KR101595322B1 - Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same - Google Patents

Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same Download PDF

Info

Publication number
KR101595322B1
KR101595322B1 KR1020140035832A KR20140035832A KR101595322B1 KR 101595322 B1 KR101595322 B1 KR 101595322B1 KR 1020140035832 A KR1020140035832 A KR 1020140035832A KR 20140035832 A KR20140035832 A KR 20140035832A KR 101595322 B1 KR101595322 B1 KR 101595322B1
Authority
KR
South Korea
Prior art keywords
active material
cathode active
water
lithium
secondary battery
Prior art date
Application number
KR1020140035832A
Other languages
Korean (ko)
Other versions
KR20150079362A (en
Inventor
최문호
김직수
윤진경
김현태
전석용
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Publication of KR20150079362A publication Critical patent/KR20150079362A/en
Application granted granted Critical
Publication of KR101595322B1 publication Critical patent/KR101595322B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차 전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극 활물질에 관한 것이다.
본 발명에 의한 이차 전지용 양극 활물질의 제조 방법에 의하여 제조된 리튬 니켈 화합물은 수세를 통하여 양극 활물질 표면을 안정화하여 잔류 리튬을 감소시키면서도 수세 과정에서 열화되는 특성을 개선하는 효과를 나타낸다.
The present invention relates to a process for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery produced thereby.
The lithium nickel compound produced by the method for producing a cathode active material for a secondary battery according to the present invention stabilizes the surface of a cathode active material through washing with water to reduce residual lithium and improve deterioration characteristics in the course of washing.

Figure 112014029448949-pat00003
Figure 112014029448949-pat00003

Description

리튬 이차 전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극 활물질{MANUFACTURING METHOD OF POSITIVE ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERIES AND POSITIVE ACTIVE MATERIAL MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, and a positive electrode active material for a lithium secondary battery,

본 발명은 리튬 이차 전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극 활물질에 관한 것으로서, 더욱 상세하게는 잔류 리튬을 크게 감소시킨 리튬 니켈 산화물의 제조 방법 및 이에 의하여 제조된 리튬 니켈 화합물에 관한 것이다.
More particularly, the present invention relates to a method for producing a lithium nickel oxide having a greatly reduced residual lithium, and a method for producing a lithium nickel compound produced by the method. The present invention relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery produced thereby. .

다양한 전이 금속 산화물 재료는 재충전이 가능한 리튬 이온 및 리튬 중합체 배터리 중의 양극 또는 음극으로서 사용하기 위하여 지난 수십년 간 강도 높게 연구되어 왔다. 이들이 상용화되기 위해서는 재료의 안정성, 고용량, 고에너지 밀도를 만족시켜야 하는데, 그러한 전이 금속 산화물에는 V2O5, V6O13, TiO2, MnO2, LiCoO2, LiMn2O4, 또는 LiNiO2 등이 있다.Various transition metal oxide materials have been studied extensively over the past several decades for use as positive or negative electrodes in rechargeable lithium ion and lithium polymer batteries. V 2 O 5 , V 6 O 13 , TiO 2 , MnO 2 , LiCoO 2 , LiMn 2 O 4 , or LiNiO 2 may be used as the transition metal oxide. .

Li2NiO2는 현재 가장 많이 상용화되어 있는 LiCoO2 보다 월등히 높은 이론 방전 용량을 나타내며, 에너지 밀도 또한 높다는 장점이 있어 고용량을 요구하는 중대형 리튬 이차전지의 양극 소재로 적합한 소재이다.Li 2 NiO 2 is the most commercially available LiCoO 2 And has a high energy density. Therefore, it is a suitable material for a cathode material of medium and large-sized lithium secondary batteries requiring high capacity.

하지만, 소재 합성 시 양론비 그대로 합성이 되지 않아 리튬이 니켈에 비해 과량 투입 되어 전지 적용 시 10 번째 사이클 이후로 방전 용량이 급격히 감소하는 현상(capacity fading)이 발생한다. 이는 리튬 이온(Li+)이 탈리 되는 동안 Li2NiO2 에서 NiO2로 상전이 현상이 일어나 구조가 불안정해지기 때문이다. 또한, 표면에 잔류되어 있는 상당량의 리튬 이온으로 인해 전해질과의 반응시 다량의 가스가 발생하는 단점이 있다.However, in the material synthesis, the lithium battery is excessively charged compared to nickel because the lithium battery is not synthesized as it is, and the capacity fading occurs after the tenth cycle when the battery is applied. This is because the phase transition from Li 2 NiO 2 to NiO 2 occurs during lithium ion (Li + ) desorption and the structure becomes unstable. In addition, there is a disadvantage in that a large amount of gas is generated upon reaction with the electrolyte due to a considerable amount of lithium ions remaining on the surface.

상기 Li2NiO2 소재는 현재 단독으로, 또는 종래의 리튬화 전이 금속 산화물 재료인 LCO, NCM, NCA 등 다양한 종류의 양극 활물질과 조합하여 고용량의 비수계 전해질 2차 전지용 양극 활물질로 사용될 수 있다.
The Li 2 NiO 2 The material can be used alone or as a cathode active material for a high capacity non-aqueous electrolyte secondary battery in combination with various kinds of cathode active materials such as LCO, NCM, and NCA, which are conventional lithium transition transition metal oxide materials.

대한민국 등록특허 제 10-0595362 호Korean Patent No. 10-0595362

본 발명은 잔류 리튬이 감소하여 전지 적용 시 양극 활물질의 가스 발생이 저감되고 안정성이 향상된 리튬 니켈 산화물의 제조 방법 및 이에 의하여 제조된 리튬 니켈 산화물을 제공하는 것을 목적으로 한다.
The present invention aims to provide a process for producing lithium nickel oxide, in which residual lithium is reduced, gas generation of a cathode active material is reduced and stability is improved when a battery is applied, and a lithium nickel oxide produced thereby.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

i) 하기 화학식 1로 표시되는 리튬-니켈 복합 산화물을 제조하는 단계;i) preparing a lithium-nickel composite oxide represented by the following formula (1);

[화학식 1] Li2 - aNi1 - xMxO2 Li 2 - a Ni 1 - x M x O 2

(M은 Al, Mg, Si, P 및 Ga 로 이루어진 군으로부터 선택된 원소이며, 0 ≤ a ≤ 0.3 이고, 0 < x ≤ 0.03 임)(M is an element selected from the group consisting of Al, Mg, Si, P and Ga, 0? A? 0.3 and 0 <x? 0.03)

ii) 상기 i)단계에서 얻어진 화합물을 수세 용액에 첨가하여 수세하는 단계; ii) adding the compound obtained in the step i) to a water-washing solution and washing with water;

iii) 상기 ii)단계에서 수세된 화합물을 건조시키는 단계; 및iii) drying the compound washed in step ii); And

iv) 상기 iii)단계에서 건조된 화합물을 열처리 하는 단계; 를 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질의 제조 방법을 제공한다.
iv) heat treating the compound dried in step iii); The present invention also provides a method of manufacturing a cathode active material for a secondary battery.

본 발명에 의한 2차 전지용 양극 활물질의 제조 방법에 있어서, 상기 ii)단계의 수세 용액은 증류수, 메탄올, 에탄올, 2-프로판올, 1-부탄올, 에틸렌글리콜, 폴리비닐알콜(PVA), 아세톤, 아세틸아세톤, 벤조페논, NaOH, NH4OH, LiOH, KOH, Mg(OH)2 및 Ba(OH)2 으로 이루어진 그룹에서 선택되는 하나 이상을 포함하는 것을 특징으로 한다. 상기 수세 용액은 단독으로 사용할 수도 있고 서로 혼합하여 사용할 수도 있으며, 혼합 비율은 제한되지 않는다.In the method for producing a cathode active material for a secondary battery according to the present invention, the water washing solution in the step ii) may be dissolved in distilled water, methanol, ethanol, 2-propanol, 1-butanol, ethylene glycol, polyvinyl alcohol (PVA) And at least one selected from the group consisting of acetone, benzophenone, NaOH, NH 4 OH, LiOH, KOH, Mg (OH) 2 and Ba (OH) 2 . The water-washing solution may be used alone or in combination with each other, and the mixing ratio is not limited.

본 발명에 의한 2차 전지용 양극 활물질의 제조 방법에 있어서, 상기 ii)단계에서는 상기 수세 용액 1 L 당 상기 i)단계 화합물을 1 내지 20 Kg 의 비율로 첨가하는 것을 특징으로 한다. In the method for producing a cathode active material for a secondary battery according to the present invention, in the step ii), 1 to 20 Kg of the compound of the step i) is added per liter of the washing water solution.

본 발명에 의한 2차 전지용 양극 활물질의 제조 방법에 있어서, 상기 ii)단계에서 수세 시간은 0.1 내지 10 시간인 것을 특징으로 한다. In the method for producing a cathode active material for a secondary battery according to the present invention, the water-washing time in the step ii) is 0.1 to 10 hours.

본 발명에 의한 2차 전지용 양극 활물질의 제조 방법에 있어서, 상기 iii)단계에서는 50 내지 200 ℃ 에서 진공 건조하는 것을 특징으로 한다. In the method for producing a cathode active material for a secondary battery according to the present invention, in the step iii), vacuum drying is performed at 50 to 200 ° C.

본 발명에 의한 2차 전지용 양극 활물질의 제조 방법에 있어서, 상기 iv)단계에서는 200 내지 800 ℃ 에서 2 내지 24 시간 동안 비활성 기체 분위기에서 열처리하는 것을 특징으로 한다.
In the method for manufacturing a cathode active material for a secondary battery according to the present invention, in the step iv), heat treatment is performed in an inert gas atmosphere at 200 to 800 ° C for 2 to 24 hours.

본 발명은 또한, 본 발명에 의한 제조 방법에 의하여 제조되고 아래 화학식 1로 표시되는 2차 전지용 양극 활물질을 제공한다. The present invention also provides a cathode active material for a secondary battery, which is produced by the process according to the present invention and is represented by the following formula (1).

[화학식 1] Li2 - aNi1 - xMxO2 Li 2 - a Ni 1 - x M x O 2

(M은 Al, Mg, Si, P 및 Ga로 이루어진 군으로부터 선택된 원소이며, 0 ≤ a ≤ 0.3 이고, 0 < x ≤ 0.03 임) (M is an element selected from the group consisting of Al, Mg, Si, P and Ga, 0? A? 0.3 and 0 <x? 0.03)

본 발명에 의한 2차 전지용 양극 활물질은 XRD 에서 Li2NiO2에 의한 2θ = 20 내지 25 °에서의 피크 강도가 20000 내지 30000 인 것을 특징으로 한다. The cathode active material for a secondary battery according to the present invention is characterized in that the peak intensity at 2? = 20 to 25 ° of Li 2 NiO 2 in XRD is 20000 to 30000.

본 발명에 의한 2차 전지용 양극 활물질은 수세전 양극활물질의 XRD 에서의 Li2NiO2 에 의한 피크 강도를 D1, 수세 후 양극활물질의 XRD 에서의 Li2NiO2 에 의한 피크 강도를 D2 라고 할 때 D2/D1 이 아래 범위를 만족하는 것을 특징으로 한다.A secondary battery positive electrode active material according to the present invention is to say the peak intensity due to Li 2 NiO 2 in the after peak strength D1, washed with water by Li 2 NiO 2 in the XRD of a pre-tax positive electrode active material the positive electrode active material XRD D2 D2 / D1 satisfies the following range.

0.7 ≤ D2/D1 ≤ 0.9
0.7? D2 / D1? 0.9

본 발명에 의한 2차 전지용 양극 활물질의 제조 방법에 의하여 제조된 리튬 니켈 화합물은 수세를 통하여 양극 활물질 표면을 안정화하여 잔류 리튬을 감소시키면서도 수세 과정에서 열화되는 특성을 개선하는 효과를 나타낸다.
The lithium nickel compound produced by the process for producing a cathode active material for a secondary battery according to the present invention has an effect of stabilizing the surface of a cathode active material through washing with water to reduce residual lithium and improving deterioration characteristics in the course of washing.

도 1은 본 발명의 일 실시예 및 비교예에서 제조된 양극 활물질의 잔류 리튬을 측정한 결과를 나타낸다.
도 2는 본 발명의 일 실시예 및 비교예에서 제조된 양극 활물질의 XRD를 측정한 결과를 나타낸다.
도 3은 본 발명의 일 실시예 및 비교예에서 제조된 양극 활물질을 포함하는 전지의 충방전 특성을 측정한 결과를 나타낸다.
FIG. 1 shows the results of measurement of residual lithium of the cathode active material produced in one embodiment and comparative example of the present invention.
FIG. 2 shows the results of XRD measurements of the cathode active material prepared in one embodiment and the comparative example of the present invention.
FIG. 3 shows the results of measurement of charge / discharge characteristics of a battery including a cathode active material prepared in one embodiment of the present invention and a comparative example.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1> 리튬-니켈 복합산화물의 제조 1> Preparation of lithium-nickel composite oxide

이종금속으로 Al 을 도핑한 Li1 .87Ni0 .98Al0 .02O2 로 표시되는 리튬-니켈 복합산화물을 준비하였다. 상기 리튬-니켈 복합산화물을 수세 용액으로서 증류수 1 L 당 1 Kg의 비율로 혼합한 후 2 시간 동안 교반하면서 수세하였다.
Li 1 .87 Ni 0 .98 Al 0 .02 O 2 doped with Al as a dissimilar metal Nickel complex oxide represented by the following chemical formula was prepared. The lithium-nickel composite oxide was mixed as a water-washing solution at a rate of 1 Kg per 1 L of distilled water, and was then washed with stirring for 2 hours.

<< 실시예Example 2 내지 14> 2 to 14>

아래 표 1에 표시된 바와 같은 수세 조건을 변경하면서 리튬-니켈 복합산화물을 제조하였다.
A lithium-nickel composite oxide was prepared by changing the washing conditions as shown in Table 1 below.

<< 비교예Comparative Example 1 내지 4> 1 to 4>

수세하지 않은 리튬-니켈 복합산화물을 아래 표 1에 표시된 바와 같이 제조 하였다. A non-rinsed lithium-nickel composite oxide was prepared as shown in Table 1 below.

Figure 112014029448949-pat00001
Figure 112014029448949-pat00001

<< 실험예Experimental Example > 잔류 리튬 측정 > Residual lithium measurement

상기 실시예 및 비교예에서 제조된 리튬-니켈 복합산화물의 잔류 리튬을 측정하고 그 결과를 표 2 및 도 1에 나타내었다. The residual lithium of the lithium-nickel composite oxide prepared in the above Examples and Comparative Examples was measured and the results are shown in Table 2 and FIG.

잔류 리튬을 측정하기 위해 활물질 1 g을 증류수 5 g에 침지시킨 뒤 5 분간 교반하고 여과액을 취하여 0.1 M HCl로 적정하였으며, 상기 여과액의 pH가 5가 될 때까지 투입된 HCl의 부피를 측정함으로써 활물질의 잔류 리튬을 분석하였다. To measure the residual lithium, 1 g of the active material was immersed in 5 g of distilled water and stirred for 5 minutes. The filtrate was titrated with 0.1 M HCl and the volume of the charged HCl was measured until the pH of the filtrate reached 5 Residual lithium in the active material was analyzed.

도 1에서 보는 바와 같이 수세를 하지 않은 비교예 1 보다 수세를 실시한 실시예 2 및 실시예 7의 경우 잔류 리튬이 상당히 제거되었으며, 수세 용액으로는 증류수를 사용한 실시예 2의 경우 실시예 7 보다 잔류 리튬 개선 효과가 높다는 것을 확인할 수 있다.
As shown in FIG. 1, residual lithium was significantly removed in Example 2 and Example 7, which were washed with water than in Comparative Example 1 in which no water was washed, and in Example 2 using distilled water, It can be confirmed that the lithium improvement effect is high.

Figure 112014029448949-pat00002
Figure 112014029448949-pat00002

<< 실험예Experimental Example > > XRDXRD 측정  Measure

상기 실시예 및 비교예에서 제조된 리튬-니켈 복합산화물의 XRD 를 측정하고 그 결과를 표 2 및 도 2에 나타내었다. The XRD of the lithium-nickel composite oxide prepared in the above Examples and Comparative Examples was measured and the results are shown in Table 2 and FIG.

도 2에서 실시예 2 및 실시예 11의 경우 수세에 의해 리튬 금속 화합물이 일부 제거되어 Li2NiO2 피크의 크기가 감소하고, Phase purity가 소폭 감소되는 결과를 확인할 수 있다. 하지만 실시예 2의 경우, 실시예 11 보다 초기 충방전 효율이 높아 전지 성능의 저하를 초래하지 않는 강도로 수세를 실시한 것으로 볼 수 있다. 표 2에서 보는 바와 같이 실시예 중 초기 충방전 효율이 비교예보다 높거나 비슷한 경우, 수세에 의한 전지 성능 유지 효과를 얻을 수 있다.
In FIG. 2, in the case of Example 2 and Example 11, it is confirmed that the lithium metal compound is partially removed by washing with water, the size of the Li 2 NiO 2 peak decreases, and the phase purity is slightly reduced. However, in the case of Example 2, it can be seen that the initial charging / discharging efficiency was higher than that in Example 11, and the water was washed with the strength not causing deterioration of the cell performance. As shown in Table 2, when the initial charging / discharging efficiency of the embodiment is higher than or equal to that of the comparative example, the battery performance maintenance effect by washing with water can be obtained.

<< 제조예Manufacturing example > 전지의 제조 > Manufacture of batteries

상기 실시예 및 비교예 각각에 따라 제조된 리튬 이차 전지용 양극 활물질과 도전재로서 인조흑연, 결합재로는 폴리비닐리덴플루오라이드(PVdF)를 85: 10: 5의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 15 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 135 ℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다.The slurry was prepared by mixing artificial graphite as a conductive material and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 85: 10: 5 to each of the cathode active material for a lithium secondary battery produced according to each of the above Examples and Comparative Examples. The slurry was uniformly applied to an aluminum foil having a thickness of 15 占 퐉, and vacuum dried at 135 占 폚 to prepare a positive electrode for a lithium secondary battery.

상기 양극과, 리튬 호일을 상대 전극으로 하며, 두께가 20 ㎛인 다공성 폴리프로필렌막을 세퍼레이터로 하고, 에틸렌 카보네이트, 디에틸 카보네이트 및 에틸 메틸 카보네이트가 3:1:6 의 부피비로 혼합된 용매에 LiPF6를 1.15 M 농도로 녹인 전해액을 사용하여 통상의 방법으로 코인 전지를 제조하였다.
A porous polypropylene film having a thickness of 20 m as a counter electrode and lithium foil as a separator was used as a separator and LiPF 6 was added to a solvent in which ethylene carbonate, diethyl carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 1: 6 To a concentration of 1.15 M was used to prepare a coin cell by a conventional method.

<< 실험예Experimental Example > > 충방전Charging and discharging 특성 평가 Character rating

상기 제조예에서 제조된 전지에 대해 충방전 특성을 측정하고 그 결과를 표 2 및 도 3에 나타내었다. The charge and discharge characteristics of the battery prepared in the above production example were measured and the results are shown in Table 2 and FIG.

도 3에서 본 발명의 실시예 2에서 제조된 활물질을 포함하는 전지의 경우 초기 충전 용량은 비교예보다 감소하지만 방전 용량은 증가하여 오히려 효율이 증가하는 것을 알 수 있다. 이는 수세 시 과량 투입된 리튬이 다량 빠져나가지 않아 기존의 용량이 유지되는 것으로 보인다.3, the initial charging capacity of the battery including the active material prepared in Example 2 of the present invention is lower than that of the comparative example, but the discharge capacity is increased and the efficiency is rather increased. This seems to be due to the fact that excessive amounts of lithium are not released during the flushing to maintain the existing capacity.

Claims (9)

i) 하기 화학식 1로 표시되는 리튬-니켈 복합산화물을 제조하는 단계;
[화학식 1] Li2-aNi1-xMxO2
(M은 Al, Mg, Si, P 및 Ga로 이루어진 군으로부터 선택된 원소이며, 0 ≤ a ≤ 0.3 이고, 0 < x ≤ 0.03 임)
ii) 상기 i)단계에서 얻어진 화합물을 수세 용액에 첨가하여 수세하는 단계;
iii) 상기 ii)단계에서 수세된 화합물을 건조시키는 단계; 및
iv) 상기 iii)단계에서 건조된 화합물을 열처리 하는 단계; 를 포함하는 것을 특징으로 하는 2차 전지용 양극 활물질의 제조 방법.
i) preparing a lithium-nickel composite oxide represented by the following formula (1);
Li 2-a Ni 1-x M x O 2
(M is an element selected from the group consisting of Al, Mg, Si, P and Ga, 0? A? 0.3 and 0 <x? 0.03)
ii) adding the compound obtained in the step i) to a water-washing solution and washing with water;
iii) drying the compound washed in step ii); And
iv) heat treating the compound dried in step iii); The method of claim 1,
제 1 항에 있어서,
상기 ii)단계의 수세 용액은 증류수, 메탄올, 에탄올, 2-프로판올, 1-부탄올, 에틸렌글리콜, 폴리비닐알콜(PVA), 아세톤, 아세틸아세톤, 벤조페논, NaOH, NH4OH, LiOH, KOH, Mg(OH)2 및 Ba(OH)2 으로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것인 2차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
The water washing solution of step ii) may be prepared by adding distilled water, methanol, ethanol, 2-propanol, 1-butanol, ethylene glycol, polyvinyl alcohol (PVA), acetone, acetyl acetone, benzophenone, NaOH, NH 4 OH, LiOH, KOH, Mg (OH) 2, and Ba (OH) 2 , in the total mass of the cathode active material.
제 1 항에 있어서,
상기 ii)단계에서는 상기 수세 용액 1 L 당 상기 i)단계 화합물을 1 내지 20 Kg 의 비율로 첨가하는 것인 2차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein in step ii), the compound of step i) is added in an amount of 1 to 20 Kg per liter of the wash water solution.
제 1 항에 있어서,
상기 ii)단계에서 수세 시간은 0.1 내지 10 시간인 2차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
And the water-washing time is 0.1 to 10 hours in the step (ii).
제 1 항에 있어서,
상기 iii)단계에서는 50 내지 200 ℃에서 진공 건조하는 것인 2차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
And drying in vacuo at 50 to 200 ° C in the step iii).
제 1 항에 있어서,
상기 iv)단계에서는 200 내지 800 ℃에서 2 내지 24 시간 동안 비활성 기체 분위기에서 열처리하는 것인 2차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
And in the step iv), heat treatment is performed in an inert gas atmosphere at 200 to 800 ° C for 2 to 24 hours in an inert gas atmosphere.
제 1 항 내지 제 6 항 중 어느 하나의 항에 의하여 제조되고 아래 화학식 1로 표시되는 2차 전지용 양극 활물질.
[화학식 1] Li2-aNi1-xMxO2
(M은 Al, Mg, Si, P 및 Ga로 이루어진 군으로부터 선택된 원소이며, 0 ≤ a ≤ 0.3 이고, 0 < x ≤ 0.03 임)
A cathode active material for secondary battery according to any one of claims 1 to 6 and represented by the following formula (1).
Li 2-a Ni 1-x M x O 2
(M is an element selected from the group consisting of Al, Mg, Si, P and Ga, 0? A? 0.3 and 0 <x? 0.03)
제 7 항에 있어서,
상기 2차 전지용 양극 활물질은 XRD 에서 Li2NiO2에 의한 2θ = 20 내지 25 °에서의 피크 강도가 20000 내지 30000 인 것인 2차 전지용 양극 활물질.
8. The method of claim 7,
Wherein the cathode active material for the secondary battery has a peak intensity of 20,000 to 30,000 at 2? = 20 to 25 ° by Li 2 NiO 2 in XRD.
제 7 항에 있어서,
상기 2차 전지용 양극 활물질은 수세전 양극 활물질의 XRD 에서의 Li2NiO2 에 의한 피크 강도를 D1, 수세 후 양극 활물질의 XRD 에서의 Li2NiO2 에 의한 피크 강도를 D2 라고 할 때 D2/D1 이 아래 범위를 만족하는 것인 2차 전지용 양극 활물질.
0.7 ≤ D2/D1 ≤ 0.9
8. The method of claim 7,
When called the secondary battery, the positive electrode active material is the peak intensity due to Li 2 NiO 2 in a pre-tax positive electrode active material of the XRD Li 2 XRD after the peak intensity D1, washing the positive electrode active material according to NiO 2 in a D2 D2 / D1 Wherein the cathode active material satisfies the following range.
0.7? D2 / D1? 0.9
KR1020140035832A 2013-12-31 2014-03-27 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same KR101595322B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130168035 2013-12-31
KR1020130168035 2013-12-31

Publications (2)

Publication Number Publication Date
KR20150079362A KR20150079362A (en) 2015-07-08
KR101595322B1 true KR101595322B1 (en) 2016-02-22

Family

ID=53791732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140035832A KR101595322B1 (en) 2013-12-31 2014-03-27 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same

Country Status (1)

Country Link
KR (1) KR101595322B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11398623B2 (en) 2017-11-22 2022-07-26 Lg Energy Solution, Ltd. Method for preparing positive electrode additives of lithium secondary battery
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11728473B2 (en) 2020-09-24 2023-08-15 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888180B1 (en) * 2015-12-22 2018-08-14 주식회사 포스코 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2017116081A1 (en) * 2015-12-31 2017-07-06 주식회사 에코프로비엠 Method for preparing positive electrode active material and positive electrode active material prepared thereby
KR20180022161A (en) 2016-08-23 2018-03-06 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20180027261A (en) * 2016-09-06 2018-03-14 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20180027260A (en) * 2016-09-06 2018-03-14 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR101941869B1 (en) * 2017-02-21 2019-01-24 동아대학교 산학협력단 Control method of residual lithium compounds in cathode active materials
CN109148875A (en) * 2017-06-28 2019-01-04 中信国安盟固利电源技术有限公司 A kind of nickelic positive electrode and preparation method thereof
US11476466B2 (en) 2017-11-17 2022-10-18 Lg Energy Solution, Ltd. Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material
KR102388848B1 (en) * 2017-11-30 2022-04-20 주식회사 엘지에너지솔루션 Additives for cathode, manufacturing method of the same, cathode including the same, lithium recharegable battery including the same
JP7233011B2 (en) * 2018-07-31 2023-03-06 パナソニックIpマネジメント株式会社 Positive electrode active material and secondary battery
KR102658855B1 (en) * 2018-10-18 2024-04-17 주식회사 엘지에너지솔루션 Prepration method of additive for positive electrode of lithium secondary battery, and additive for positive electrode prepared therefrom
CN110416621B (en) * 2019-06-12 2021-05-18 中国科学院化学研究所 Method for treating inorganic solid electrolyte by using phosphorus-containing organic matter
KR102691304B1 (en) * 2020-04-17 2024-08-05 주식회사 엘지화학 Manufacturing method of positive electrode active material
CN113571781B (en) * 2020-07-29 2023-02-17 无锡零一未来新材料技术研究院有限公司 Lithium ion battery anode lithium supplement additive, preparation method thereof and lithium ion battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034861A (en) 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595362B1 (en) 2004-07-21 2006-06-30 제일모직주식회사 Lithium-Nickel complex oxide for Cathode Material of Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Same and Cathode Material containing the Same
KR101075409B1 (en) * 2009-03-30 2011-10-24 주식회사 엘 앤 에프 Method for preparing positive active material for lithium secondary battery, positive active material prepared using same, and lithium secondary battery including same
JP5638542B2 (en) * 2010-01-21 2014-12-10 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034861A (en) 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chem. Mater. 2004, 16, pp2685-2690 (2004.06.05.온라인 게재)*

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11398623B2 (en) 2017-11-22 2022-07-26 Lg Energy Solution, Ltd. Method for preparing positive electrode additives of lithium secondary battery
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11682755B2 (en) 2017-12-04 2023-06-20 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11728473B2 (en) 2020-09-24 2023-08-15 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
KR20150079362A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
KR101595322B1 (en) Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
JP7438922B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
US11165061B2 (en) Method of preparing positive electrode active material for lithium secondary battery and positive electrode active material for lithium secondary battery prepared thereby
KR101550741B1 (en) Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR101264333B1 (en) Cathode active material, cathode and lithium battery containing the same, and preparation method thereof
JP7354184B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
KR101615413B1 (en) Anode active material for lithium secondary battery, preparation method of thereof, and lithium secondary battery comprising the same
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
WO2010082261A1 (en) Method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
US10573885B2 (en) Lithium source material and preparation method thereof and use in Li-ion cells
KR101776896B1 (en) Cathode active material for lithium secondary battery and a method of making the same
KR101449421B1 (en) Surface-treated cathode material for oxide-based litium secondary battery with solid super acids and manufacturing method thereof
KR101724002B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2015088343A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries
KR20190072089A (en) Method of preparing lithium metal oxide and method of manufacturing lithium secondary battery
KR20160086228A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
CN112310478B (en) Electrolyte and electrochemical device thereof
CN108987803B (en) Lithium metal negative electrode film-forming electrolyte for lithium-sulfur battery and additive thereof
CN114695852B (en) Organic matter coated multi-element positive electrode material, preparation method and application thereof, and lithium ion battery
KR101827264B1 (en) Co-planar type secondary battery made by using same collector in anode and cathode and manufacturing method thereof
US20160308197A1 (en) Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby
WO2015019483A1 (en) Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery
KR101776895B1 (en) Cathode active material for lithium secondary battery and a method of making the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190513

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 5