KR20110113241A - Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same - Google Patents

Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same Download PDF

Info

Publication number
KR20110113241A
KR20110113241A KR1020100032508A KR20100032508A KR20110113241A KR 20110113241 A KR20110113241 A KR 20110113241A KR 1020100032508 A KR1020100032508 A KR 1020100032508A KR 20100032508 A KR20100032508 A KR 20100032508A KR 20110113241 A KR20110113241 A KR 20110113241A
Authority
KR
South Korea
Prior art keywords
secondary battery
active material
metal composite
cathode active
composite oxide
Prior art date
Application number
KR1020100032508A
Other languages
Korean (ko)
Other versions
KR101166334B1 (en
Inventor
박성준
신경
김직수
최문호
박석준
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority to KR1020100032508A priority Critical patent/KR101166334B1/en
Priority to PCT/KR2010/005732 priority patent/WO2011126182A1/en
Publication of KR20110113241A publication Critical patent/KR20110113241A/en
Application granted granted Critical
Publication of KR101166334B1 publication Critical patent/KR101166334B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 금속복합산화물을 포함하는 2차 전지용 양극 활물질에 관한 것으로, 본 발명에 의하여 제조된 금속복합산화물을 포함하는 2차 전지용 양극 활물질은 Li과 Ni, Co, 및 Mn으로 이루어지는 금속복합산화물이고, 하기 [화학식 1]을 만족한다.
[화학식 1]
Li(1+a)NixCo[(1-a)(1-y)-x]Mn[a+(1-a)y] MdO(a+2)
(상기 식에서 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8이고, M은 Al, Mg, Cr, Fe, V, Ti 중 하나 이상의 원소이며, 0≤d≤0.05이다.)
The present invention relates to a method for producing a cathode active material for a secondary battery comprising a metal composite oxide, and to a cathode active material for a secondary battery comprising a metal composite oxide prepared thereby, comprising a metal composite oxide prepared according to the present invention. The positive electrode active material for a secondary battery is a metal composite oxide composed of Li, Ni, Co, and Mn, and satisfies the following [Formula 1].
[Formula 1]
Li (1 + a) Ni x Co [(1-a) (1-y) -x] Mn [a + (1-a) y] M d O (a + 2)
(In the above formula, 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8, M is one or more elements of Al, Mg, Cr, Fe, V, Ti, and 0≤d≤0.05.)

Description

금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 금속복합산화물을 포함하는 2차 전지용 양극 활물질{MANUFACTURING METHOD OF CATHODE ACTIVE MATERIALS FOR SECONDARY BATTERY CONTAINING METAL COMPOSITE OXIDES AND CATHODE ACTIVE MATERIALS MADE BY THE SAME}MANUFACTURING METHOD OF CATHODE ACTIVE MATERIALS FOR SECONDARY BATTERY CONTAINING METAL COMPOSITE OXIDES AND CATHODE ACTIVE MATERIALS MADE BY THE SAME}

본 발명은 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 금속복합산화물을 포함하는 2차 전지용 양극 활물질에 관한 것으로, 보다 구체적으로 분산제를 사용하는 공침법에 의한 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 금속복합산화물에 관한 것이다.
The present invention relates to a method for producing a cathode active material for a secondary battery comprising a metal composite oxide, and a cathode active material for a secondary battery comprising a metal composite oxide prepared thereby, more specifically, a metal composite by a coprecipitation method using a dispersant. It relates to a method for producing a cathode active material for a secondary battery comprising an oxide and a metal composite oxide prepared thereby.

근래 들어 비디오 카메라, 휴대형 CD, 휴대전화, PDA, 노트북 등의 휴대용 전자기기의 소형화, 경량화, 고성능화가 진행되고 있다. 휴대용 전자기기의 전원에는 고용량이고 또한 중부하 특성이 우수한 안정성이 높은 2차 전지가 필요하게 되고 있다. 이러한 목적에 합치한 2차 전지로서는, 니켈카드뮴 축전지가 사용되어 왔는데, 보다 에너지 밀도가 높은 전지로서 니켈수소 축전지, 비수전해액 2차 전지로서 리튬 이온 2차 전지가 실용화되어 있다.
In recent years, miniaturization, light weight, and high performance of portable electronic devices such as video cameras, portable CDs, cellular phones, PDAs, and notebook computers are progressing. There is a need for a secondary battery having high capacity and high stability for power of portable electronic devices. Nickel cadmium accumulators have been used as secondary batteries consistent with this purpose. Lithium ion secondary batteries have been put into practical use as nickel-hydrogen accumulators and nonaqueous electrolyte secondary batteries as batteries with higher energy density.

현재 시판되는 소형 리튬 이온 이차전지는 양극에 LiCoO2를, 음극에 탄소를 사용한다. LiCoO2는 안정된 충방전특성, 우수한 전자전도성, 높은 안정성 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. LiCoO2와 같은 층상 구조를 갖는 LiNiO2는 큰 방전용량을 나타내지만 싸이클 수명 및 열적으로 가장 불안정하고 고온에서의 안전성에 문제가 있어 아직 상품화되지 못하고 있다.
Commercially available small lithium ion secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode. LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high stability, and flat discharge voltage characteristics. However, Co has low reserves, is expensive, and toxic to humans. LiNiO 2 having a layered structure such as LiCoO 2 exhibits a large discharge capacity but has not been commercialized due to problems in cycle life, thermal instability, and safety at high temperatures.

이러한 문제를 해결하기 위해 LiNixCo1 - xO2(x=1, 2) 또는 LiNi1 -x- yCoxMnyO2(0≤x≤0.5, 0≤y≤0.5) 와 같은 많은 개량된 조성의 양극 활물질이 시도되었으나 상기에 언급된 문제점들을 해결할 만큼 만족스럽지 못하였다.
To solve this problem, many things like LiNi x Co 1 - x O 2 (x = 1, 2) or LiNi 1 -x- y Co x Mn y O 2 (0≤x≤0.5, 0≤y≤0.5) A cathode active material of improved composition has been attempted but not satisfactory enough to solve the problems mentioned above.

금속 산화물의 전기화학 전위, 가격, 전기 용량, 안정성 및 독성을 고려할 때, 망간이 리튬 전지의 양극에서 코발트를 대체할 가장 적합한 제 1 열(first row) 전이금속 원소이다. 더구나 망간 산화물 및 리튬 망간 산화물은 다양한 구조로 존재한다. 예를 들어, 알파-MnO2, 베타-MnO2 및 감마- MnO2와 같은 일차원 구조, 2차원 층상 구조, 3차원 골격(framework) 구조들이 존재한다. 많은 경우에 리튬이 흡장 및 방출되더라도, 망간 산화물의 구조적 일체성(structural integrity)은 손상되지 않는다. 따라서, 다양한 구조를 가지는 망간 산화물들이 새로운 양극 재료로서 제안되고 있다. 특히, 고용량의 전지가 요구되는 흐름에 따라 복합계 산화물이 대안으로서 제시되고 있다.
Given the electrochemical potential, price, capacitance, stability and toxicity of metal oxides, manganese is the most suitable first row transition metal element to replace cobalt at the anode of a lithium battery. Moreover, manganese oxide and lithium manganese oxide exist in various structures. For example, there are one-dimensional structures, two-dimensional layered structures, three-dimensional framework structures such as alpha-MnO 2 , beta-MnO 2 and gamma-MnO 2 . In many cases, even when lithium is occluded and released, the structural integrity of manganese oxide is not impaired. Therefore, manganese oxides having various structures have been proposed as new anode materials. In particular, complex oxides have been suggested as an alternative as the demand for high capacity batteries is increasing.

이와 같은 망간 산화물로서 복합계 금속산화물 중 하나는 층상 구조를 가지는 xLi2MO3-(1-x)LiMeO2 (0<x<1)이다. 상기 복합계 산화물에서 M은 Mn, Zr, Ti 중 하나 이상의 원소를 포함하는 금속원소군이고, Me는 Ni, Co, Mn, Cr, Fe, V, Al, Mg, Ti 중 하나 이상의 원소를 포함하는 금속원소군을 나타낸다. 상기 금속복합계 산화물은 고용계 물질로서 고용시 Li2MO3와 LiMeO2의 두 성분이 가지는 구조와 동일한 층상 구조를 나타내며, 전이 금속층에 과량의 리튬(overlithiation)이 치환된 형태로 존재한다. 상기 금속복합계 산화물을 구성하는 Li2MO3에서 Mn이 사용된 Li2MnO3의 예를 보면, 충전시 Mn이 +4의 산화수를 가지며, 산소 밴드 내에 Mn4 +/5+ 산화환원 전위가 존재하므로 Mn은 전기 전도에 기여하지 못하게 된다. 또한 실용적인 가능성이 있는 고용량 조성을 갖는 경우, 과량의 리튬에 의해 리튬이 전이금속층의 10 내지 20% 정도를 차지하게 되므로 Mn은 같은 층 내에서 기본적으로 리튬 양의 2배 이상 존재하게 되어, 실제 전기 전도에 관여하는 Ni, Co 등의 전이 금속의 양은 한정되며, 그 결과 양극 활물질의 전기전도도를 감소시키게 되고, 그 결과 전기 용량이 감소하게 되는 문제점이 있었다. As such manganese oxide, one of the composite metal oxides has a layered structure of xLi 2 MO 3- (1-x) LiMeO 2. (0 <x <1). In the complex oxide, M is a metal element group including at least one element of Mn, Zr, and Ti, and Me is at least one element of Ni, Co, Mn, Cr, Fe, V, Al, Mg, and Ti. A metal element group is shown. The metal complex oxide exhibits the same layered structure as that of two components of Li 2 MO 3 and LiMeO 2 as a solid solution material, and is present in a form in which excess lithium (overlithiation) is substituted in the transition metal layer. The metal-based compound in the Li 2 MO 3 constituting the oxide In the example of the Mn of the Li 2 MnO 3 used, having the oxidation number of Mn is +4 during charging, the Mn 4 + / 5 + oxidation-reduction potential of oxygen in the band Since present, Mn does not contribute to electrical conduction. In addition, in the case of having a high capacity composition with a practical possibility, the excess of lithium causes lithium to occupy about 10 to 20% of the transition metal layer, so that Mn is basically more than twice the amount of lithium in the same layer. The amount of transition metals, such as Ni and Co, which are involved in is limited, and as a result, the electrical conductivity of the positive electrode active material is reduced, and as a result, there is a problem that the electrical capacity is reduced.

따라서 이와 같은 금속복합산화물을 포함하는 다양한 활물질의 전기전도성을 개선할 필요가 있다. 이를 위한 활물질 자체의 전기전도성을 개선하는 방법과 전도성이 우수한 다른 물질과의 혼합 또는 복합화에 따른 특성 향상의 방법이 있으나, 현재까지는 활물질 자체의 성능을 개선한 고용량화 리튬 이차전지가 여전히 요구되고 있다. Therefore, there is a need to improve the electrical conductivity of various active materials including such metal composite oxides. There is a method of improving the electrical conductivity of the active material itself for this purpose and a method of improving the characteristics by mixing or complexing with other materials having excellent conductivity, but until now, there is still a need for a high capacity lithium secondary battery having improved performance of the active material itself.

활물질 자체의 전기전도성을 높이기 위해서는 입자 크기를 줄이고 입자 형상을 구형화시켜야 한다. 공침법, 고상법, 분무건조법(Spray dryer) 등 여러가지 공정법을 적용하여 금속복합산화물을 제조하고 있으나, 입자구형을 높이기 위해서는 이중 공침법이 가장 바람직하다. 공침 반응에 있어서, 균일한 크기의 최종 입자를 얻기 위해서는 짧은 핵생성 주기와 그들의 초기 입자들의 균일한 성장이 필요하다. 그러나, 통상적인 공침 반응과는 달리, 망간을 포함한 공침 입자는 불규칙 판상을 나타내는 것이 보통이며, 그에 따라 탭 밀도가 니켈이나 코발트에 비해 반 정도에 지나지 않는다는 문제점이 있었다.
In order to increase the electrical conductivity of the active material itself, the particle size should be reduced and the particle shape should be spherical. Metal composite oxides are manufactured by applying various process methods such as coprecipitation method, solid phase method, spray drying method, etc., but double coprecipitation method is most preferable to increase particle spherical shape. In the coprecipitation reaction, obtaining a final particle of uniform size requires a short nucleation cycle and uniform growth of their initial particles. However, unlike conventional coprecipitation reactions, coprecipitation particles including manganese usually exhibit irregular platelets, and thus there is a problem that the tap density is only about half that of nickel or cobalt.

본 발명은 상술한 종래 기술의 문제점을 극복하기 위한 것으로, 균일한 입도 분포를 가지기 때문에 전기전도성이 높고, 고용량 및 고전압 구현이 가능한 금속복합산화물을 포함하는 2차 전지용 양극 활물질을 제조할 수 있는 제조방법 및 그에 의하여 제조된 금속복합산화물을 포함하는 2차 전지용 양극 활물질을 제공하는 것을 목적으로 한다.
The present invention is to overcome the above-mentioned problems of the prior art, and has a uniform particle size distribution to manufacture a cathode active material for a secondary battery comprising a metal composite oxide having high electrical conductivity and high capacity and high voltage can be produced It is an object of the present invention to provide a cathode active material for a secondary battery comprising the method and the metal composite oxide prepared thereby.

본 발명에 따른 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법은 Method for producing a positive electrode active material for a secondary battery comprising a metal composite oxide according to the present invention

a) 니켈염, 코발트염, 망간염, 착제를 혼합하여 공침법으로 복합수산화물을 제조하는 단계; a) mixing a nickel salt, cobalt salt, manganese salt and a complex to prepare a complex hydroxide by coprecipitation;

b) 상기 a)단계에서 얻어진 복합수산화물과 리튬화합물을 혼합하는 단계; 및 b) mixing the composite hydroxide and the lithium compound obtained in step a); And

c) 상기 b)단계에서 얻어진 혼합물을 소성하는 단계;를 포함하는 것을 특징으로 하고, 상기 금속복합산화물은 하기 화학식 1로 표시된다.
c) calcining the mixture obtained in step b). The metal composite oxide is represented by the following Chemical Formula 1.

[화학식 1] [Formula 1]

Li(1+a)NixCo[(1-a)(1-y)-x]Mn[a+(1-a)y] MdO(a+2) Li (1 + a) Ni x Co [(1-a) (1-y) -x] Mn [a + (1-a) y] M d O (a + 2)

(상기 식에서 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8이고, M은 Al, Mg, Cr, Fe, V, Ti 중 하나 이상의 원소이며, 0≤d≤0.05이다.)
(In the above formula, 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8, M is one or more elements of Al, Mg, Cr, Fe, V, Ti, and 0≤d≤0.05.)

본 발명에 있어서, 상기 a) 공침법으로 복합수산화물을 제조하는 단계에서 상기 착제는 암모니아이고, 상기 니켈염, 코발트염, 망간염을 포함하는 금속염과 상기 암모니아는 중량비가 1:0.1 내지 1:2.5가 되도록 혼합하며, pH는 10.5 내지 12.5의 범위를 유지하도록 하는 것을 특징으로 한다.
In the present invention, the complex in the step of preparing a composite hydroxide by a) co-precipitation method is ammonia, the metal salt including the nickel salt, cobalt salt, manganese salt and the ammonia has a weight ratio of 1: 0.1 to 1: 2.5 To be mixed so that the pH is characterized in that to maintain a range of 10.5 to 12.5.

본 발명에 있어서, 상기 a) 공침법으로 복합수산화물을 제조하는 단계는 분산제를 니켈염, 코발트염, 망간염, 착제의 총중량 대비 0.05 내지 10wt% 투입하는 것을 특징으로 한다.
In the present invention, the step of preparing a composite hydroxide by the co-precipitation method is characterized in that the dispersing agent is added to the nickel salt, cobalt salt, manganese salt, 0.05 to 10wt% relative to the total weight of the complex.

본 발명에 있어서, 상기 분산제는 Sodium dodecyle sulphate(SDS), Cetyl trimethylammonium bromide (CTAB), alkyltrimethylammonium salts, Cetylpyridinium chloride (CPC), Polyethoxylated tallow amine (POEA), Benzalkonium chloride (BAC), Benzethonium chloride (BZT), Dodecyl betaine, Cocamidopropyl betaine, Coco ampho glycinate, Polyacrylate, Alkyl poly(ethylene oxide), Alkylphenol poly(ethylene oxide), polyvinyl alcohol (PVA), Copolymers of poly(ethylene oxide), poly(propylene oxide), Octyl glucoside, Decyl maltoside, Cetyl alcohol, Oleyl alcohol, Cocamide MEA, cocamide DEA, PEG, Polysorbates으로 이루어진 그룹에서 선택되는 어느 하나이며, 이 중에서 폴리비닐알코올인 것을 특징으로 한다.
In the present invention, the dispersant is sodium dodecyle sulphate (SDS), Cetyl trimethylammonium bromide (CTAB), alkyltrimethylammonium salts, Cetylpyridinium chloride (CPC), Polyethoxylated tallow amine (POEA), Benzalkonium chloride (BAC), Benzethonium chloride (BZT), Dodecyl betaine, Cocamidopropyl betaine, Coco ampho glycinate, Polyacrylate, Alkyl poly (ethylene oxide), Alkylphenol poly (ethylene oxide), polyvinyl alcohol (PVA), Copolymers of poly (ethylene oxide), poly (propylene oxide), Octyl glucoside, Decyl maltoside, Cetyl alcohol, Oleyl alcohol, Cocamide MEA, cocamide DEA, PEG, Polysorbates any one selected from the group consisting of, characterized in that the polyvinyl alcohol.

또한, 본 발명은 하기 화학식 1로 표현되는 금속복합산화물을 포함하는 2차 전지용 양극 활물질을 제공한다.
In addition, the present invention provides a cathode active material for a secondary battery comprising a metal composite oxide represented by the following Chemical Formula 1.

[화학식 1][Formula 1]

Li(1+a)NixCo[(1-a)(1-y)-x]Mn[a+(1-a)y] MdO(a+2) Li (1 + a) Ni x Co [(1-a) (1-y) -x] Mn [a + (1-a) y] M d O (a + 2)

(상기 식에서 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8이고, M은 Al, Mg, Cr, Fe, V, Ti 중 하나 이상의 원소이며, 0≤d≤0.05이다.)
(In the above formula, 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8, M is one or more elements of Al, Mg, Cr, Fe, V, Ti, and 0≤d≤0.05.)

본 발명에 있어서, 상기 금속복합산화물을 포함하는 2차 전지용 양극 활물질은 1차 입자들이 적층되어 구형의 2차 입자를 이루며, 상기 1차 입자의 최장경을 D1, 최단경을 D2라고 할 때 종횡비인 D1/D2가 1 내지 3.5의 범위인 것을 특징으로 한다.
In the present invention, the cathode active material for a secondary battery including the metal composite oxide has primary particles stacked to form spherical secondary particles, and the aspect ratio is set when the longest diameter of the primary particles is D1 and the shortest diameter is D2. It is characterized in that D1 / D2 is in the range of 1 to 3.5.

본 발명에 있어서, 상기 금속복합산화물을 포함하는 2차 전지용 양극 활물질은 입경이 1 내지 10㎛ 인 것을 특징으로 한다.
In the present invention, the cathode active material for a secondary battery including the metal composite oxide is characterized by having a particle size of 1 to 10㎛.

본 발명의 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조 방법은 분산제를 사용하여 생성된 초기 입자가 균일하게 성장하도록 함으로써 입도 분포가 고른 구형의 양극 활물질을 제조할 수 있으며, 이에 따라 본 발명의 금속복합산화물을 포함하는 2차 전지용 양극 활물질을 포함하는 전지는 전기전도성이 높고, 초기 방전 용량도 190~230mAh/g로 고용량을 나타내며, 고밀도로 수명 특성 및 열적 안정성이 뛰어나고, 고율 방전 특성이 우수하다.
According to the method of manufacturing a cathode active material for a secondary battery including the metal composite oxide of the present invention, a spherical cathode active material having a uniform particle size distribution may be prepared by uniformly growing initial particles generated by using a dispersant. The battery containing the positive electrode active material for a secondary battery containing a metal composite oxide of high electrical conductivity, the initial discharge capacity is 190 ~ 230mAh / g, showing a high capacity, high density, excellent life characteristics and thermal stability, high rate discharge characteristics great.

도 1은 본 발명의 일실시예 및 비교예에 따른 복합수산화물의 FE-SEM((a)5,000배, (b)1,000배) 사진이다.
도 2는 본 발명의 일실시예 및 비교예에 따른 금속복합산화물의 FE-SEM((a)5,000배, (b)1,000배) 사진이다.
도 3은 본 발명의 일실시예 및 비교예에 따른 금속복합산화물 입도 분포를 나타내는 그래프이다 ((a)실시예1, (b)비교예).
도 4는 본 발명의 일실시예 및 비교예에 따른 금속복합산화물을 사용한 리튬 이차 전지의 전지 용량을 나타내는 그래프이다.
도 5는 본 발명의 일실시예 및 비교예에 따른 금속복합산화물을 사용한 리튬 이차 전지의 전지 수명을 나타내는 그래프이다.
도 6은 본 발명의 일실시예 및 비교예에 따른 금속복합산화물을 사용한 리튬 이차 전지의 순환전위전류를 나타내는 그래프이다.
도 7은 본 발명의 일실시예 및 비교예에 따른 금속복합산화물을 사용한 리튬 이차 전지의 고율 방전 측정 결과를 나타내는 그래프이다.
도 8은 본 발명의 일실시예에 따른 금속복합산화물의 SEM 사진이다.
1 is a photograph of the FE-SEM ((a) 5,000 times, (b) 1,000 times) of the composite hydroxide according to an embodiment and a comparative example of the present invention.
2 is a FE-SEM ((a) 5,000 times, (b) 1,000 times) photograph of the metal composite oxide according to one embodiment and comparative example of the present invention.
Figure 3 is a graph showing the particle size distribution of the metal composite oxide according to one embodiment and comparative example of the present invention ((a) Example 1, (b) Comparative Example).
4 is a graph showing the battery capacity of a lithium secondary battery using a metal composite oxide according to one embodiment and comparative example of the present invention.
5 is a graph showing battery life of a lithium secondary battery using a metal composite oxide according to one embodiment and a comparative example of the present invention.
6 is a graph illustrating a cyclic potential current of a lithium secondary battery using a metal composite oxide according to one embodiment and a comparative example of the present invention.
7 is a graph showing a high rate discharge measurement result of a lithium secondary battery using a metal composite oxide according to one embodiment and a comparative example of the present invention.
8 is a SEM photograph of a metal composite oxide according to one embodiment of the present invention.

이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art can easily carry out the present invention.

본 발명은 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조 방법으로서, a) 니켈염, 코발트염, 망간염, 착제를 혼합하여 공침법으로 복합수산화물을 제조하는 단계; b) 상기 a)단계에서 얻어진 복합수산화물과 리튬화합물을 혼합하는 단계; 및 c) 상기 b)단계에서 얻어진 혼합물을 소성하는 단계;를 포함하는 것을 특징으로 하는 상기 화학식 1로 표시되는 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법을 제공한다.
The present invention provides a method for producing a cathode active material for a secondary battery comprising a metal composite oxide, comprising the steps of: a) preparing a composite hydroxide by coprecipitation by mixing nickel salt, cobalt salt, manganese salt and a complex; b) mixing the composite hydroxide and the lithium compound obtained in step a); And c) calcining the mixture obtained in step b). The method provides a method of manufacturing a cathode active material for a secondary battery comprising a metal composite oxide represented by Chemical Formula 1, comprising: a.

본 발명에 있어서 금속복합산화물 2차 전지용 양극 활물질은 도 8에서 볼 수 있는 바와 같이, 1차 입자들이 적층된 2차 입자를 이루고 있으며, 상기 1차 입자의 최장경을 D1, 최단경을 D2라고 했을 때의 종횡비인 D1/D2가 1 내지 3.5의 범위에 있다. In the present invention, as shown in FIG. 8, the cathode active material for a metal composite oxide secondary battery includes secondary particles in which primary particles are stacked, and the longest diameter of the primary particles is D1 and the shortest diameter is D2. D1 / D2, which is an aspect ratio at the time, is in the range of 1 to 3.5.

리튬 금속복합산화물 입자에서는 1차 입자들이 응집하여 2차 입자를 형성하는데, 2차 입자크기가 작을수록 망간을 과량으로 하는 금속복합산화물의 전기전도도를 개선할 수 있다. 전기전도도가 낮으면 한정된 극판의 체적 내에 많은 활성물질을 충전할 수 없어 고용량을 구현할 수 없기 때문이다. 따라서, 본 발명의 금속복합산화물을 포함하는 2차 전지용 양극 활물질에 있어서는 입자의 크기를 작게 만드는 것이 중요하다. 본 발명에 있어서, 상기 양극 활물질은 입경이 1 내지 10㎛ 인 것이 바람직하다.
In the lithium metal composite oxide particles, primary particles aggregate to form secondary particles. As the secondary particle size is smaller, the electrical conductivity of the metal composite oxide having excessive manganese can be improved. This is because if the electrical conductivity is low, it is impossible to fill a large amount of active material in the limited volume of the plate and thus it is impossible to realize a high capacity. Therefore, in the positive electrode active material for secondary batteries containing the metal composite oxide of this invention, it is important to make particle size small. In the present invention, the cathode active material preferably has a particle size of 1 to 10㎛.

본 발명에 있어서, 공침법으로 복합수산화물을 제조하는 단계에서는 니켈염 용액, 코발트염 용액, 망간염 용액과 착제(complex agent) 및 침전제를 반응시켜 니켈코발트망간 금속 복합수산화물인 NiaCobMnc(OH)2를 제조한다. 상기 공침법 공정을 보다 자세히 설명하면, 상기 금속염 용액, 착제 및 침전제를 반응조에 연속적으로 공급하면 니켈, 코발트, 망간 금속이 반응하면서 NiaCobMnc(OH)2가 제조된다. 이 때의 반응조는 1~200L의 연속반응조를 사용할 수 있으며, 바람직하게는 10~100L의 반응조를 사용할 수 있다. In the present invention, in the step of preparing a composite hydroxide by coprecipitation method Ni a Co b Mn c is a nickel cobalt manganese metal composite hydroxide by reacting a nickel salt solution, cobalt salt solution, manganese salt solution and a complex (complex agent) and precipitant (OH) 2 is prepared. The co-precipitation process will be described in more detail. When the metal salt solution, the complexing agent, and the precipitant are continuously supplied to the reactor, nickel, cobalt, and manganese metal react with each other to prepare Ni a Co b Mn c (OH) 2 . The reaction tank at this time can use 1-200 L of continuous reaction tanks, Preferably, 10-100 L reaction tanks can be used.

또한, 망간 함량이 높은 금속복합산화물의 구형을 갖는 전구체 분말을 얻기 위해서는 반응기에 질소나 알곤과 같은 불활성 분위기의 가스를 흘려주어 Mn(OH)2의 일부가 MnO2, MnO4 , Mn2O3로 산화되지 않도록 한다. 이때의 가스는 0.1~20L/min인 것을 특징으로 한다. In addition, in order to obtain a precursor powder having a spherical metal complex oxide having a high manganese content, a gas of an inert atmosphere such as nitrogen or argon is flowed into the reactor, and a part of Mn (OH) 2 is MnO 2 , MnO 4 , and Mn 2 O 3. Do not oxidize. The gas at this time is characterized in that 0.1 ~ 20L / min.

첨가되는 니켈염 용액, 코발트염 용액, 망간염 용액에서 총 금속의 농도는 1 내지 3M이 바람직하다. 금속염의 농도가 1M 이하일 경우, 생성되는 물질의 양이 적어 생산성이 나쁘며, 금속염 농도가 3M 이상일 경우에는 금속염이 석출될 우려가 있으며, 이 석출을 방지하기 위하여 50℃ 이상으로 가열을 해야만 하는 단점이 있고, 입자 조절이 힘들어 진다. 이때, 용매로는 물을 사용할 수 있다.In the nickel salt solution, cobalt salt solution and manganese salt solution to be added, the concentration of the total metal is preferably 1 to 3 M. When the concentration of the metal salt is less than 1M, the productivity is poor because the amount of material produced is small, and when the concentration of the metal salt is 3M or more, the metal salt may be precipitated. In order to prevent the precipitation, heating must be performed at 50 ° C or higher. And particle control becomes difficult. In this case, water may be used as the solvent.

상기 니켈염으로는 니켈 하이드록사이드, 니켈 설페이트, 니켈 나이트레이트, 니켈 아세테이트, 니켈 클로라이드 등을 사용할 수 있고, 상기 코발트염으로는 코발트 하이드록사이드, 코발트 설페이트, 코발트 나이트레이트, 코발트 클로라이드 등을 사용할 수 있고, 망간염으로는 망간 아세테이트, 망간 디옥사이드, 망간 설페이트, 망간 클로라이드를 사용할 수 있다. 이 때 반응조의 온도는 30 내지 60℃의 범위를 유지할 수 있다. 반응조 내의 pH는 10.5 내지 12.5로 유지되는 것이 바람직하다. Nickel hydroxide, nickel sulfate, nickel nitrate, nickel acetate, nickel chloride, and the like may be used as the nickel salt, and cobalt hydroxide, cobalt sulfate, cobalt nitrate, and cobalt chloride may be used as the cobalt salt. As the manganese salt, manganese acetate, manganese dioxide, manganese sulfate, manganese chloride may be used. At this time, the temperature of the reaction tank can be maintained in the range of 30 to 60 ℃. The pH in the reactor is preferably maintained at 10.5 to 12.5.

또한, 상기 니켈염, 코발트염, 망간염을 포함하는 금속염과 착제의 혼합 비율은 1:0.1 내지 1:2.5의 몰비가 바람직하며, 이들 반응조 내의 물질들을 200 내지 1000rpm의 속도로 교반하면서 반응시키는 것이 바람직하다. 반응시간은 5 내지 20시간으로 합성하는 것이 바람직하다.In addition, the mixing ratio of the metal salt including the nickel salt, cobalt salt, manganese salt and the complex is preferably a molar ratio of 1: 0.1 to 1: 2.5, it is preferable to react the materials in these reactors while stirring at a rate of 200 to 1000rpm desirable. The reaction time is preferably synthesized for 5 to 20 hours.

여기서, 착제(complexing agent)로서 사용되는 암모니아는 형성되는 복합수산화물의 형상을 조절하는 작용을 하며, 알칼리 용액은 pH 조절제로서 상기 혼합수용액에서 공침이 일어나기에 적합한 pH 범위인 10.5 내지 12.5의 범위를 유지하는 것이 바람직하다. Here, the ammonia used as a complexing agent serves to control the shape of the complex hydroxide to be formed, and the alkaline solution is a pH adjusting agent to maintain a range of 10.5 to 12.5, which is a pH range suitable for coprecipitation in the mixed aqueous solution. It is desirable to.

공침 후 초기에 공침 생성물을 추출하면 침상의 미세입자(1차 입자)가 뭉쳐진 구형(2차 입자)의 니켈-코발트-망간 금속의 복합수산화물이 전구체로서 형성된다.
Extracting the co-precipitation product at the beginning after co-precipitation forms a spherical (secondary particle) composite hydroxide of nickel-cobalt-manganese metal in which needle-like fine particles (primary particles) are aggregated.

또한, 본 발명에 있어서, 공침법으로 복합수산화물을 제조하는 단계에서의 착제 투입시, 일정량의 분산제를 동시 투입하여 균일한 분포의 입도를 갖는 복합수산화물을 제조할 수 있다.In addition, in the present invention, a complex hydroxide having a uniform particle size may be prepared by simultaneously adding a predetermined amount of dispersant when the complex is added in the preparation of the composite hydroxide by coprecipitation.

본 발명에 있어서 균일한 크기의 최종 활물질 입자를 얻기 위해서는 짧은 핵생성 주기와 그들의 초기 입자들의 균일한 성장이 필요하다. 따라서, 본 발명에 있어서는 생성된 초기 입자들의 균일한 성장을 위해 분산제를 동시에 투입하는 것이다. In the present invention, obtaining a final active material particles of uniform size requires a short nucleation cycle and uniform growth of their initial particles. Therefore, in the present invention, the dispersant is added simultaneously for uniform growth of the initial particles produced.

상기 분산제로는 Sodium dodecyle sulphate(SDS), Cetyl trimethylammonium bromide (CTAB), alkyltrimethylammonium salts, Cetylpyridinium chloride (CPC), Polyethoxylated tallow amine (POEA), Benzalkonium chloride (BAC), Benzethonium chloride (BZT), Dodecyl betaine, Cocamidopropyl betaine, Coco ampho glycinate, Polyacrylate, Alkyl poly(ethylene oxide), Alkylphenol poly(ethylene oxide), polyvinyl alcohol (PVA), Copolymers of poly(ethylene oxide), poly(propylene oxide), Octyl glucoside, Decyl maltoside, Cetyl alcohol, Oleyl alcohol, Cocamide MEA, cocamide DEA, PEG, Polysorbates를 사용할 수 있다. 이 중에서 폴리비닐알코올(polyvinyl alcohol,PVA)이 가장 바람직하다.
The dispersants include sodium dodecyle sulphate (SDS), Cetyl trimethylammonium bromide (CTAB), alkyltrimethylammonium salts, Cetylpyridinium chloride (CPC), Polyethoxylated tallow amine (POEA), Benzalkonium chloride (BAC), Benzethonium chloride (BZT), Codecyldopropyle betaine, Coco ampho glycinate, Polyacrylate, Alkyl poly (ethylene oxide), Alkylphenol poly (ethylene oxide), polyvinyl alcohol (PVA), Copolymers of poly (ethylene oxide), poly (propylene oxide), Octyl glucoside, Decyl maltoside, Cetyl alcohol Oleyl alcohol, Cocamide MEA, cocamide DEA, PEG and Polysorbates can be used. Of these, polyvinyl alcohol (PVA) is most preferred.

이 때 투입하는 분산제는 니켈염, 코발트염, 망간염, 착제의 총중량 대비 0.05~10wt% 투입하는 것이 바람직하다. 분산제가 니켈염, 코발트염, 망간염, 착제의 총중량 대비 0.05wt% 보다 낮을 때는 입자의 입체안정성이 부족한 매우 불균일한 활물질 입자가 생성되며, 분산제의 양이 10wt% 이상일 때는 입자 평균직경이 1 ㎛ 이하인 입자가 생성된다.
At this time, the dispersant to be added is preferably added to 0.05 ~ 10wt% relative to the total weight of the nickel salt, cobalt salt, manganese salt, the complex. When the dispersant is less than 0.05wt% relative to the total weight of nickel salt, cobalt salt, manganese salt and complex, very non-uniform active material particles having insufficient stereostability of particles are produced. The following particles are produced.

공침 후 초기에 공침 생성물을 추출하면 침상의 미세입자(1차 입자)가 뭉쳐진 구형(2차 입자)의 니켈-코발트-망간 복합수산화물의 전구체로서 형성된다. 본 발명에서는 니켈-코발트-망간 복합수산화물을 공침시킨 후 전구체의 입자 형태를 조절하는데 있어서, 암모니아수와 금속염을 포함하는 혼합수용액과의 농도비와 반응기 내의 pH를 조절한다. 즉, 본 발명에 있어서는 상기 공침의 반응 메카니즘에 있어서 암모니아를 착제로 이용하는 것과 동시에, 분산제 농도, 암모니아수와 금속염의 비 및 반응기 내의 pH를 조절함으로써 복합수산화물의 입자 형태를 용이하게 조절할 수 있다.
Extraction of the coprecipitation product initially after coprecipitation forms needle-like fine particles (primary particles) as a precursor of aggregated spherical (secondary particles) nickel-cobalt-manganese composite hydroxides. In the present invention, in co-precipitating the nickel-cobalt-manganese composite hydroxide, in controlling the particle form of the precursor, the concentration ratio between the aqueous solution containing ammonia water and the metal salt and the pH in the reactor are controlled. In other words, in the present invention, in the reaction mechanism of the coprecipitation, ammonia is used as the complexing agent, and the particle form of the composite hydroxide can be easily adjusted by adjusting the dispersant concentration, the ratio of the ammonia water and the metal salt, and the pH in the reactor.

그 후, 상기 복합수산화물과 리튬화합물을 혼합하는 단계에서는 상기 공침법으로 수산화물을 제조하는 단계에서 얻어진 복합수산화물을 리튬화합물과 충분히 혼합하고, 이렇게 얻어진 혼합물을 소성하는 단계에서 850℃~1050℃에서 8~20시간 소성으로 리튬 금속복합산화물을 제조할 수 있다.
Subsequently, in the step of mixing the composite hydroxide and the lithium compound, the composite hydroxide obtained in the step of preparing hydroxide by the coprecipitation method is sufficiently mixed with the lithium compound, and the resulting mixture is calcined at 850 ° C to 1050 ° C. Lithium metal composite oxide can be produced by calcination for 20 hours.

본 발명에 따른 고용량 구현이 가능한 금속복합산화물을 포함하는 2차 전지용 양극 활물질은 Li과 Ni, Co, 및 Mn으로 이루어지는 금속복합산화물 입자로서, 상기 금속복합산화물 입자는 하기 [화학식 1]을 만족한다.
A cathode active material for a secondary battery including a metal composite oxide capable of implementing high capacity according to the present invention is a metal composite oxide particle composed of Li, Ni, Co, and Mn, and the metal composite oxide particle satisfies the following [Formula 1]. .

[화학식 1][Formula 1]

Li(1+a)NixCo[(1-a)(1-y)-x]Mn[a+(1-a)y] MdO(a+2) Li (1 + a) Ni x Co [(1-a) (1-y) -x] Mn [a + (1-a) y] M d O (a + 2)

(상기 식에서 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8이고, M은 Al, Mg, Cr, Fe, V, Ti 중 하나 이상의 원소이며, 0≤d≤0.05이다.)
(In the above formula, 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8, M is one or more elements of Al, Mg, Cr, Fe, V, Ti, and 0≤d≤0.05.)

이하의 실시를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
The present invention is described in more detail through the following implementation. However, the examples are provided to illustrate the present invention, and the scope of the present invention is not limited only to these examples.

실시예Example 1  One

황산니켈, 황산코발트, 및 황산망간 몰 비가 0.29: 0.13: 0.58 비율로 혼합된 2.5M 농도의 금속 수용액을 0.8 리터/시간으로, [암모니아 용액의 농도/금속 수용액의 농도]가 0.8을 유지하도록 암모니아 수용액을 반응기에 연속적으로 투입하였다. 이 때 입도크기 제어 및 균일 분포를 위해 암모니아 금속염 대비 0.5% 폴리비닐알코올(polyvinyl alcohol,PVA) 용액을 암모니아 수용액 투입시 동시 투입하였다. 또한, pH 조정을 위해 25% 농도의 수산화나트륨 수용액을 공급하여 pH가 11.5로 유지되도록 하였으며, 용액의 평균 체류시간은 10시간 정도로 유량을 조절하였고, 반응조의 평균 온도는 45℃~55℃로 유지하였다. Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a 2.5 M aqueous metal solution at a concentration of 0.29: 0.13: 0.58 at 0.8 liter / hour, and ammonia was maintained at 0.8 [concentration of ammonia solution / concentration of aqueous metal solution]. The aqueous solution was continuously added to the reactor. At this time, 0.5% polyvinyl alcohol (PVA) solution compared to the ammonia metal salt was simultaneously added to the aqueous ammonia solution for controlling the particle size and uniform distribution. In addition, the pH was adjusted to maintain a pH of 11.5 by supplying a 25% sodium hydroxide aqueous solution to adjust the pH, the average residence time of the solution was adjusted to a flow rate of about 10 hours, the average temperature of the reactor maintained at 45 ℃ ~ 55 ℃ It was.

얻어진 복합수산화물에 pH 12.5가 될 때까지 가성소다를 투입하여 미반응 금속염을 제거한 후 여과 및 물 세척 후 110℃ 온풍건조기에서 12시간 건조시켜 복합수산화물 형태의 전구체를 얻었다. 수산화리튬을 상기 금속염의 농도와의 비가 1.11이 되도록 혼합한 후, 1℃/min 승온 속도로 가열한 후 950℃에서 10시간 소성시켜 상술한 방법으로 열처리를 행하여 양극 활물질 분말을 얻었다.
Caustic soda was added to the obtained composite hydroxide until pH 12.5 to remove the unreacted metal salt, followed by filtration and water washing, followed by drying for 12 hours at 110 ° C. in a warm air dryer to obtain a precursor in the form of a composite hydroxide. Lithium hydroxide was mixed so that the ratio with the concentration of the metal salt was 1.11, and then heated at a temperature of 1 ° C./min, and then calcined at 950 ° C. for 10 hours to conduct heat treatment in the above-described manner to obtain a cathode active material powder.

실시예Example 2  2

분산제로서 폴리비닐알코올 대신 알킬폴리(Alkyl poly)를 사용한 것을 제외하고는 상기 실시예 1 과 동일하게 하여 복합수산화물 형태의 전구체 및 양극 활물질 분말을 얻었다.
A precursor and a cathode active material powder in the form of a composite hydroxide were obtained in the same manner as in Example 1, except that alkyl poly was used instead of polyvinyl alcohol as the dispersant.

실시예Example 3  3

분산제로서 폴리비닐알코올 대신 분자량이 600인 PEG(polyethylene glycol) 용액을 사용한 것을 제외하고는 상기 실시예 1 과 동일하게 하여 금복합수산화물 형태의 전구체 및 양극 활물질 분말을 얻었다.
In the same manner as in Example 1, except that a polyethylene glycol (PEG) solution having a molecular weight of 600 was used instead of polyvinyl alcohol, a precursor and a positive electrode active material powder in the form of a gold complex hydroxide were obtained.

실시예Example 4  4

분산제로서 폴리비닐알코올 대신 분자량이 4,000인 PEG(polyethylene glycol) 용액을 사용한 것을 제외하고는 상기 실시예 1 과 동일하게 하여 복합수산화물 형태의 전구체 및 양극 활물질 분말을 얻었다.
A precursor and a cathode active material powder in the form of a composite hydroxide were obtained in the same manner as in Example 1 except that a polyethylene glycol (PEG) solution having a molecular weight of 4,000 was used instead of polyvinyl alcohol.

실시예Example 5  5

분산제로서 폴리비닐알코올 대신 폴리아크릴레이트(Polyacrylate) 용액을 사용한 것을 제외하고는 상기 실시예 1 과 동일하게 하여 복합수산화물 형태의 전구체 및 양극 활물질 분말을 얻었다.
A precursor and a cathode active material powder in the form of a composite hydroxide were obtained in the same manner as in Example 1 except that a polyacrylate solution was used instead of polyvinyl alcohol as a dispersant.

비교예Comparative example

분산제로서 폴리비닐알코올 용액을 사용하지 않은 것을 제외하고는 상기 실시예 1 과 동일하게 하여 복합수산화물 형태의 전구체 및 양극 활물질 분말을 얻었다.
Except not using a polyvinyl alcohol solution as a dispersant in the same manner as in Example 1 to obtain a precursor and a positive electrode active material powder in the form of a composite hydroxide.

<< 실험예Experimental Example 1>  1> SEMSEM 사진 측정 Photo measurement

상기 실시예 1 내지 5 및 비교예에서 제조된 복합수산화물 형태의 전구체의 SEM 사진을 측정하였다. SEM photographs of the precursors in the form of the composite hydroxide prepared in Examples 1 to 5 and Comparative Examples were measured.

도 1은 실시예 및 비교예에서 만들어진 복합수산화물 형태의 전구체의 FE-SEM((a)5,000배, (b)1,000배) 사진을 나타내고, 도 2는 실시예 및 비교예에서 만들어진 양극 활물질의 FE-SEM((a)5,000배, (b)1,000배) 사진을 나타낸다. Figure 1 shows the FE-SEM ((a) 5,000 times, (b) 1,000 times) photograph of the composite hydroxide form precursors made in Examples and Comparative Examples, Figure 2 is a FE of the positive electrode active material made in Examples and Comparative Examples -SEM ((a) 5,000 times, (b) 1,000 times) The photograph is shown.

도 1 및 도 2에서 보는 바와 같이 본 발명에 따라 합성된 복합수산화물 형태의 전구체와 금속복합산화물 형태의 양극 활물질은 1차 입자가 타원형이지만, 1차 입자가 응집한 2차 입자는 구형의 형태를 유지하는데 비하여, 비교예에서 만들어진 1차 입자는 타원형 또는 침상형에 가깝고, 1차 입자가 응집한 2차 입자가 구형의 형태를 유지하고 있었으나, 20㎛ 이상의 거분이 분포하고 있었다.
As shown in FIGS. 1 and 2, the precursor of the composite hydroxide type synthesized according to the present invention and the positive electrode active material of the metal composite oxide type have elliptical primary particles, but the secondary particles aggregated with the primary particles have a spherical shape. In contrast, the primary particles produced in the comparative example were close to elliptical or needle-shaped, and the secondary particles in which the primary particles were agglomerated maintained a spherical shape, but a macromolecule of 20 µm or more was distributed.

<< 실험예Experimental Example 2> 입도 분포 분석  2> particle size distribution analysis

실시예 1과 비교예의 복합수산화물 입도 분포를 분석한 결과를 도 3에 나타내었다. 도 3에서 보는 바와 같이 공침 반응시 분산제가 사용되지 않은 비교예의 경우보다 분산제를 사용한 본 발명의 실시예의 경우 입자의 크기가 더 균일하게 분포되어 있음을 확인할 수 있었다.
The results of analyzing the composite hydroxide particle size distribution of Example 1 and Comparative Example are shown in FIG. 3. As shown in FIG. 3, the particle size was more uniformly distributed in the embodiment of the present invention using the dispersant than in the comparative example in which the dispersant was not used in the coprecipitation reaction.

<< 제조예Manufacturing example 1> 리튬 이차 전지의 제조 1> Fabrication of Lithium Secondary Battery

상기 실시예 1 및 비교예 각각에 따라 제조된 리튬이차전지용 양극 활물질과 도전제로서 아세틸렌블랙, 결합제로는 폴리비닐리덴 플루오라이드(PVdF 제품명: solef6020)를 90: 5: 5의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 20㎛ 두께의 알루미늄박에 균일하게 도포하고, 130℃에서 진공 건조하여 리튬이차전지용 양극을 제조하였다.The positive electrode active material for a lithium secondary battery prepared according to Example 1 and Comparative Example, and acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF product name: solef6020) as a binder were mixed at a weight ratio of 90: 5: 5 to slurry. Was prepared. The slurry was uniformly applied to an aluminum foil having a thickness of 20 μm, and vacuum dried at 130 ° C. to prepare a cathode for a lithium secondary battery.

상기 양극과, 리튬 호일을 상대 전극으로 하며, 두께가 25㎛인 다공성 폴리에틸렌막을 세퍼레이터로 하고, 에틸렌 카보네이트와 에틸 메틸 카보네이트가 3:7 의 부피비로 혼합된 용매에 LiPF6를 1M 농도로 녹인 전해액을 사용하여 통상의 방법으로 코인 전지를 제조하였다.
Electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M in a solvent in which the anode and the lithium foil were used as counter electrodes, a porous polyethylene membrane having a thickness of 25 μm, was used as a separator, and ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7. Coin battery was prepared by the conventional method.

상기 실시예 1 및 비교예의 양극 활물질을 사용하여 제조된 제조예 1의 코인 전지에 대해 아래와 같이 전지 특성을 평가하였다.
Battery characteristics of the coin battery of Preparation Example 1 prepared using the positive electrode active materials of Example 1 and Comparative Example were evaluated as follows.

1. 전지 용량 측정1. Battery capacity measurement

상기 제조예 1의 리튬 이차 전지를 2.0 내지 4.55V 범위에서 전기화학 분석장치를 사용하여 양극 활물질 특성을 평가하였다. 0.170㎃로 충방전하여 전지 용량을 측정하였으며, 그 결과를 도 4 및 아래 표 1로 나타내었다. The lithium secondary battery of Preparation Example 1 was evaluated for the positive electrode active material characteristics using an electrochemical analyzer in the range 2.0 to 4.55V. The battery capacity was measured by charging and discharging at 0.170 mW, and the results are shown in FIG. 4 and Table 1 below.

도 4 및 표 1에서 보는 바와 같이 실시예 1에서 제조된 양극 활물질의 방전 용량은 210mAh/g 이상으로, 현재 상업화되어 있는 LiCoO2의 평균 방전 용량인 160mAh/g 보다 높으며, 비교예보다 높은 용량을 가지고 있음을 확인할 수 있었다.As shown in FIG. 4 and Table 1, the discharge capacity of the cathode active material prepared in Example 1 is 210 mAh / g or more, which is higher than 160mAh / g, which is the average discharge capacity of currently commercialized LiCoO 2 , and has a higher capacity than that of the comparative example. It was confirmed that it has.

충전(㎃h/g)Charge (h / g) 방전(㎃h/g)Discharge (h / g) 효율 (%)efficiency (%) 실시예 1Example 1 276.7276.7 233.6233.6 84.584.5 비교예Comparative example 269.3269.3 219.7219.7 81.681.6

2. 전지 수명 측정2. Battery Life Measurement

상기 제조예 1의 리튬 이차 전지를 2.2 내지 4.55 V 범위에서 0.7㎃h/g로 50회 충방전하면서 방전 용량을 측정하였으며, 그 결과를 도 5로 나타내었다. 도 5에서 보는 바와 같이, 실시예 1로부터 제조된 양극 활물질을 이용한 리튬 이차 전지는 50회 충방전 후에도 방전 용량이 거의 변하지 않음을 확인할 수 있었다.Discharge capacity was measured while charging and discharging the lithium secondary battery of Preparation Example 1 at 0.7 mAh / g 50 times in a range of 2.2 to 4.55 V, and the results are shown in FIG. 5. As shown in FIG. 5, the lithium secondary battery using the cathode active material prepared in Example 1 was confirmed that the discharge capacity hardly changed even after 50 times of charge and discharge.

반면에 비교예로부터 제조된 양극 활물질을 이용한 리튬 이차 전지는 싸이클 수에 따라 방전 용량 유지율이 점차 감소하여 50회 충방전 후에는 90% 미만이 됨을 확인할 수 있었다.
On the other hand, in the lithium secondary battery using the positive electrode active material prepared from the comparative example, the discharge capacity retention rate gradually decreased according to the number of cycles, and thus it was confirmed that the lithium secondary battery became less than 90% after 50 charge / discharge cycles.

3. 3. 순환전위전류Cyclic potential current (( cycliccyclic voltammetryvoltammetry ) 측정) Measure

상기 제조예 1의 리튬 이차전지를 순환전위전류법(cyclic voltammetry)을 이용하여 0.1 mV/sec의 주사속도로 2~5V 전위 범위를 시험하였으며 그 결과를 도 6((a)실시예 1, (b)비교예)에 나타내었다.
In the lithium secondary battery of Preparation Example 1, a 2-5V potential range was tested at a scanning rate of 0.1 mV / sec using cyclic voltammetry, and the results are shown in FIGS. 6 (a) Example 1, ( b) Comparative Example).

실시예 1의 경우 제 1회 환원과정에서는 약 4.0V에서 전류가 증가하기 시작하였으며, 약 4.5V에서 최대전류를 나타내었다. 리튬 석출에 따른 전류증가가 약 4.0V에서 나타났다. 산화 과정에서는 3.6V에서 환원된 리튬의 산화에 의한 전류 피크(peak)가 나타났다. 3.6V의 피크는 4.0V에서의 환원 피크에 대응하는 산화 피크로서 리튬 석출이 아닌 다른 한 종류의 산화 환원반응이 나타남을 확인할 수 있다. In Example 1, the current began to increase at about 4.0V during the first reduction process, and exhibited a maximum current at about 4.5V. The current increase due to lithium deposition was found at about 4.0V. In the oxidation process, a current peak due to oxidation of lithium reduced at 3.6V was observed. The peak of 3.6V is an oxidation peak corresponding to the reduction peak at 4.0V, and it can be seen that one type of redox reaction other than lithium precipitation occurs.

비교예의 경우 제 1회 환원과정에서는 약 3.8V에서 전류가 증가하기 시작하였으며, 약 4.6 V에서 최대전류를 나타내었다. 리튬 석출에 따른 전류증가가 약 3.8V에서 나타났다. 산화 과정에서는 4.4V에서 환원된 리튬의 산화에 의한 전류 피크(peak)가 나타났다. 4.6V의 피크는 4.4V에서의 환원 피크에 대응하는 산화 피크로서 다른 종류의 산화 환원반응이 나타남을 확인할 수 있었다. 제 2회 이후의 산화 환원과정에서는 방전시 4.4V에서 나타나던 피크는 없어지고 3.7V와 2.0V에서 산화 피크가 나타났다. 이는 제1차 산화 환원과정보다 낮은 전위에서 전위평탄영역(potential plateau)을 나타내어 즉, 제 1차 환원과정과는 다른 반응이 진행됨을 알 수 있었다.
In the comparative example, the current began to increase at about 3.8V in the first reduction process, and showed a maximum current at about 4.6V. The current increase due to lithium deposition was found at about 3.8V. In the oxidation process, a current peak due to oxidation of lithium reduced at 4.4V was observed. The peak of 4.6V is an oxidation peak corresponding to the reduction peak at 4.4V, and it was confirmed that other types of redox reactions appeared. In the second and subsequent redox processes, the peak which appeared at 4.4V during discharge disappeared and the oxidation peak appeared at 3.7V and 2.0V. This shows a potential plateau at a lower potential than the first redox process, i.e., it can be seen that the reaction proceeds differently from the first reduction process.

4. 고율 방전 측정4. High rate discharge measurement

상기 실시예 1과 비교예의 전지들을 각각 0.1C, 1.0C, 1.5C, 2.0C, 및 5C rate로 방전 용량(0.1C, 1.0C, 1.5C, 2.0C, 및 5C)을 측정하여, 그 결과를 각각 도 7 과 표 2에 나타내었다.The discharge capacity (0.1C, 1.0C, 1.5C, 2.0C, and 5C) of the batteries of Example 1 and Comparative Example were measured at 0.1C, 1.0C, 1.5C, 2.0C, and 5C rates, respectively, and as a result, Are shown in FIG. 7 and Table 2, respectively.

C-rate C-rate 실시예1Example 1 비교예Comparative example 실시예1Example 1 비교예Comparative example mAh/gmAh / g %% 0.1C0.1C 233.6233.6 219.7219.7 100.0%100.0% 100.0%100.0% 0.2C0.2C 218.3218.3 200.8200.8 93.5%93.5% 91.4%91.4% 0.5C0.5C 201.5201.5 178.9178.9 86.3%86.3% 81.4%81.4% 1.0C1.0C 187.3187.3 159.3159.3 80.2%80.2% 72.5%72.5% 1.5C1.5C 176.9176.9 148.6148.6 75.7%75.7% 67.6%67.6% 2.0C2.0C 168.9168.9 138.4138.4 72.3%72.3% 63.0%63.0% 5.0C5.0C 149.3149.3 108.9108.9 63.9%63.9% 49.6%49.6%

도 7 및 표 2 에서 보는 바와 같이 저율 방전(0.1C)에서는 실시예 1과 비교예의 전지 특성이 거의 비슷하지만, 고율 방전으로 갈수록 실시예 1의 전지가 비교예의 전지에 비해 방전 용량의 감소가 훨씬 적음을 확인할 수 있었다. As shown in FIG. 7 and Table 2, in the low-rate discharge (0.1C), the battery characteristics of Example 1 and the comparative example were almost similar, but as the high-rate discharge, the battery of Example 1 had a much smaller reduction in discharge capacity than the battery of the comparative example. It was confirmed that less.

Claims (8)

a) 니켈염, 코발트염, 망간염, 착제를 혼합하여 공침법으로 복합수산화물을 제조하는 단계;
b) 상기 a)단계에서 얻어진 복합수산화물과 리튬화합물을 혼합하는 단계; 및
c) 상기 b)단계에서 얻어진 혼합물을 소성하는 단계;를 포함하는 것을 특징으로 하는 하기 화학식 1로 표시되는 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법.
[화학식 1]
Li(1+a)NixCo[(1-a)(1-y)-x]Mn[a+(1-a)y] MdO(a+2)
(상기 식에서 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8이고, M은 Al, Mg, Cr, Fe, V, Ti 중 하나 이상의 원소이며, 0≤d≤0.05이다.)
a) mixing a nickel salt, cobalt salt, manganese salt and a complex to prepare a complex hydroxide by coprecipitation;
b) mixing the composite hydroxide and the lithium compound obtained in step a); And
c) calcining the mixture obtained in step b); a method of manufacturing a cathode active material for a secondary battery comprising a metal composite oxide represented by the following Chemical Formula 1.
[Formula 1]
Li (1 + a) Ni x Co [(1-a) (1-y) -x] Mn [a + (1-a) y] M d O (a + 2)
(In the above formula, 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8, M is one or more elements of Al, Mg, Cr, Fe, V, Ti, and 0≤d≤0.05.)
제 1항에 있어서,
상기 a) 공침법으로 복합수산화물을 제조하는 단계에서 상기 착제는 암모니아이고, 상기 니켈염, 코발트염, 망간염을 포함하는 금속염과 상기 암모니아는 중량비가 1:0.1 내지 1:2.5가 되도록 혼합하며, pH는 10.5 내지 12.5의 범위를 유지하도록 하는 것을 특징으로 하는 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법.
The method of claim 1,
In the step a) of preparing a complex hydroxide by coprecipitation, the complex is ammonia, and the metal salt including the nickel salt, cobalt salt and manganese salt and the ammonia are mixed so that the weight ratio is 1: 0.1 to 1: 2.5, pH is a method for producing a positive electrode active material for a secondary battery comprising a metal composite oxide, characterized in that to maintain the range of 10.5 to 12.5.
제 1항에 있어서,
상기 a) 공침법으로 복합수산화물을 제조하는 단계에서는 분산제를 니켈염, 코발트염, 망간염, 착제의 총중량 대비 0.05 내지 10wt% 투입하는 것을 특징으로 하는 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법.
The method of claim 1,
The a) of the composite hydroxide prepared by the co-precipitation method of the cathode active material for a secondary battery comprising a metal composite oxide, characterized in that the dispersant is added to the nickel salt, cobalt salt, manganese salt, 0.05 to 10wt% of the total weight of the complex. Manufacturing method.
제 3항에 있어서,
상기 분산제는 Sodium dodecyle sulphate(SDS), Cetyl trimethylammonium bromide (CTAB), alkyltrimethylammonium salts, Cetylpyridinium chloride (CPC), Polyethoxylated tallow amine (POEA), Benzalkonium chloride (BAC), Benzethonium chloride (BZT), Dodecyl betaine, Cocamidopropyl betaine, Coco ampho glycinate, Polyacrylate, Alkyl poly(ethylene oxide), Alkylphenol poly(ethylene oxide), polyvinyl alcohol (PVA), Copolymers of poly(ethylene oxide), poly(propylene oxide), Octyl glucoside, Decyl maltoside, Cetyl alcohol, Oleyl alcohol, Cocamide MEA, cocamide DEA, PEG, 및 Polysorbates로 이루어진 그룹에서 선택되는 것을 특징으로 하는 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법.
.
The method of claim 3, wherein
The dispersant is sodium dodecyle sulphate (SDS), Cetyl trimethylammonium bromide (CTAB), alkyltrimethylammonium salts, Cetylpyridinium chloride (CPC), Polyethoxylated tallow amine (POEA), Benzalkonium chloride (BAC), Benzethonium chloride (BZT), Cocami betaine , Coco ampho glycinate, Polyacrylate, Alkyl poly (ethylene oxide), Alkylphenol poly (ethylene oxide), polyvinyl alcohol (PVA), Copolymers of poly (ethylene oxide), poly (propylene oxide), Octyl glucoside, Decyl maltoside, Cetyl alcohol, Oleyl alcohol, Cocamide MEA, cocamide DEA, PEG, and a method for producing a cathode active material for a secondary battery comprising a metal composite oxide, characterized in that selected from the group consisting of Polysorbates.
.
제 3항에 있어서,
상기 분산제는 폴리비닐알코올인 것을 특징으로 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법.
The method of claim 3, wherein
The dispersant is a polyvinyl alcohol, characterized in that the manufacturing method of the positive electrode active material for a secondary battery comprising a metal composite oxide.
하기 화학식 1로 표현되는 금속복합산화물을 포함하는 2차 전지용 양극 활물질.
[화학식 1]
Li(1+a)NixCo[(1-a)(1-y)-x]Mn[a+(1-a)y] MdO(a+2)
(상기 식에서 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8이고, M은 Al, Mg, Cr, Fe, V, Ti 중 하나 이상의 원소이며, 0≤d≤0.05이다.)
A cathode active material for a secondary battery comprising a metal composite oxide represented by the following Formula 1.
[Formula 1]
Li (1 + a) Ni x Co [(1-a) (1-y) -x] Mn [a + (1-a) y] M d O (a + 2)
(In the above formula, 0.01≤a≤0.30, 0.01≤x≤0.6, 0.01≤y≤0.8, M is one or more elements of Al, Mg, Cr, Fe, V, Ti, and 0≤d≤0.05.)
제 6항에 있어서,
상기 금속복합산화물을 포함하는 2차 전지용 양극 활물질은 1차 입자들이 적층되어 구형의 2차 입자를 이루며, 상기 1차 입자의 최장경을 D1, 최단경을 D2라고 할 때 종횡비인 D1/D2가 1 내지 3.5의 범위인 것을 특징으로 하는 금속복합산화물을 포함하는 2차 전지용 양극 활물질.
The method of claim 6,
In the cathode active material for a secondary battery including the metal composite oxide, primary particles are stacked to form spherical secondary particles, and when the longest diameter of the primary particles is D1 and the shortest diameter is D2, the aspect ratio D1 / D2 is 1. Cathode active material for a secondary battery comprising a metal composite oxide, characterized in that the range of to 3.5.
제 6항에 있어서,
상기 금속복합산화물을 포함하는 2차 전지용 양극 활물질은 입경이 1 내지 10㎛ 인 것을 특징으로 하는 금속복합산화물을 포함하는 2차 전지용 양극 활물질.
The method of claim 6,
The cathode active material for a secondary battery including the metal composite oxide has a particle size of 1 to 10 μm, the cathode active material for a secondary battery comprising a metal composite oxide.
KR1020100032508A 2010-04-09 2010-04-09 Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same KR101166334B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100032508A KR101166334B1 (en) 2010-04-09 2010-04-09 Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same
PCT/KR2010/005732 WO2011126182A1 (en) 2010-04-09 2010-08-26 Method for manufacturing a cathode active material for a secondary battery including a metal composite oxide, and cathode active material for a second battery including a metal composite oxide manufactured by said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100032508A KR101166334B1 (en) 2010-04-09 2010-04-09 Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same

Publications (2)

Publication Number Publication Date
KR20110113241A true KR20110113241A (en) 2011-10-17
KR101166334B1 KR101166334B1 (en) 2012-07-18

Family

ID=44763101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100032508A KR101166334B1 (en) 2010-04-09 2010-04-09 Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same

Country Status (2)

Country Link
KR (1) KR101166334B1 (en)
WO (1) WO2011126182A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328381B1 (en) * 2011-12-13 2013-11-13 비나텍주식회사 Manufacturing method of LiFePO4 cathode active material for lithium battery and LiFePO4 cathode active material using the method
CN103872311A (en) * 2012-12-12 2014-06-18 三星Sdi株式会社 Positive active material, positive electrode and rechargeable lithium battery including same
EP2744022A1 (en) * 2012-12-12 2014-06-18 Samsung SDI Co., Ltd. Positive active material for rechargeable Lithium Battery
KR101426148B1 (en) * 2012-10-18 2014-08-01 삼성정밀화학 주식회사 Lithium-metal oxide and lithium rechargeable battery using the same
KR20160086228A (en) * 2015-01-09 2016-07-19 주식회사 에코프로비엠 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
WO2021112434A3 (en) * 2019-12-04 2021-07-22 (주)이엠티 Cathode active material for lithium ion secondary battery, having excellent high-temperature storage characteristics, lithium ion secondary battery comprising same, and manufacturing method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606696A (en) * 2013-11-15 2014-02-26 江苏天鹏电源有限公司 High-capacity and low-energy-consumption lithium ion battery
KR101630209B1 (en) 2014-03-05 2016-06-15 전자부품연구원 Positive active material, lithium secondary battery having the same and manufacturing method thereof
CN115004413A (en) * 2021-09-15 2022-09-02 宁德新能源科技有限公司 Electrochemical device and electronic device
CN114956202B (en) * 2022-04-28 2023-11-14 南通金通储能动力新材料有限公司 Precursor of sodium ion positive electrode material, preparation method and positive electrode material
KR20240065526A (en) * 2022-10-31 2024-05-14 주식회사 에코프로비엠 positive electrode active material for sodium secondary battery, method for preparing the same and sodium secondary battery including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822012B1 (en) * 2006-03-30 2008-04-14 한양대학교 산학협력단 Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same
KR100797099B1 (en) * 2006-06-09 2008-01-22 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP4972624B2 (en) * 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 Positive electrode material for lithium secondary battery and lithium secondary battery using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328381B1 (en) * 2011-12-13 2013-11-13 비나텍주식회사 Manufacturing method of LiFePO4 cathode active material for lithium battery and LiFePO4 cathode active material using the method
KR101426148B1 (en) * 2012-10-18 2014-08-01 삼성정밀화학 주식회사 Lithium-metal oxide and lithium rechargeable battery using the same
CN103872311A (en) * 2012-12-12 2014-06-18 三星Sdi株式会社 Positive active material, positive electrode and rechargeable lithium battery including same
EP2744021A1 (en) * 2012-12-12 2014-06-18 Samsung SDI Co., Ltd. Positive active material, positive electrode and rechargeable lithium battery including same
EP2744022A1 (en) * 2012-12-12 2014-06-18 Samsung SDI Co., Ltd. Positive active material for rechargeable Lithium Battery
US9478808B2 (en) 2012-12-12 2016-10-25 Samsung Sdi Co., Ltd. Positive active material, positive electrode and rechargeable lithium battery including same
KR20160086228A (en) * 2015-01-09 2016-07-19 주식회사 에코프로비엠 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
WO2021112434A3 (en) * 2019-12-04 2021-07-22 (주)이엠티 Cathode active material for lithium ion secondary battery, having excellent high-temperature storage characteristics, lithium ion secondary battery comprising same, and manufacturing method therefor

Also Published As

Publication number Publication date
KR101166334B1 (en) 2012-07-18
WO2011126182A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
KR101166334B1 (en) Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same
US10297822B2 (en) Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
EP3024070B1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
EP3557668A1 (en) Ternary material and preparation method therefor, battery slurry, positive electrode, and lithium battery
JP4756715B2 (en) Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
EP2219251B1 (en) Active material for lithium rechargeable battery and lithium rechargeable battery
US10074856B2 (en) Lithium-rich manganese-based positive electrode material and preparation method therefor
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
KR101313575B1 (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
KR101470092B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
JPWO2002086993A1 (en) Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN106910887B (en) Lithium-rich manganese-based positive electrode material, preparation method thereof and lithium ion battery containing positive electrode material
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
EP2399311A1 (en) Non-homogeneous positive electrode materials combining high safety and high power in a li rechargeable battery
KR101802517B1 (en) Cathod active material, method for preparing the same, lithium secondary battery comprising the same
JP2007299668A (en) Positive electrode active material for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using it
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
JP3355102B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR20150059820A (en) Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
EP2771937A1 (en) High capacity lithium-ion electrochemical cells and methods of making same
KR101986165B1 (en) A transition metal composite precursor and cathode materials for secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160704

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170622

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180704

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190704

Year of fee payment: 8