KR20160086228A - Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same - Google Patents

Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same Download PDF

Info

Publication number
KR20160086228A
KR20160086228A KR1020150003710A KR20150003710A KR20160086228A KR 20160086228 A KR20160086228 A KR 20160086228A KR 1020150003710 A KR1020150003710 A KR 1020150003710A KR 20150003710 A KR20150003710 A KR 20150003710A KR 20160086228 A KR20160086228 A KR 20160086228A
Authority
KR
South Korea
Prior art keywords
active material
cathode active
plasma
secondary battery
positive electrode
Prior art date
Application number
KR1020150003710A
Other languages
Korean (ko)
Other versions
KR102027460B1 (en
Inventor
최문호
유현종
김제율
김태근
이종표
Original Assignee
주식회사 에코프로비엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로비엠 filed Critical 주식회사 에코프로비엠
Priority to KR1020150003710A priority Critical patent/KR102027460B1/en
Publication of KR20160086228A publication Critical patent/KR20160086228A/en
Application granted granted Critical
Publication of KR102027460B1 publication Critical patent/KR102027460B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a manufacturing method of a positive electrode active material for a lithium secondary battery, and a positive electrode manufactured thereby for a lithium secondary battery. More particularly, after manufacturing a precursor, the manufacturing method reduces an amount of unreacted lithium inside the positive electrode active material by treating the precursor with plasma. The manufacturing method alleviates characteristics of thermal deterioration which becomes a problem when a conventional washing process is introduced to alleviate lithium residues, thereby securing high capacity and stability of the positive electrode active material.

Description

리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질{MANUFACURING METHOD OF CATHODE ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY, AND CATHODE ACTIVE MATERIAL MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, and a positive electrode active material for a lithium secondary battery,

본 발명은 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 전구체 제조 후 플라즈마 처리에 의해 양극활물질 내의 미반응 리튬의 양을 감소시키고, 종래 잔류 리튬을 개선하기 위한 수세 공정 도입시 오히려 문제가 되는 열화 특성을 개선하여 고용량 및 안정성을 확보한 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것이다.
The present invention relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery produced thereby. More particularly, the present invention relates to a method for reducing an amount of unreacted lithium in a cathode active material by plasma treatment after production of a precursor, The present invention relates to a method for producing a cathode active material for a lithium secondary battery, which is improved in deterioration characteristics, which is a rather problematic problem when introducing a water washing process to improve lithium, and secures a high capacity and stability, and a cathode active material for a lithium secondary battery produced thereby.

모바일 기기에 대한 기술과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As the technology and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Lithium secondary batteries, which exhibit high energy density and operating potential, long cycle life and low self-discharge rate among such secondary batteries, It has been commercialized and widely used.

양극 활물질들 중 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 용량이 작고 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 전기자동차 등과 같은 중대형 전지분야의 동력원으로 대량 사용하기에는 가격 경쟁력에 한계가 있다는 단점이 있다. LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 사용되는 망간 자원이 풍부하여 가격이 저렴하고, 환경 친화적이며, 열적 안전성이 우수하다는 장점이 있지만, 용량이 작고, 고온 특성 및 사이클 특성 등이 열악한 문제가 있다.Among the cathode active materials, LiCoO 2 is most widely used because of its excellent life characteristics and charge / discharge efficiency. However, LiCoO 2 is expensive because of its small capacity and resource limit of cobalt used as a raw material. There is a disadvantage that price competitiveness is limited. Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 are advantageous in that they are rich in manganese resources used as raw materials, are inexpensive, environmentally friendly, and excellent in thermal stability. However, they have small capacity, high temperature characteristics, This is a poor problem.

이러한 단점을 보완하기 위해 이차 전지 양극 활물질로서 니켈 리치 시스템(Ni rich system)의 수요가 늘어나기 시작하였으나, 이러한 니켈 리치 시스템(Ni rich system)의 활물질은 고용량을 내는 우수한 장점을 가지고 있는 반면, 미반응 리튬의 함량이 많아 스웰링 현상 유발 및 전해액과의 반응에 따른 가스발생 등의 문제점을 가지고 있다.In order to compensate for these disadvantages, demand for a nickel rich system as a cathode active material of a secondary battery has begun to increase. However, the active material of the nickel rich system has an advantage of providing a high capacity, The content of lithium in the reaction is large, causing problems such as generation of swelling phenomenon and generation of gas due to reaction with electrolyte.

또한, 리튬 복합 산화물을 제조하는 방법은 일반적으로 전이 금속 전구체를 제조하고, 상기 전이 금속 전구체와 리튬 화합물을 혼합한 후, 상기 혼합물을 소성하는 단계를 포함한다. 이때, 상기 리튬 화합물로는 LiOH 및/또는 Li2CO3가 사용된다.The method for producing the lithium composite oxide generally includes preparing a transition metal precursor, mixing the transition metal precursor and a lithium compound, and then calcining the mixture. At this time, LiOH and / or Li 2 CO 3 is used as the lithium compound.

일반적으로 양극활물질의 Ni함량이 65% 이하일 경우에는 Li2CO3를 사용하며, Ni 함량이 65% 이상일 경우에는 저온 반응이므로 LiOH를 사용하는 것이 바람직하다. 그러나, Ni 함량이 65% 이상인 니켈 리치 시스템(Ni rich system)은 저온 반응이므로 양극활물질 표면에 LiOH, Li2CO3 형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다. 이러한 잔류 리튬 즉, 미반응 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱 시 점도가 높아 겔화를 야기시키기도 한다.
In general, when the Ni content of the cathode active material is 65% or less, Li 2 CO 3 is used. When the Ni content is 65% or more, LiOH is preferably used because it is a low temperature reaction. However, since the Ni rich system having a Ni content of 65% or more is a low-temperature reaction, there is a problem that the amount of lithium remaining in the form of LiOH and Li 2 CO 3 on the surface of the cathode active material is high. Such residual lithium, that is, unreacted LiOH and Li 2 CO 3 react with an electrolyte or the like in the battery to cause gas generation and swelling phenomenon, thereby causing a problem that the high-temperature safety is seriously deteriorated. In addition, the unreacted LiOH may cause gelation due to high viscosity in slurry mixing before preparation of the electrode plate.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 잔류 리튬을 저감시킬 수 있는 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질을 제공하는 것을 목적으로 한다.
Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for manufacturing a cathode active material for a lithium secondary battery capable of reducing residual lithium and a cathode active material for the lithium secondary battery.

본 발명은 상기와 같은 과제를 해결하기 위하여The present invention has been made to solve the above problems

아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질 전구체를 제조하는 제 1 단계;A first step of preparing a precursor of a cathode active material for a lithium secondary battery represented by the following Chemical Formula 1;

[화학식 1] NiaCobM1xM2z(OH)2[Chemical Formula 1] NiaCobM1xM2z (OH) 2

(상기 화학식 1에서 M1 및 M2 는 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.7≤a≤0.95, 0.05≤b≤0.25, 0.01≤c≤0.05, 1≤a/b≤20)Wherein M 1 and M 2 are selected from the group consisting of Mn, Al, Fe, V, Cr, Ti and W in the formula 1, 0.7? A? 0.95, 0.05 b? 0.25, 0.01? C? 0.05, / b? 20)

상기 양극활물질 전구체를 리튬 화합물과 반응시키고 제 1 열처리하여 양극활물질을 제조하는 제 2 단계;A second step of reacting the cathode active material precursor with a lithium compound and subjecting the precursor to a first heat treatment to produce a cathode active material;

상기 양극활물질을 플라즈마 처리하는 제 3 단계;로 구성되는,And a third step of plasma-treating the cathode active material,

아래 화학식 2로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법을 제공한다. A method for producing a cathode active material for a lithium secondary battery represented by the following Chemical Formula 2 is provided.

[화학식2] LiNiaCobXcYd1Yd2O2[Chemical Formula 2] LiNiaCobXcYd1Yd2O2

(상기 화학식 2에서 M1 및 M2 는 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.50≤a≤0.95, 0.02≤b≤0.25, 0.01≤c≤0.20, 0.01≤d1≤0.20, 0.01≤d2≤0.20, 1≤a/b≤20)Wherein M 1 and M 2 are selected from the group consisting of Mn, Al, Fe, V, Cr, Ti and W in the general formula (2), 0.50? A? 0.95, 0.02? B? 0.25, 0.01? C? 0.20, 0.01? D2? 0.20, 1? A / b? 20)

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 Al, Al2O3, Co, Fe, Ti, Si, Mg, 및 Zr으로 이루어진 그룹에서 선택되는 금속 타겟을 사용하여 양극활물질 표면을 코팅하는 것을 특징으로 한다. In the third step of plasma-treating the positive electrode active material according to the present invention, the positive electrode active material is selected from the group consisting of Al, Al 2 O 3 , Co, Fe, Ti, Si, Mg and Zr And the surface of the positive electrode active material is coated with the metal target.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 상기 양극활물질을 교반하면서 플라즈마 처리하는 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, in the third step of plasma-treating the cathode active material, the cathode active material is plasma-treated while stirring.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 상기 금속 타겟을 이용하여 5 mol 이하로 코팅하는 것을 특징으로 한다. In the method of manufacturing a cathode active material for a lithium secondary battery according to the present invention, in the third step of plasma-treating the cathode active material, the metal target is coated with less than 5 moles.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 불활성 분위기에서 플라즈마 처리하는 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, in the third step of plasma-treating the cathode active material, plasma treatment is performed in an inert atmosphere.

본 발명은 또한, 본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극활물질을 제공한다.
The present invention also provides a cathode active material for a lithium secondary battery produced by the method for producing a cathode active material for a lithium secondary battery according to the present invention.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법은 플라즈마를 사용하여 양극활물질 표면을 표면에 잔류하는 리튬과 반응할 수 있는 금속으로 코팅함으로써 잔류리튬을 감소시키고 이에 따라 전지 용량 및 수명 특성을 개선시키는 효과가 있다.
A method of manufacturing a cathode active material for a lithium secondary battery according to the present invention includes coating a surface of a cathode active material with a metal capable of reacting with lithium remaining on a surface thereof by using plasma to reduce residual lithium and thereby improve battery capacity and lifetime characteristics It is effective.

도 1 은 플라즈마 처리장치를 나타내는 모식도이다.
도 2 는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 SEM 사진을 나타낸다.
도 3은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 XRD 사진을 측정한 결과를 나타낸다.
도 4는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 충방전 특성을 측정한 결과를 나타낸다.
도 5는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 저장 특성을 측정한 결과를 나타낸다.
1 is a schematic diagram showing a plasma processing apparatus.
2 is a SEM photograph of the cathode active material prepared in one embodiment of the present invention and a comparative example.
FIG. 3 shows XRD photographs of the cathode active material prepared in one embodiment of the present invention and a comparative example.
FIG. 4 shows the results of measurement of charge / discharge characteristics of a battery including a cathode active material prepared in one embodiment of the present invention and a comparative example.
FIG. 5 shows the results of measurement of storage characteristics of a battery including a cathode active material prepared in one embodiment of the present invention and a comparative example.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1> 1>

양극활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCoMn(OH)2 전구체를 제조하였다. 제조된 전구체에 리튬 화합물로서 LiOH를 첨가하고 제 1 열처리하여 Li1.02Ni0.91Co0.08Mn0.014O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다.To prepare the cathode active material, NiCoMn (OH) 2 precursor was first prepared by coprecipitation reaction. LiOH as a lithium compound was added to the prepared precursor and subjected to a first heat treatment to prepare a cathode active material for lithium secondary battery represented by Li 1.02 Ni 0.91 Co 0.08 Mn 0.014 O 2.

제조된 양극활물질을 도 1에 표시된 플라즈마 반응기 내에 도입하고, 타겟으로 Al 및 Al2O3를 사용하였다. 전원을 인가하여 양극활물질을 교반하면서 타겟을 양극활물질 표면에 코팅되도록 하였다.
The prepared cathode active material was introduced into the plasma reactor shown in Fig. 1, and Al and Al2O3 were used as targets. And the target was coated on the surface of the cathode active material while stirring the cathode active material by applying power.

<< 비교예Comparative Example >>

플라즈마 코팅을 실시하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 하여 비교예 1의 활물질을 제조하였다. An active material of Comparative Example 1 was prepared in the same manner as in Example 1, except that the plasma coating was not performed.

또한, 금속을 고상 혼합 후 교반하여 표면 코팅을 실시하여 양극활물질을 제조하여 비교예 2의 활물질을 제조하였다.
In addition, the metal was mixed with the solid phase and then stirred to prepare a cathode active material, thereby preparing the active material of Comparative Example 2.

<< 실험예Experimental Example >> SEMSEM 사진 측정 Photo measurement

상기 실시예와 비교예에서 제조된 활물질의 SEM 사진을 측정하고 그 결과를 도 2에 나타내었다. SEM photographs of the active materials prepared in the Examples and Comparative Examples were measured and the results are shown in FIG.

도 2에서 본 발명의 실시예에 의하여 플라즈마 처리된 경우 코팅 금속에 의하여 표면이 비교예에 비하여 표면 굴곡이 증가하는 것을 확인할 수 있다.
In FIG. 2, it can be seen that when the plasma treatment is performed according to the embodiment of the present invention, the surface roughness of the surface increases compared to the comparative example due to the coating metal.

<< 실험예Experimental Example >> XRDXRD 측정 Measure

상기 실시예와 비교예에서 제조된 활물질의 XRD 사진을 측정하고 그 결과를 도 3에 나타내었다. XRD photographs of the active materials prepared in the Examples and Comparative Examples were measured and the results are shown in FIG.

도 3에서 본 발명의 실시예에서 표면이 플라즈마로 코팅된 경우 코팅 전후 결정 구조의 변화가 없다는 것을 알수 있다.
In FIG. 3, it can be seen that when the surface is coated with a plasma, there is no change in the crystal structure before and after the coating in the embodiment of the present invention.

<< 실험예Experimental Example >잔류 리튬 측정> Residual lithium measurement

미반응 리튬의 측정은 pH 적정에 의해 pH 4 가 될 때까지 사용된 0.1M HCl의 양으로 측정한다. The measurement of unreacted lithium is determined by the amount of 0.1 M HCl used until pH 4 by pH titration.

먼저, 양극 활물질 5 g을 DIW 100 ml에 넣고 15 분간 교반한 후 필터링하고, 필터링 된 용액 50 ml를 취한 후 여기에 0.1M HCl을 가하여 pH 변화에 따른 HCl 소모량을 측정하여 Q1, Q2를 결정하고, 아래 계산식에 따라 미반응 LiOH 및 Li2CO3 을 계산하였다.First, 5 g of the cathode active material was added to 100 ml of DIW, stirred for 15 minutes, and filtered. 50 ml of the filtered solution was taken, and 0.1 M HCl was added thereto to determine the amounts of HCl consumed according to the pH changes to determine Q1 and Q2 , the unreacted LiOH and Li 2 CO 3 were calculated according to the formula below.

M1 = 23.94 (LiOH Molecular weight)M1 = 23.94 (LiOH Molecular weight)

M2 = 73.89 (Li2CO3 Molecular weight) M2 = 73.89 (Li 2 CO 3 Molecular weight)

SPL Size = (Sample weight × Solution Weight) / Water WeightSPL Size = (Sample weight × Solution Weight) / Water Weight

LiOH(wt%) = [(Q1-Q2)×C×M1×100]/(SPL Size ×1000)LiOH (wt%) = [(Q1-Q2) x C x M1 x 100] / (SPL Size x 1000)

Li2CO3(wt%) = [2×Q2×C×M2/2×100]/(SPL Size×1000)Li2CO3 (wt%) = [2 x Q2 x C x M2 / 2 x 100] / (SPL Size x 1000)

이와 같은 방법을 적용하여 상기 실시예 및 비교예에서 제조된 NCA 계열 리튬 복합 산화물에 있어서 미반응 LiOH 및 Li2CO3 의 농도를 측정한 결과는 다음 표1 과 같다.The results of measurement of the concentrations of unreacted LiOH and Li 2 CO 3 in the NCA-based lithium composite oxide prepared in the above Examples and Comparative Examples are shown in Table 1 below.

Figure pat00001
Figure pat00001

<< 실험예Experimental Example >> 충방전Charging and discharging 특성 평가 Character rating

상기 실시예 및 비교예에서 제조된 양극활물질을 각각 양극으로 사용하고, 리튬 금속을 음극으로 사용하여 코인 셀을 제조하고 C/10 충전 및 C/10 방전 속도(1 C = 150 mA/g)로 3 ~ 4.3 V 사이에서 충방전실험을 수행한 결과를 도 4 및 표 2에 나타내었다.Coin cells were prepared using the positive electrode active materials prepared in the above Examples and Comparative Examples as positive electrodes and lithium metal as negative electrodes, and were subjected to C / 10 charging and C / 10 discharge rate (1 C = 150 mA / g) The results of charging / discharging tests between 3 and 4.3 V are shown in FIG. 4 and Table 2.

Figure pat00002
Figure pat00002

<< 실험예Experimental Example >저장 후 임피던스 측정 결과> Impedance measurement result after storage

상기 실시예에서 제조된 양극활물질을 각각 양극으로 포함하는 코인 셀에 대해서 저장 후 임피던스를 측정하고 그 결과를 도 5에 나타내었다. The impedance of the coin cell including the positive electrode active material prepared in the above example as an anode was measured after storage, and the result is shown in FIG.

도 5에서 비교예에 비해 플라즈마 코팅된 실시예의 저장 후 임피던스가 감소한 것을 확인할 수 있다.In FIG. 5, it can be seen that the impedance after storage of the plasma-coated embodiment is reduced as compared with the comparative example.

Claims (6)

아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질 전구체를 제조하는 제 1 단계;
[화학식 1] NiaCobM1xM2z(OH)2
(상기 화학식 1에서 M1 및 M2 는 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.7≤a≤0.95, 0.05≤b≤0.25, 0.01≤c≤0.05, 1≤a/b≤20)
상기 양극활물질 전구체를 리튬 화합물과 반응시키고 제 1 열처리하여 양극활물질을 제조하는 제 2 단계;
상기 양극활물질을 플라즈마 처리하는 제 3 단계;로 구성되는,
아래 화학식 2로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법.
[화학식2] LiNiaCobXcYd1Yd2O2
(상기 화학식 2에서 M1 및 M2 는 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.50≤a≤0.95, 0.02≤b≤0.25, 0.01≤c≤0.20, 0.01≤d1≤0.20, 0.01≤d2≤0.20, 1≤a/b≤20)
A first step of preparing a precursor of a cathode active material for a lithium secondary battery represented by the following Chemical Formula 1;
[Chemical Formula 1] NiaCobM1xM2z (OH) 2
Wherein M 1 and M 2 are selected from the group consisting of Mn, Al, Fe, V, Cr, Ti and W in the formula 1, 0.7? A? 0.95, 0.05 b? 0.25, 0.01? C? 0.05, / b? 20)
A second step of reacting the cathode active material precursor with a lithium compound and subjecting the precursor to a first heat treatment to produce a cathode active material;
And a third step of plasma-treating the cathode active material,
A method for producing a cathode active material for a lithium secondary battery,
[Chemical Formula 2] LiNiaCobXcYd1Yd2O2
Wherein M 1 and M 2 are selected from the group consisting of Mn, Al, Fe, V, Cr, Ti and W in the general formula (2), 0.50? A? 0.95, 0.02? B? 0.25, 0.01? C? 0.20, 0.01? D2? 0.20, 1? A / b? 20)
제 1 항에 있어서,
상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 Al, Al2O3, Co, Fe, Ti, Si, Mg, 및 Zr으로 이루어진 그룹에서 선택되는 금속 타겟을 사용하여 양극활물질 표면을 코팅하는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
In that the third step of plasma treating the positive electrode active material using a metal target is selected from the group consisting of Al, Al 2 O 3, Co , Fe, Ti, Si, Mg, and Zr for coating the positive electrode active material surface Li A method for producing a cathode active material for a secondary battery.
제 1 항에 있어서,
상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 상기 금속 타겟을 이용하여 5 mol 이하로 코팅하는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
And a third step of plasma-treating the cathode active material, wherein the metal target is coated at a rate of 5 moles or less by using the metal target.
제 1 항에 있어서,
상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 상기 양극활물질을 교반하면서 플라즈마 처리하는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
And a third step of plasma-treating the positive electrode active material, wherein the positive electrode active material is plasma-treated while stirring the negative electrode active material.
제 1 항에 있어서,
상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 불활성 분위기에서 플라즈마 처리하는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
And performing a plasma treatment in an inert atmosphere in a third step of plasma-treating the cathode active material.
제 1 항 내지 제 5 항 중 어느 한 항의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극활물질.A cathode active material for a lithium secondary battery produced by the method of any one of claims 1 to 5.
KR1020150003710A 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same KR102027460B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150003710A KR102027460B1 (en) 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150003710A KR102027460B1 (en) 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Publications (2)

Publication Number Publication Date
KR20160086228A true KR20160086228A (en) 2016-07-19
KR102027460B1 KR102027460B1 (en) 2019-10-02

Family

ID=56616372

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150003710A KR102027460B1 (en) 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Country Status (1)

Country Link
KR (1) KR102027460B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124593A1 (en) * 2016-12-28 2018-07-05 주식회사 엘지화학 Cathode active material for secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2019172568A1 (en) * 2018-03-09 2019-09-12 주식회사 엘지화학 Cathode active material, method for producing same, and cathode electrode and secondary battery comprising same
US11299401B2 (en) 2016-12-28 2022-04-12 Lg Energy Solution, Ltd. Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery including same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110156A (en) * 2000-09-28 2002-04-12 Hitachi Metals Ltd Manufacturing method of positive pole active material for nonaqueous lithium secondary battery, and its positive pole active material and nonaqueous lithium secondary battery using it
KR20110113241A (en) * 2010-04-09 2011-10-17 주식회사 에코프로 Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same
KR20120124355A (en) * 2011-05-03 2012-11-13 주식회사 엘지화학 Treatment method of surface of cathode active particle and cathode active particle formed therefrom
KR20130055080A (en) * 2011-11-18 2013-05-28 재단법인대구경북과학기술원 Surface coated lithium titanate powder and fabricating method thereof
KR20130117475A (en) * 2012-04-18 2013-10-28 한국기초과학지원연구원 A method for removing impurities of lithium transtion metal oxide
KR101447840B1 (en) * 2010-08-17 2014-10-14 유미코르 Alumina dry-coated cathode material precursors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110156A (en) * 2000-09-28 2002-04-12 Hitachi Metals Ltd Manufacturing method of positive pole active material for nonaqueous lithium secondary battery, and its positive pole active material and nonaqueous lithium secondary battery using it
KR20110113241A (en) * 2010-04-09 2011-10-17 주식회사 에코프로 Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same
KR101447840B1 (en) * 2010-08-17 2014-10-14 유미코르 Alumina dry-coated cathode material precursors
KR20120124355A (en) * 2011-05-03 2012-11-13 주식회사 엘지화학 Treatment method of surface of cathode active particle and cathode active particle formed therefrom
KR20130055080A (en) * 2011-11-18 2013-05-28 재단법인대구경북과학기술원 Surface coated lithium titanate powder and fabricating method thereof
KR20130117475A (en) * 2012-04-18 2013-10-28 한국기초과학지원연구원 A method for removing impurities of lithium transtion metal oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124593A1 (en) * 2016-12-28 2018-07-05 주식회사 엘지화학 Cathode active material for secondary battery, method for manufacturing same, and lithium secondary battery comprising same
US11299401B2 (en) 2016-12-28 2022-04-12 Lg Energy Solution, Ltd. Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery including same
WO2019172568A1 (en) * 2018-03-09 2019-09-12 주식회사 엘지화학 Cathode active material, method for producing same, and cathode electrode and secondary battery comprising same
US11482702B2 (en) 2018-03-09 2022-10-25 Lg Chem, Ltd. Positive electrode active material, preparation method thereof, positive electrode including same and secondary battery

Also Published As

Publication number Publication date
KR102027460B1 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
KR101567039B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR101595322B1 (en) Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
JP6856430B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
KR101550741B1 (en) Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
CN108886142B (en) Method for manufacturing anode active material for lithium secondary battery and anode active material for lithium secondary battery manufactured thereby
JP6771419B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
JP6793588B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
KR101875868B1 (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
JP2018020951A (en) Lithium complex oxide for lithium secondary battery and method of producing the same
KR20130001703A (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
JP2018008866A (en) Lithium complex oxide for lithium secondary battery and method of preparing the same
JP7257475B2 (en) Lithium composite oxide and method for producing the same
JP2019503551A (en) Method for producing positive electrode active material and positive electrode active material produced thereby
JP2021080167A (en) Lithium complex oxide for lithium secondary battery and method of producing the same
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
KR20190078720A (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR20180015044A (en) Lithium complex oxide for lithium rechargeable battery positive active material and preparing method of the same
KR20180111552A (en) Manufacturing method of metal coated cathode active material And cathode active material made by the same
KR102027460B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR20180015046A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
JP2019096612A (en) Cathode active material for lithium secondary battery
KR20140082189A (en) Surface-treated cathode material for oxide-based litium secondary battery with solid super acids and manufacturing method thereof
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
ZHONG et al. Synthesis and electrochemical performances of LiNi0. 6Co0. 2Mn0. 2O2 cathode materials

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant