JP3355102B2 - Positive active material for lithium secondary battery and secondary battery using the same - Google Patents

Positive active material for lithium secondary battery and secondary battery using the same

Info

Publication number
JP3355102B2
JP3355102B2 JP33479796A JP33479796A JP3355102B2 JP 3355102 B2 JP3355102 B2 JP 3355102B2 JP 33479796 A JP33479796 A JP 33479796A JP 33479796 A JP33479796 A JP 33479796A JP 3355102 B2 JP3355102 B2 JP 3355102B2
Authority
JP
Japan
Prior art keywords
powder
active material
secondary battery
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33479796A
Other languages
Japanese (ja)
Other versions
JPH10162830A (en
Inventor
幸雄 平岡
明伸 飯川
将 西佐古
彦一 張替
有一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18281341&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3355102(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP33479796A priority Critical patent/JP3355102B2/en
Publication of JPH10162830A publication Critical patent/JPH10162830A/en
Application granted granted Critical
Publication of JP3355102B2 publication Critical patent/JP3355102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用正極活物質およびそれを用いた二次電池に関する。
The present invention relates to a positive electrode active material for a lithium secondary battery and a secondary battery using the same.

【0002】[0002]

【従来の技術】近年、エレクトロニクス機器の小型高性
能化とコードレス化が進み、それらの駆動電源として二
次電池(充放電サイクルが可能な蓄電池)に関心が集ま
っており、特にリチウム二次電池は高電圧高エネルギー
密度を有する電池として期待が大きい。
2. Description of the Related Art In recent years, miniaturization and high performance of cordless electronic devices have progressed, and attention has been paid to secondary batteries (storage batteries capable of charge / discharge cycles) as drive power sources for these devices. Expectations are high for batteries with high voltage and high energy density.

【0003】このような電池の正極活物質としてはリチ
ウムをインターカレーション、デインターカレーション
することのできる層状化合物、例えばLiCoO2やL
iNiO2などLiと遷移金属を主体とする複合酸化物
(以下リチウム複合酸化物と記す)が用いられる。すな
わちリチウム複合酸化物、例えばLiNiO2を製造す
るにはLi塩とNi化合物とを混合した混合粉体を75
0℃程度の温度で所定時間、酸素気流中で焼成すること
により合成することができる。
As a positive electrode active material of such a battery, a layered compound capable of intercalating and deintercalating lithium, for example, LiCoO 2 or L
A composite oxide mainly composed of Li and a transition metal such as iNiO 2 (hereinafter referred to as lithium composite oxide) is used. That is, in order to produce a lithium composite oxide, for example, LiNiO 2 , a mixed powder obtained by mixing a Li salt and a Ni compound is prepared by mixing 75 powders.
It can be synthesized by firing at a temperature of about 0 ° C. for a predetermined time in an oxygen stream.

【0004】以上のような方法でLiインターカレーシ
ョン型の結晶構造を発達させ、Liイオンの移動を容易
にして電池容量を高める工夫がなされている。
The above-described method has been devised to develop a Li-intercalation type crystal structure, facilitate the movement of Li ions, and increase the battery capacity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、Li二
次電池の初期の高容量化のための結晶構造を得る条件、
例えば出発原料や焼成条件の検討はされているが、結晶
構造発達の阻害元素の検討はなされておらず、また、高
温環境下で充放電サイクルを行った場合でも容量低下が
起きにくくするために正極活物質となるリチウム複合酸
化物の粒度分布が適正なものを使用することが特開平5
−151998号により、さらに自己放電率を低減させ
るために正極活物質の粒径を大きくすることが特開平5
−290849号によりそれぞれ提案されているもの
の、二次電池としての保存中の容量低下を抑制する有効
な対策も少ない。
However, the conditions for obtaining a crystal structure for initially increasing the capacity of a Li secondary battery are as follows:
For example, starting materials and firing conditions have been studied, but no study has been made on the elements that hinder the development of the crystal structure.Moreover, in order to make it difficult for the capacity to decrease even when a charge / discharge cycle is performed in a high-temperature environment. It is disclosed in Japanese Patent Application Laid-Open No. HEI 5 (1993) -510 that a lithium composite oxide serving as a positive electrode active material has a proper particle size distribution.
According to Japanese Patent Application Laid-Open No. 15-1998, it is disclosed in Japanese Unexamined Patent Application Publication No.
However, there are few effective countermeasures for suppressing a decrease in capacity during storage as a secondary battery.

【0006】従来、初期容量が高く保存性に優れたLi
CoO2粉末の合成は比較的容易であったが、LiNi
2粉末あるいはLiNi1-xx2粉末[ただし、0<
x≦0.4,M=Co,Mn,B,Al,V,P,M
g,Tiの1種以上]の合成は困難であったことから、
LiNiO2やLiNi1-xx2粉末[ただし、0<x
≦0.4,M=Co,Mn,B,Al,V,P,Mg,
Tiの1種以上]の粉末は初期容量の再現性が悪く、こ
れらを用いた二次電池では保存中の容量低下が大きかっ
た。
Conventionally, Li which has a high initial capacity and excellent storage stability
Although the synthesis of CoO 2 powder was relatively easy, LiNi
O 2 powder or LiNi 1-x M x O 2 powder [where 0 <
x ≦ 0.4, M = Co, Mn, B, Al, V, P, M
g, Ti).
LiNiO 2 or LiNi 1-x M x O 2 powder [where 0 <x
≦ 0.4, M = Co, Mn, B, Al, V, P, Mg,
Powder of Ti) is poor in the reproducibility of the initial capacity, and the secondary battery using these powders has a large decrease in capacity during storage.

【0007】したがって本発明の目的は、二次電池に組
み込まれた場合に、初期の高容量化が期待されるか、保
存中の容量低下が抑制されるリチウム二次電池用正極活
物質およびそれを用いた二次電池を提供することにあ
る。
Accordingly, an object of the present invention is to provide a positive electrode active material for a lithium secondary battery, which is expected to have an initial high capacity when incorporated in a secondary battery, or which suppresses a decrease in capacity during storage, and a battery therefor. And a secondary battery using the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく研究の結果、正極活物質となるリチウム複合
酸化物中の主として出発原料から導入された硫黄分があ
る量を超えると、該複合酸化物の結晶構造発達の阻害要
因となって電池の初期容量の低下を引き起こすこと、ま
た電池の保存性の観点から該複合酸化物の比表面積は小
さい程よく、一方0.5m2/gを超えると電解液との
反応性が大きくなり保存中の容量が低下することを見い
だし本発明に到達した。
Means for Solving the Problems As a result of research to achieve the above object, the present inventors have found that when a sulfur component mainly introduced from a starting material in a lithium composite oxide serving as a positive electrode active material exceeds a certain amount. it causes a decrease in the initial capacity of the battery becomes an impediment to the crystal structure development of the composite oxide, also the specific surface area of the composite oxide from the viewpoint of the storage stability of the battery is small moderately, whereas 0.5 m 2 / When the amount exceeds g, it was found that the reactivity with the electrolytic solution was increased and the capacity during storage was reduced, and the present invention was reached.

【0009】 すなわち本発明は第1に、LiNiO
粉末あるいはLiNi1−x粉末[ただし、0
<x≦0.4、M=Co、Mn、B、Al、V、P、M
g、Tiの1種以上]中の硫黄含有量が0.5重量%以
下であることを特徴とするリチウム二次電池用正極活物
質:第2に、LiNiO粉末あるいはLiNi1−x
粉末[ただし、0<x≦0.4、M=Co、M
n、B、Al、V、P、Mg、Tiの1種以上]中の硫
黄含有量が0.5重量%以下であり、かつ該粉末の比表
面積が0.06〜0.46m/gであることを特徴と
するリチウム二次電池用正極活物質:第3に、前記硫黄
含有量が0.01重量%以下である、第1または2に記
載のリチウム二次電池用正極活物質:第4に、硫黄含有
量が0.5重量%以下のLiNiO粉末あるいはLi
Ni1−x粉末[ただし、0<x≦0.4、M
=Co、Mn、B、Al、V、P、Mg、Tiの1種以
上]を正極活物質とし、これに導電剤および結着剤を混
練して得られる正極合剤を組み込んでなることを特徴と
するリチウム二次電池:第5に、硫黄含有量が0.5重
量%以下であり、かつ比表面積が0.06〜0.46m
/gであるLiNiO粉末あるいはLiNi1−x
粉末[ただし、0<x≦0.4、M=Co、M
n、B、Al、V、P、Mg、Tiの1種以上]を正極
活物質とし、これに導電剤および結着剤を混練して得ら
れる正極合剤を組み込んでなることを特徴とするリチウ
ム二次電池:第6に、前記硫黄含有量が0.01重量%
以下である、第4または5に記載のリチウム二次電池を
提供するものである。
That is, the present invention firstly provides LiNiO 2
Powder or LiNi 1-x M x O 2 powder [0
<X ≦ 0.4, M = Co, Mn, B, Al, V, P, M
g, one or more of Ti] in which the sulfur content is 0.5% by weight or less. Secondly, LiNiO 2 powder or LiNi 1-x
M x O 2 powder [where 0 <x ≦ 0.4, M = Co, M
at least one of n, B, Al, V, P, Mg, and Ti] and the powder has a specific surface area of 0.06 to 0.46 m 2 / g. Thirdly, the positive electrode active material for a lithium secondary battery according to the first or second item, wherein the sulfur content is 0.01% by weight or less: Fourth, LiNiO 2 powder having a sulfur content of 0.5% by weight or less or LiNiO 2 powder
Ni 1-x M x O 2 powder [where 0 <x ≦ 0.4, M
= At least one of Co, Mn, B, Al, V, P, Mg, and Ti] as a positive electrode active material, and incorporating a positive electrode mixture obtained by kneading a conductive agent and a binder. Fifth, the lithium secondary battery has a sulfur content of 0.5% by weight or less and a specific surface area of 0.06 to 0.46 m.
2 / g LiNiO 2 powder or LiNi 1-x
M x O 2 powder [where 0 <x ≦ 0.4, M = Co, M
at least one of n, B, Al, V, P, Mg, and Ti] as a positive electrode active material, and incorporating a positive electrode mixture obtained by kneading a conductive agent and a binder. Lithium secondary battery: Sixth, the sulfur content is 0.01% by weight.
The present invention provides the following lithium secondary battery according to the fourth or fifth aspect.

【0010】[0010]

【発明の実施の形態】電池内のリチウムはイオンあるい
は錯体などの状態で移動し、充電時に正極活物質から抜
け出て電解液、電解質を通って負極にインサーション
し、放電時はこの逆の反応を生じる。
BEST MODE FOR CARRYING OUT THE INVENTION Lithium in a battery moves in the form of ions or complexes, escapes from the positive electrode active material during charging, inserts into the negative electrode through the electrolyte and electrolyte, and reverses during discharging. Is generated.

【0011】活物質粉末は一次粒子あるいは一次粒子の
集合した二次粒子を形成し、一次粒子は個々の例えばL
iNiO2結晶粒子である。したがって、充放電で一次
粒子内のリチウムは結晶格子のインターカレーションし
た層をイオンの状態で固体拡散移動するのである。
The active material powder forms primary particles or secondary particles in which the primary particles are aggregated.
iNiO 2 crystal particles. Therefore, the lithium in the primary particles undergoes solid diffusion movement in the state of ions in the intercalated layer of the crystal lattice during charge and discharge.

【0012】本発明者らの研究によれば、硫黄分が多い
リチウム複合酸化物の粒子は結晶発達の過程で阻害され
ており、健全な結晶構造を持っておらず、反対に硫黄分
の少ない粉末の粒子は結晶構造が健全である。硫黄分は
製造工程途中からの混入は極まれであり、ほとんど出発
原料から存在する場合が多く、また熱処理によっては除
去し難いものであることから、リチウム複合酸化物には
硫黄分の少ない原料を使用するか、洗浄によって十分除
去することが必要である。洗浄は一般的な洗浄方法が適
用可能であり、デカンテーション、あるいはヌッチェ、
ブフナー漏斗による自然濾過、吸引濾過によるもの、フ
ィルタープレスあるいは遠心分離機等によるもの等が適
用できるがその他の装置、方法等を適用してもよい。
According to the study of the present inventors, lithium composite oxide particles having a high sulfur content are hindered in the course of crystal development, do not have a sound crystal structure, and conversely have a low sulfur content. The powder particles have a sound crystal structure. Sulfur is rarely mixed in the middle of the manufacturing process, and is almost always present from the starting material, and it is difficult to remove it by heat treatment. Or it must be sufficiently removed by washing. For cleaning, general cleaning methods can be applied, such as decantation, Nutsche,
Natural filtration by a Buchner funnel, suction filtration, filtration by a filter press, a centrifuge, or the like can be used, but other devices and methods may be applied.

【0013】本発明では硫黄分が0.5重量%以下のL
iNiO2粉末としたのは0.5重量%を越えると第2
相が確認されるとともに、電池に組み込まれた場合容量
低下が起こるからである。
In the present invention, L having a sulfur content of 0.5% by weight or less is used.
The iNiO 2 powder is used when the content exceeds 0.5% by weight.
This is because the phases are confirmed and the capacity is reduced when incorporated into the battery.

【0014】また発明者らの研究によれば、リチウム複
合酸化物粉末の比表面積は大きいほど電解液との接触が
多く、保存中に著しい容量低下を引き起こすので、電解
液との反応性により上限を0.5m2/gとし、このと
きの粒子径は出発原料や焼成条件により差は見られる
が、ほぼレーザー平均粒径で5〜10μm程度であり、
保存性に関しては比表面積は小さい程よいのであるが自
ら限度があり0.01m2/gを下限とする。
According to the study by the inventors, the larger the specific surface area of the lithium composite oxide powder, the more contact with the electrolytic solution and the remarkable decrease in capacity during storage, so the upper limit depends on the reactivity with the electrolytic solution. Is set to 0.5 m 2 / g, and the particle size at this time varies depending on the starting material and the firing conditions, but is approximately 5 to 10 μm as a laser average particle size.
As for the preservability, the smaller the specific surface area, the better, but there is a limit by itself, and the lower limit is 0.01 m 2 / g.

【0015】ここで注目すべきは硫黄分の少ない原料を
使用した場合は多い場合に比較してリチウム化合物とニ
ッケル化合物との反応性が良く、健全な結晶構造を作り
易いとともに、粒子の成長が促進され、一次粒子径の増
大と比表面積の低減をもたらすことである。
It should be noted here that when a raw material containing a small amount of sulfur is used, the reactivity between the lithium compound and the nickel compound is better than when the raw material containing a large amount of sulfur is used. Promoted to increase the primary particle size and reduce the specific surface area.

【0016】電池特性を改善する添加元素Mとしては、
Co,Mn,B,Al,V,P,Mg,Ti,などが挙
げられ、これらを必要に応じ組み合わせても構わない。
xの範囲を0<x≦0.4としたのは、電池としての様
々な特性を改善するための添加元素としては、40%も
あれば十分とされているからである。
As the additive element M for improving battery characteristics,
Co, Mn, B, Al, V, P, Mg, Ti, etc. may be mentioned, and these may be combined as needed.
The reason for setting the range of x to 0 <x ≦ 0.4 is that as much as 40% is sufficient as an additive element for improving various characteristics as a battery.

【0017】以上により、硫黄分を低減し、比表面積を
低減した例えばLiNiO2粉末あるいはLiNi1-x
x2粉末[ただし、0<x≦0.4,M=Co,Mn,
B,Al,V,P,Mg,Tiの1種以上]は電池に組
み込んだ場合、高容量でかつ保存性に優れる正極活物質
となるのである。
As described above, for example, LiNiO 2 powder or LiNi 1-x M having a reduced sulfur content and a reduced specific surface area
x O 2 powder [where 0 <x ≦ 0.4, M = Co, Mn,
B, Al, V, P, Mg, Ti] is a positive electrode active material having a high capacity and excellent storage stability when incorporated in a battery.

【0018】なお、硫黄分の多い場合でも比表面積の低
減は可能であるが、焼成温度を上げたり、焼成時間を延
長する必要があり、高温での結晶構造の崩壊や容量低下
につながるほか、工業化におけるコスト面で不利とな
る。
Although the specific surface area can be reduced even when the sulfur content is high, it is necessary to raise the firing temperature or extend the firing time, which leads to the collapse of the crystal structure and the reduction of the capacity at a high temperature. It is disadvantageous in terms of cost in industrialization.

【0019】本発明における正極活物質の製造条件につ
いて述べる。原料としてはLi,Ni,Co,Mn,
B,Al,V,P,Mg,Tiなどの酸化物、水酸化
物、無機酸塩、有機酸塩が使用できる。共析沈殿法また
は同様手法において生成する化合物も焼成できる。混合
は攪拌機付混合機(アトライター、自由型混合機、コン
クリートミキサー)、回転容器式(ポットミル、V型混
合機)が使用できるが他の型式の機械であってもよい。
原料混合物として成形等の工程を経て焼成される。成形
は以下の方法が使用できるが、形状によっては他の方法
でもよい。(A)プレス(一軸プレス、打錠機、静水圧
プレス、振動プレス)、(B)ロールブリケッター、
(C)押出機、(D)転動造粒機。成形体の形状は球、
レンズ、棒状、板状、麺状、が一般的な技術で製造可能
であるが、その他の形状でもよい。焼成条件は800〜
1000℃、保持時間は特に制限はないが、好ましくは
2〜15時間程度で酸化雰囲気中(酸素+窒素、空気を
含む)、酸素気流中で大気圧〜10気圧の条件で熱処理
される。ここで圧力は、800℃程度の低温側では大気
圧以上であればよいが高温側では圧力が高い程よく、装
置上可能ならば10気圧を越えても構わない。
The conditions for producing the positive electrode active material in the present invention will be described. As raw materials, Li, Ni, Co, Mn,
Oxides such as B, Al, V, P, Mg, and Ti, hydroxides, inorganic acid salts, and organic acid salts can be used. Compounds produced by eutectoid precipitation or similar techniques can also be calcined. For mixing, a mixer with a stirrer (attritor, free-type mixer, concrete mixer) or a rotary container type (pot mill, V-type mixer) can be used, but other types of machines may be used.
It is fired through a process such as molding as a raw material mixture. The following method can be used for molding, but other methods may be used depending on the shape. (A) Press (uniaxial press, tablet press, hydrostatic press, vibratory press), (B) Roll briquetter,
(C) an extruder, (D) a rolling granulator. The shape of the molded body is a sphere,
Lenses, rods, plates, and noodles can be manufactured by general techniques, but other shapes are also possible. Firing conditions are 800 ~
The holding time at 1000 ° C. is not particularly limited, but the heat treatment is preferably performed for about 2 to 15 hours in an oxidizing atmosphere (including oxygen + nitrogen and air) in an oxygen stream at atmospheric pressure to 10 atm. Here, the pressure may be higher than the atmospheric pressure on the low temperature side of about 800 ° C., but is preferably higher on the high temperature side, and may exceed 10 atm if possible on the apparatus.

【0020】原料中のLi分は焼成によって0.3%程
度揮発するので、秤量時に補正しても良く、また焼成後
の状態として外観は黒色の塊状を呈するが、この塊を砕
解し、分級することによって必要な粒径とする。またL
iと他の陽イオンとの成分比は、モル比で1/1でなく
ても1±0.05/1の範囲であれば同様の効果がえら
れる。
Since the Li content in the raw material is volatilized by baking at about 0.3%, it may be corrected at the time of weighing. In addition, the appearance after baking has a black mass, which is broken up. The required particle size is obtained by classification. Also L
The same effect can be obtained as long as the component ratio of i to other cations is in the range of 1 ± 0.05 / 1 even if the molar ratio is not 1/1.

【0021】得られたLiNiO2粉末あるいはLiN
1-xx2粉末[ただし、0<x≦0.4,M=C
o,Mn,B,Al,V,P,Mg,Tiの1種以上]
中の硫黄分はJIS Z2616赤外線吸収法による方
法で測定し、比表面積はBET法(Brunauer,Emmet & T
eller 法)を用いて測定した。
The obtained LiNiO 2 powder or LiN
i 1-x M x O 2 powder [where 0 <x ≦ 0.4, M = C
o, Mn, B, at least one of Al, V, P, Mg, Ti]
The sulfur content in the sample is measured by a method according to JIS Z2616 infrared absorption method, and the specific surface area is determined by a BET method (Brunauer, Emmet & T
eller method).

【0022】電池の作成には、LiNiO2あるいはL
iNi1-xx2粉末[ただし、0<x≦0.4,M=
Co,Mn,B,Al,V,P,Mg,Tiの1種以
上]を正極活物質として用い、導電剤として黒鉛、結着
剤としてポリテトラフルオロエチレン(PTFE)を重
量比87:8:5の割合で混練し、成形後、圧延した。
For the production of the battery, LiNiO 2 or LNiO 2
iNi 1-x M x O 2 powder [where 0 <x ≦ 0.4, M =
At least one of Co, Mn, B, Al, V, P, Mg, and Ti] as a positive electrode active material, graphite as a conductive agent, and polytetrafluoroethylene (PTFE) as a binder at a weight ratio of 87: 8: The mixture was kneaded at a ratio of 5 and formed and rolled.

【0023】負極にはハードカーボンを使用し、セパレ
ーターはポリプロピレンのフィルムを切り抜いたものを
使用し、電解液には炭酸エチレンと炭酸ジエチレンを1
対1の体積比で混合した液に電解質としてLiPF6
1mol/l濃度で溶解させたものを用いた。上記の如
くして作成した試験電池の一例の模式断面図を図1に示
した。図中1はステンレスケース、2はガスケット、3
は封口板、4は負極、5は正極、6はセパレーター、7
は負極集電体、8は正極集電体を示す。以下の実施例及
び比較例における電池試験はこの電池を用いて行った。
Hard carbon was used for the negative electrode, a polypropylene film cut out of a polypropylene was used for the separator, and ethylene carbonate and diethylene carbonate were used as the electrolyte.
A solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l as an electrolyte in a liquid mixed at a volume ratio of one to one was used. FIG. 1 shows a schematic cross-sectional view of an example of the test battery prepared as described above. In the figure, 1 is a stainless steel case, 2 is a gasket, 3
Is a sealing plate, 4 is a negative electrode, 5 is a positive electrode, 6 is a separator, 7
Denotes a negative electrode current collector, and 8 denotes a positive electrode current collector. Battery tests in the following Examples and Comparative Examples were performed using this battery.

【0024】充放電試験は0.5mA/cm2の電流密
度で行い、4.2Vまで充電し、その後2.7Vまで放
電することを3回繰り返し、その1回目の放電容量を初
期放電容量とし、3回目の放電容量を保存前の容量と
し、60℃で2週間保持した後に保存前と同一条件にて
充放電を3回繰り返し、3回目の放電容量を保存後の容
量とした。
The charge / discharge test was performed at a current density of 0.5 mA / cm 2 , and charging to 4.2 V and then discharging to 2.7 V were repeated three times, and the first discharge capacity was used as the initial discharge capacity. The third discharge capacity was defined as the capacity before storage, and after 2 weeks at 60 ° C., charge and discharge were repeated three times under the same conditions as before storage, and the third discharge capacity was defined as the capacity after storage.

【0025】以下、実施例をもって詳細に説明するが、
本発明の範囲はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples.
The scope of the present invention is not limited to these.

【0026】[0026]

【実施例1】Ni原料としてNi(NO32・6H2
とNaOHから中和反応により合成し、得られた沈殿を
ブフナー漏斗を用い、Ni(OH)21kgに対して2
0リットルの割合の水で洗浄してNi(OH)2粉末を
得た後、この粉末中の元素Sを測定したところ0.01
重量%以下であった。次いでこのNi(OH)2粉末と
Li原料としてのLiOH・H2O粉末をLi/Niが
モル比で1/1となるように混合し、金型プレスにより
1t/cm2の圧力で成形してペレットにした。
Example 1 Ni (NO 3 ) 2 .6H 2 O as Ni raw material
And NaOH by a neutralization reaction, and the obtained precipitate was subjected to 2 to 1 kg of Ni (OH) 2 using a Buchner funnel.
After washing with water at a rate of 0 liter to obtain Ni (OH) 2 powder, the element S in the powder was measured.
% By weight or less. Next, this Ni (OH) 2 powder and LiOH · H 2 O powder as a Li material are mixed so that the molar ratio of Li / Ni is 1/1, and the mixture is molded by a die press under a pressure of 1 t / cm 2. Into pellets.

【0027】このペレットを800℃で2時間純酸素気
流中1気圧で焼成した後、砕解してLiNiO2粉末を
得た。得られた粉末の元素Sを測定したところ0.01
重量%以下であった。このLiNiO2粉末を活物質と
して、これに導電材および結着剤を混合し成形して正極
合材とした後、電池に組み込んで電池容量を評価した結
果を表1に示す。
The pellets were fired at 800 ° C. for 2 hours in a pure oxygen stream at 1 atm and then pulverized to obtain LiNiO 2 powder. When the element S of the obtained powder was measured, it was 0.01
% By weight or less. After using this LiNiO 2 powder as an active material, a conductive material and a binder were mixed and formed into a positive electrode mixture, and incorporated into a battery to evaluate the battery capacity, Table 1 shows the results.

【0028】[0028]

【実施例2】Ni原料としてNiSO4・6H2OとNa
OHから中和反応により合成したNi(OH)2粉末の
洗浄の程度を変えて3種類のNi(OH)2粉末を用意
した以外の工程は実施例1と同じ要領で行い、電池の初
期容量を調べた結果を表1に示す。
As Example 2 Ni raw material NiSO 4 · 6H 2 O and Na
Except for changing the degree of washing of Ni (OH) 2 powder synthesized by neutralization reaction from OH and preparing three types of Ni (OH) 2 powder, the steps were performed in the same manner as in Example 1, and the initial capacity of the battery was changed. Are shown in Table 1.

【0029】[0029]

【比較例1】実施例2と同じくNi原料としてNiSO
4・6H2OとNaOHから中和反応により合成したNi
(OH)2粉末について、洗浄の程度を弱くした粉末を
用いた以外は実施例2と同じ要領でLiNiO2粉末を
生成させ元素Sを調べたところ0.57重量%であっ
た。この粉末を用いた電池の初期容量を調べた結果を表
1に示す。
Comparative Example 1 As in Example 2, NiSO was used as a Ni raw material.
4 · 6H 2 O and Ni synthesized by neutralization reaction from NaOH
Regarding the (OH) 2 powder, a LiNiO 2 powder was formed in the same manner as in Example 2 except that a powder having a reduced degree of washing was used, and the element S was determined to be 0.57% by weight. Table 1 shows the results of examining the initial capacity of a battery using this powder.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【実施例3】Ni原料としてNi(NO32・6H2
とNH4OHから中和反応により合成したNi(OH)2
粉末およびLi原料としてのLiOH・H2O粉末とを
Li/Niがモル比で1/1になるように混合した後、
金型プレスにより2t/cm2の圧力で成形してペレッ
トとし、これを焼成温度800℃、860℃および93
0℃の3種類にそれぞれ純酸素気流中6気圧で10時間
焼成し、砕解して3種類のLiNiO2粉末を得た。こ
れらのLiNiO2粉末の比表面積を測定するととも
に、これらを用いた電池の保存率を調べ、その結果を表
2に示す。
Embodiment 3 Ni (NO 3 ) 2 .6H 2 O as Ni raw material
Ni (OH) 2 synthesized by neutralization reaction with NH 4 OH
After mixing the powder and LiOH · H 2 O powder as a Li raw material such that the molar ratio of Li / Ni is 1/1,
It is formed into a pellet by pressing at a pressure of 2 t / cm 2 by a die press.
Each of the three types was heated at 6 ° C. for 10 hours in a pure oxygen stream at 10 ° C. and crushed to obtain three types of LiNiO 2 powder. The specific surface areas of these LiNiO 2 powders were measured, and the storage rates of batteries using them were examined. The results are shown in Table 2.

【0032】[0032]

【比較例2】実施例3と同様にして得たNiおよびLi
原料を用いて750℃10時間焼成した以外は実施例3
と同じ工程でLiNiO2粉末を得た。実施例3と同様
に比表面積および保存率を表2に示す。
Comparative Example 2 Ni and Li obtained in the same manner as in Example 3.
Example 3 except that the raw materials were fired at 750 ° C. for 10 hours.
LiNiO 2 powder was obtained in the same process as described above. Table 2 shows the specific surface area and the storage rate in the same manner as in Example 3.

【0033】[0033]

【比較例3】実施例3と同様にNi(NO32・6H2
OとNH4OHから得たNi(OH)2粉末およびLi
(OH)2粉末を使用して860℃10時間焼成後、粉
砕した以外は実施例3と同じ要領でLiNiO2粉末を
得た。比表面積および保存率を表2に示す。
Comparative Example 3 As in Example 3, Ni (NO 3 ) 2 .6H 2
Ni (OH) 2 powder obtained from O and NH 4 OH and Li
A LiNiO 2 powder was obtained in the same manner as in Example 3, except that the powder was fired at 860 ° C. for 10 hours using (OH) 2 powder and then pulverized. Table 2 shows the specific surface area and the storage rate.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【実施例4】実施例1と同様にしてNi(OH)2粉末
を得、この粉末とLiOH・H2O粉末を混合して、2
t/cm2の圧力でペレットをつくり、これを900℃
10時間純酸素気流中3気圧で焼成し、その後砕解して
LiNiO2粉末を得る。この粉末の元素S、比表面積
を測定したところS0.01重量%以下、0.11m2
/gであった。さらに電池に組み込んで電池特性を調
べ、結果を表3に示す。
Example 4 A Ni (OH) 2 powder was obtained in the same manner as in Example 1, and this powder was mixed with LiOH · H 2 O powder to obtain 2
Pellets are produced at a pressure of t / cm 2 ,
The mixture is calcined at 3 atm in a pure oxygen stream for 10 hours and then pulverized to obtain a LiNiO 2 powder. When the element S and the specific surface area of this powder were measured, S was 0.01% by weight or less and 0.11 m 2.
/ G. Further, the battery characteristics were examined by incorporating the battery into a battery. The results are shown in Table 3.

【0036】[0036]

【実施例5】実施例4と同様にして得たNi(OH)2
粉末とLiOH・H2Oとを用いて成形方法にはH2Oを
混ぜて混練し、直径5mmの穴から押し出して成形した
以外は実施例4と同じ要領でLiNiO2粉末を得る。
電池特性を調べた結果を表3に示す。
Example 5 Ni (OH) 2 obtained in the same manner as in Example 4.
In a molding method using powder and LiOH.H 2 O, H 2 O is mixed and kneaded, and a LiNiO 2 powder is obtained in the same manner as in Example 4 except that the mixture is extruded from a hole having a diameter of 5 mm and molded.
Table 3 shows the results of examining the battery characteristics.

【0037】[0037]

【実施例6】実施例2と同様にしてNiSO4・6H2
とNaOHより得たNi(OH)2粉末の洗浄を実施例
2のBと同様に十分に行った後、これ以降の工程は実施
例4と同じ要領でLiNiO2を得て同様に電池特性を
評価した結果を表3に示す。
Embodiment 6 In the same manner as in Embodiment 2, NiSO 4 .6H 2 O
After sufficiently washing Ni (OH) 2 powder obtained from NaOH and NaOH in the same manner as in B of Example 2, the subsequent steps were performed in the same manner as in Example 4 to obtain LiNiO 2 and similarly battery characteristics. Table 3 shows the results of the evaluation.

【0038】[0038]

【比較例4】実施例6と同様にしてNi(OH)2粉末
を得て、この粉末の洗浄を比較例1と同様に十分に行わ
なかったこと以外は実施例6と同じ要領でLiNiO2
粉末を得た。この粉末を用いて電池に組み込んで電池特
性を調べた結果を表3に示す。
Comparative Example 4 LiNiO 2 powder was obtained in the same manner as in Example 6 except that Ni (OH) 2 powder was obtained in the same manner as in Example 6, and this powder was not sufficiently washed as in Comparative Example 1.
A powder was obtained. Table 3 shows the results of examining battery characteristics by incorporating the powder into a battery.

【0039】[0039]

【比較例5】実施例4と同様にして得たNi(OH)2
粉末とLiOH・H2O粉末を使用して、900℃10
時間焼成後、粉砕した以外は実施例4と同じ要領でLi
NiO2粉末を得て、同様に電池特性を調べた結果を表
3に示す。
Comparative Example 5 Ni (OH) 2 obtained in the same manner as in Example 4.
Using powder and LiOH · H 2 O powder at 900 ° C.
After calcination for a period of time, Li
Table 3 shows the results obtained by obtaining NiO 2 powder and similarly examining the battery characteristics.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【実施例7】さらに様々な元素を添加して同様な効果が
得られるかを調べた結果を表4および表5に示す。ただ
し、添加元素はNi化合物と共沈させる場合と、Ni化
合物と混合する場合の2通りを示し、沈殿の生成、洗浄
はP、R、S、T、U、W、Yは実施例1と同様に、
Q、V、X、Zは実施例2のBと同様に、焼成等はRが
900℃15時間で、その他P、Q、S〜Zは実施例4
と同様に、また圧力は表に示す条件で行った。
EXAMPLE 7 Tables 4 and 5 show the results obtained by examining whether similar effects can be obtained by further adding various elements. However, the additive element shows two cases, the case of coprecipitating with the Ni compound and the case of mixing with the Ni compound. The generation of the precipitate and the washing are P, R, S, T, U, W and Y are the same as those in Example 1. Similarly,
Q, V, X, and Z were the same as those in Example 2B. For firing and the like, R was 900 ° C. for 15 hours.
Similarly to the above, the pressure was measured under the conditions shown in the table.

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【発明の効果】以上説明したように、LiNiO2ある
いはLiNi1-xx2粉末[ただし、0<x≦0.
4,M=Co,Mn,B,Al,V,P,Mg,Tiの
1種以上]のような本発明のリチウム二次電池用正極活
物質は硫黄分が0.5重量%以下であって、結晶の成長
が阻害されていないため、一次粒子径の増大と比表面積
の低減に効果があり、電池に組み込んだ場合、高い初期
容量が得られる。
As described above, LiNiO 2 or LiNi 1-x M x O 2 powder [where 0 <x ≦ 0.
4, M = Co, Mn, B, Al, V, P, Mg, Ti). The positive electrode active material for a lithium secondary battery of the present invention has a sulfur content of 0.5% by weight or less. Therefore, since the growth of the crystal is not hindered, it is effective in increasing the primary particle diameter and reducing the specific surface area, and when incorporated in a battery, a high initial capacity can be obtained.

【0045】また、比表面積が所定の0.5m2/gを
越えないように調整された活物質は電池特性として保存
性が良好である。
The active material whose specific surface area is adjusted so as not to exceed a predetermined value of 0.5 m 2 / g has good storage stability as battery characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例において試験用電
池として作成されたコイン電池を示す模式断面図であ
る。
FIG. 1 is a schematic sectional view showing a coin battery prepared as a test battery in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレスケース 2 ガスケット 3 封口板 4 負極 5 正極 6 セパレーター 7 負極集電体 8 正極集電体 DESCRIPTION OF SYMBOLS 1 Stainless steel case 2 Gasket 3 Sealing plate 4 Negative electrode 5 Positive electrode 6 Separator 7 Negative electrode collector 8 Positive electrode collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 張替 彦一 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 伊藤 有一 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (56)参考文献 特開 平4−249073(JP,A) 特開 平8−319120(JP,A) 特開 平9−231973(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Chori 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Yuichi Ito 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-4-2499073 (JP, A) JP-A-8-319120 (JP, A) JP-A-9-231973 (JP, A) (58) Fields surveyed ( Int.Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 LiNiO粉末あるいはLiNi
1−x粉末[ただし、0<x≦0.4、M=C
o、Mn、B、Al、V、P、Mg、Tiの1種以上]
中の硫黄含有量が0.5重量%以下であることを特徴と
するリチウム二次電池用正極活物質。
1. LiNiO 2 powder or LiNi
1-x M x O 2 powder [where, 0 <x ≦ 0.4, M = C
o, Mn, B, Al, V, P, Mg, at least one of Ti]
A positive electrode active material for a lithium secondary battery, wherein the sulfur content in the material is 0.5% by weight or less.
【請求項2】 LiNiO粉末あるいはLiNi
1−x粉末[ただし、0<x≦0.4、M=C
o、Mn、B、Al、V、P、Mg、Tiの1種以上]
中の硫黄含有量が0.5重量%以下であり、かつ該粉末
の比表面積が0.06〜0.46m /gであることを
特徴とするリチウム二次電池用正極活物質。
2. LiNiO 2 powder or LiNi
1-x M x O 2 powder [where, 0 <x ≦ 0.4, M = C
o, Mn, B, Al, V, P, Mg, at least one of Ti]
The positive electrode active material for a lithium secondary battery, wherein the sulfur content in the powder is 0.5% by weight or less and the specific surface area of the powder is 0.06 to 0.46 m 2 / g .
【請求項3】 前記硫黄含有量が0.01重量%以下で
ある、請求項1または2に記載のリチウム二次電池用正
極活物質
3. The method according to claim 1, wherein said sulfur content is 0.01% by weight or less.
The positive electrode for a lithium secondary battery according to claim 1 or 2,
Extremely active material .
【請求項4】 硫黄含有量が0.5重量%以下のLiN
iO粉末あるいはLiNi1−x粉末[ただ
し、0<x≦0.4、M=Co、Mn、B、Al、V、
P、Mg、Tiの1種以上]を正極活物質とし、これに
導電剤および結着剤を混練して得られる正極合剤を組み
込んでなることを特徴とするリチウム二次電池。
4. LiN having a sulfur content of 0.5% by weight or less
iO 2 powder or LiNi 1-x M x O 2 powder [where 0 <x ≦ 0.4, M = Co, Mn, B, Al, V,
Or more of P, Mg, and Ti] as a positive electrode active material, and a positive electrode mixture obtained by kneading a conductive agent and a binder into the positive electrode active material.
【請求項5】 硫黄含有量が0.5重量%以下であり、
かつ比表面積が0.06〜0.46m /gであるLi
NiO粉末あるいはLiNi1−x粉末[た
だし、0<x≦0.4、M=Co、Mn、B、Al、
V、P、Mg、Tiの1種以上]を正極活物質とし、こ
れに導電剤および結着剤を混練して得られる正極合剤を
組み込んでなることを特徴とするリチウム二次電池。
5. A sulfur content of 0.5% by weight or less,
Li having a specific surface area of 0.06 to 0.46 m 2 / g
NiO 2 powder or LiNi 1-x M x O 2 powder [where 0 <x ≦ 0.4, M = Co, Mn, B, Al,
V, P, Mg, or Ti] as a positive electrode active material, and incorporating a positive electrode mixture obtained by kneading a conductive agent and a binder into the positive electrode active material.
【請求項6】 前記硫黄含有量が0.01重量%以下で
ある、請求項4または5に記載のリチウム二次電池
6. When the sulfur content is 0.01% by weight or less.
The lithium secondary battery according to claim 4 or 5, wherein
JP33479796A 1996-11-29 1996-11-29 Positive active material for lithium secondary battery and secondary battery using the same Expired - Fee Related JP3355102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33479796A JP3355102B2 (en) 1996-11-29 1996-11-29 Positive active material for lithium secondary battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33479796A JP3355102B2 (en) 1996-11-29 1996-11-29 Positive active material for lithium secondary battery and secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH10162830A JPH10162830A (en) 1998-06-19
JP3355102B2 true JP3355102B2 (en) 2002-12-09

Family

ID=18281341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33479796A Expired - Fee Related JP3355102B2 (en) 1996-11-29 1996-11-29 Positive active material for lithium secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3355102B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608690B2 (en) * 2000-06-30 2011-01-12 Dowaエレクトロニクス株式会社 Method for producing composite oxide
JP4626020B2 (en) * 2000-07-07 2011-02-02 パナソニック株式会社 Non-aqueous electrolyte secondary battery
EP1381106A4 (en) * 2001-04-16 2008-03-05 Mitsubishi Chem Corp Lithium secondary battery
US7482097B2 (en) 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
JP5168757B2 (en) * 2004-02-27 2013-03-27 住友化学株式会社 Method for producing positive electrode active material for non-aqueous secondary battery
WO2009021651A1 (en) 2007-08-10 2009-02-19 Umicore Doped lithium transition metal oxides containing sulfur
US9455444B2 (en) 2008-12-04 2016-09-27 Toda Kogyo Corporation Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
KR20120129926A (en) * 2010-02-24 2012-11-28 히다치 막셀 에너지 가부시키가이샤 Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
JP5364801B2 (en) * 2010-12-20 2013-12-11 日立マクセル株式会社 Non-aqueous secondary battery
CN103459321B (en) 2011-04-14 2016-09-21 户田工业株式会社 Li-Ni composite oxide particle powder and manufacture method thereof and rechargeable nonaqueous electrolytic battery
JP6233101B2 (en) * 2013-03-06 2017-11-22 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery
JP6659894B1 (en) 2019-04-12 2020-03-04 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, and method for producing lithium metal composite oxide powder

Also Published As

Publication number Publication date
JPH10162830A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
CN109461925B (en) Single crystal nickel cobalt lithium manganate positive electrode material, precursor and preparation method thereof
US6929883B2 (en) Lithium-transition metal composite oxide
KR100694567B1 (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
US7429434B2 (en) Cathode active material powder for lithium secondary battery
EP3723172A2 (en) Cathode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising cathode comprising same
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
KR102177799B1 (en) Method for producing positive electrode active material
EP2660907A1 (en) Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
US20070122705A1 (en) Electrode active material powder with size dependent composition and method to prepare the same
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR101104664B1 (en) Method for producing lithium containing complex oxide for positive electrode of lithium secondary battery
JP4444117B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR101166334B1 (en) Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same
JPWO2002086993A1 (en) Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP3355102B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP2022174097A (en) Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold
WO2023109194A1 (en) Positive electrode material with high peak-intensity ratio, and preparation method therefor and use thereof
CN111009656A (en) Preparation method of rare earth metal doped high-nickel ternary battery positive electrode material
KR20240011822A (en) Surface coated cathode material and manufacturing method thereof, lithium ion battery
KR102131738B1 (en) Method for producing positive electrode active material
JP2006093067A (en) Lithium secondary battery positive pole material and method for manufacturing it
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees