KR20120027091A - 정전 용량 소자, 정전 용량 소자의 제조 방법, 및 공진 회로 - Google Patents

정전 용량 소자, 정전 용량 소자의 제조 방법, 및 공진 회로 Download PDF

Info

Publication number
KR20120027091A
KR20120027091A KR1020110089099A KR20110089099A KR20120027091A KR 20120027091 A KR20120027091 A KR 20120027091A KR 1020110089099 A KR1020110089099 A KR 1020110089099A KR 20110089099 A KR20110089099 A KR 20110089099A KR 20120027091 A KR20120027091 A KR 20120027091A
Authority
KR
South Korea
Prior art keywords
electrode
electrodes
dielectric layer
capacitor
variable
Prior art date
Application number
KR1020110089099A
Other languages
English (en)
Inventor
마사요시 간노
Original Assignee
소니 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 주식회사 filed Critical 소니 주식회사
Publication of KR20120027091A publication Critical patent/KR20120027091A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/011Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Filters And Equalizers (AREA)

Abstract

정전 용량 소자는, 유전체층, 및 상기 유전체층을 개재하여 상기 유전체층의 한 면 위에 형성된 하나의 전극과 상기 유전체층의 다른 면 위에 형성된 다른 하나의 전극을 갖는 한 쌍의 전극 또는 복수 쌍의 전극을 포함하며, 상기 하나의 전극과 상기 다른 하나의 전극은, 상기 전극들의 길이 방향이 서로 교차하도록 배치되고, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 적어도 2개의 전극 폭을 가져서, 상기 하나의 전극이 상기 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우에는, 상기 유전체층을 개재하여 상기 유전체층의 두께 방향으로 겹쳐지는 상기 전극들의 면적이 연속적으로 또는 단계적으로 변경될 수 있다.

Description

정전 용량 소자, 정전 용량 소자의 제조 방법, 및 공진 회로{ELECTROSTATIC CAPACITANCE ELEMENT, METHOD OF MANUFACTURING ELECTROSTATIC CAPACITANCE ELEMENT, AND RESONANCE CIRCUIT}
본 발명은, 정전 용량 소자 및 이 정전 용량 소자를 구비하는 공진 회로에 관한 것이며, 더욱 구체적으로는, 예를 들면, pF 오더(order)의 작은 용량을 갖는 정전 용량 소자와 그 제조 방법, 및 이 정전 용량 소자를 구비하는 공진 회로에 관한 것이다.
종래, 외부로부터 바이어스 신호를 인가함으로써 용량을 변화시켜서 입력 신호의 주파수 또는 시간을 제어하는 가변 용량 소자가 활용되어 오고 있다. 그러한 가변 용량 소자로서는, 예를 들면, 가변 용량 다이오드(가변 용량(varicaps)), MEMS(micro electro mechanical systems)가 상품화되어 있다.
또한, 상술한 가변 용량 소자를 비접촉 IC(integrated circuit) 카드의 보호 회로로서 이용하는 기술이 제안되어 있다(예를 들면, 일본 공개특허공보 제08-7059호 참조). 일본 공개특허공보 제08-7059호에 개시된 기술에 따르면, 비접촉 IC 카드를 그 리더/라이터(reader/writer)에 가까이했을 때에, 과대한 수신 신호에 의해 내전압성이 낮은 반도체 소자를 포함하는 제어 회로가 파괴되지 않도록 하기 위해, 보호 회로로서 가변 용량 소자를 사용한다.
도 19는 일본 공개특허공보 제08-7059호에 제안되어 있는 비접촉 IC 카드를 나타내는 블록 구성도이다. 일본 공개특허공보 제08-7059호에 따르면, 가변 용량 소자로서 가변 용량 다이오드(303d)를 사용한다. 또한, 바이어스 제거용 캐패시터(303c) 및 가변 용량 다이오드(303d)를 포함하는 직렬 회로를 코일(303a) 및 캐패시터(303b)를 포함하는 공진 회로에 병렬로 접속한다.
일본 공개특허공보 제08-7059호에서는, 검출기 회로(313)를 사용하여 수신 신호를 검출하여 얻은 직류 전압 Vout를 저항(314a 및 314b)으로 저항 분할한다. 그리고, 저항 분할된 직류 전압(저항(314b)에 인가되는 직류 전압)을, 그 직류 전압의 변동을 제거하기 위해 제공된 코일(315)을 거쳐 가변 용량 다이오드(303d)에 인가하여, 가변 용량 다이오드(303d)의 용량을 조정한다. 즉, 저항 분할된 직류 전압을 가변 용량 다이오드(303d)의 제어 전압으로서 사용한다.
일본 공개특허공보 제08-7059호에 따르면, 수신 신호가 과대한 경우에는, 제어 전압에 의해 가변 용량 다이오드(303d)의 용량이 작아져, 수신기 안테나(303)의 공진 주파수가 증가하게 된다. 이 결과, 용량이 변화되기 전의 공진 주파수 f0에서의 수신 신호의 응답은 용량 변화 전보다 낮아져, 수신 신호 레벨이 억제된다. 일본 공개특허공보 제08-7059호에서 제안되어 있는 기술에 따르면, 이러한 방식으로 가변 용량 소자에 의해 신호 처리부(320)(제어 회로)가 보호된다.
또한 본 발명자들은, 종래, 가변 용량 소자로서 강유전체 재료를 사용하는 소자를 제안해 오고 있다(예를 들면, 일본 공개특허공보 제2007-287996호 참조). 일본 공개특허공보 제2007-287996호에서는, 신뢰성 및 생산성의 향상을 꾀하기 위해서, 도 20a 및 도 20b에 나타낸 바와 같은 전극 구조를 갖는 가변 용량 소자(400)를 제안하고 있다. 도 20a는 가변 용량 소자(400)의 개략적인 사시도이며, 도 20b는 가변 용량 소자(400)의 단면 구성도이다. 일본 공개특허공보 제2007-287996호의 가변 용량 소자(400)에서는, 장방형 형상의 유전체층(404)의 4개의 면에 각각 단자가 제공된다. 4개의 단자 중, 한 측의 2개의 대향 단자가 신호 전원(403)에 접속되는 신호 단자(403a 및 403b)이며, 다른 측의 2개의 대향 단자가 제어 전원(402)에 접속되는 제어 단자(402a 및 402b)이다.
가변 용량 소자(400)의 내부는, 도 20b에 나타낸 바와 같이, 복수의 제어 전극(402c 내지 402g) 및 복수의 신호 전극(403c 내지 403f)이 유전체층(404)을 개재하여 교대로 적층되도록 구성되어 있다. 구체적으로는, 최하층으로부터, 제어 전극(402g), 신호 전극(403f), 제어 전극(402f), 신호 전극(403e), 제어 전극(402e), 신호 전극(403d), 제어 전극(402d), 신호 전극(403c) 및 제어 전극(402c)이 순차적으로 유전체층(404)을 개재하여 적층되어 있다. 도 20b의 예에서는, 제어 전극(402g), 제어 전극(402e) 및 제어 전극(402c)이 하나의 제어 단자(402a)에 접속되어 있고, 제어 전극(402f) 및 제어 전극(402d)이 다른 하나의 제어 단자(402b)에 접속되어 있다. 또한, 신호 전극(403f) 및 신호 전극(403d)이 하나의 신호 단자(403a)에 접속되어 있고, 신호 전극(403e) 및 신호 전극(403c)이 다른 하나의 신호 단자(403b)에 접속되어 있다.
일본 공개특허공보 제2007-287996호에 개시된 가변 용량 소자(400)에서는, 제어 단자 및 신호 단자에 개별적으로 전압을 인가하는 것이 가능하다. 내부에 복수의 신호 전극 및 복수의 제어 전극이 적층되어 있으므로, 저비용으로 용량을 증대할 수 있는 이점이 있다. 또한, 일본 공개특허공보 제2007-287996호와 동일한 구조를 갖는 가변 용량 소자(400)는 저비용으로 제조가 용이하다. 또한, 일본 공개특허공보 제2007-287996호의 가변 용량 소자(400)에서는, 바이어스 제거용 캐패시터가 불필요하다.
비유전률이 큰 강유전체 재료를 이용하여 작은 용량의 가변 용량 소자를 제조하기 위해서는, 유전체층을 두껍게 하여 전극 간 거리를 크게 하거나 대향 전극들의 면적을 줄일 필요가 있다. 그렇지만, 유전체층을 두껍게 하면 유전체층에 인가되는 전계 강도가 작아진다. 그러므로, 가변 용량 소자의 용량을 변화시키기 위한 제어 전압이 증가하게 된다. 따라서, 저전압으로 동작할 수 있는 가변 용량 소자를 제공하기 위해서는, 유전체층의 두께를 얇게 할 필요가 있다.
그러나, 유전체층의 두께를 얇게 할수록 용량이 커져, 대향 전극들의 면적을 줄일 필요가 있다. 그러나, 제조상의 제약 때문에 100㎛ 이하와 같은 작은 면적을 갖는 유전체층을 제조하는 것은 어렵다. 따라서, 1층의 용량을 1pF 이하와 같은 작은 용량을 사용하는 것이 곤란하다. 이 때문에, 용량이 작고 제어 전압이 작은 가변 용량 소자를 제조할 경우, 전극의 적층 수를 바꾸어서 상이한 용량값을 제공하는 것이 곤란하다. 그러므로, 상이한 용량값을 갖는 가변 용량 소자의 각종 상품을 제공하는 것이 곤란하게 된다. 전극 형상을 바꿈으로써 상이한 용량값을 갖는 가변 용량 소자를 형성할 수 있지만, 이 경우, 상이한 용량값을 갖는 가변 용량 소자마다 전극을 형성하기 위한 마스크를 제공할 필요가 있으므로, 이는 가격을 상승시킨다.
또한 박막 캐패시터에서와 같이, 유전체층과 그 유전체층이 개재되어 있는 한 쌍의 전극만을 포함하는 캐패시터에서는, 전극의 적층 수를 바꾸어 용량을 바꾸는 것이 곤란하다. 이 때문에, 유전체층의 두께가 일정한 경우에는, 전극 형상을 변경하여 상이한 용량을 갖는 캐패시터들을 제조한다. 이 경우에도, 상이한 용량값을 갖는 캐패시터마다 전극을 형성하기 위한 마스크를 제조할 필요가 있으므로, 가격이 또한 상승한다.
전극 형상 및 전극의 적층 수를 바꾸지 않고 상이한 용량을 갖는 정전 용량 소자를 안정적으로 제조하는 방법을 제공하는 것이 바람직하다.
본 발명의 실시 형태에 따르면, 유전체층; 및 상기 유전체층을 개재하여 상기 유전체층의 한 면 위에 형성된 하나의 전극과 상기 유전체층의 다른 면 위에 형성된 다른 하나의 전극을 구비하는 한 쌍의 전극 또는 복수 쌍의 전극을 포함하는 정전 용량 소자가 제공된다. 상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 배치된다. 또한, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 적어도 2개의 전극 폭을 갖는다. 상기 하나의 전극이 상기 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우에, 상기 유전체층을 개재하여 상기 유전체층의 두께 방향으로 겹쳐지는 상기 전극들의 면적이 연속적으로 또는 단계적으로 변경될 수 있다.
본 발명의 정전 용량 소자에서는, 하나의 전극이 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우, 유전체층을 개재하여 유전체층의 두께 방향으로 겹쳐지는 전극의 면적을 변경할 수 있다. 이 때문에, 동일한 전극 형상으로 상이한 용량을 갖는 가변 용량 소자를 형성할 수 있다.
본 발명의 다른 실시 형태에 따른 정전 용량 소자의 제조 방법에서는, 하나의 전극 및 다른 하나의 전극이 유전체층의 면 위의 소정의 위치에 위치되면서 마스크를 이용하여 패터닝된다. 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 상기 하나의 전극과 상기 다른 하나의 전극이 상기 유전체층의 두께 방향으로 겹쳐지는 전극 면적이 소정의 면적이 되도록 상기 유전체층의 상기 면 위에 위치되는 상기 마스크의 위치를 조정하면서 형성된다. 정전 용량 소자는, 유전체층 및 상기 유전체층을 개재하여 상기 유전체층의 한 면 위에 형성된 하나의 전극과 상기 유전체층의 다른 면 위에 형성된 다른 하나의 전극을 구비하는 한 쌍의 전극 또는 복수 쌍의 전극을 포함한다. 상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 배치된다. 또한, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 적어도 2개의 전극 폭을 갖는다. 상기 하나의 전극이 상기 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우에, 상기 유전체층을 개재하여 상기 유전체층의 두께 방향으로 겹쳐지는 상기 전극들의 면적이 연속적으로 또는 단계적으로 변경될 수 있다.
본 발명의 정전 용량 소자의 제조 방법에서는, 하나의 전극 및/또는 다른 하나의 전극이, 이 하나의 전극과 다른 하나의 전극이 유전체층의 두께 방향으로 겹쳐지는 전극 영역이 소정의 면적을 갖도록 유전체층의 면 위에 위치되는 마스크의 위치를 조정하면서 형성된다. 마스크의 위치를 변경함으로써, 하나의 전극과 다른 하나의 전극이 겹쳐지는 영역에 형성된 용량부의 용량값이 마스크의 위치를 변경함으로써 소정의 용량값이 되도록 조정될 수 있다.
본 발명의 또 다른 실시 형태에 따르면, 정전 용량 소자를 갖는 공진 캐패시터; 및 상기 공진 캐패시터에 접속된 공진 코일을 포함하는 공진 회로가 제공된다. 상기 정전 용량 소자는, 유전체층 및 상기 유전체층을 개재하여 상기 유전체층의 한 면 위에 형성된 하나의 전극과 상기 유전체층의 다른 면 위에 형성된 다른 하나의 전극을 구비하는 한 쌍의 전극 또는 복수 쌍의 전극을 구비하는 정전 용량 소자를 포함한다. 상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 배치된다. 또한, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 적어도 2개의 전극 폭을 갖는다. 상기 하나의 전극이 상기 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우에, 상기 유전체층을 개재하여 상기 유전체층의 두께 방향으로 겹쳐지는 상기 전극들의 면적이 연속적으로 또는 단계적으로 변경될 수 있다.
본 발명의 실시 형태들에 따르면, 유전체층이 개재되어 있는 한 쌍의 전극의 상대적인 전극 위치를 조정함으로써, 완성되는 정전 용량 소자의 용량값을 변경할 수 있다. 그 결과, 전극의 형상 및 전극의 적층 수를 바꾸지 않고 상이한 용량을 갖는 정전 용량 소자를 안정적으로 제조할 수 있다.
도 1은 본 발명의 제1 실시 형태에 따른 가변 용량 소자의 외관을 나타내는 사시도.
도 2는 본 발명의 제1 실시 형태에 따른 가변 용량 소자의 회로 구성예를 도시한 도면.
도 3은 제1 실시 형태의 제1 구성예에 따른 가변 용량 소자를 z 방향에서 보았을 때의 구성도.
도 4는 제1 실시 형태에 따라 제1 전극이 형성된 층의 구성을 도시한 도면.
도 5는 제1 실시 형태에 따라 제2 전극이 형성된 층의 구성을 도시한 도면.
도 6a 및 도 6b는 도 3의 VIA-VIA 및 VIB-VIB 선을 따른 단면을 도시한 도면.
도 7은 제1 실시 형태의 제2 구성예에 따른 가변 용량 소자를 z 방향에서 보았을 때의 구성도.
도 8a 및 도 8b는 도 7의 VIIIA-VIIIA 및 VIIIB-VIIIB 선을 따른 단면을 도시한 도면.
도 9a 내지 도 9d는 제1 실시 형태에 따른 가변 용량 소자의 제조 방법을 도시하는 제조 공정도.
도 10은 비교예에 따른 가변 용량 소자를 z 방향에서 보았을 때의 구성도.
도 11은 제1 실시 형태의 제3 구성예에 따른 가변 용량 소자의 단면도.
도 12는 제2 실시 형태의 제1 구성예에 따른 가변 용량 소자를 z 방향에서 보았을 때의 구성도.
도 13은 제2 실시 형태의 제2 구성예에 따른 가변 용량 소자를 z 방향에서 보았을 때의 구성도.
도 14는 제3 실시 형태의 제1 구성예에 따른 가변 용량 소자를 z 방향에서 보았을 때의 구성도.
도 15는 제3 실시 형태의 제2 구성예에 따른 가변 용량 소자를 z 방향에서 보았을 때의 구성도.
도 16은 실제의 가변 용량 소자 주변의 회로 구성예를 도시한 도면.
도 17은 가변 용량 소자와 바이어스 제거용 캐패시터를 일체화한 가변 용량 소자의 구성예를 나타내는 도면.
도 18은 본 발명의 제4 실시 형태에 따른 비접촉 IC 카드의 수신계(복조계) 회로부를 도시하는 블록도.
도 19는 종래의 비접촉 IC 카드를 나타내는 블록도.
도 20a 및 도 20b는 종래의 가변 용량 소자의 개략적인 사시도 및 그 단면 구성도.
이하에, 본 발명의 실시 형태에 따른 정전 용량 소자의 일례를, 도면을 참조하면서, 이하의 순으로 설명한다. 또한, 이하의 예에서는, 정전 용량 소자로서 가변 용량 소자를 예를 들어 설명하지만, 본 발명은 이에 한정되지 않는다.
1. 제1 실시 형태 : 가변 용량 소자
1-1 제1 구성예
1-2 제2 구성예
1-3 제3 구성예
2. 제2 실시 형태 : 가변 용량 소자
2-1 제1 구성예
2-2 제2 구성예
3. 제3 실시 형태 : 가변 용량 소자
3-1 제1 구성예
3-2 제2 구성예
4. 제4 실시 형태 : 공진 회로
1. 제1 실시 형태 : 가변 용량 소자
제1 실시예에서는, 용량 변화를 제어하는 제어 단자와 신호 단자를 갖는 가변 용량 소자의 일례를 설명한다. 또한 본 실시 형태의 가변 용량 소자는, pF 오더의 용량을 갖는다.
도 1은 본 실시 형태의 가변 용량 소자(1)의 외관을 나타내는 사시도이며, 이하에 설명하는 각 구성예 및 각 실시 형태에 공통적으로 적용될 것이다. 또한, 도 2는 본 실시 형태의 가변 용량 소자(1)를 나타내는 회로도이다.
본 실시 형태의 가변 용량 소자(1)는, 후술하는 강유전체층(12), 후술하는 제1 전극(15) 및 제2 전극(18)을 갖는 적층체(2), 제1 전극(15)에 접속된 제1 외부 단자(8, 9) 및 제2 전극(18)에 접속된 제2 외부 단자(10, 11)를 포함한다.
적층체(2)는 거의 직방형 형상으로 형성되어 있다. 복수의 제1 외부 단자(8)(도 1에서는 4개)는, 적층체(2)의 제1 측면(3)에 형성되어 있고, 제1 외부 단자(9)는 제1 측면(3)에 이웃하는 제2 측면(4)에 형성되어 있다. 또한, 복수의 제2 외부 단자(10)(도 1에서는 4개)는, 적층체(2)의 제3 측면(5)에 형성되어 있고, 제1 외부 단자(11)는 제3 측면(5)에 이웃하는 제4 측면(6)에 형성되어 있다. 또한 이들 제1 및 제2 외부 단자들(8, 9 및 10, 11)은 적층체(2)의 윗면 및 아래면으로부터 일부 튀어나오도록 형성되어 있다.
제1 외부 단자(8, 9) 및 제2 외부 단자(10, 11)에는 도 2에 나타낸 바와 같이, 전원으로부터 바이어스 저항 R을 거쳐 제어 전압 V 및 신호 전압이 공급된다. 본 실시 형태에서는, 제1 및 제2 외부 단자(8 및 10)가 제어(DC) 단자로 사용되고, 제1 및 제2 외부 단자(9 및 11)가 신호(AC) 단자로서 사용된다. 여기에서, 제1 및 제2 외부 단자(9 및 11)는 신호 단자와 제어 단자 둘 다로 사용된다. 또한, 제1 전극(15) 및 제2 전극(18)에 의해 복수의 용량부가 형성되고, 그 용량부는 직렬로 접속되어 있다. 이하의 설명에서는, 적층체(2)에서의 각 층의 적층 방향을 z 방향이라 하고, 적층 방향에 수직인 면에서의 단축 방향을 x 방향이라 하고, 장축 방향을 y 방향이라 한다.
본 실시 형태의 가변 용량 소자(1)는, 용량부에 포함되는 제1 전극(15) 및 제2 전극(18)의 전극 형상을 바꾸지 않고 형성 위치를 바꿈으로써 상이한 용량값을 갖는 복수의 구성을 가질 수 있다. 이하에, 제1 구성예, 제2 구성예, 제3 구성예에 대해서 순차적으로 설명한다.
1-1 제1 구성예
도 3은 본 실시 형태의 제1 구성예에 따른 가변 용량 소자(1a)를 z 방향에서 보았을 때의 구성도이다. 또한, 도 4는 가변 용량 소자(1a)의 제1 전극을 z 방향에서 보았을 때의 구성도이다. 도 5는 가변 용량 소자(1b)의 제2 전극을 z 방향에서 보았을 때의 구성도이다. 도 6a는 도 3의 VIA-VIA 선을 따른 단면을 도시한 도면이고, 도 6b는 도 3의 VIB-VIB 선을 따른 단면을 도시한 도면이다.
본 실시 형태의 가변 용량 소자(1a)에는, 동일 평면에 형성된 복수의 제1 전극(15)과, 동일 평면에 형성된 복수의 제2 전극(18)이 강유전체층(12)을 개재하여 제공되어 있다. 그리고, 가변 용량 소자(1a)에는, 제1 전극(15)의 상측 및 제2 전극(18)의 하측에 1층의 강유전체층(12)이 각각 적층되어 있다.
강유전체층(12)(유전체층)은, 외부에서 인가되는 제어 신호에 따라 용량이 변화되는 유전체 재료로 형성된다. 예를 들면, 제1 전극(15)과 제2 전극(18) 사이에 개재되어 있는 1층의 강유전체층(12)은, 비유전률이 1000을 초과하는 강유전체 재료로 형성된 시트(sheet) 형상의 부재(두께는, 예를 들면 2㎛ 정도)를 포함할 수 있다. 강유전체층(12)의 전극이 형성되는 면 및 대향면의 형상은 장방형이며, 그 긴 변과 짧은 변의 비는, 예를 들면, 2:1로 설정될 수 있다.
강유전체층(12)의 재료로서는, 이온 분극을 발생시킬 수 있는 강유전체 재료를 사용할 수 있다. 강유전체 재료는 이온 결정 재료로 이루어지고, 양이온과 음이온의 원자를 변위시킴으로써 전기적으로 이온 분극을 발생시킨다. 이 이온 분극을 발생시킬 수 있는 강유전체 재료는, 페로브스카이트 구조를 갖는 화학식 ABO3(O는 산소 원소를 나타냄)로 나타낼 수 있고, A 및 B는 2개의 소정의 원소를 나타낸다. 이러한 강유전체 재료로는, 예를 들면, 티탄산바륨(BaTiO3), 니오브산칼륨(KNbO3), 티탄산연(PbTiO3) 등을 들 수 있다. 또한, 강유전체층(12)의 재료로는, 예를 들면, 티탄산연(PbTiO3)에 지르콘산납(PbZrO3)을 혼합한 PZT(티탄산 지르콘산납)를 사용해도 된다.
또한, 강유전체층(12)의 재료로서, 전자 분극이 가능한 강유전체 재료를 포함할 수 있다. 이러한 강유전체 재료에서는, 양전하와 음전하의 상대적인 이동으로 인해 전기 쌍극자 모멘트가 생길 때 분극이 생긴다. 그러한 재료의 예로서, 종래, Fe2+의 전하면과 Fe3 +의 전하면의 형성에 의해 전기 분극을 형성하여 강유전체적 특성을 나타내는 희토류 철산화물이 보고되어 있다. 이 계(system)에서는, 희토류 원소를 RE라고 하고 철족 원소를 TM이라고 했을 때에, 분자식 (RE)?(TM)2?O4(O는 산소 원소를 나타냄)를 갖는 재료가 고유전율을 갖는 것으로 보고되어 있다. 또한, 희토류 원소는, 예를 들면, Y, Er, Yb, Lu(특히, Y를 갖는 중희토류 원소)를 포함할 수 있다. 철족 원소로는, 예를 들면, Fe, Co, Ni(특히, Fe)를 들 수 있다. 또한, 조성식 (RE)?(TM)2?O4를 갖는 재료로는, 예를 들면, ErFe2O4, LuFe2O4, YFe2O4가 있다. 또한, 강유전체층(12)의 재료로서 이방성을 갖는 강유전체 재료를 사용해도 된다.
복수(도 3에서는 5개)의 제1 전극(15)은, 도 6a 및 도 6b에 나타낸 바와 같이, 적층체(2)의 한가운데에 적층된 강유전체층(12)의 윗면에 형성되어 있으며, 한 측에서 다른 측으로 소정의 거리씩 이격되어 있다. 도 4에 나타낸 바와 같이, 각각의 제1 전극(15)은, y 방향 전극폭이 y1이고 x 방향 전극폭이 x1인 장방형 형상의 제1 전극부(13)와, y 방향 전극폭이 y2(<y1)이고 x 방향 전극폭이 x1인 장방형 형상의 제2 전극부(14)가 x 방향으로 교대로 접속되어 구성되어 있다. 또한, 적층체(2)의 제4 측면(6) 측으로부터 순차적으로 형성된 4개의 제1 전극(15)은, 제1 전극부(13)와 제2 전극부(14)가 교대로 2개씩 접속되어 구성되어 있다. 한편, 제2 측면(4) 측에 가장 인접하는 제1 전극(15)은, 제1 전극부(13)와 제2 전극부(14)가 1개씩 접속되어 구성되어 있다.
상술한 바와 같이, 제1 전극(15)은 y 방향으로 상이한 전극폭을 갖는 제1 전극부(13)와 제2 전극부(14)를 포함하고, 각각의 제1 전극(15)은 x 방향으로 2개의 전극폭을 갖는다. 또한, 제1 전극(15)의 각 제1 전극부(13)는 y 방향에 수평이고, 각 제2 전극부(14)는 y 방향에 수평이다.
또한, 적층체(2)의 제4 측면(6) 측으로부터 순차적으로 형성된 4개의 제1 전극(15) 각각은, 적층체(2)의 y방향의 제1 측면(3)에 노출되도록, 제1 전극(15)과 동일한 층에 형성된 내부 단자(16)에 접속되어 있다. 이 내부 단자(16)는 제1 측면(3)에 형성된 각각의 제1 외부 단자(8)에 접속되어 있다. 또한 적층체(2)의 제2 측면(4)에 가장 인접하는 제1 전극(15)은, 적층체(2)의 x방향으로 제2 측면(4)에 노출되도록 강유전체층(12)의 윗면에 형성된 내부 단자(17)에 접속되어 있다. 그리고, 이 외부 단자(17)는 적층체(2)의 제2 측면(4)에 형성된 제1 외부 단자(9)에 접속되어 있다.
도 6a 및 도 6b에 나타낸 바와 같이, 복수(도 3에서는 5개)의 제2 전극(18)이 적층체(2)의 한가운데에 적층된 강유전체층(12)의 밑면에 형성되어 있다. 도 5에 나타낸 바와 같이, 제2 전극(18)은 장방형 형상을 갖고, y 방향의 전극폭이y3(>y1)이고, x 방향의 전극폭이 x2(<x1, <y3)이며, y 방향으로 연장되고 있다. 또한, 각 제2 전극(18)은, x 방향 및 y 방향으로 분리되어 있고, 그 길이 방향이 제1 전극(15)의 길이 방향과 직교한다. 또한, 제2 전극(18)은 1개의 제1 전극(15)과 교차하거나 또는 y 방향으로 인접하는 2개의 제1 전극(15)에 걸쳐 배치되어, 제1 전극(15)의 제1 전극부(13)와 제2 전극(18)이 z 방향으로 서로 겹치게 된다.
적층체(2)의 제2 측면(4) 측으로부터 순차적으로 형성된 4개의 제2 전극(18)은, 적층체(2)의 제1 측면(3)에 대향하는 제3 측면(5)에 노출되도록 제2 전극(18)과 동일한 층에 형성된 각각의 내부 단자(19)에 접속되어 있다. 그리고, 이 내부 단자(19)는, 적층체(2)의 제3 측면(5)에 형성된 제2 외부 단자(10)에 접속되어 있다. 또한 적층체(2)의 제4 측면(6)에 가장 인접하는 제2 전극(18)은 제4 측면(6)에 노출되도록 형성되어 있다. 그리고, 이 제2 전극(18)은 적층체(2)의 제4 측면(6)에 형성된 제2 외부 단자(11)에 접속되어 있다.
여기에서, 도 3에 나타낸 바와 같이, 적층체(2)의 제4 측면(6) 측으로부터 홀수 번째의 제2 전극(18)을 제1 측면(3) 측에 위치하는 제1 전극부(13)의 하층에 배치하고, 짝수 번째의 제2 전극(18)을 제3 측면(5) 측에 위치하는 제1 전극부(13)의 하층에 배치한다. 또한, 홀수 번째의 제2 전극(18)과 짝수 번째의 제2 전극(18)을 x 방향으로 겹치지 않도록 배치한다. 이러한 전극 배치를 통해, 제2 전극(18)에 접속되는 각 내부 단자(19)를 용이하게 추출할 수 있다. 도 3에서는, 홀수 번째의 제2 전극(18)을 적층체(2)의 제1 측면(3) 측에 배치하고, 짝수 번째의 제2 전극(18)을 제3 측면(5) 측에 배치하는 예를 도시하고 있지만, 이 위치는 반대로 될 수도 있다.
또한, 제1 구성예에 따른 가변 용량 소자(1a)에서는, 도 6a 및 도 6b에 나타낸 바와 같이, 제1 전극(15)의 각 제1 전극부(13)와 그 제1 전극부(13)에 강유전체층(12)을 개재하여 적층된 제2 전극(18)이 z 방향으로 겹치는 영역에 용량부(20)가 형성된다. 용량부(20)에서는, 제1 전극(15)의 제1 전극부(13)와 이 제1 전극부(13)에 대향하는 제2 전극(18) 사이에서 용량값 C1을 얻을 수 있다. 그리고, 제1 구성예에 따른 가변 용량 소자(1a)에서는, 제1 전극(15)의 제1 전극부(13)와 제2 전극(18)이 z 방향으로 겹치기 때문에, 각 용량부(20)의 전극 면적은 제1 전극(15)과 제2 전극(18)이 겹쳐지는 면적 S1(=x2×y1)이 된다.
또한, 제1 구성예의 가변 용량 소자(1a)에서는, 복수의 제1 전극(15)과 복수의 제2 전극(18)이 동일한 층에 배치되어, 하나 또는 2개의 제2 전극(18)이 하나의 제1 전극(15)과 z 방향으로 겹쳐진다. 그 결과, 동일 층 위에 복수의 용량부(20)가 형성된다.
1-2 제2 구성예
다음으로, 본 실시 형태의 제2 구성예에 따른 가변 용량 소자(1b)에 관하여 설명한다. 도 7은 제2 구성예에 따른 가변 용량 소자(1b)를 z 방향에서 보았을 때의 구성도이다. 또한, 도 8a는 도 7의 VIIIA-VIIIA 선을 따른 단면도를 나타내며, 도 8b는 도 7의 VIIIB-VIIIB 선을 따른 단면도를 나타낸다. 도 7, 도 8a 및 도 8b에 있어서, 도 3, 도 6a 및 도 6b와 동일한 구성요소에는 동일한 부호를 첨부하고, 중복 설명은 생략한다.
제2 구성예의 가변 용량 소자(1b)에서는, 제1 구성예의 가변 용량 소자(1a)와 비교하여, 제1 전극(15)이 x 방향으로 x1만큼 제1 측면 측으로 이동하여 있다. 이 때문에, 제2 전극(18)은 강유전체층(12)을 개재하여 제1 전극(15)의 제2 전극부(14)와 z 방향으로 겹쳐서 배치되어 있다.
제2 구성예에 따른 가변 용량 소자(1b)에서는, 도 8a 및 도 8b에 나타낸 바와 같이, 제1 전극(15)의 각 제2 전극부(14)와 그 제2 전극부(14) 상에 강유전체층(12)을 개재하여 적층된 제2 전극(18)이 z 방향으로 겹쳐지는 영역에 용량부(21)가 형성된다. 용량부(21)를 사용하여, 제1 전극(15)의 제2 전극부(14)와 이 제2 전극부(14)에 대향하는 제2 전극(18) 사이에서 용량값 C2를 얻을 수 있다. 그리고, 제2 구성예에 따른 가변 용량 소자(1b)에서는, 제1 전극(15)의 제2 전극부(14)와 제2 전극(18)이 z 방향으로 겹쳐지기 때문에, 각 용량부(21)의 전극 면적은 제1 전극(15)과 제2 전극(18)이 겹쳐지는 면적 S2(=x2×y2)가 된다.
제1 전극(15)의 제2 전극부(14)의 y 방향의 폭은 제1 전극부(13)의 y 방향의 폭보다도 작다. 이 때문에, 제2 구성예의 가변 용량 소자(1b)에서는, 각 용량부(21)의 전극 면적(S2)이 제1 구성예에서의 가변 용량 소자(1a)의 각 용량부(20)의 전극 면적(S1)보다도 작다. 이에 따라 제2 구성예에서의 가변 용량 소자(1b)의 전체 용량은, 제1 구성예의 가변 용량 소자(1a)의 전체 용량보다도 작아진다.
이와 같이, 본 실시 형태의 가변 용량 소자(1)에서는, 제1 전극(15) 및 제2 전극(18)의 형상이 같다 하더라도, 제2 전극(18)에 대하여 제1 전극(15)을 상대적으로 이동함으로써, 상이한 용량값을 갖는 2종류의 가변 용량 소자를 구성할 수 있다.
본 실시 형태의 제1 구성예 및 제2 구성예에서 형성되는 가변 용량 소자(1a 및 1b)는, 도 2에 나타낸 바와 같이, 용량부가 유전체층(12)의 내부에 형성된 제1 전극(15) 및 제2 전극(18)을 포함하고, 이 용량부는 직렬 접속된다. 용량부에 바이어스 저항 R을 거쳐서 접지 전압 GND와 제어 전압 +V를 인가함으로써 각각의 용량부에 제어 전압 +V가 더해진다. 한편, 신호 전압(AC 전압)은 직렬 접속된 9개의 용량부를 경유하기 때문에, 전체 용량은 1/9로 감소된다. 그러나, 제어 전압은 각각의 용량부에 개별적으로 더해지기 때문에, 작은 값이라도 좋다. 즉, 본 실시 형태의 가변 용량 소자(1)에서는, 용량값을 작게 하여 제어 전압을 유지하도록 회로가 설계되어 있다. 또한, 바이어스 저항 R는, 일반적으로 500㏀ 내지 1㏁이다.
가변 용량 소자의 제조 방법
다음으로, 본 실시 형태의 제1 구성예 및 제2 구성예에 따른 가변 용량 소자(1a 및 1b)의 제조 방법에 관하여 설명한다. 도 9a 내지 도 9d는 본 실시 형태의 제1 구성예 및 제2 구성예에 따른 가변 용량 소자(1a 및 1b)의 제조 공정도이다.
우선, 도 9a에 나타낸 바와 같이, 상술한 강유전체 재료로 이루어진 시트 부재(도 9a에서는 2매)를 준비한다. 이러한 시트 부재는 상술한 강유전체층(12)으로서 기능하고, 그 한쪽 면은 제1 전극(15)을 형성하는 강유전체층(12)으로서 기능하고, 다른 한쪽 면은 제2 전극(18)을 형성하는 강유전체층(12)으로서 기능한다.
다음으로, Pd, Pd/Ag 및 Ni 등의 금속 미분말을 페이스트하여 얻은 도전성 페이스트를 조정한다. 또한, 제1 전극(15) 용으로 형상화된 개구를 갖는 제1 마스크(37)와, 제2 전극(18) 용으로 형상화된 개구를 갖는 제2 마스크(38)를 준비한다. 이후, 도 9b에 나타나 있는 바와 같이, 제1 마스크(37)를 하나의 시트 부재(강유전체층(12))의 윗면의 소정의 위치에 배치하고, 제2 마스크(38)를 다른 하나의 시트 부재(강유전체층(12))의 윗면의 소정의 위치에 배치한다.
그 후, 도 9c에 나타낸 바와 같이, 제1 마스크(37)를 개재하여 하나의 시트 멤버의 상부에 (세리그래프를 통해) 도전성 페이스트를 도포하고, 제2 마스크(38)를 개재하여 다른 하나의 시트 멤버의 상부에 도전성 페이스트를 도포한다. 이에 따라, 각 마스크의 개구에 있어서 시트 멤버의 상부에 도전성 페이스트가 도포된다. 따라서, 하나의 시트 부재 상에는 제1 전극(15)이 패터닝되고, 다른 하나의 시트 부재 상에는 제2 전극(18)이 패터닝된다.
또한, 도 9d에 나타낸 바와 같이, 각 시트 부재의 상부에서 제1 및 제2 마스크(37 및 38)를 제거함으로써, 강유전체층(12)을 갖는 제1 전극(15)과 강유전체층(12)을 갖는 제2 전극(18)이 형성된다.
이러한 제조 방법에 비해, 제1 구성예에 따라 가변 용량 소자(1a)를 제조하는 경우에, 시트 부재를 겹쳤을 때, 제1 전극(15)의 제1 전극부(13)의 하층에 제2 전극(18)이 포개지도록, 제1 마스크(37) 및 제2 마스크(38)를 각각의 시트 부재에 대해 위치시킨다.
한편, 가변 용량 소자(1b)를 제2 구성예로 형성하는 경우에, 시트 부재를 겹쳤을 때, 제1 전극(15)의 제2 전극부(14)의 하층에 제2 전극(18)이 포개지도록 제1 마스크(37)와 제2 마스크(38)를 각각의 시트 부재에 대해 위치시킨다. 즉, 가변 용량 소자(1b)를 제2 구성예로 형성할 경우에, 가변 용량 소자(1a)를 제1 구성예로 형성하는 경우에 비해, 내부 단자(16)가 형성된 측을 향해 거리 x1만큼 x 방향으로 어긋나도록 제1 마스크(37)를 시트 부재 상에 배치하여 제1 전극(15)을 형성한다.
여기에서, 제1 전극(15)의 내부 단자(16)는, 제1 구성예의 가변 용량 소자(1a)와 제2 구성예의 가변 용량 소자(1b) 간에 그 길이가 상이하다. 이 때문에, 본 실시 형태의 제조 방법에서는, 마스크의 위치를 소정의 거리만큼 움직였을 경우에도, 적층체(2)의 측면에 노출된 내부 단자(16)가 형성되도록, 마스크의 내부 단자(16)에 대응하는 부분에 개구가 형성되어 있다.
그 후에, 제2 전극(18)(전극 페이스트층)이 도포된 시트 부재와 제1 전극(15)(전극 페이스트층)이 도포된 시트 부재를, 시트 부재와 전극 페이스트층이 교대로 되도록 밑에서부터 적층한다. 필요에 따라, 최상층의 제1 전극(15)의 상부에 전극 페이스트층이 형성되지 않은 시트 부재를 적층하여 시트 부재와 도전성 페이스트층을 포함하는 적층체(2)를 형성한다.
그 후에, 적층체(2)를 가열 압착한다. 가열 압착한 부재를 환원 분위기 중에서 고온 소성하여 시트 부재와 도전성 페이스트층(제1 및 제2 전극(15 및 18))을 일체화시킨다. 그 후에, 적층체(2)의 제1 내지 제4 측면(3 내지 6)에 제1 외부 단자(8, 9) 및 제2 외부 단자(10, 11)를 형성하여, 제1 구성예 또는 제2 구성예에 따른 가변 용량 소자(1a, 1b)가 완전하게 제조된다.
이와 같이, 본 실시 형태의 가변 용량 소자(1)에서는, 전극 제조 시의 마스크의 위치를 바꿈으로써, 제1 및 제2 구성예에 나타낸 바와 같이, 상이한 용량을 갖는 가변 용량 소자를 형성할 수 있다.
본 실시 형태의 가변 용량 소자의 제조 방법은 상술한 것에 한정되지 않는다. 예를 들면, Pt 등을 Si 등의 기판 상에 스퍼터링하여 에칭을 통해 불필요한 부분을 제거하여 전극을 제공하도록 박막 캐패시터가 형성되지만, 불필요한 부분을 에칭하기 위한 마스크의 위치를 하부 전극 및 상부 전극에 대하여 상대적으로 이동시킴으로써 전극들의 위치를 이동할 수 있다.
전극 형상의 설계 개요
본 실시 형태에 따르면, 전극 형상이 동일하더라도 그 형성 위치를 조정함으로써 상이한 용량값을 갖는 가변 용량 소자(1a 및 1b)를 구성할 수 있게 하기 위해, 제1 전극(15) 및 제2 전극(18)의 치수를 고려할 필요가 있다. 이하에서는, 본 실시 형태에 따른 가변 용량 소자(1)의 제1 전극(15) 및 제2 전극(18)의 형상 및 치수에 대한 설계의 개요를 설명한다.
제1 전극(15)의 제1 전극부(13) 및 제2 전극부(14)의 x 방향의 전극폭 x1은, 제1 전극(15)과 제2 전극(18)의 제조 시의 바람직하지 않은 위치 어긋남을 고려하여, 제2 전극(18)의 x 방향의 전극폭 x2보다 큰 소정의 폭을 갖는 것이 바람직하다. 그 결과, 도 3을 참조해보면, 제1 전극(15)의 x 방향에서의 중심 위치와 제2 전극(18)의 x 방향에서의 중심 위치가 일치하는 경우, 겹쳐진 면적 S1의 x 방향의 양단에 마진 M((x1-x2)/2)(제2 전극(18)과 겹치지 않는 영역)이 형성된다. 이러한 마진 M은, 제1 전극(15)과 제2 전극(18) 간의 맞춤 어긋남(coupling deviation)을 흡수할 수 있는 폭인 것이 바람직하고, 예를 들면, 10㎛ 이상인 것이 바람직하다. 그리고, 제조 상의 제약도 고려하면, 전극폭 x1은 50㎛ 이상이도록 설정되는 것이 바람직하고, 100㎛인 것이 더 바람직하다.
이러한 방식으로 마진 M이 제공되기 때문에, 예를 들면, 제1 전극(15)이 제2 전극(18)으로부터 소정의 위치부터 x 방향으로 어긋나버린 경우, 그 편차량이 마진 M의 폭보다도 작으면, 제1 전극(15)과 제2 전극(18)이 겹쳐지는 면적은 바뀌지 않는다. 이 때문에, 일 방향으로 전극 위치를 이동시키기만 하는 것으로 원하는 용량값을 갖는 가변 용량 소자를 형성할 수 있다. 또한, 상이한 용량값을 갖는 가변 용량 소자를 형성하는 것이 용이하게 된다. 또한, 제1 구성예와 제2 구성예 간에, 제1 전극(15)의 위치가, 제1 전극부(13) 및 제2 전극부(14)의 x 방향의 전극폭 x1에서 다르다. 이러한 전극폭 x1은, 마진 M에 비해 충분히 크고, 의도적으로 마스크 위치를 다르게 함으로써 어긋날 수 있다. 따라서, 본 실시 형태의 가변 용량 소자(1)에서는, 미소한 맞춤 어긋남인 경우, 제1 전극(15)과 제2 전극(18)이 겹쳐지는 면적은 바뀌지 않고, 원하는 전극 위치를 이동하는 것만으로, 제1 전극(15)과 제2 전극(18)이 겹쳐지는 면적을 바꿀 수 있다.
또한, 본 실시 형태에 따르면, 제1 전극(15)의 제1 전극부(13)과 제2 전극부(14) 간의 y 방향에서의 폭의 차에 기초하여, 제1 구성예의 가변 용량 소자(1a)와 제2 구성예의 가변 용량 소자(1b)의 용량값을 바꾸는 것이 가능하다. 따라서, 전극폭 y1과 전극폭 y2 간의 관계를, 예를 들면, y1:y2=1:0.8의 관계가 되도록 설정함으로써, 제1 구성예의 가변 용량 소자(1a)의 용량값과 제2 구성예의 가변 용량 소자(1b)의 용량값의 비를 1:0.8로 설정할 수 있다. 다만, 전극폭 y1과 전극폭 y2는 다른 값을 가질 수 있으므로, 각종 설정이 가능하다.
제2 전극(18)의 y 방향의 전극폭 y3은, 제1 전극(15)의 y 방향의 최대 전극폭, 즉, 제1 전극부(13)의 y 방향의 전극폭 y1보다도 클 수 있다. 본 실시 형태에서는, 적층체(2)의 제4 측면(6)에 가장 인접하는 제2 전극(18)이, 제4 측면(6)의 제2 외부 단자(11)에 접속되기 때문에, 적층체(2)의 측면에 노출되게 하는 길이를 제공할 필요가 없다. 또한, 그 밖의 제2 전극(18)은 각각 2개의 제1 전극(15)에 걸쳐 형성되기 때문에, y 방향의 전극폭 y3은 인접하는 2개의 제1 전극을 포함하는 y 방향의 폭보다도 크게 형성될 필요가 있다.
또한, 본 실시 형태에 따르면, 제2 전극(18)이 장방형 형상이고, 그 길이 방향(y 방향)이 제1 전극(15)의 길이 방향(x 방향)에 직교하도록 배치되어 있다. 이 때문에, 맞춤 어긋남에 의해 제2 전극(18)과 제1 전극(15)이 소정의 위치부터 y 방향으로 어긋나버렸을 경우에도, 제2 전극(18)과 제1 전극(15)이 겹쳐지는 면적은 변하지 않는다. 그 결과, y 방향의 위치 어긋남에 의해 용량값이 변화되지 않는다.
또한, 본 실시 형태에 따르면, 제1 구성예의 가변 용량 소자(1a)와 제2 구성예의 가변 용량 소자(1b)에서는, 제1 전극(15)의 형성 위치를 x 방향으로 소정의 거리 이동할 필요가 있다. 이러한 이동 거리는, 디바이스의 x 방향의 길이와 디바이스의 사이즈에 의해 제약되는 외부 단자의 길이에 의해 제약된다. 예를 들어, 이동 거리가 적층체(2)의 제2 측면(4)에 형성되는 제1 외부 단자(9)의 x 방향의 길이 x4보다도 크면, 제2 측면(4)에 가장 인접하는 제1 전극(15)의 내부 단자(17)와 제1 외부 단자(9)를 접속할 수 없게 되어버릴 수 있다. 이 때문에, 본 실시 형태의 가변 용량 소자(1)에서는, 제1 전극(15)의 이동 거리를 적층체(2)의 제2 측면(4)에 형성되는 제1 외부 단자(9)의 x 방향의 길이 x4보다도 작게 하는 제약이 있다. 이러한 제약은 제2 측면(4)에 가장 인접하는 제1 전극(15)의 내부 단자(17)의 폭 x3을 제1 외부 단자(9)의 x 방향의 길이 x4보다도 크게 함으로써 없앨 수 있다. 그러나, 전극 제작의 용이성 및 마스크의 이동의 용이성을 고려해 볼 때, 제1 전극(15)의 이동 거리는 제1 외부 단자(9)의 x 방향의 길이 x4보다도 작게 하는 것이 바람직하다. 또한, 적층체(2)의 y방향의 폭이 1.0㎜으로 설정되고, x 방향의 폭이 0.5㎜로 설정된 소형 사이즈의 가변 용량 소자의 경우를 생각하면, 제2 측면(4)에 형성되는 제1 외부 단자(9)의 x 방향의 길이 x4는 200 내지 300㎜가 된다. 이 때문에, 제1 전극(15)의 이동 거리는 100 내지 200㎜의 범위로 설정되는 것이 바람직하다.
비교예
다음으로, 비교예에 따른 가변 용량 소자를 설명한다. 도 10은 비교예에 따른 가변 용량 소자(100)를 z 방향에서 보았을 때를 나타내는 구성도이다. 비교예에 따른 가변 용량 소자(100)의 외관은, 도 1에 나타낸 본 실시 형태에 따른 가변 용량 소자(1)와 유사하므로, 그 설명은 반복하지 않을 것이다. 도 10에서, 도 3과 동일한 구성요소에는 동일한 부호를 첨부한다.
비교예에 따른 가변 용량 소자(100)는 제1 전극(101)의 형상이 본 실시 형태의 가변 용량 소자(1)와 다르다.
도 10에 나타낸 바와 같이, 비교예에 따른 가변 용량 소자(100)에서는, 복수(도 10에서는 5개)의 제1 전극(101)이 적층체(2)의 한가운데에 적층된 강유전체층(12)의 윗면에 형성되고 있고, 이 제1 전극(101)들은 y 방향의 한 측으로부터 다른 측으로 소정의 거리씩 이격하여 형성되어 있다. 제1 전극(101) 각각은, y 방향의 전극폭이 y4, x 방향의 전극폭이 x5(>x2)인 장방형 형상으로 형성되어 있다.
5개의 제1 전극(101) 중, 적층체(2)의 제2 측면(4)에 가장 인접하는 제1 전극(101)은 내부 단자(17)를 통해 제2 측면(4) 상에 형성된 제1 외부 단자(9)에 접속된다. 나머지 제1 전극(101)은 내부 단자(16)를 통해 적층체(2)의 제1 측면(3)상에 형성된 제1 외부 단자(8)에 각각 접속된다.
비교예에 따른 가변 용량 소자(100)에서는, 제2 전극(18)이 1개의 제1 전극(101)과 교차하거나 또는 인접하는 2개의 제1 전극(101)에 걸쳐 연장하도록 배치되어 있다. 또한, 제1 전극(101)과 제2 전극(18)이 z 방향으로 겹치는 영역에 용량부가 형성된다. 용량부의 제1 전극(101) 및 제2 전극(18)을 포함하는 전극 면적은, 제1 전극(101)과 제2 전극(18) 간의 z 방향으로 겹쳐지는 면적 S3(=x2×y4)에 대응한다.
비교예의 가변 용량 소자(100)에서는, 도 10에서 파선으로 나타낸 바와 같이, 예를 들면, 제1 전극(101)이 x 방향으로 Δx 만큼 이동된 경우에도, 제2 전극(18)과 제1 전극(101)이 겹쳐지는 면적 S4는 바뀌지 않는다. 이 때문에, z 방향으로 겹쳐지는 제1 전극(101)과 제2 전극(18) 및 그 사이에 형성되는 강유전체층(12)을 포함하는 용량부의 용량값은 변화되지 않는다. 비교예의 가변 용량 소자(100)의 용량값을 변화시키기 위해서는, 적층 수를 변화시키거나 전극 형상을 바꿀 필요가 있다. 전극 형상을 바꾸기 위해서는, 다른 마스크를 사용하여 전극을 형성할 필요가 있으므로 비용이 증가한다. 또한, 대응하는 용량이 크면, 적층 수를 증가시켜 용량값을 바꿀 경우, 용량값을 증가시킬 수는 있어도 감소시킬 수는 없다.
한편, 본 실시 형태의 가변 용량 소자(1)(1a, 1b)에서는, 제1 전극(15)이 2개 이상의 전극 폭을 갖는다. 이 때문에, 강유전체층(12)의 표면에 제1 전극(15)을 형성할 때의 마스크 위치를 일 방향(이 경우에는 x 방향)으로 소정의 거리만큼 이동시킴으로써 제2 전극(18)과 제1 전극(15)이 겹쳐지는 면적을 용이하게 바꿀 수 있다. 이에 따라, 적층 수가 같으면서 상이한 용량을 갖는 가변 용량 소자(1)(1a, 1b)를 얻을 수 있다. 이 경우, 전극을 형성하기 위한 마스크를 변경할 필요가 없고, 또는 제조 프로세스를 크게 변경할 필요가 없다. 그러므로, 저비용으로 고품질의 가변 용량 소자(1)(1a, 1b)를 얻을 수 있다.
본 실시 형태에 따르면, 제1 전극(15)의 위치를 x 방향으로 이동함으로써, 상이한 용량값을 갖는 가변 용량 소자(1)(1a, 1b)를 구성한다. 그렇지만, 본 발명은 이에 한정되지 않고, 제2 전극(18)의 위치를 x 방향으로 이동함으로써도 상이한 용량값을 갖는 가변 용량 소자를 형성할 수 있다. 즉, 제1 전극(15)과 제2 전극(18)은, 상대적으로 소정의 거리를 이동하도록 형성되면, 용량값이 다른 가변 용량 소자를 형성할 수 있다. 또한 본 실시 형태에 따르면, 전극들 중 하나를 일 방향으로 소정의 거리만큼 이동시켜 용량을 바꾸기 때문에, 위치 결정이 용이하다. 이러한 구성은, pF 오더의 용량값을 갖는 가변 용량 소자의 용량값을 미소 변화시키는 데에 특히 효과적이다.
또한, 본 실시 형태에 따르면, 강유전체층(12)을 개재하여 복수의 제1 전극(15)과 제2 전극(18)이 z 방향으로 겹쳐짐으로써, 동일한 층에 복수의 용량부가 포함되어 있지만, 용량부는 한 쌍의 제1 전극(15)과 하나의 제2 전극(18)을 포함할 수도 있다. 또한, 본 실시 형태에 따르면, 복수의 제1 전극(15)과 제2 전극(18)이 강유전체층(12)을 개재하여 적층될 수 있다. 예를 들면, 3층의 제1 전극(15)과 3층의 제2 전극(18)을 교대로 적층시킴으로써 5층의 용량부를 형성할 수 있다. 제1 구성예에 따른 가변 용량 소자(1a)에서는, 1층의 용량값 C1이 9pF이면, 5층의 용량부의 용량값은 45pF가 된다. 또한, 제2 구성예에 따른 가변 용량 소자(1b)에서는, 1층의 용량값 C2가 8pF이면, 5층의 용량부의 용량값은 40pF가 된다.
1-3 제3 구성예
이하에, 제3 구성예로서, 제1 구성예의 복수의 가변 용량 소자(1a)와 제2 구성예의 복수의 가변 용량 소자(1b)를 적층하여 형성된 가변 용량 소자를 설명한다. 도 11은 제3 구성예에 따른 가변 용량 소자(1c)의 단면 구성을 도시하는 도면이다. 도 11에서, 도 6a, 도 6b, 도 8a 및 도 8b와 동일한 구성요소에는 동일한 부호를 첨부한다.
도 11에서는, 간단하기 때문에, 동일층 내에 형성되는 제1 전극(15) 및 제2 전극(18)을 각각 하나씩 도시한다.
도 11에 나타낸 바와 같이, 제3 구성예의 가변 용량 소자(1c)는, 3층의 제2 전극(18)과 3층의 제1 전극(15)이 교대로 적층된 구성이다. 또한, 3층의 제1 전극(15) 중 하층의 제1 전극(15)과 상층의 제1 전극(15)은, 대향하는 제2 전극(18)에 대하여, 제1 구성예의 가변 용량 소자(1a)의 제1 전극(15)과 동일한 위치를 갖도록 형성되어 있다. 한편, 3층의 제1 전극(15) 중, 한가운데의 제1 전극(15)은, 대향하는 제2 전극(18)에 대하여 제2 구성예의 가변 용량 소자(1b)의 제1 전극(15)과 동일한 위치를 갖도록 형성되어 있다.
즉, 제3 구성예의 가변 용량 소자(1c)에서는, 한가운데의 제1 전극(15)이 다른 2개의 제1 전극(15)에 대해 x 방향으로 전극폭 x1만큼 어긋나도록 형성되어 있다. 이에 따라, 하층의 제1 전극(15)과 그에 대향하는 제2 전극(18)을 이용하는 제1 구성예에서 나타낸 가변 용량 소자(1a)가 2층을 갖도록 형성된다. 또한, 한가운데의 제1 전극(15)과 그에 대향하는 제2 전극(18)을 이용하는 제2 구성예에서 나타낸 가변 용량 소자(1b)가 2층을 갖도록 형성된다. 또한, 상층의 제1 전극(15)과 그에 대향하는 제2 전극(18)을 이용하여 제1 구성예에서 나타낸 가변 용량 소자(1b)가 2층을 갖도록 형성된다.
상술한 구성에서는, 예를 들면, 제1 구성예의 가변 용량 소자(1a)의 용량값C1을 9pF로 설정하고, 제2 구성예의 가변 용량 소자(1b)의 용량값 C2를 8pF로 설정하면, 전체의 용량값이 3×9+8×2=43pF가 된다. 이렇게, 제2 전극(18)과 제1 전극(15)을 교대로 복수층 적층하여 얻은 가변 용량 소자(1c)에 있어서, 복수의 제1 전극(15)의 형성 위치를 다르게 하면, 각 층마다 용량값을 다르게 할 수 있다. 그리고, 적층 수 또는 제1 구성예의 가변 용량 소자(1a)에 포함되는 적층 수, 또는 제2 구성예의 가변 용량 소자(1b)에 포함되는 적층 수를 자유롭게 설계할 수 있기 때문에, 각종 용량값을 갖는 가변 용량 소자를 제공할 수 있다.
2. 제2 실시 형태 : 가변 용량 소자
다음으로, 본 발명의 제2 실시 형태에 관하여 설명한다. 본 실시 형태의 가변 용량 소자의 외관은, 도 1과 마찬가지이기 때문에, 그 설명은 반복하지 않는다. 본 실시 형태의 가변 용량 소자에서는, 용량부의 전극 형상은 바꾸지 않고 그 형성 위치를 바꿈으로써 상이한 용량값을 갖는 복수의 구성을 얻을 수 있다. 이하에, 제1 구성예 및 제2 구성예에 대해서 순차적으로 설명한다.
2-1 제1 구성예
도 12는 본 실시 형태의 제1 구성예에 따른 가변 용량 소자(22a)를 z 방향에서 보았을 때의 구성도이다. 도 12에서, 도 3과 동일한 구성요소에는 동일한 부호를 첨부하고, 중복 설명을 생략한다.
복수(도 12에서는 5개)의 제1 전극(23)은, 적층체(2)의 한가운데에 적층된 강유전체층(12)의 윗면에 형성되고, y 방향의 일 측으로부터 다른 측으로 소정의 거리씩 이격되어 있다. 각각의 제1 전극(23)은, 적층체(2)의 제1 측면(3)의 y방향의 변으로부터 시계방향으로 약 45°회전한 제1 방향으로 연장하도록 형성되어 있다. 또한, 각각의 제1 전극(23)은, 제1 전극부(25)와 제2 전극부(24)가 제1 방향으로 교대로 접속되어 구성되어 있다. 제1 전극부(25)는 제1 방향의 전극폭이 w1이고, 제1 방향 w1에 직교하는 제2 방향의 전극폭이 w2인 장방형 형상을 갖고, 제2 전극부(24)는 제1 방향의 전극폭이 w1이고, 제2 방향의 전극폭이 w3인 장방형 형상을 갖는다. 도 12에서, 적층체(2)의 제4 측면(6) 측으로부터 순차적으로 형성된 4개의 제1 전극(23)은, 4개의 제1 전극부(25)와 4개의 제2 전극부(24)가 교대로 적층되어 구성되어 있다. 또한, 제2 측면(4) 측에 가장 인접하는 제1 전극(15)은, 제1 전극부(25)와 제2 전극부(24)를 접속함으로써 구성된다.
이와 같이, 제1 전극(23)이 상이한 제2 방향의 전극폭을 갖는 제1 전극부(25)와 제2 전극부(24)를 포함하기 때문에, 각각의 제1 전극(23)은 제1 방향으로 2개의 전극폭을 갖도록 구성된다. 또한, 본 실시 형태에 따르면, 제1 전극(23)의 각각의 제1 전극부(25)는 y 방향에 수평으로 위치되고, 각각의 제2 전극부(24)는 y 방향에 수평으로 위치된다.
적층체(2)의 제4 측면(6) 측으로부터 순차적으로 형성된 4개의 제1 전극(23) 각각은, 적층체(2)의 제1 측면(3)에 노출되도록 제1 전극(23)과 동일한 층에 형성된 내부 단자(16)에 접속되어 있다. 그리고, 이 내부 단자(16)는, 제1 측면(3)에 형성된 각각의 제1 외부 단자(8)에 접속되어 있다. 또한 적층체(2)의 제2 측면(4)에 가장 인접하는 제1 전극(23)은, 적층체(2)의 제2 측면(4)에 노출되도록 제1 전극(23)과 동일한 층에 형성된 내부 단자(17)에 접속되어 있다. 또한, 이 내부 단자(17)는 적층체(2)의 제2 측면(4)에 형성된 제1 외부 단자(9)에 접속되어 있다.
복수(도 12에서는 5개)의 제2 전극(26)은, 적층체(2)의 한가운데에 적층된 강유전체층(12)의 밑면에 형성되어 있고, y 방향의 일 측으로부터 다른 측으로 소정의 거리씩 이격되어 있다. 제2 전극(26)은, 제1 방향의 전극폭이 w4(<w1)이고, 제2 방향의 전극폭이 w5(>w2)인 장방형의 형상을 갖고, 제2 방향으로 연장된다.
그리고, 제2 전극(26)은, 1개의 제1 전극(23)과 교차하거나 y 방향으로 인접하는 2개의 제1 전극(23)에 걸치도록 형성되어, 제1 전극(23)의 제1 전극부(25)가 z 방향으로 제2 전극(26)과 겹치도록 배치되어 있다.
적층체(2)의 제2 측면(4)에 가까운 4개의 제2 전극(26)은, 적층체(2)의 제1 측면(3)에 대향하는 제3 측면(5)에 노출되도록 제2 전극(26)과 동일한 층에 형성된 각각의 내부 단자(19)에 접속되어 있다. 그리고, 내부 단자(19)는 적층체(2)의 제3 측면(5)에 형성된 제2 외부 단자(10)에 접속되어 있다. 적층체(2)의 제4 측면(6)에 가장 인접하는 제2 전극(26)은, 제4 측면(6)에 노출되도록 형성되어 있다. 제2 전극(26)은 적층체(2)의 제4 측면(6)에 형성된 제2 외부 단자(11)에 접속되어 있다.
이상에 의해, 제1 구성예의 가변 용량 소자(22a)에서는, 도 12에 나타낸 바와 같이, 제1 전극(23)의 각 제1 전극부(25)와, 강유전체층(12)을 개재하여 제1 전극부(25) 상에 적층된 제2 전극(26)이 z 방향으로 겹쳐지는 영역에 용량부가 형성된다. 또한, 도 12의 가변 용량 소자(22a)에서는, 복수의 제1 전극(23)과 복수의 제2 전극(26)이, 하나의 제1 전극(23)에 대하여 하나 또는 2개의 제2 전극(26)이 z방향으로 겹쳐지도록 포함된다. 이에 따라, 동일 면 상에 복수의 용량부가 형성된다. 그리고, 제1 구성예의 가변 용량 소자(22a)에서는, 제1 전극(23)의 제1 전극부(25)와 제2 전극(26)이 z 방향으로 겹쳐지기 때문에, 각 용량부의 전극 면적이 제1 전극(23)과 제2 전극(26)이 겹쳐지는 면적 S4(=w2×w4)로 된다.
2-2 제2 구성예
다음으로, 본 실시 형태의 제2 구성예에 따른 가변 용량 소자에 관하여 설명한다. 도 13은 본 실시 형태의 제2 구성예에 따른 가변 용량 소자(22b)를 z 방향으로부터 보았을 때의 구성도이다. 도 13에서, 도 12와 동일한 구성요소에는 동일한 부호를 첨부하고, 중복 설명을 생략한다.
제2 구성예의 가변 용량 소자(22b)에서는, 제1 구성예의 가변 용량 소자(22a)에 비해, 제1 전극(23)이 도 13에 나타낸 바와 같이 거리 x6만큼 x 방향으로 제3 측면 측에 이동하여 있다. 거리 x6은, 제1 전극(23)의 제2 전극부(24)와 제2 전극(26)이 z 방향으로 겹쳐지는 거리이다. 이 때문에, 제2 전극(26)은, 강유전체층(12)을 개재하여, 제1 전극(23)의 제2 전극부(24)와 z 방향으로 겹쳐지도록 배치되어 있다.
이상에 의해, 제2 구성예의 가변 용량 소자(22b)에서는, 강유전체층(12)을 개재하여 z 방향으로 서로 대향하는 제1 전극(23)의 각각의 제2 전극부(24)와 제2 전극(26)을 포함하도록 용량부가 형성된다. 그리고, 제2 구성예의 가변 용량 소자(22b)에서는, 제1 전극(23)의 제2 전극부(24)와 제2 전극(26)이 z 방향으로 겹쳐지기 때문에, 각 용량부의 전극 면적이 제1 전극(23)과 제2 전극(26)이 겹쳐지는 면적 S5(=w3×w4)가 된다.
제1 전극(23)에서의 제2 전극부(24)의 제2 방향의 전극폭 w3은, 제1 전극부(25)의 제2 방향의 전극폭 w2보다도 작다. 이 때문에, 제2 구성예의 가변 용량 소자(22b)에서, 각 용량부의 전극 면적은 제1 구성예의 가변 용량 소자(22a)의 각 용량부의 전극 면적보다도 작다. 이에 따라, 제2 구성예의 가변 용량 소자(22a) 전체의 용량은, 제1 구성예의 가변 용량 소자(22b) 전체의 용량보다도 작아진다.
이와 같이, 본 실시 형태에 따르면, 제1 전극(23) 및 제2 전극(26)이 동일한 형상을 갖더라도, 제1 전극(23)의 형성 위치를 어긋나게 함으로써 상이한 용량값을 갖는 2종류의 가변 용량 소자(22a 및 22b)를 제공하는 것이 가능하다.
본 실시 형태의 가변 용량 소자(22a 및 22b)도 제1 실시 형태와 마찬가지의 방법으로 형성될 수 있다. 마찬가지로, 본 실시 형태에 따르면, 제1 구성예의 가변 용량 소자(22a)를 형성할 경우와, 제2 구성예의 가변 용량 소자(22b)를 형성할 경우 간에 전극을 형성하는 데 사용되는 마스크를 변경할 필요가 없다. 제1 구성예의 가변 용량 소자(22a)를 형성할 경우에, z 방향으로 제2 전극(26)과 제1 전극(23)의 제1 전극부(25)가 적층되도록, 각 전극을 강유전체층(12) 위에 패터닝할 수 있다. 또한, 제2 구성예의 가변 용량 소자(22b)를 형성할 경우에, z 방향으로 제2 전극(26)과 제2 전극부(24)가 적층되도록, 각 전극을 강유전체층(12) 위에 패터닝할 수 있다.
마찬가지로, 본 실시 형태에 따르면, 동일한 전극 형상을 사용하더라도 그 형성 위치를 조정함으로써 상이한 용량값을 갖는 가변 용량 소자(22a 및 22b)를 형성하는 것을 가능하게 하기 위해, 제1 전극(23) 및 제2 전극(26)의 치수를 어느 정도 고려할 필요가 있다. 이하에, 본 실시 형태에 따른 가변 용량 소자(22a 및 22b)의 제1 전극(23) 및 제2 전극(26)의 형상 및 치수의 설계 개요를 설명한다.
제1 전극(23)의 제1 전극부(25) 및 제2 전극(26)의 제1 방향의 전극폭 w1은, 제1 전극(23)과 제2 전극(26)의 제조 시의 의도하지 않은 위치 어긋남을 고려하여, 제2 전극(26)의 제1 방향의 전극폭 w4보다 크게 설정되는 것이 바람직하다. 그 결과, 도 12를 참조해보면, 제1 전극부(25)의 제1 방향에서의 중심 위치와 제2 전극(26)의 제1 방향에서의 중심 위치가 일치하는 경우, 겹쳐지는 면적 S4의 제1 방향의 양단에 마진 M((w1-w2)/2)(제2 전극(26)과 겹쳐지지 않는 영역)이 형성된다. 이러한 마진 M은, 제1 전극(23)과 제2 전극(26) 사이의 맞춤 어긋남을 흡수할 수 있는 폭인 것이 바람직하고, 예를 들면, 10㎛ 이상인 것이 바람직하다. 그리고, 제조 상의 제약도 고려하면, 전극폭 w1은 50㎛ 이상이도록 설정되는 것이 바람직하고, 100㎛인 것이 더 바람직하다.
이러한 방식으로 마진 M이 형성되기 때문에, 예를 들면, 제1 전극(23)이 제2 전극(26)에 대해 제1 방향으로 소정의 위치로부터 어긋나버린 경우, 그 편차량이 마진 M의 폭보다도 작으면, 제1 전극(23)과 제2 전극(26)이 겹쳐지는 면적은 바뀌지 않는다. 이 때문에, 원하는 용량값을 갖는 가변 용량 소자를 형성하는 것이 용이하게 된다. 또한, 도 13에 나타낸 바와 같이, 제1 구성예와 제2 구성예 간에 제1 전극(23)의 위치가, 제1 전극부(25) 및 제2 전극부(24)의 x 방향의 전극폭 x6만큼 상이하다. 이러한 전극폭 x6은, 마진 M에 비해 충분히 크고, 의도적으로 마스크 위치를 다르게 함으로써 어긋날 수 있는 폭이다. 따라서, 본 실시 형태에 따르면, 미소한 맞춤 어긋남의 경우, 제1 전극(23)과 제2 전극(26)이 겹쳐지는 면적은 바뀌지 않고 필요 시 전극 위치를 이동함으로써 제1 전극(23)과 제2 전극(26)이 겹쳐지는 면적을 바꿀 수 있다.
또한 제1 전극(23)의 제1 전극부(25)의 제1 방향의 전극폭과 제2 전극부(24)의 제2 방향의 전극폭의 차에 의해, 제1 구성예의 가변 용량 소자(22a)와 제2 구성예의 가변 용량 소자(22b) 간에 용량값을 다르게 할 수 있다. 따라서, 전극폭 w2와 전극폭 w3 간의 관계를 w2:w3=1:0.8로 설정함으로써, 제1 구성예의 가변 용량 소자(22a)의 용량값과 제2 구성예의 가변 용량 소자(22b)의 용량값 간의 비를 1:0.8로 설정할 수 있다. 이 경우, 전극폭 w2와 전극폭 w3을 상이한 값으로 설정할 수 있고, 각종 설정이 가능하다.
또한, 제2 전극(26)의 제2 방향의 전극폭 w5는 제1 전극(23)의 제1 방향의 최대의 전극폭 w2, 즉, 제1 전극부(25)의 제1 방향의 전극폭 w2보다도 크면 좋다. 본 실시 형태에 따르면, 적층체(2)의 제4 측면(6)에 가장 인접하는 제2 전극(26)은, 제4 측면(6)의 제2 외부 단자(11)에 접속되기 때문에, 적층체(2)의 제4 측면(6)에 노출되는 길이로 형성될 필요가 있다. 또한, 그 밖의 제2 전극(26)은, 각각, 2개의 제1 전극(23)에 걸쳐서 형성되기 때문에, 제2 방향의 전극폭 w5는 인접하는 2개의 제1 전극(23)을 포함하는 제2 방향의 폭보다 크게 형성될 필요가 있다.
또한, 본 실시 형태에 따르면, 장방형 형상을 갖는 제2 전극(26)이 그 길이방향(제2 방향)이 제1 전극(23)의 길이 방향(제1 방향)에 직교하도록 배치되어 있다. 이 때문에, 맞춤 어긋남에 의해, 제2 전극(26)과 제1 전극(23)이 소정의 위치부터 상대적으로 제2 방향으로 어긋나버렸을 경우에도, 제2 전극(26)과 제1 전극(23)이 겹쳐지는 면적은 변화되지 않는다. 이에 따라, 제2 방향의 위치 어긋남에 의해 용량값이 변화되지 않는다. 그 외, 제1 실시 형태의 가변 용량 소자(1)(1a, 1b)의 전극 구성과 같은 방법으로 각 전극의 치수를 설계하면 좋다.
본 실시 형태에 따르면, 제1 전극(23)을 강유전체층(12)의 윗면에 비스듬하게 배치하고, 제2 전극(26)을 제1 전극(23)에 직교하도록 강유전체층(12) 아랫면에 비스듬하게 배치한다. 이에 따라, 제1 실시 형태에 따른 가변 용량 소자(1)(1a, 1b)에 비해, 제2 전극(26)의 내부 단자(19)의 길이를 짧게 할 수 있다. 그 결과, 전극 저항을 줄일 수 있다. 마찬가지로, 본 실시 형태에 따르면, 제1 실시 형태의 제3 구성예를 제공할 수 있다.
또한, 제1 실시 형태와 동일한 효과를 얻을 수 있다.
한편, 제1 및 제2 실시 형태에 따르면, 제1 전극을 길이 방향으로 2개의 전극폭을 갖도록 형성하고, 가로지르는 방향으로 제1 전극과 교차하도록 제2 전극을 배치함으로써, 제1 전극과 제2 전극이 겹쳐지는 면적을 변경할 수 있다. 본 발명은 이에 한정되지 않으며, 다양하게 변형될 수 있다. 예를 들면, 제1 전극은 길이 방향으로 2개 이상의 전극폭을 가질 수 있다. 이 경우에는, 동일한 전극 형상을 사용하여, 상이한 용량값을 갖는 2종류 이상의 가변 용량 소자를 형성하는 것이 가능해진다.
또한, 제2 전극도 복수의 전극폭을 갖는 형상으로 할 수 있다. 이 경우에는, 제1 전극 및 제2 전극의 형성 위치를 x 방향 및 y 방향으로 상대적으로 이동함으로써 각종 구성을 얻을 수 있다. 또한, 제1 전극의 복수의 전극폭과 제2 전극의 복수의 전극폭이 상이하더라도, 상이한 용량값을 갖는 가변 용량 소자를, 제1 전극의 전극폭의 수와 제2 전극의 전극폭의 수를 곱셈한 수만큼 형성할 수 있다.
3. 제3 실시 형태 : 가변 용량 소자
다음으로, 본 발명의 제3 실시 형태에 따른 가변 용량 소자에 관하여 설명한다. 본 실시 형태의 가변 용량 소자의 외관은 도 1과 마찬가지이기 때문에 그 설명을 생략한다. 본 실시 형태의 가변 용량 소자에서는, 용량부에 포함되는 전극들의 형상을 바꾸지 않고 그 형성 위치를 다르게 함으로써 상이한 용량값을 갖는 복수의 구성을 얻을 수 있다. 이하에서, 제1 구성예 및 제2 구성예에 대해서 순차적으로 설명한다.
3-1 제1 구성예
도 14는 본 실시 형태의 제1 구성예에 따른 가변 용량 소자(30a)를 z 방향에서 보았을 때의 구성도이다. 도 14에서, 도 3과 동일한 구성요소에는 동일한 부호를 첨부하고, 중복 설명을 생략한다.
복수(도 14에서는 5개)의 제1 전극(31)이 적층체(2)의 한가운데에 적층된 강유전체층(12)의 윗면에 형성되어 있고, y 방향의 일 측으로부터 다른 측으로 소정의 거리씩 이격되어 있다. 각각의 제1 전극(31)은, 적층체(2)의 제1 측면(3) 측에 폭이 넓은 바닥을 갖고, 제3 측면(5) 측에 폭이 좁은 윗부분을 가지며, x 방향의 폭이 x6인(>x2) 사다리꼴 형상의 전극부(32)를 포함한다. 즉, 제1 전극(31)의 전극부(32)는, 적층체(2)의 제1 측면(3) 측에서 제3 측면(5) 측으로 연속적으로 폭이 점점 좁아지고 있다. 적층체(2)의 제4 측면(6) 측에서 4개의 제1 전극(31)은, 2개의 전극부(32)가 x 방향으로 접속하여 형성되어 있고, 제2 측면(4)에 가장 인접하는 제1 전극(31)은 1개의 전극부(32)만을 포함한다.
적층체(2)의 제4 측면(6) 측으로부터 순차적으로 형성된 4개의 제1 전극(31)의 각각은, 적층체(2)의 제1 측면(3)에 노출되도록, 제1 전극(31)과 동일한 층에 형성된 내부 단자(16)에 접속되어 있다. 그리고, 이 내부 단자(16)는 제1 측면(3)에 형성된 각각의 제1 외부 단자(8)에 접속되어 있다. 또한, 적층체(2)의 제2 측면(4)에 가장 인접하는 제1 전극(31)은, 적층체(2)의 제2 측면(4)에 노출되도록, 제1 전극과 동일한 층에 형성된 내부 단자(17)에 접속되어 있다. 그리고, 이러한 내부 단자(17)는 적층체(2)의 제2 측면(4)에 형성된 제1 외부 단자(9)에 접속되어 있다.
제2 전극(18)은 제1 실시 형태의 제2 전극(18)과 동일한 형상을 가지며, 1개의 제1 전극(31)에 직교하도록 형성되거나 또는 y 방향으로 인접하는 2개의 제1 전극(31)에 걸쳐서 직교하도록 형성되어 있다. 또한 제1 구성예의 가변 용량 소자(30a)에서는, 제1 전극(31)과 제2 전극(18)이, 제1 전극(31)의 폭이 넓은 측의 영역에 제2 전극(18)이 z 방향으로 겹쳐지도록 배치되어 있다.
그 결과, 제1 구성예의 가변 용량 소자(30a)에서는, 도 14에 나타낸 바와 같이, 제1 전극(31)과, 이 제1 전극(31)에 강유전체층(12)을 개재하여 적층된 제2 전극(18)이 z 방향으로 겹쳐지는 영역에 용량부가 형성된다. 또한, 도 14의 가변 용량 소자(30a)는 복수의 제1 전극(31)과 복수의 제2 전극(18)을 포함하고, 하나의 제1 전극(31)과 하나 또는 2개의 제2 전극(18)이 z 방향으로 겹쳐진다. 그 결과, 동일면 내에서 복수의 용량부가 형성된다. 그리고, 제1 구성예의 가변 용량 소자(30a)에서는, 제1 전극(31)의 전극부(32)의 폭이 넓은 측에서 제1 전극(31)과 제2 전극(18)이 z 방향으로 겹쳐지고, 각 용량부에 포함되는 전극 면적은 제1 전극(31)과 제2 전극(18)이 겹쳐지는 면적 S6이 된다.
3-2 제2 구성예
다음으로, 본 실시 형태의 제2 구성예에 따른 가변 용량 소자에 관하여 설명한다. 도 15는 본 실시 형태의 제2 구성예에 따른 가변 용량 소자(30b)를 z 방향으로부터 보았을 때의 구성도이다. 도 15에서, 도 14와 동일한 구성요소에는 동일한 부호를 첨부하고, 중복 설명을 생략한다.
제2 구성예의 가변 용량 소자(30b)에서는, 제1 구성예의 가변 용량 소자(30a)에 비해, 제1 전극(31)이 거리 Δx(<x2)만큼 x 방향으로 제3 측면(5) 측으로 이동하여 형성되어 있다. 이 때문에, 제2 전극(18)은 강유전체층(12)을 개재하여 제1 전극(31)의 폭이 좁은 측과 z 방향으로 겹치도록 배치되어 있다. 그런데, 거리 Δx는 제1 전극(31)의 전극부(32)와 제2 전극(18)이 z 방향으로 겹쳐지는 범위 내에 있도록 설정된다. 즉, 거리 Δx는 적어도 전극부(32)의 x방향의 길이 x6에서 제2 전극(18)의 x방향의 길이 x2를 뺀 길이보다도 작도록 설정된다.
이상에 의해, 제2 구성예의 가변 용량 소자(30b)에서는, 강유전체층(12)을 개재하여 z 방향으로 대향하는 제1 전극(31)의 전극부(32)의 폭이 좁은 측과 제2 전극(18)을 포함하도록 용량부가 형성된다. 그리고, 제2 구성예의 가변 용량 소자(30b)는, 제1 전극(31)의 전극부(32)의 폭이 좁은 측에 있어서 제1 전극(31)과 제2 전극(18)이 z 방향으로 겹치도록 구성되고, 각 용량부의 전극 면적은 제1 전극(31)과 제2 전극(18)이 겹쳐지는 면적 S7이 된다.
제2 구성예에서는, 제1 전극(31)의 전극부(32)의 폭이 좁은 측에서 제1 전극(31)과 제2 전극(18)이 겹쳐진다. 이 때문에, 제2 구성예의 가변 용량 소자(30b)에서는, 각 용량부의 전극 면적이 제1 구성예의 가변 용량 소자(30a)의 각 용량부의 전극 면적보다도 작다. 이에 따라, 제2 구성예에서의 가변 용량 소자(30b) 전체의 용량은, 제1 구성예에서의 가변 용량 소자(30a) 전체의 용량보다 작아진다.
이렇게, 본 실시 형태에 따르면, 제1 전극(31) 및 제2 전극(18)이 동일한 형상을 갖더라도, 제1 전극(31)의 형성 위치를 바꿈으로써 상이한 용량값을 갖는 2종류의 가변 용량 소자(30a 및 30b)를 제공할 수 있다.
본 실시 형태의 가변 용량 소자(30a 및 30b)는 제1 실시 형태와 동일한 방법으로 형성될 수 있다. 마찬가지로, 본 실시 형태에 따르면, 제1 구성예의 가변 용량 소자(30a)를 형성하는 경우와 제2 구성예의 가변 용량 소자(30b)를 형성할 경우 간에 전극 형성에 사용되는 마스크를 변경할 필요가 없다. 제1 구성예의 가변 용량 소자(30a)를 형성할 경우에는, z 방향으로 제2 전극(18)과 제1 전극(31)의 전극부(32)의 폭이 넓은 측이 적층되도록 각 전극을 시트 위에 형성할 수 있다. 또한, 제2 구성예의 가변 용량 소자(30b)를 형성할 경우에는, z 방향으로 제2 전극(18)과 제1 전극(31)의 전극부(32)의 폭이 좁은 측이 적층되도록 각 전극을 시트 위에 형성할 수 있다.
본 실시 형태에 따르면, 제1 전극(31)을 사다리꼴 형상(테이퍼 형상)으로 하고, 제1 전극(31)의 전극 폭이 변화되는 방향으로 제1 전극(31)과 제2 전극(18)이 겹쳐지는 위치를 이동함으로써 겹쳐지는 면적이 연속적으로 변화된다. 이에 따라, 전극 형상을 바꾸지 않고 겹쳐지는 위치를 변화시킴으로써 약간 상이한 용량값을 갖는 가변 용량 소자를 형성할 수 있다.
마찬가지로, 본 실시 형태에 따르면, 제1 전극(31)의 길이 방향과 제2 전극(18)의 길이 방향이 교차한다. 이 때문에, 제1 전극(31)과 제2 전극(18)의 위치가 y 방향으로 상대적으로 어긋난 경우에는, 용량값이 변하지 않는다. 이와는 반대로, 제1 전극(31)과 제2 전극(18)의 위치를 x 방향으로 상대적으로 이동한 경우에만 용량값이 변화된다. 이에 따라, x 방향으로 제1 전극(31)과 제2 전극(18)의 상대적인 위치 관계를 변경하는 것만으로 상이한 용량값을 갖는 가변 용량 소자(30a 및 30b)를 형성할 수 있어, 설계가 용이하다.
또한, 제1 실시 형태와 동일한 효과를 얻을 수 있다.
상기 제1 실시 형태 내지 제3 실시 형태에서는 정전 용량 소자로서 가변 용량 소자를 예를 들어 설명했지만, 본 발명은 이에 한정되지 않는다. 제1 내지 제3 실시 형태에서 설명한 제1 전극 및 제2 전극의 구성은, 입력 신호의 종류 및 그 신호 레벨에 관계없이 용량이 대부분 변화되지 않는 정전 용량 소자(이하, 정 용량 소자라 함)에 대해서도 동일하게 적용될 수 있다.
그러나, 이 경우, 유전체층은, 비유전률이 낮은 상유전체 재료로 형성된다. 상유전체 재료로는, 예를 들면, 종이, 폴리에틸렌 테레프탈레이트, 폴리프로필렌, 폴리페닐렌 설파이드, 폴리스틸렌, TiO2, MgTiO2, MgTiO3, SrMgTiO2, Al2O3, Ta2O5 등이 있다. 또한, 이러한 정 용량 소자는, 상기 제1 실시 형태의 가변 용량 소자와 마찬가지의 방법으로 제조될 수 있다. 상술한 가변 용량 소자에서는, 모든 외부 단자를 DC 단자로서 사용했지만, 정 용량 소자의 경우에는 DC 단자가 필요하지 않은 것이 명백해서, 2개의 단자만이 AC 단자로서 사용될 수 있다.
도 16은 실제 회로에서의 가변 용량 소자 주변의 회로 구성예를 나타낸다.
실제의 회로에서는, 가변 용량 소자(1)의 하나의 단자는 바이어스 제거용 캐패시터(61)를 거쳐 교류 신호의 하나의 입/출력 단자(63)에 접속되어 있고, 또한 전류 제한 저항(62)을 거쳐 제어 전압의 입력 단자(64)에 접속한다. 또한, 가변 용량 소자(50)의 나머지 단자는 교류 신호의 다른 입/출력 단자(65)에 접속되어 있고, 또한 제어 전압의 출력 단자(66)에 접속한다.
이러한 가변 용량 소자(1)의 회로 구성에서는, 신호 전류(교류 신호)는 바이어스 제거용 캐패시터(61) 및 가변 용량 소자(1) 둘 다에 흐르고, 제어 전류(직류 바이어스 전류)는 전류 제한 저항(62)을 거쳐 가변 용량 소자(1)에만 흐른다. 이 경우, 제어 전압을 변화시킴으로써 가변 용량 소자(1)의 용량 Cv가 변화되고, 신호 전류도 변화된다.
가변 용량 소자의 구성
이와 관련하여, 다음으로, 가변 용량 소자(1)와 바이어스 제거용 캐패시터(61)를 일체화한 예를 설명한다. 도 17에 가변 용량 소자(1)와 바이어스 제거용 캐패시터(61)를 일체화하여 얻은 소자의 구성예를 나타낸다. 도 17에서는, 제1 실시 형태(도 3)와 동일한 구성요소에는 동일한 부호를 첨부한다.
가변 용량 소자(1)는 강유전체층(12)과, 강유전체층(12)을 개재하여 서로 대향하도록 형성된 가변 용량 소자(1)용의 제1 전극(15) 및 제2 전극(18)을 포함한다. 또한, 가변 용량 소자(1)는 강유전체층(12)을 개재하여 서로 대향하도록 형성된 바이어스 제거용 캐패시터(61)의 제1 전극(53) 및 제2 전극(54)도 포함한다.
가변 용량 소자(1)용의 제1 전극(15) 및 바이어스 제거용 캐패시터(61)의 제1 전극(53)은, 강유전체층(12)의 윗면(51a)에 소정의 간격으로 형성된다. 또한, 가변 용량 소자(1)용의 제2 전극(18) 및 바이어스 제거용 캐패시터(61)의 제2 전극(54)은, 강유전체층(51)의 밑면(51b)에 소정의 간격으로 형성된다. 즉, 본 실시 형태에 따르면, 가변 용량 소자(1) 및 바이어스 제거용 캐패시터(61) 간에 유전체층을 공유한다.
또한, 가변 용량 소자(1)용의 제1 전극(15)과 바이어스 제거용 캐패시터(61)의 제1 전극(53)은 리드선(55) 등으로 서로 접속된다. 또한, 가변 용량 소자(1)용의 제1 전극(15)과 바이어스 제거용 캐패시터(61)의 제1 전극(53)을 접속하기 위한 소정의 전선 패턴을 강유전체층(12)의 윗면(51a)에 형성하여 서로 접속해도 좋다.
가변 용량 소자(1)용의 제1 전극(15) 및 바이어스 제거용 캐패시터(61)의 제1 전극(53)은, 리드선(56)을 사용하여, 전류 제한 저항(62)을 거쳐 제어 전압의 입력 단자(64)에 접속된다(도 16 및 도 17 참조). 가변 용량 소자(1)용의 제2 전극(18)은 리드선(57)에 의해 교류 신호의 나머지 입/출력 단자(65) 및 제어 전압의 출력 단자(66)에 접속된다. 그리고, 바이어스 제거용 캐패시터(61)의 제2 전극(54)은 리드선(58)에 의해 교류 신호의 하나의 입/출력 단자(63)에 접속된다. 이렇게 접속하는 것에 의해, 도 16의 회로 구성과 마찬가지로, 신호 전류(교류 신호)는 바이어스 제거용 캐패시터(61) 및 가변 용량 소자(1)로 흐르고, 제어 전류(직류 바이어스 전류)는 전류 제한 저항(62)을 거쳐 가변 용량 소자(1)에만 흐른다.
또한, 가변 용량 소자(1)용의 제1 전극(15) 및 제2 전극(18)은, 상기 제2 및 제3 실시 형태의 가변 용량 소자에서 사용된 제1 전극 및 제2 전극과 동일한 형상을 사용하여 구성될 수 있다. 한편, 바이어스 제거용 캐패시터(61)의 제1 전극(53) 및 제2 전극(54)은 종래의 캐패시터와 동일한 형상을 사용하여 형성될 수 있다.
이렇게, 가변 용량 소자(1)와 바이어스 제거용 캐패시터(61)를 일체화함으로써, 본 발명의 가변 용량 소자를 적용하는 장치의 치수를 작게 할 수 있다. 또한 부품의 수를 줄이고 장치의 가격을 내릴 수 있다.
4. 제4 실시 형태 : 공진 회로
제4 실시 형태에서는, 본 발명에 따른 상술한 정전 용량 소자를 구비하는 비접촉 수신 장치의 구성예를 설명한다.
비접촉 수신 장치의 구성
본 실시 형태에서는 비접촉 수신 장치로서 비접촉 IC 카드를 예를 들어 설명한다. 도 18은 본 실시 형태에 따른 비접촉 IC 카드의 수신계(복조계)의 회로부의 블록도를 나타낸다. 또한, 도 18에서는, 설명을 간략하게 하기 위해, 신호의 송시계(변조계)의 회로부는 생략하고 있다. 송신계 회로부의 구성은 종래의 비접촉 IC 카드의 구성과 마찬가지로 구성될 수 있다.
비접촉 IC 카드(260)는 수신부(261)(안테나), 정류부(262) 및 신호 처리부(263)를 포함한다.
수신부(261)는 공진 코일(264) 및 공진 캐패시터(265)를 구비하는 공진 회로를 포함하고, 비접촉 IC 카드(260)의 리더/라이터(reader/writer)(미도시)로부터 송신되어온 신호를 이 공진 회로를 통해 수신한다. 또한, 도 18에서는, 공진 코일(264)이 인덕턴스 성분(264a)(L)과 저항 성분(264b)(r:몇 옴 정도)으로 나뉘도록 도시되어 있다. 또한, 수신부(261)는, 공진 캐패시터(265) 내의 후술하는 가변 용량 소자(267)의 제어 전원(270)과, 가변 용량 소자(267)와 제어 전원(270) 사이에 제공된 2개의 전류 제한 저항(271 및 272)을 포함한다.
공진 캐패시터(265)는, 용량 Co인 정 용량 캐패시터(266), 가변 용량 소자(267) 및, 가변 용량 소자(267)의 양쪽 단자에 각각 접속된 2개의 바이어스 제거용 캐패시터(268 및 269)를 포함한다. 그리고, 정 용량 캐패시터(266), 가변 용량 소자(267) 및 2개의 바이어스 제거용 캐패시터(268 및 269)를 포함하는 직렬 회로는 공진 코일(264)에 병렬 접속된다.
정 용량 캐패시터(266)는 각종 실시 형태 및 각종 변형과 함께 상술한 전극 및 외부 단자를 구비하는 2단자 유형의 정 용량 캐패시터(정 용량 소자) 중 임의의 하나를 포함한다. 정 용량 캐패시터(266)에 포함된 유전체층은, 제1 실시 형태에서 설명한 비유전률이 낮은 유전체 재료(상유전체 재료)로 형성되어 있어, 입력 신호의 종류(교류 또는 직류) 및 그 신호 레벨에 관계없이, 그 용량이 거의 변화되지 않는다.
또한, 실제 회로에서는, 공진 코일(264)의 인덕턴스 성분 L의 편차나 신호 처리부(263) 내의 집적 회로의 입력 단자의 기생 용량 등에 의한 수신부(261)의 용량 변동(수 pF 정도)이 존재하고, 그 변동량은 비접촉 IC 카드(260)마다 다르다. 그 때문에, 본 실시 형태에 따르면, 이러한 영향을 억제(보정)하기 위해, 정 용량 캐패시터(266) 내의 내부 전극의 전극 패턴을 트리밍함으로써 용량 Co를 적당하게 조정한다.
가변 용량 소자(267)도 각종 실시 형태와 함께 상술한 2단자 유형의 가변 용량 소자 중 어느 하나를 포함한다. 또한, 가변 용량 소자(267)에 포함된 유전체층은, 제1 실시 형태에서 상술한 비유전률이 큰 강유전체 재료로 형성된다. 본 발명은 이에 한정되지 않고, 가변 용량 소자(267)는 4단자 유형의 가변 용량 소자를 포함할 수도 있다.
또한, 가변 용량 소자(267)는 전류 제한 저항(271 및 272)을 거쳐 제어 전원(270)에 접속된다. 그리고, 가변 용량 소자(267)의 용량 Cv는 제어 전원(270)으로부터 인가되는 제어 전압에 따라 변화된다.
또한, 바이어스 제거용 캐패시터(268 및 269) 및 전류 제한 저항(271 및 272은, 제어 전원으로부터 흐르는 직류 바이어스 전류(제어 전류)와 수신 신호 전류 간의 간섭에 의한 영향을 억제하기 위해 제공된다. 구체적으로는, 바이어스 제거용 캐패시터(268 및 269)는 신호 회로의 보호 및/또는 분리를 위해 제공되고, 전류 제한 저항(271 및 272)은 제어 회로의 보호 및/또는 분리를 위해 제공된다.
정류부(262)는 정류용 다이오드(273) 또는 정류용 캐패시터(274)를 구비하는 반파 정류 회로를 포함하며, 수신부(261)가 수신한 교류 전압을 직류 전압으로 정류하여 출력한다.
신호 처리부(263)는 주로 반도체 소자 집적 회로(LSI : large scale integration)를 포함하여 수신부(261)가 수신한 교류 신호를 복조한다. 신호 처리부(263)의 LSI 회로는 정류부(262)로부터 공급되는 직류 전압에 의해 구동된다. 또한, LSI로서는 종래의 비접촉 IC 카드를 사용할 수 있다.
본 실시 형태의 비접촉 IC 카드(260)에서, 가변 용량 소자(267)는 과대한 수신 신호가 대해 내전압성이 낮은 반도체 소자로 만들어지는 제어 회로가 파괴되지 않도록 하기 위해서 사용될 수 있다. 구체적으로는, 수신 신호가 과대할 경우에, 제어 전압에 의해 가변 용량 소자(267)의 용량 Cv가 감소된다. 그 결과, 가변 용량 소자(267)의 낮아진 용량에 대응하는 주파수 Δf만큼 수신부(261)의 공진 주파수가 고영역으로 이동한다. 이에 따라, 용량 가변 전의 공진 주파수 f0에서의 수신 신호의 응답은 용량 가변 전보다 낮아져, 수신 신호의 레벨이 억제된다. 그 결과, 제어 회로에 과대한 전류 신호가 흐르지 않도록 할 수 있고, 제어 회로의 파괴를 방지할 수 있다.
본 실시 형태의 비접촉 IC 카드(260)에서는, 본 발명의 전극 구성을 구비하는 정전 용량 소자를 정 용량 캐패시터(266) 및 가변 용량 소자(267)에 사용하고 있으므로, 보다 고성능의 비접촉 IC 카드를 제공할 수 있다. 또한, 본 발명의 전극 구성을 구비하는 정전 용량 소자를 가변 용량 소자(267)에 사용하고 있으므로, 보다 낮은 구동 전압을 사용하여 비접촉 IC 카드를 구동할 수 있다.
또한, 본 실시 형태에서는 정 용량 캐패시터(266) 및 가변 용량 소자(267) 둘 다에 본 발명의 전극 구성을 구비하는 정전 용량 소자를 채용하였지만, 본 발명은 이에 한정되지 않는다. 예를 들어, 본 발명의 정전 용량 소자는 그둘 중 하나에 채용될 수 있다. 또한, 본 실시 형태에 따르면, 정 용량 캐패시터(266)는 포함되지 않을 수도 있다.
또한, 본 실시 형태의 비접촉 IC 카드(260)에서는, 가변 용량 소자(267)의 제어 전원(270)을 제공하지만, 본 발명은 이에 한정되지 않는다. 예를 들면, 일본 공개특허공보 제08-7059호와 마찬가지로, 정류부(262)로부터 출력된 직류 전압으로부터, 예를 들면, 저항 분할 등의 기법을 이용하여 원하는 제어 전압을 추출할 수 있다.
본 실시 형태에 따른 비접촉 수신 장치의 일례로서 비접촉 IC 카드를 사용했지만, 본 발명은 이에 한정되지 않는다. 본 발명은, 공진 코일 및 공진 캐패시터를 구비하는 공진 회로를 사용하여 정보 및/또는 전력을 비접촉으로 수신하는 임의의 장치에 적용가능하며, 이 경우, 동일한 효과를 얻을 수 있다. 예를 들면, 휴대 전화, 무선 전력 전송 장치 등에 적용될 수 있다. 또한, 무선 전력 전송 장치에서는 비접촉으로 전력을 전송하기 때문에, 비접촉 IC 카드와는 달리 수신 신호를 복조하기 위한 신호 처리부가 없어도 된다.
본 발명은 2010년 9월 10일자로 일본 특허청에 출원된 일본 우선권인 특허 출원 JP 2010-203580호에 개시된 것에 관련된 내용을 포함하며, 그 전체 내용은 참조로서 본 명세서에 원용된다.
당업자들은, 첨부되는 특허청구범위 또는 그 동등물의 범위에 포함되는 한 설계 요건 및 다른 요인에 따라 각종 변경, 결합, 부분결합 및 변형이 발생할 수 있음을 이해할 것이다.
1, 1a, 1b, 1c : 가변 용량 소자
2 : 적층체
12 : 강유전체층
13 : 제1 전극부
14 : 제2 전극부

Claims (11)

  1. 정전 용량 소자로서,
    유전체층; 및
    상기 유전체층을 개재하여 상기 유전체층의 한 면 위에 형성된 하나의 전극과 상기 유전체층의 다른 면 위에 형성된 다른 하나의 전극을 구비하는 한 쌍의 전극 또는 복수 쌍의 전극
    을 포함하며,
    상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 배치되고, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 적어도 2개의 전극 폭을 가져서, 상기 하나의 전극이 상기 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우에, 상기 유전체층을 개재하여 상기 유전체층의 두께 방향으로 겹쳐지는 상기 전극들의 면적이 연속적으로 또는 단계적으로 변경될 수 있는, 정전 용량 소자.
  2. 제1항에 있어서, 상기 유전체층을 개재하여 겹쳐지는 상기 전극들의 면적은, 상기 하나의 전극이 소정의 거리만큼 이동했을 때에만 단계적으로 변경될 수 있는, 정전 용량 소자.
  3. 제1항에 있어서, 상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 배치되어 있는, 정전 용량 소자.
  4. 제1항에 있어서, 상기 한 쌍의 전극 또는 상기 복수 쌍의 전극은 상기 유전체층의 두께 방향으로 적층되어 있는, 정전 용량 소자.
  5. 제1항에 있어서, 상기 유전체층은 강유전체 재료로 형성되고, 상기 유전체층의 용량은 외부에서 인가되는 제어 신호에 따라 변화되는, 정전 용량 소자.
  6. 유전체층, 및 상기 유전체층을 개재하여 상기 유전체층의 한 면 위에 형성된 하나의 전극과 상기 유전체층의 다른 면 위에 형성된 다른 하나의 전극을 구비하는 한 쌍의 전극 또는 복수 쌍의 전극을 포함하는 정전 용량 소자의 제조 방법으로서,
    상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 배치되고, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 적어도 2개의 전극 폭을 가져서, 상기 하나의 전극이 상기 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우에, 상기 유전체층을 개재하여 상기 유전체층의 두께 방향으로 겹쳐지는 상기 전극들의 면적이 연속적으로 또는 단계적으로 변경될 수 있고,
    상기 하나의 전극 및 상기 다른 하나의 전극은 상기 유전체층의 면 위의 소정의 위치에 위치되면서 마스크를 이용하여 패터닝되고,
    상기 하나의 전극 및/또는 상기 다른 하나의 전극은, 상기 하나의 전극과 상기 다른 하나의 전극이 상기 유전체층의 두께 방향으로 겹쳐지는 전극 면적이 소정의 면적을 갖도록 상기 유전체층의 상기 면 위에 위치되는 상기 마스크의 위치를 조정하면서 형성되는, 정전 용량 소자의 제조 방법.
  7. 제6항에 있어서, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은, 상기 유전체층을 개재하여 겹쳐지는 상기 전극 면적이 상기 하나의 전극이 소정의 거리만큼 이동했을 때에만 단계적으로 변경될 수 있도록 형상화되는, 정전 용량 소자의 제조 방법.
  8. 제6항에 있어서, 상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 형성되는, 정전 용량 소자의 제조 방법.
  9. 제6항에 있어서, 상기 한 쌍의 전극 또는 상기 복수 쌍의 전극은 상기 유전체층의 두께 방향으로 적층되는, 정전 용량 소자의 제조 방법.
  10. 제6항에 있어서, 상기 유전체층은 외부에서 인가되는 제어 신호에 따라 용량이 변화되는 강유전체 재료로 형성되는, 정전 용량 소자의 제조 방법.
  11. 공진 회로로서,
    공진 캐패시터; 및
    상기 공진 캐패시터에 접속된 공진 코일
    을 포함하고,
    상기 공진 캐패시터는, 유전체층, 및 상기 유전체층을 개재하여 상기 유전체층의 한 면 위에 형성된 하나의 전극과 상기 유전체층의 다른 면 위에 형성된 다른 하나의 전극을 구비하는 한 쌍의 전극 또는 복수 쌍의 전극을 구비하는 정전 용량 소자를 포함하고,
    상기 하나의 전극과 상기 다른 하나의 전극은 상기 전극들의 길이 방향이 서로 교차하도록 배치되고, 상기 하나의 전극 및/또는 상기 다른 하나의 전극은 적어도 2개의 전극 폭을 가져서, 상기 하나의 전극이 상기 다른 하나의 전극에 대하여 상대적으로 이동하여 형성되는 경우에, 상기 유전체층을 개재하여 상기 유전체층의 두께 방향으로 겹쳐지는 상기 전극들의 면적이 연속적으로 또는 단계적으로 변경될 수 있는, 공진 회로.
KR1020110089099A 2010-09-10 2011-09-02 정전 용량 소자, 정전 용량 소자의 제조 방법, 및 공진 회로 KR20120027091A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010203580A JP2012060030A (ja) 2010-09-10 2010-09-10 静電容量素子、静電容量素子の製造方法、及び共振回路
JPJP-P-2010-203580 2010-09-10

Publications (1)

Publication Number Publication Date
KR20120027091A true KR20120027091A (ko) 2012-03-21

Family

ID=45806104

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110089099A KR20120027091A (ko) 2010-09-10 2011-09-02 정전 용량 소자, 정전 용량 소자의 제조 방법, 및 공진 회로

Country Status (4)

Country Link
US (1) US20120062338A1 (ko)
JP (1) JP2012060030A (ko)
KR (1) KR20120027091A (ko)
CN (1) CN102436932A (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258402A (ja) * 2008-09-26 2010-11-11 Sony Corp 静電容量素子及び共振回路
KR20150005577A (ko) * 2012-06-19 2015-01-14 다이요 유덴 가부시키가이샤 적층 세라믹 콘덴서
JP6076645B2 (ja) 2012-08-09 2017-02-08 デクセリアルズ株式会社 可変容量素子、実装回路、共振回路、通信装置、通信システム、ワイヤレス充電システム、電源装置、及び、電子機器
JP5414940B1 (ja) * 2012-09-27 2014-02-12 太陽誘電株式会社 積層セラミックコンデンサ
JP2014146676A (ja) * 2013-01-29 2014-08-14 Murata Mfg Co Ltd 可変容量コンデンサ
JP6122307B2 (ja) * 2013-02-22 2017-04-26 デクセリアルズ株式会社 可変容量回路、可変容量デバイス、共振回路、増幅回路及び電子機器
JP2014239203A (ja) * 2014-01-31 2014-12-18 株式会社村田製作所 電子部品及び電子部品の実装構造体
FR3018016A1 (fr) * 2014-02-26 2015-08-28 St Microelectronics Tours Sas Condensateur bst
WO2017047207A1 (ja) * 2015-09-18 2017-03-23 株式会社村田製作所 共振子及び共振装置
GB2560938A (en) * 2017-03-29 2018-10-03 Bombardier Primove Gmbh A voltage-controllable capacitive device, a method for manufacturing such a device and a method for operating such a device and a device of a system

Also Published As

Publication number Publication date
US20120062338A1 (en) 2012-03-15
CN102436932A (zh) 2012-05-02
JP2012060030A (ja) 2012-03-22

Similar Documents

Publication Publication Date Title
KR20120027091A (ko) 정전 용량 소자, 정전 용량 소자의 제조 방법, 및 공진 회로
WO2010035879A1 (ja) 静電容量素子及び共振回路
US8884720B2 (en) Capacitance element and resonance circuit
JP6282388B2 (ja) 静電容量素子、及び共振回路
US9053862B2 (en) Variable capacitance device with a plurality of electrodes laminated via dielectric layers
JP5076026B2 (ja) 容量素子及び共振回路
JP4743222B2 (ja) 可変容量素子及び、電子機器
JP6319758B2 (ja) 静電容量デバイス、共振回路及び電子機器
WO2013061730A1 (ja) 静電容量素子、及び共振回路
KR20100113452A (ko) 가변용량 소자 및 전자 기기
JP6067783B2 (ja) 静電容量素子及び共振回路
JP5126374B2 (ja) 可変容量素子及び、電子機器

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid