 0.471 mmol), HOBt(63.6 mg, 0.471 mmol) 및 DIPEA(135 μL, 0.785 mmol)를 가하고 12시간 동안 실온에서 교반하였다. 반응이 완결되면 물 5 mL를 가하여 반응을 종결시키고 DCM으로 추출하여(4 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 44.7 mg(0.136 mmol, 87%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 4.00 (s, 2H), 3.68 (s, 3H), 3.28 (t, 2H, J = 7.8 Hz), 2.32 (t, 2H, J = 7.4 Hz), 1.64-1.43 (m, 4H), 1.25 (br, 19H), 0.86-0.82 (m, 6H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 3.98 (s, 2H), 3.72 (s, 3H), 3.32 (t, 2H, J = 7.5 Hz), 2.15 (t, 2H, J = 7.3 Hz), 1.64-1.43 (m, 4H), 1.25 (br, 19H), 0.86-0.82 (m, 6H).
단계 3 : 2-(N-옥틸옥탄아미도)아세트 산의 합성
메탄올 0.5 mL에 메틸 2-(N-옥틸옥타아미도)아세테이트(44.7 mg, 0.136 mmol)를 녹인 후, 20% 수산화나트륨 수용액 100 μL를 가하고 2시간 동안 실온에서 교반하였다. 반응이 완결되면 에틸 아세테이트 3 mL를 가하여 묽히고 10% 염화수소 수용액 200 μL를 가하여 용액을 중화시켰다. 무수 황산마그네슘으로 수분을 제거하고 침전물은 걸러내어 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 36.5 mg(0.116 mmol, 86%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 4.01 (s, 2H), 3.30 (t, 2H, J = 7.5 Hz), 2.24 (t, 2H, J = 7.4 Hz), 1.64-1.54 (m, 4H), 1.26 (br, 18H), 0.87-0.83 (m, 6H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 3.97 (s, 2H), 3.32 (t, 2H, J = 7.5 Hz), 2.19 (t, 2H, J = 7.5 Hz), 1.64-1.54 (m, 4H), 1.26 (br, 18H), 0.87-0.83 (m, 6H).
실시예 2:. 다중 동중체 라벨링제의 합성
먼저, 네 종류의 reporter unit 중에서 reporter-d 5 와 reporter-d 0 를 합성한 과정 및 각 단계에서 생성된 화합물들의 NMR 결과들을 하기 단계 1 내지 7에 나타내었다.
단계 1 : 4-((트리메틸실릴)에티닐)벤조산 메틸 에스테르의 합성
아르곤 조건 하에서 10 mL의 dry THF에 4-브로모벤조산 메틸 에스테르(500 mg, 2.33 mmol), 비스(트리페닐포스핀)팔라듐디클로라이드(Pd(PPh3)2Cl2; 86.1 mg, 0.116 mmol), 트리페닐포스핀(PPh3; 18.3 mg, 0.0698 mmol), 트리메틸실릴아세틸렌(TMS acetylene; 493 μL, 3.49 mmol), 트리에틸아민(Et3N; 486 μL, 3.49 mmol)을 녹인 후, 20분 동안 실온에서 교반하였다. 여기에 다시 요오드화제일구리(CuI; 8.86 mg, 0.0465 mmol)를 가하고 실온에서 15시간 동안 교반하였다. 반응이 완결되면 용매를 감압 증류로 제거한 후, n-펜탄 20 mL를 넣어주고 셀라이트(Celite) 패드로 필터하여 침전물을 제거하였다. 얻어진 용액을 감압 증류로 농축하여 관 크로마토그래피로 정제하여 목적화합물을 503 mg(2.16 mmol, 93%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.93 (dd, 2H, J = 6.8 Hz, J = 1.7 Hz), 7.48 (dd, 2H, J = 6.7 Hz, J = 1.8 Hz), 3.88 (s, 3H), 0.22 (s, 9H).
단계 2
1) (4-((트리메틸실릴)에티닐)페닐)메탄올-d 2 의 합성
아르곤 조건 하에서 dry THF 20 mL에 4-((트리에틸실릴)에티닐)벤조산 메틸 에스테르(1.00 g, 5.16 mmol)를 녹인 후, 0℃로 냉각하고 LiAlD4(217 mg, 5.16 mmol)를 천천히 가하였다. 30분 동안 0℃에서 교반한 후 반응이 완결되면, 물 220 μL, 10% 수산화나트륨 수용액 440 μL, 및 물 660 μL을 차례로 가하여 반응을 종결시켰다. 흰색 점성 침전이 생성되면 실리카 패드로 필터하여 침전물을 제거하였다. 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 788 mg(3.82 mmol, 89%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.44 (d, 2H, J = 8.2 Hz), 7.27 (d, 2H, J = 8.1 Hz), 1.67 (br, 1H), 0.23 (s, 9H).
2) (4-((트리메틸실릴)에티닐)페닐)메탄올의 합성
아르곤 조건 하에서 dry THF 5 mL에 4-((트리메틸실릴)에티닐)벤조산 메틸 에스테르(316 mg, 1.36 mmol)를 녹인 후, 0℃로 냉각하고 LiAlH4(2.04 mL, 1.0 M THF 용액, 2.04 mmol)를 천천히 가하였다. 30분 동안 0℃에서 교반한 후 반응이 완결되면, 차례로 물 77 μL, 10% 수산화나트륨 수용액 154 μL, 물 231 μL를 가하여 반응을 종결시켰다. 흰색 점성 침전이 생성되면 실리카 패드로 필터하여 침전물을 제거하였다. 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 258 mg(1.26 mmol, 93%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.44 (d, 2H, J = 8.2 Hz), 7.27 (d, 2H, J = 8.1 Hz), 4.66 (s, 2H), 1.67 (br, 1H), 0.23 (s, 9H).
단계 3
1) tert-부틸디메틸((4-((트리메틸실릴)에티닐)벤질)옥시)실란-d 2 의 합성
아르곤 조건 하에서 dry THF 15 mL에 (4-((트리메틸실릴)에티닐)페닐)메탄올-d 2 (600 mg, 2.94 mmol)를 녹인 후, 0℃로 냉각하고 이미다졸(240 mg, 3.52 mmol)과 dry THF 5 mL에 녹인 염화 tert-부틸디메틸실란(TBSCl; 531 mg, 3.52 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 15시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 20 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(20 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 895 mg(2.79 mmol, 95%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.41 (d, 2H, J = 8.2 Hz), 7.23 (d, 2H, J = 8.1 Hz), 0.90 (s, 9H), 0.22 (s, 9H), 0.00 (s, 6H).
2) tert-부틸디메틸((4-((트리메틸실릴)에티닐)벤질)옥시)실란-d 0 의 합성
아르곤 조건 하에서 dry THF 5 mL에 (4-((트리메틸실릴)에티닐)페닐)메탄올(258 mg, 1.26 mmol)을 녹인 후, 0℃로 냉각하고 이미다졸(103 mg, 1.52 mmol)과 dry THF 3 mL에 녹인 TBSCl(228 mg, 1.52 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 15시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 10 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(10 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 383 mg(1.20 mmol, 95%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.41 (d, 2H, J = 8.2 Hz), 7.23 (d, 2H, J = 8.1 Hz), 4.70 (s, 2H), 0.90 (s, 9H), 0.22 (s, 9H), 0.00 (s, 6H).
단계 4
1) tert-부틸((4-에티닐벤질)옥시)디메틸실란-d 2 의 합성
아르곤 조건 하에서 메탄올 12 mL에 tert-부틸디메틸((4-((트리메틸실릴)에티닐)벤질)옥시)실란-d 2 (1.16 g, 3.62 mmol)와 탄산칼륨(1.00 g, 7.24 mmol)을 녹인 후, 2시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 15 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(10 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 858 mg(3.45 mmol, 95%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.44 (d, 2H, J = 8.2 Hz), 7.25 (d, 2H, J = 8.5 Hz), 3.02 (s, 1H), 0.92 (s, 9H), 0.01 (s, 6H).
2) tert-부틸((4-에티닐벤질)옥시)디메틸실란-d 0 의 합성
아르곤 조건 하에서 메탄올 4 mL에 tert-부틸디메틸((4-((트리메틸실릴)에티닐)벤질)옥시)실란(383 mg, 2.40 mmol)과 탄산칼륨(332 mg, 2.40 mmol)을 녹인 후, 2시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 10 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 280 mg(1.14 mmol, 95%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.44 (d, 2H, J = 8.2 Hz), 7.25 (d, 2H, J = 8.5 Hz), 4.72 (s, 2H), 3.02 (s, 1H), 0.92 (s, 9H), 0.01 (s, 6H).
단계 5
1) tert-부틸디메틸((4-(프로프-1-인-1-일)벤질)옥시)실란-d 5 의 합성
아르곤 조건 하에서 dry THF 5 mL에 tert-부틸((4-에티닐벤질)옥시)디메틸실란-d 2 (263 mg, 1.06 mmol)를 녹인 후, -78℃로 냉각하고 n-부틸리튬(851 μL, 2.49 M n-헥산 용액, 2.12 mmol)을 천천히 가하였다. 20분 동안 -78℃에서 교반한 후 여기에 다시 요오드화메탄-d 3 (331 μL, 5.30 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 30분 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 5 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하고(5 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 280 mg(1.05 mmol, 99%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.35 (d, 2H, J = 8.2 Hz), 7.22 (d, 2H, J = 8.2 Hz), 0.93 (s, 9H), 0.07 (s, 6H).
2) tert-부틸디메틸((4-(프로프-1-인-1-일)벤질)옥시)실란-d 0 의 합성
아르곤 조건 하에서 dry THF 5 mL에 tert-부틸((4-에티닐벤질)옥시)디메틸실란(247 mg, 1.00 mmol)을 녹인 후, -78℃로 냉각하고 n-부틸리튬(805 μL, 2.49 M n-헥산 용액, 2.00 mmol)을 천천히 가하였다. 20분 동안 -78℃에서 교반한 후 여기에 다시 요오드화메탄-d 0 (313 μL, 5.00 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 30분 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 10 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축시켜 관 크로마토그래피로 정제하여 목적화합물을 253 mg(0.971 mmol, 97%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.35 (d, 2H, J = 8.2 Hz), 7.22 (d, 2H, J = 8.2 Hz), 4.70 (s, 2H), 2.03 (s, 3H), 0.93 (s, 9H), 0.07 (s, 6H).
단계 6
1) (4-(프로프-1-인-1-일)페닐)메탄올-d 5 의 합성
아르곤 조건 하에서 dry THF 5 mL에 tert-부틸디메틸((4-(프로프-1-인-1-일)벤질)옥시)실란-d 5 (280 mg, 1.05 mmol)을 녹인 후, 불화-n-부틸암모늄(TBAF; 1.58 mL, 1.0 M 테트라히드로퓨란 용액, 1.58 mmol)을 천천히 가하고 30분 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 5 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 198 mg(0.838 mmol, 88%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.33 (d, 2H, J = 8.2 Hz), 7.20 (d, 2H, J = 8.1 Hz).
2) (4-(프로프-1-인-1-일)페닐)메탄올-d 0 의 합성
아르곤 조건 하에서 dry THF 5 mL에 tert-부틸디메틸((4-(프로프-1-인-1-일)벤질)옥시)실란-d 0 (326 mg, 1.25 mmol)을 녹인 후, 불화-n-부틸암모늄(TBAF; 1.88 mL, 1.0 M 테트라히드로퓨란 용액, 1.88 mmol)을 천천히 가하고 30분 동안 0℃에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 5 mL를 가하여 반응을 종결시키고 에틸 아세테이트로 추출하여(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 182 mg(1.24 mmol, 99%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.33 (d, 2H, J = 8.2 Hz), 7.20 (d, 2H, J = 8.1 Hz), 4.56 (s, 2H), 2.44 (br, 1H), 2.01 (s, 3H).
단계 7
1) 1-(아이오도메틸)-4-(프로프-1-인-1-일)벤젠-d 5 의 합성
잘 건조된 DCM 5 mL에 아르곤 조건 하에서(4-(프로프-1-인-1-일)페닐)메탄올-d 5 (140 mg, 0.926 mmol)를 녹인 후, 0℃로 냉각하고 염화 메탄술폰산(MsCl; 86.3 μL, 1.11 mmol)과 트리에틸아민(Et3N; 194 μL, 1.39 mmol)을 가하였다. 30분 동안 0℃에서 교반한 후 반응이 완결되면 물 5 mL를 가하여 반응을 종결시키고 DCM으로 추출하여(5 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하고 침전물을 걸러내었다. 얻어진 용액을 감압 증류하여 농축하고 이를 다시 아세톤 10 mL에 녹인 후, 요오드화나트륨(NaI; 207 mg, 1.39 mmol)을 가하였다. 1시간 동안 실온에서 교반한 후 반응이 완결되면 용매를 감압증류로 건조시킨다. 여기에 물 10 mL를 가하고 에틸 아세테이트로 추출하여(10 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물(reporter-d 5 )을 220 mg(0.843 mmol, 91%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.30-7.27 (m, 2H).
2) 1-(아이오도메틸)-4-(프로프-1-인-1-일)벤젠-d 0 의 합성
잘 건조된 DCM 4 mL에 아르곤 조건 하에서(4-(프로프-1-인-1-일)페닐)메탄올-d 0 (182 mg, 1.24 mmol)를 녹인 후, 0℃로 냉각하고 염화 메탄술폰산(MsCl; 116 μL, 1.49 mmol)과 트리에틸아민(Et3N; 260 μL, 1.87 mmol)을 가하였다. 30분 동안 0℃에서 교반한 후 반응이 완결되면 물 5 mL를 가하여 반응을 종결시키고 DCM으로 추출하여(5 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하고 침전물을 걸러내었다. 얻어진 용액을 감압 증류하여 농축하고 이를 다시 아세톤 12 mL에 녹인 후, 요오드화나트륨(NaI; 280 mg, 1.87 mmol)을 가하였다. 1시간 동안 실온에서 교반한 후 반응이 완결되면 용매를 감압증류로 건조시킨다. 여기에 물 10 mL를 가하고 에틸 아세테이트로 추출하여(10 mL씩 총 3회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물(reporter-d 0 )을 279 mg(1.09 mmol, 88%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.30-7.27 (m, 2H), 4.42 (s, 2H), 2.02 (s, 3H).
상기에서 합성된 reporter unit으로부터 balance-d 5 와 balance-d 0 를 합성하는 과정 및 각 단계에서 생성된 화합물들의 NMR 결과들을 하기 단계 8 내지 10에 나타내었다.
단계 8
1) 디에틸 2-(4-(프로프-1-인-1-일)벤질)말로네이트-d 5 의 합성
아르곤 조건 하에서 dry DMF 2 mL에 1-(아이오도메틸)-4-(프로프-1-인-1-일)벤젠-d 5 (0.392 mmol)와 수소화나트륨(NaH; 19.8 mg, 60% 미네랄오일 혼합물, 0.473 mmol)을 녹인 후, 0℃로 냉각하고 디에틸 말론산(89.8 μL, 0.592 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 3시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 5 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하여(3 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 88.5 mg(0.302 mmol, 77%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.28-7.23 (m, 2H), 7.11-7.07 (m, 2H), 4.17-4.06 (m, 4H), 3.57 (s, 1H), 1.21-1.14 (m, 3H).
2) 디에틸 2-(4-(프로프-1-인-1-일)벤질)말로네이트-d 0 의 합성
아르곤 조건 하에서 dry DMF 3 mL에 1-(아이오도메틸)-4-(프로프-1-인-1-일)벤젠-d 0 (98.0 mg, 0.383 mmol)와 수소화나트륨(NaH; 18.4 mg, 60% 미네랄오일 혼합물, 0.459 mmol)을 녹인 후, 0℃로 냉각하고 디에틸 말론산(87.2 μL, 0.574 mmol)을 가하였다. 이후 실온으로 온도를 높여주고 3시간 동안 실온에서 교반하였다. 반응이 완결되면 포화 염화암모늄 수용액 5 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하여(3 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 94.8 mg(0.329 mmol, 86%) 얻었다.
단계 9
1) 3-(4-(프로프-1-인-1-일)페닐)프로피온-d 5 에틸 에스테르의 합성
아르곤 조건 하에서 dry DMF 2 mL에 디에틸 2-(4-(프로프-1-인-1-일)벤질)말로네이트-d 5 (88.5 mg, 0.302 mmol)를 녹인 후, 염화나트륨(35.3 mg, 0.604 mmol)과 물 100 μL를 가하고 2일 동안 환류(reflux) 조건 하에서 교반하였다. 반응이 완결되면 물 3 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하고(3 mL × 4) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 50.0 mg(0.226 mmol, 75%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.28 (d, 2H, J = 8.1 Hz), 7.08 (d, 2H, J = 8.1 Hz), 4.08 (q, 2H, J = 7.2 Hz), 2.56 (s, 2H), 1.19 (t, 3H, J = 7.2 Hz).
2) 에틸 3-(4-(프로프-1-인-1-일)페닐)프로피온-d 0 에틸 에스테르의 합성
아르곤 조건 하에서 dry DMF 2 mL에 디에틸 2-(4-(프로프-1-인-1-일)벤질)말로네이트-d 0 (94.8 mg, 0.329 mmol)를 녹인 후, 염화나트륨(38.5 mg, 0.658 mmol)과 물 200 μL를 가하고 2일 동안 환류(reflux) 조건 하에서 교반하였다. 반응이 완결되면 물 3 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하고(3 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 50.0 mg(0.231 mmol, 70%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.28 (d, 2H, J = 8.1 Hz), 7.08 (d, 2H, J = 8.1 Hz), 4.08 (q, 2H, J = 7.2 Hz), 2.89 (t, 2H, J = 7.6 Hz), 2.56 (t, 2H, J = 8.0 Hz), 2.00 (s, 3H), 1.19 (t, 3H, J = 7.2 Hz).
단계 10
1) 3-(4-(프로프-1-인-1-일)페닐)프로피온산-d 5 (balance-d 5 )의 합성
메탄올 0.5 mL에 3-(4-(프로프-1-인-1-일)페닐)프로피온-d 5 에틸 에스테르(43.0 mg, 0.194 mmol)를 녹인 후, 20% 수산화나트륨 수용액 100 μL를 가하고 2시간 동안 실온에서 교반하였다. 반응이 완결되면 에틸 아세테이트 3 mL를 가하여 묽히고 10% 염화수소 수용액 200 μL를 가하여 용액을 중화시켰다. 무수 황산마그네슘으로 수분을 제거하고 침전물은 걸러내어 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물(balance-d 5 )을 32.2 mg(0.167 mmol, 86%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.30 (d, 2H, J = 8.1 Hz), 7.10 (d, 2H, J = 8.1 Hz), 2.64 (s, 2H).
2) 3-(4-(프로프-1-인-1-일)페닐)프로피온산-d 0 (balance-d 0 )의 합성
메탄올 0.5 mL에 3-(4-(프로프-1-인-1-일)페닐)프로피온-d 0 에틸 에스테르(50.0 mg, 0.231 mmol)를 녹인 후, 20% 수산화나트륨 수용액 100 μL를 가하고 2시간 동안 실온에서 교반하였다. 반응이 완결되면 에틸 아세테이트 3 mL를 가하여 묽히고 10% 염화수소 수용액 200 μL를 가하여 용액을 중화시켰다. 무수 황산마그네슘으로 수분을 제거하고 침전물은 걸러내어 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물(balance-d 0 )을 37.3 mg(0.198 mmol, 86%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.30 (d, 2H, J = 8.1 Hz), 7.10 (d, 2H, J = 8.1 Hz), 2.91 (t, 2H, J = 7.6 Hz), 2.64 (t, 2H, J = 8.0 Hz), 2.02 (s, 3H).
상기에서 제조된 reporter unit과 balance unit을 이용하여, 동중체 및 다중 동중체 라벨링제의 합성 방법 및 각 단계에서 합성된 화합물의 NMR 결과들을 하기 단계 11 내지 13에 나타내었다. 다중 동중체들의 합성 방법은 동일하므로 동중체 라벨링제 tag α129의 경우를 상세히 기술하고, 다른 동중체 라벨링제들의 경우는 합성과정의 차이점을 기술하였다.
단계 11
메틸 2-((4-(프로프-1-인-1-일)벤질)아미노)아세테이트-d 0 의 합성
아르곤 조건 하에서 dry DMF 2 mL에 글리신 메틸 에스테르(169 mg, 1.34 mmol)를 녹인 후, DIPEA(292 μL, 1.68 mmol)과 1-(아이오도메틸)-4-(프로프-1-인-1-일)벤젠-d 0 (reporter-d 0 ; 232 mg, 0.892 mmol)를 가하고 1일 동안 실온에서 교반하였다. 반응이 완결되면 물 5 mL를 가하여 반응을 종결시키고 디에틸 에테르로 추출하고(5 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 58.6 mg(0.270 mmol, 80%) 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.30 (d. 2H, J = 8.2 Hz), 7.19 (d, 2H, J = 8.2 Hz), 3.72 (s, 2H), 3.67 (s, 3H), 3.35 (s, 2H), 2.20 (br, 1H), 1.99 (s, 3H).
단계 12
메틸 2-(N-(4-(프로프-1-인-1-일)벤질)-3-(4-(프로프-1-인-1-일)페닐)프로판아미도)아세테이트-d 5 의 합성
잘 건조된 DCM 1 mL에 아르곤 조건 하에서 메틸 2-((4-(프로프-1-인-1-일)벤질)아미노)아세테이트-d 0 (18.3 mg, 0.0845 mmol)와 3-(4-(프로프-1-인-1-일)페닐)프로판 산-d 5 (balance-d 5 ; 13.6 mg, 0.0704 mmol)를 녹인 후, EDC(40.5 mg, 0.211 mmol), HOBt(28.5 mg, 0.211 mmol) 및 DIPEA(60.3 μL, 0.352 mmol)를 가하고 20시간 동안 실온에서 교반하였다. 반응이 완결되면 물 3 mL를 가하여 반응을 종결시키고 DCM으로 추출하여(3 mL씩 총 4회) 얻어진 유기층에 무수 황산마그네슘을 처리하여 수분을 제거하였다. 침전물을 걸러내고 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 목적화합물을 25.0 mg(0.0759 mmol, 91%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.33-7.24 (m, 4H), 7.11-6.96 (m, 4H), 4.51 (s, 2H), 4.00 (s, 2H), 3.64 (s, 3H), 2.65 (s, 2H), 2.02 (s, 3H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.33-7.24 (m, 4H), 7.11-6.96 (m, 4H), 4.58 (s, 2H), 3.81 (s, 2H), 3.60 (s, 3H), 2.52 (s, 2H), 2.02 (s, 3H).
단계 13
2-(N-(4-(프로프-1-인-1-일)벤질-3-(4-(프로프-1-인-1-일)페닐)프로판아미도)아세트 산-d 5 의 합성
메탄올 0.5 mL에 메틸 2-(N-(4-(프로프-1-인-1-일)벤질)-3-(4-(프로프-1-인-1-일)페닐)프로판아미도)아세테이트-d 5 (25.0 mg, 0.0637 mmol)를 녹인 후, 20% 수산화나트륨 수용액 100 μL를 가하고 2시간 동안 실온에서 교반하였다. 반응이 완결되면 에틸 아세테이트 3 mL를 가하여 묽히고 10% 염화수소 수용액 200 μL를 가하여 용액을 중화시켰다. 무수 황산마그네슘으로 수분을 제거하고 침전물은 걸러내어 얻어진 용액을 감압 증류로 농축하고 관 크로마토그래피로 정제하여 동중체 라벨링제 tag α129를 21.0 mg(0.0554 mmol, 87%) 얻었다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 77.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 4.47 (s, 2H), 3.97 (s, 2H), 2.62 (s, 2H), 2.02 (s, 3H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 4.56 (s, 2H), 3.79 (s, 2H), 2.53 (s, 2H), 2.00 (s, 3H).
상기 단계 11 내지 13과 유사한 방법으로 하기와 같이 동중체 라벨링제 tag α131, tag α132 및 tag α134를 제조하였다.
동중체 라벨링제 α 131
동중체 라벨링제 tag α129와 동일한 과정으로 합성하되, 합성 과정 중에서 단계 11에는 reporter-d 2 를 사용하고 단계 12에는 balance-d 3 를 사용하여 합성하였다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 3.97 (s, 2H), 2.90 (t, 2H, J = 7.9 Hz), 2.64 (t, 2H, J = 8.0 Hz), 2.02 (s, 3H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 3.79 (s, 2H), 2.93 (t, 2H, J = 7.9 Hz), 2.55 (t, 2H, J = 8.0 Hz), 2.00 (s, 3H).
동중체 라벨링제 α 132
동중체 라벨링제 α129와 동일한 과정으로 합성하되, 합성 과정 중에서 단계 11에는 reporter-d 3 를 사용하고 단계 12에는 balance-d 2 를 사용하여 합성하였다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 4.47 (s, 2H), 3.97 (s, 2H), 2.62 (s, 2H), 2.02 (s, 3H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 4.56 (s, 2H), 3.79 (s, 2H), 2.53 (s, 2H), 2.00 (s, 3H).
동중체 라벨링제 α 134
동중체 라벨링제 α129와 동일한 과정으로 합성하되, 합성 과정 중에서 단계 11에는 reporter-d 5 를 사용하고 단계 12에는 balance-d 0 를 사용하여 합성하였다.
Major isomer: 1H NMR (300 MHz, CDCl3): δ 7.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 3.97 (s, 2H), 2.90 (t, 2H, J = 7.9 Hz), 2.64 (t, 2H, J = 8.0 Hz), 2.02 (s, 3H). Minor isomer: 1H NMR (300 MHz, CDCl3): δ 7.32-7.23 (m, 4H), 7.09-7.94 (m, 4H), 3.79 (s, 2H), 2.93 (t, 2H, J = 7.9 Hz), 2.55 (t, 2H, J = 8.0 Hz), 2.00 (s, 3H).
상기 제조된 화합물을 이용하여 하기와 같이 정략분석 실험에 사용하였다.
실험예
단계 1: 라벨링제와 분석체의 결합
실시예의 화합물과 펩티드의 결합 반응을 도 7에 나타내었다. 실시예의 화합물과 EDC와 N-히드록시숙신이미드(NHS)를 DMF에 녹이고 각각의 농도가 60, 35 및 40 mM이 되도록 섞어서 실온에서 45분간 반응시켜 라벨링제의 카복시산 말단기를 숙신이미딜 에스테르로 활성화시켰다.
소 혈청 알부민을 트립신 효소로 분해하여 얻은 펩티드(tryptic BSA) 또는 앤지오텐신 II(DRVYIHPF)를 탄산수소나트륨 수용액(NaHCO3, 100 mM)에 녹인 다음, 활성화된 라벨링제를 넣고 6시간 이상 반응을 진행시켰다. 히드록실기에 일어나는 표지 반응은 에스테르 결합을 형성하여 불안정한 결합을 형성하며 반응의 효율도 낮기 때문에, 정확한 정량을 위해서, 탄산수소나트륨 수용액(100 mM)에 녹인 히드록실 아민(80 mM)를 사용해서 펩티드의 히드록실기에 표지된 부반응을 제거하였다. 전체 반응은 트리플루오로아세트산(TFA)을 가하여 종결시켰다.
단계 2: MALDI 및 LC-MALDI 질량 분석
표지된 앤지오텐신 II는 50 TA 용액(0.1% TFA/50% acetonitrile/50% H2O)으로 묽힌 다음 HCCA 매트릭스 용액(α-cyano-4-hydroxycinnamic acid, 5 mg/mL 50 TA)과 1:1로 섞어서 MALDI plate에 올리고 건조한 다음, 탄뎀 비행시간형 질량분석기(time-of-flight/time-of-flight(TOF/TOF) mass spectrometry)를 사용하여 분석하였다. 탄뎀 질량분석을 통해서 설계한대로 정량신호 및 표지신호가 관측되는지 또한 그 세기가 어느 정도인지 확인하였다.
표지된 tryptic BSA를 사용해서 동중체 라벨링제로 측정 가능한 분석 시료의 농도 혹은 양의 범위를 확인하고 액체 크로마토그래피(LC)와 연동해서 다중의 시료를 동시에 정량분석할 수 있는지 확인하였다. 동중체 라벨링제로 측정 가능한 시료의 농도 범위를 확인하기 위해서, 다중 동중체 중 tag α129와 tag α131로 표지된 시료를 3:1의 비율로 섞은 다음 50TA를 사용하여 묽히는 과정 반복하였다. 각 농도의 시료를 HCCA 매트릭스 용액 1:1의 비율로 섞어서 MALDI plate에 로딩하였다. 이 때 로딩된 펩티드의 양은 스팟당 약 4200, 1300, 420, 130, 42, 및 13 펨토몰이다. LC와 연동한 다중 정량분석을 테스트하기 위해서는 네 종류의 동중체로 표지된 tryptic BSA를 2:1:4:8의 비율로 섞고 nanoLC로 분리하였으며, LC에서 용출되는 펩티드를 HCCA 매트릭스 용액과 함께 MALDI plate에 로딩하여 MALDI-TOF/TOF로 분석하였다.
실험 결과
1. 모델 펩티드를 이용한 라벨링제의 검증
각 라벨링제와 결합된 모델 펩티드(angiotensin II, DRVYIHPF)들을 질량 분석한 결과, 하나의 라벨링제와 결합한 질량값(tag α129134는 1406.7, tag β는 1395.7, tag γ는 1381.7, 및 tag δ는 1341.8 Th)에서 이온이 관측되었다. 더 정확한 검증을 위해서, 질량 스펙트럼에서 관측된 이온을 선택하여 탄뎀 질량분석을 진행하였으며 그 결과는 도 8에 나타내었다.
도 8(a) 내지 도 8(d)는 다중 동중체(tag α129134)로 표지된 펩티드의 결과이며, 도 8(e) 내지 도 8(g)는 각각 비동중체인 tag β, tag γ, 및 tag δ로 표지된 펩티드의 결과이다. 각 라벨링제에서 생성되는 이온들, 즉 표지신호와 정량신호는 설계된 질량값들에서 관측되었다. 표지신호는 tag α129134는 361, tag β는 350, tag γ는 336, 및 tag δ는 296 Th에서 관측되었다. 정량신호는 tag α129는 129, tag α131은 131, tag α132는 132, tag α134는 134, tag β는 133, tag γ는 148, 및 tag δ는 142 Th에서 관측되었다.
각 라벨링제에서 생성되는 정량신호의 세기를 모델 펩티드의 조각 이온 중 가장 강하게 관측되는 히스티딘 임모늄 이온(110 Th)과 비교하여 도 9에 나타내었다. 라벨링제의 구조에 따라 다른 타입의 정량신호가 관측되었다. 즉 reporter unit이 벤질 유도체인 tag α와 tag β는 벤질 양이온 구조의 정량신호가 관측되었고, 벤질 유도체가 아닌 tag γ와 tag δ는 이미늄 양이온 구조의 정량신호가 관측되었다. 비록 라벨링제에 따라 정량신호의 타입은 다르더라도, 각 라벨링제의 정량신호들은 모델 펩티드의 조각 이온에 비하여 훨씬 강하게 관측되었다. 모델 펩티드의 조각 이온들을 보면, 펩티드의 C-말단기를 포함하는 조각이온들, 즉 y2, y3, 및 y7은 라벨링제에 무관하게 같은 위치에서 관측되었으며, 펩티드의 N-말단기를 포함하는 조각 이온들, 즉 b2, b3-NH3, a5, 및 b7+H2O 등은 {각 라벨링제의 분자량 - H2O} 만큼 질량이 증가한 곳에서 관측되었다. 질량분석 및 탄뎀 질량분석 결과에서 합성된 모든 각 라벨링제의 분자량과 정량 및 표지신호가 예상한대로 관측되는 것을 통해서 각 라벨링제가 설계대로 합성되었음을 확인하였으며, 펩티드의 조각 이온들로부터 라벨링제가 N-말단기에만 표지되었음을 확인하였다.
다중 동중체로 표지된 모델 펩티드들를 일정 비율로 섞고 탄뎀 질량분석한 결과를 도 10에 나타내었다. 섞은 비율(몰 비)이 tag α129 : α131 : α132 : α134 = 2:1:2:1인 경우는 도 10(a)에 도시하였으며, 1:2:1:2인 경우는 도 10(b)에 도시하였으며, 각 다중 동중체 라벨링제의 정량신호들은 역삼각형으로 표시하였다. 다중 동중체 각각을 따로 분석한 도 8(a) 내지 도 8(d)에 비해서, 다중 정량분석을 하는 경우에는 각각의 정량신호의 세기는 상대적으로 약해지고 펩티드의 조각 이온들은 더 강하게 관측되었다. 이와 같이 전체 분자량은 동일하고 정량신호의 질량값만 상이한 다중 동중체를 사용할 경우에는 정량신호와는 달리 그 이외의 이온들은 질량 값이 동일하기 때문에 중첩되어 그 세기가 강화된다. 이와 같은 이유로, 본 발명으로 개발된 라벨링제들과 같이, 정량신호가 강하게 관측될수록 다중 정량분석에 유리하다.
2. tryptic BSA를 이용한 다중 동중체의 성능 검증
다중 동중체를 이용해서 측정할 수 있는 펩티드의 양 또는 농도 범위를 도 11에 도시하였다. BSA의 절대 양을 잘 반영할 수 있도록, 동중체로 표지된 tryptic BSA중에서 비교적 강하게 관측된 펩티드인 FGER, VASLR, 및 SEIAHR을 이용하여 실험을 진행하였다. Tag α129와 tag α131으로 표지된 펩티드들을 3:1의 비율 섞고 전체 단백질의 양을 4.2 피코몰에서 13 펨토몰까지 변화해가면서 탄뎀 질량분석하였다. MALDI 질량분석기는 레이저에 의해서 이온화되는 양이 제한되어 시료의 양이 적을 때 비해서 양이 많은 경우에는 로딩된 시료양 대비 어미 이온의 세기가 작게 측정되지만, 탄뎀 질량분석을 통한 정량분석에는 무관함을 확인하였다. 또한 본 발명의 동중체 라벨링제는 정량신호가 강해서, 13 펩토몰의 적은 양의 시료도 정량분석할 수 있었다.
또한, LC와 MALDI 질량분석기를 연동한 정량분석 결과를 도 12에 나타내었다. 도 12(a)는 LC에서 용출된 어미 이온들의 세기를 나타내며, 도 12(b)는 각 스팟에서 측정된 정량신호의 양을 tag α129의 정량신호와 비교해서 나타낸 것이다. 총 6 종류의 펩티드(FGER, VASLR, QEPER, AWSVAR, SEIAHR, 및 YLYEIAR)를 탄뎀 질량분석으로 정량하였다. 펩티드의 종류와는 무관하게, 각 동중체 라벨링제에 따라 일정한 비율(tag α129 : α131 : α132 : α134 = 1 : 0.51 : 1.96 : 3.81)로 측정되었다. 또한, 동일 펩티드의 경우에는 LC에서 용출되는 동안 동일한 정량신호들의 비율로 측정되었다. 이는 본 발명의 동중체로 다중 표지된 펩티드들이 nanoLC 상에서 동시에 이동하고 있으며, 따라서 특정 시점의 용출액만으로도 정확한 정량이 이루어짐을 의미한다. 또한, 모델 펩티드를 통해서 관측했듯이, 관측되는 정량신호의 비율이 시료의 전체 양에는 영향을 받지 않음을 확인하였다.

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure pat00008

    상기 식에서,
    R1은 C1-10 알킬 또는
    Figure pat00009
    이고;
    R2는 C1-10 알킬 또는
    Figure pat00010
    이고;
    R3는 아미노산 잔기의 측쇄이고;
    R4는 하이드록시 또는 반응성 링커이고;
    R5는 수소, C1-4 알킬 또는 C2-4 알키닐이고;
    R6는 수소, C1-4 알킬 또는 C2-4 알키닐이고;
    n과 m은 각각 독립적으로 1 내지 4의 정수이고; 및
    상기 R1 및 R2는 중수소를 포함하지 않거나, 또는 상기 R1 및 R2 중 적어도 하나는 중수소를 포함한다.
  2. 제1항에 있어서,
    R1은 C6-9 알킬 또는
    Figure pat00011
    이고,
    R2는 C6-9 알킬 또는
    Figure pat00012
    이고,
    R5는 수소, 프로필 또는 프로프-1-이닐(prop-1-ynyl)이고;
    R6는 수소, 프로필 또는 프로프-1-이닐(prop-1-ynyl)이고; 및
    n과 m은 각각 독립적으로 1 내지 4의 정수이다.
  3. 제2항에 있어서,
    R1은 옥틸이고; 및
    R2는 헵틸인 것을 특징으로 하는 화합물.
  4. 제1항에 있어서,
    R1은 C1-10 알킬이고, R2는 C1-10 알킬이거나; 또는
    R1
    Figure pat00013
    이고, R2
    Figure pat00014
    인 것을 특징으로 하는 화합물.
  5. 제1항에 있어서,
    R1 및 R2는 각각 CH3?C≡C?C6H4?CH2 및 CD3?C≡C?C6H4?CD2?CH2이거나;
    각각 CH3?C≡C?C6H4?CD2 및 CD3?C≡C?C6H4?CH2?CH2이거나;
    각각 CD3?C≡C?C6H4?CH2 및 CH3?C≡C?C6H4?CD2?CH2이거나; 또는
    각각 CD3?C≡C?C6H4?CD2 및 CH3?C≡C?C6H4?CH2?CH2인 것을 특징으로 하는 화합물.
  6. 제1항에 있어서,
    R3는 글리신, 알라닌, 세린, 발린, 류신, 이소류신, 메티오닌, 글루타민, 아스파라진, 시스테인, 히스티딘, 페닐알라닌, 아르기닌, 티로신 및 트립토판으로 구성되는 어느 하나의 아미노산 잔기의 측쇄인 것을 특징으로 하는 화합물.
  7. 제1항에 있어서,
    R4는 하이드록시, 숙신이미드-N-옥시, 3-설포숙신이미드-N-옥시, 벤조트리아졸-1-일옥시, 펜타할로벤질옥시, 4-니트로페녹시 또는 2-니트로페녹시인 것을 특징으로 하는 화합물.
  8. 제1항에 있어서, 상기 화합물은
    1) 2-(N-(4-(프로프-1-이닐)벤질)-3-(4-(프로프-1-이닐)페닐)프로판아미도)아세트 산;
    2) 2-(N-(4-(프로프-1-이닐)벤질)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도-3,3-d 2)아세트 산;
    3) 2-(N-(4-(프로프-1-이닐)벤질-1,1-d 2)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도)아세트 산;
    4) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질)-3-(4-(프로프-1-이닐)페닐)프로판아미도-3,3-d 2)아세트 산;
    5) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질-1,1-d 2)-3-(4-(프로프-1-이닐)페닐)프로판아미도)아세트 산;
    6) 2-(N-(4-프로필벤질)-2-(4-프로필페닐)아세트아미도)아세트 산;
    7) 2-(5-페닐-N-(3-페닐프로필)펜탄아미도)아세트 산; 및
    8) 2-(N-옥틸옥탄아미도)아세트 산
    으로 구성되는 군으로부터 선택되는 어느 하나의 화합물인 것을 특징으로 하는 화합물.
  9. 제1항 내지 제8항 중 어느 한 항의 화합물을 두 종류 이상 포함하는 조성물.
  10. 제9항에 있어서, 상기 두 종류 이상의 화합물은 서로 중수소의 수가 동일한 것을 특징으로 하는 조성물.
  11. 제9항에 있어서, 상기 조성물은
    1) 2-(N-(4-(프로프-1-이닐)벤질)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도-3,3-d 2)아세트 산;
    2) 2-(N-(4-(프로프-1-이닐)벤질-1,1-d 2)-3-(4-(프로프-1-이닐-3,3,3-d 3)페닐)프로판아미도)아세트 산;
    3) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질)-3-(4-(프로프-1-이닐)페닐)프로판아미도-3,3-d 2)아세트 산; 및
    4) 2-(N-(4-(프로프-1-이닐-3,3,3-d 3)벤질-1,1-d 2)-3-(4-(프로프-1-이닐)페닐)프로판아미도)아세트 산
    로 구성되는 군으로부터 선택되는 어느 하나 이상의 화합물을 포함하는 것을 특징으로 하는 조성물.
KR1020100100538A 2010-08-23 2010-10-14 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법 KR101207742B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020100100538A KR101207742B1 (ko) 2010-10-14 2010-10-14 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법
CN201180048175.4A CN103228621B (zh) 2010-08-23 2011-08-23 标记试剂以及利用其的多肽和蛋白的测序及定量方法
PCT/KR2011/006225 WO2012026743A2 (ko) 2010-08-23 2011-08-23 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법
EP11820170.6A EP2610243A4 (en) 2010-08-23 2011-08-23 MARKING AGENT AND SEQUENCE OF AMINO ACIDS USING THE SAME, AND METHOD FOR PROVIDING SIMULTANEOUS QUANTITATIVE ANALYSIS OF MULTIPLE PROTEINS
JP2013525824A JP5683706B2 (ja) 2010-08-23 2011-08-23 ラベリング剤とこれを用いたアミノ酸配列およびタンパク質多重定量同時分析方法
US13/818,489 US8809012B2 (en) 2010-08-23 2011-08-23 Labeling agent and methods for simultaneous sequencing and quantification of multiple peptides and proteins using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100100538A KR101207742B1 (ko) 2010-10-14 2010-10-14 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법

Publications (2)

Publication Number Publication Date
KR20120038854A true KR20120038854A (ko) 2012-04-24
KR101207742B1 KR101207742B1 (ko) 2012-12-03

Family

ID=46139451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100100538A KR101207742B1 (ko) 2010-08-23 2010-10-14 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법

Country Status (1)

Country Link
KR (1) KR101207742B1 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL111175A0 (en) * 1993-10-07 1994-12-29 Du Pont Merck Pharma Electrophilic peptide analogs as inhibitors of trypsin-like serine proteases and pharmaceutical compositions containing them
PL328271A1 (en) 1996-01-23 1999-01-18 Rapigene Inc Methods of and compositions for determining sequences of nucleic acid molecules
WO2003078962A2 (en) 2002-03-11 2003-09-25 President And Fellows Of Harvard College Detection and quantification of modified proteins

Also Published As

Publication number Publication date
KR101207742B1 (ko) 2012-12-03

Similar Documents

Publication Publication Date Title
JP7055267B2 (ja) アミノ官能性化合物の分析方法及び分析試薬
CN101313223B (zh) 用于包含2,6‑二甲基‑哌啶‑1‑基‑亚甲基或嘧啶‑2‑基硫代亚甲基质量标记部分以及琥珀酰亚胺基‑氧‑羰基活性官能团的生物分子的质量标记物
EP2467350B1 (en) Mass labels
Waliczek et al. Peptides labeled with pyridinium salts for sensitive detection and sequencing by electrospray tandem mass spectrometry
CA2480836A1 (en) Method for characterising analytes
US8809012B2 (en) Labeling agent and methods for simultaneous sequencing and quantification of multiple peptides and proteins using the same
US20110318771A1 (en) Deuterium isobaric tag reagents for quantitative analysis
KR101081053B1 (ko) 가변질량 라벨링제와 이를 이용한 아미노산 서열 및 단백질정량 동시 분석방법
Miyashita et al. Improving peptide fragmentation by N‐terminal derivatization with high proton affinity
US8309359B2 (en) Isobaric tags for analyte detection and quantification
WO2007117665A2 (en) Derivatization-enhanced analysis of amino acids and peptides
KR101207742B1 (ko) 라벨링제 및 이를 이용한 아미노산 서열 및 단백질 다중 정량 동시 분석방법
CN111316105B (zh) 用于质谱法的基于亚砜的试剂
DeGraan-Weber et al. A novel triethylphosphonium charge tag on peptides: synthesis, derivatization, and fragmentation
JP4873801B2 (ja) 有機化合物の構造解析方法
JP2005528614A (ja) 高分子の選択的結合および分析方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee